JP5123749B2 - Method for reversibly changing reflectance, element thereof, method for manufacturing the element, transmittance variable element, and reflectance variable mirror - Google Patents

Method for reversibly changing reflectance, element thereof, method for manufacturing the element, transmittance variable element, and reflectance variable mirror Download PDF

Info

Publication number
JP5123749B2
JP5123749B2 JP2008160275A JP2008160275A JP5123749B2 JP 5123749 B2 JP5123749 B2 JP 5123749B2 JP 2008160275 A JP2008160275 A JP 2008160275A JP 2008160275 A JP2008160275 A JP 2008160275A JP 5123749 B2 JP5123749 B2 JP 5123749B2
Authority
JP
Japan
Prior art keywords
electrode
ionized
compound material
reversibly
metal ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008160275A
Other languages
Japanese (ja)
Other versions
JP2010002573A (en
Inventor
多久男 持塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murakami Corp
Original Assignee
Murakami Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murakami Corp filed Critical Murakami Corp
Priority to JP2008160275A priority Critical patent/JP5123749B2/en
Publication of JP2010002573A publication Critical patent/JP2010002573A/en
Application granted granted Critical
Publication of JP5123749B2 publication Critical patent/JP5123749B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Description

この発明は、反射率を可逆的に変化させる方法、反射率を可逆的に変化させる素子、同素子の製造方法、透過率可変素子、反射率可変ミラーに関する。   The present invention relates to a method for reversibly changing the reflectance, an element for reversibly changing the reflectance, a method for manufacturing the element, a transmittance variable element, and a reflectance variable mirror.

透過率、反射率等の光学特性を変化させる従来の素子としてエレクトロクロミック素子、サーモクロミック素子、フォトクロミック素子、液晶素子等があった。下記特許文献1にはエレクトロクロミック素子を用いた自動車用可変反射率ミラーが記載されている。下記特許文献2には全固体反射調光エレクトロクロミック素子が記載されている。下記特許文献3にはマグネシウム・ニオブ合金薄膜を用いた反射型調光薄膜材料が記載されている。下記特許文献4にはマグネシウム・ニッケル合金薄膜を用いた調光ミラーガラスが記載されている。   Conventional elements that change optical characteristics such as transmittance and reflectance include electrochromic elements, thermochromic elements, photochromic elements, and liquid crystal elements. Patent Document 1 listed below describes a variable reflectance mirror for automobiles using an electrochromic element. Patent Document 2 below describes an all-solid-state reflective dimming electrochromic element. Patent Document 3 below describes a reflective light-control thin film material using a magnesium-niobium alloy thin film. Patent Document 4 listed below describes a light control mirror glass using a magnesium / nickel alloy thin film.

特開平10−138832号公報Japanese Patent Laid-Open No. 10-138832 特開2008−40422号公報JP 2008-40422 A 特開2008−20590号公報JP 2008-20590 A 特開2004−139134号公報JP 2004-139134 A

この発明は従来方法とは異なる仕組みによって反射率を可逆的に変化させる方法、反射率を可逆的に変化させる素子、同素子の製造方法、透過率可変素子、反射率可変ミラーを提供しようとするものである。   The present invention seeks to provide a method for reversibly changing the reflectivity by a mechanism different from the conventional method, an element for reversibly changing the reflectivity, a method for manufacturing the element, a variable transmittance element, and a variable reflectivity mirror. Is.

この発明の、反射率を可逆的に変化させる方法は、空隙を隔てて電極対を配置し、前記空隙に、メタノールを含有する非水溶媒中に少なくとも金属イオンおよび電極反応により可逆的にイオン化する化合物材料を分散させた電解液を充填し、前記電極対間の電場の変化に応じて、前記化合物材料を前記金属イオンと同極性にイオン化しかつ前記電解液中の金属イオンおよび前記イオン化した化合物材料を電気泳動により一方の電極の表面に堆積させて鏡にする状態と、逆に該金属イオンおよび該イオン化した化合物を該電極の表面から離脱しかつ該化合物材料を中性化する状態とに変化させて、該電極の表面の反射率を可逆的に変化させるものである。 In the method of reversibly changing the reflectance according to the present invention, an electrode pair is arranged with a gap therebetween, and the gap is reversibly ionized by a metal ion and an electrode reaction in a non-aqueous solvent containing methanol. Filled with an electrolyte solution in which a compound material is dispersed, and ionizes the compound material to the same polarity as the metal ions according to a change in the electric field between the electrode pairs, and the metal ions and the ionized compounds in the electrolyte solution The material is deposited on the surface of one electrode by electrophoresis to form a mirror, and conversely, the metal ion and the ionized compound are separated from the surface of the electrode and the compound material is neutralized. By changing, the reflectance of the surface of the electrode is reversibly changed.

この発明の、反射率が可逆的に変化する素子は、空隙を隔てて配置された電極対と、前記空隙に充填された、メタノールを含有する非水溶媒中に少なくとも金属イオンおよび電極反応により可逆的にイオン化する化合物材料を分散させた電解液とを具備してなり、前記電極対間の電場の変化に応じて、前記化合物材料が前記金属イオンと同極性にイオン化しかつ前記電解液中の金属イオンおよび前記イオン化した化合物材料が電気泳動により一方の電極の表面に堆積して鏡になる状態と、逆に該金属イオンおよび該イオン化した化合物を該電極の表面から離脱しかつ該化合物材料を中性化する状態とに変化して、該電極の表面の反射率が可逆的に変化するものである。この素子において前記金属イオンは例えば銀、アルミニウム、コバルト、銅、ニッケル、モリブデン、イリジウム、白金、ルテニウムから選ばれた一種または複数種の金属イオンとすることができる。また前記電極反応により可逆的にイオン化する化合物材料は例えば錯体(フェロセン等)とすることができる。また前記非水溶媒は例えばテトラエチルアンモニウムテトラフルオロボレート−プロピレンカーボネート、γ−ブチロラクトン、スルホランから選ばれた少なくとも一種を主成分としメタノールを含有するものとすることができる。 The element of this invention whose reversibility changes reversibly is reversible by at least metal ions and an electrode reaction in a non-aqueous solvent containing methanol and filled in the gap with an electrode pair arranged with a gap. In accordance with a change in the electric field between the electrode pair, and the compound material is ionized to the same polarity as the metal ions and in the electrolyte solution. The state in which the metal ions and the ionized compound material are deposited on the surface of one electrode by electrophoresis to become a mirror, and conversely, the metal ions and the ionized compound are detached from the surface of the electrode and the compound material is removed. By changing to a neutralized state, the reflectance of the surface of the electrode changes reversibly. In this element, the metal ions may be one or more metal ions selected from, for example, silver, aluminum, cobalt, copper, nickel, molybdenum, iridium, platinum, and ruthenium. The compound material that is reversibly ionized by the electrode reaction can be, for example, a complex (ferrocene or the like). The non-aqueous solvent may contain, for example, methanol containing at least one selected from tetraethylammonium tetrafluoroborate-propylene carbonate, γ-butyrolactone, and sulfolane as a main component.

この発明の、反射率が可逆的に変化する素子は例えば、前記電極対を構成する少なくとも一方の電極が金属単体で構成され、またはガラス基板、樹脂基板もしくは樹脂フィルムの表面にコーティングされた透明導電膜もしくは金属膜で構成されたものとすることができる。この発明の、反射率が可逆的に変化する素子は例えば、前記電極対間に電圧を印加することにより前記金属イオンおよび前記イオン化した化合物材料が電気泳動により一方の電極の表面に堆積し、この状態から前記電極対間を短絡または開放することにより該金属イオンおよび前記イオン化した化合物材料が該電極の表面から離脱しかつ該イオン化した化合物材料が中性化するものとすることができる。この発明の、反射率が可逆的に変化する素子は前記電解液に増粘剤、PMMA、ポリオールイソシアネート、ポリマーのうちいずれか1つまたは複数を添加して該電解液をゲル状にすることができる。この発明の、反射率が可逆的に変化する素子は前記電解液に紫外線吸収剤を添加することができる。   The element of the present invention whose reflectivity reversibly changes is, for example, a transparent conductive material in which at least one electrode constituting the electrode pair is composed of a single metal, or is coated on the surface of a glass substrate, a resin substrate or a resin film. It may be composed of a film or a metal film. In the element of the present invention in which the reflectance changes reversibly, for example, when a voltage is applied between the electrode pair, the metal ions and the ionized compound material are deposited on the surface of one electrode by electrophoresis. By short-circuiting or opening the electrode pair from the state, the metal ions and the ionized compound material can be released from the surface of the electrode, and the ionized compound material can be neutralized. In the element of the present invention in which the reflectance is reversibly changed, any one or more of a thickener, PMMA, polyol isocyanate, and a polymer may be added to the electrolytic solution to make the electrolytic solution into a gel. it can. In the element of the present invention in which the reflectance changes reversibly, an ultraviolet absorber can be added to the electrolytic solution.

この発明の、反射率が可逆的に変化する素子を製造する方法は、脱水メタノールにNiCl2を溶解し、これにテトラエチルアンモニウムテトラフルオロボレート−プロピレンカーボネート、γ−ブチロラクトン、スルホランから選ばれた少なくとも一種の非水溶媒および電極反応により可逆的にイオン化する化合物材料を添加して非水溶媒中に金属イオンおよび電極反応により可逆的にイオン化する化合物材料を分散させた電解液を調整し、該電解液を電極対の間の空隙に充填して、前記電極対間の電場の変化に応じて、前記化合物材料が前記金属イオンと同極性にイオン化しかつ前記電解液中の金属イオンおよび前記イオン化した化合物材料が電気泳動により一方の電極の表面に堆積して鏡になる状態と、逆に該金属イオンおよび該イオン化した化合物を該電極の表面から離脱しかつ該化合物材料を中性化する状態とに変化して、該電極の表面の反射率が可逆的に変化する素子を製造するものである。 The method of manufacturing a device having a reversible change in reflectance according to the present invention comprises dissolving NiCl 2 in dehydrated methanol, and at least one selected from tetraethylammonium tetrafluoroborate-propylene carbonate, γ-butyrolactone, and sulfolane. A non-aqueous solvent and a compound material that is reversibly ionized by an electrode reaction are added to prepare an electrolyte solution in which a metal ion and a compound material that is reversibly ionized by an electrode reaction are dispersed in the non-aqueous solvent. In the gap between the electrode pairs, and the compound material is ionized to the same polarity as the metal ions according to the change in the electric field between the electrode pairs, and the metal ions and the ionized compounds in the electrolytic solution The material is deposited on the surface of one electrode by electrophoresis to become a mirror, and conversely, the metal ions and the ions The compound is released from the surface of the electrode and changed to a state in which the compound material is neutralized to produce a device in which the reflectance of the electrode surface reversibly changes.

この発明の透過率可変素子は、空隙を隔てて対向配置された2枚の透明基板と、前記2枚の透明基板の対向面にそれぞれ形成された透明導電膜と、前記空隙に充填された、メタノールを含有する非水溶媒中に金属イオンおよび電極反応により可逆的にイオン化する化合物材料を分散させた電解液とを具備し、前記透明導電膜対間の電場の変化に応じて、前記化合物材料が前記金属イオンと同極性にイオン化しかつ前記電解液中の金属イオンおよび前記イオン化した化合物材料が電気泳動により前記いずれかの透明導電膜の表面に堆積して鏡になる状態と、逆に該金属イオンおよび該イオン化した化合物を該透明導電膜の表面から離脱しかつ該化合物材料を中性化する状態とに変化して、該透明導電膜の表面の反射率が可逆的に変化し、もって前記両透明基板を透過して見た透過率が可逆的に変化するものである。 The transmittance variable element according to the present invention includes two transparent substrates disposed to face each other with a gap, transparent conductive films respectively formed on opposite surfaces of the two transparent substrates, and filled in the gap. An electrolyte solution in which a metal ion and a compound material that is reversibly ionized by an electrode reaction are dispersed in a non-aqueous solvent containing methanol, and the compound material according to a change in the electric field between the transparent conductive film pair In a state where the ion is ionized to the same polarity as the metal ion and the metal ion and the ionized compound material in the electrolyte are deposited on the surface of any one of the transparent conductive films by electrophoresis to form a mirror. The metal ion and the ionized compound are separated from the surface of the transparent conductive film, and the compound material is changed to a neutral state, and the reflectance of the surface of the transparent conductive film is reversibly changed. Serial transmission as viewed through the two transparent substrates in which reversibly changes.

この発明の反射率可変ミラーは、裏面に透明導電膜を形成した透明基板と、該透明基板の裏面側で該透明基板に対し空隙を隔てて対向配置され、少なくとも前面が電極を構成し、前面側から見て不透明である背面部材と、前記空隙に充填された、メタノールを含有する非水溶媒中に金属イオンおよび電極反応により可逆的にイオン化する化合物材料を分散させた電解液とを具備し、前記透明導電膜と前記背面部材の電極間の電場の変化に応じて、前記化合物材料が前記金属イオンと同極性にイオン化しかつ前記電解液中の金属イオンおよび前記イオン化した化合物材料が電気泳動により前記透明導電膜と前記背面部材の電極のいずれかの表面に堆積して鏡になる状態と、逆に該金属イオンおよび該イオン化した化合物を該表面から離脱しかつ該化合物材料を中性化する状態とに変化して、該表面の反射率が可逆的に変化し、もって前記透明基板の前面側から見た反射率が可逆的に変化するものである。 The reflectivity variable mirror according to the present invention is disposed opposite to a transparent substrate having a transparent conductive film formed on the back surface thereof, with a gap between the transparent substrate and the transparent substrate on the back surface side of the transparent substrate. A back member that is opaque when viewed from the side, and an electrolytic solution in which a metal material and a compound material that is reversibly ionized by an electrode reaction are dispersed in a methanol-containing nonaqueous solvent that is filled in the gap. The compound material is ionized to the same polarity as the metal ion in response to a change in the electric field between the transparent conductive film and the electrode of the back member, and the metal ion in the electrolyte and the ionized compound material are electrophoresed. leaving life-and-death and state in which the mirror is deposited on either surface of the electrode of the transparent conductive film and the back member, a compound the metal ions and the ionized reversed from the surface by The compound material was changed to a state to neutralize, the reflectivity of the surface is changed reversibly, with in reflectance viewed from the front side of the transparent substrate is one which reversibly changes.

《実施の形態1:透過率可変素子の実施の形態》
この発明の素子を透過率可変素子として構成した実施の形態を以下説明する。図1において透過率可変素子10は空隙12を隔てて対向配置されたガラス製または樹脂製の2枚の透明基板14,16を具えている。透明基板14,16の対向面には電極対を構成する透明導電膜18,20がそれぞれ形成されている。透明導電膜18,20は例えばITO(酸化インジウム・スズ)、酸化スズ、酸化亜鉛等で構成される。空隙12には電解液22が充填されている。空隙12の周囲はシール材24で封止されている。電解液22はテトラエチルアンモニウムテトラフルオロボレート−プロピレンカーボネート(TEABF4−PC)を主成分としメタノールを含有する非水溶媒25に、溶質として金属陽イオン26(例えばNi2+)、陰イオン28(例えばCl-)、電極反応により可逆的にイオン化する化合物材料30(例えばフェロセン)を分散して構成されている。なお透明基板14,16が破損したときに電解液22が空隙12から外部に漏出するのを防止するために、電解液22に増粘剤、PMMA、ポリオールイソシアネート、ポリマー等を添加して、電解液22をゲル状にすることもできる。また外部から照射される紫外線により溶媒が劣化するのを防止するために、電解液22に紫外線吸収剤を添加することもできる。透明導電膜18,20にはリード線32,34の一端部がそれぞれ接続されている。リード線32,34の他端部間にはスイッチ36および直流電源38の直列接続回路が接続されている。またリード線32,34間にはスイッチ40が、スイッチ36および直流電源38の直列接続回路と並列に接続されている。スイッチ36,40は相互に連動して互いに逆方向にオン、オフ切り換えされる。
<< Embodiment 1: Embodiment of Variable Transmission Element >>
An embodiment in which the element of the present invention is configured as a transmittance variable element will be described below. In FIG. 1, the transmittance variable element 10 includes two transparent substrates 14 and 16 made of glass or resin and arranged to face each other with a gap 12 therebetween. Transparent conductive films 18 and 20 constituting electrode pairs are formed on opposing surfaces of the transparent substrates 14 and 16, respectively. The transparent conductive films 18 and 20 are made of, for example, ITO (indium tin oxide), tin oxide, zinc oxide or the like. The gap 12 is filled with an electrolytic solution 22. The space around the gap 12 is sealed with a sealing material 24. The electrolyte 22 is composed of tetraethylammonium tetrafluoroborate-propylene carbonate (TEABF 4 -PC) as a main component and a non-aqueous solvent 25 containing methanol, and as a solute, a metal cation 26 (for example, Ni 2+ ) and an anion 28 (for example, Cl - ), A compound material 30 (for example, ferrocene) that is reversibly ionized by an electrode reaction is dispersed. In order to prevent the electrolytic solution 22 from leaking out of the gap 12 when the transparent substrates 14 and 16 are damaged, a thickener, PMMA, polyol isocyanate, a polymer, or the like is added to the electrolytic solution 22 to perform electrolysis. The liquid 22 can also be gelled. Further, in order to prevent the solvent from being deteriorated by ultraviolet rays irradiated from the outside, an ultraviolet absorber can be added to the electrolytic solution 22. One end portions of lead wires 32 and 34 are connected to the transparent conductive films 18 and 20, respectively. A series connection circuit of a switch 36 and a DC power source 38 is connected between the other ends of the lead wires 32 and 34. A switch 40 is connected between the lead wires 32 and 34 in parallel with the series connection circuit of the switch 36 and the DC power supply 38. The switches 36 and 40 are turned on and off in opposite directions in conjunction with each other.

以上の構成の透過率可変素子10の動作を説明する。図1のようにスイッチ36がオフし、スイッチ40がオンしているときは透明導電膜18,20間は短絡状態となり、透明導電膜18,20間に電場は生じない。したがって電解液22中で金属陽イオン26、陰イオン28、化合物材料30は分散した状態にある。このとき化合物材料30は中性状態(非イオン化状態)にある。このとき電解液22は透明であり、透過率可変素子10は透明基板14から透明基板16に至るまで厚み方向全体が透明である。   The operation of the transmittance variable element 10 having the above configuration will be described. As shown in FIG. 1, when the switch 36 is turned off and the switch 40 is turned on, the transparent conductive films 18 and 20 are short-circuited, and no electric field is generated between the transparent conductive films 18 and 20. Accordingly, the metal cation 26, the anion 28, and the compound material 30 are dispersed in the electrolytic solution 22. At this time, the compound material 30 is in a neutral state (non-ionized state). At this time, the electrolytic solution 22 is transparent, and the transmittance variable element 10 is transparent in the entire thickness direction from the transparent substrate 14 to the transparent substrate 16.

図1の状態から図2のようにスイッチ36をオンし、スイッチ40をオフすると直流電源38の電圧が透明導電膜18,20間に印加され(透明導電膜18を正電極、透明導電膜20を負電極とする)、透明導電膜18,20間に電場が生じる。この電場により電解液22中の化合物材料30は酸化反応を生じて陽イオン化する。そして電解液22中の金属陽イオン26および陽イオン化した化合物材料30は電気泳動でこれら両イオン26,30と逆極性の電極すなわち負電極20の表面に移動して堆積し、陰イオン28は正電極18に移動する。負電極20の表面に堆積する金属陽イオン26により負電極20の表面に反射膜が析出する。これにより透過率可変素子10は反射率が増大し、透過率が減少してミラーまたはハーフミラーとなる。透明導電膜18,20間に印加する電圧を段階的にまたは無段階に可変できるようにして、反射率、透過率を段階的にまたは無段階に調整可能にすることもできる。   When the switch 36 is turned on and the switch 40 is turned off as shown in FIG. 2 from the state of FIG. 1, the voltage of the DC power supply 38 is applied between the transparent conductive films 18 and 20 (the transparent conductive film 18 is the positive electrode and the transparent conductive film 20 An electric field is generated between the transparent conductive films 18 and 20. This electric field causes the compound material 30 in the electrolytic solution 22 to undergo an oxidation reaction and become cationized. Then, the metal cation 26 and the cationized compound material 30 in the electrolytic solution 22 are moved and deposited on the surface of the electrode having the opposite polarity to the both ions 26 and 30, that is, the negative electrode 20 by electrophoresis, and the anion 28 is positive. Move to electrode 18. A reflective film is deposited on the surface of the negative electrode 20 by the metal cation 26 deposited on the surface of the negative electrode 20. Thereby, the transmittance of the variable transmittance element 10 increases, and the transmittance decreases to become a mirror or a half mirror. The voltage applied between the transparent conductive films 18 and 20 can be varied stepwise or steplessly so that the reflectance and transmittance can be adjusted stepwise or steplessly.

図2の状態から再び図1のようにスイッチ36をオフし、スイッチ40をオンすると透明導電膜18,20間が短絡し、透明導電膜18,20間の電場が消失する。これにより金属陽イオン26および化合物材料30は負電極20の表面から離脱し、化合物材料30は還元反応を生じて元の中性状態に戻る。また陰イオン28は正電極18の表面から離脱してそれぞれ電解液22中に分散する。その結果透過率可変素子10は反射率が低下し、透過率が増大して元の透明な状態に戻る。なお両電極18,20間を短絡するのに代えて、両電極18,20間を開放することによっても両電極18,20間の電場が消失するので、金属陽イオン26を負電極20から離脱させて、透過率可変素子10を元の透明な状態に戻すことができる。   When the switch 36 is turned off again from the state shown in FIG. 2 and the switch 40 is turned on again, the transparent conductive films 18 and 20 are short-circuited, and the electric field between the transparent conductive films 18 and 20 disappears. As a result, the metal cation 26 and the compound material 30 are separated from the surface of the negative electrode 20, and the compound material 30 undergoes a reduction reaction and returns to the original neutral state. The anions 28 are separated from the surface of the positive electrode 18 and dispersed in the electrolytic solution 22. As a result, the transmittance of the transmittance variable element 10 decreases, and the transmittance increases to return to the original transparent state. In addition, since the electric field between both electrodes 18 and 20 disappears by opening both electrodes 18 and 20 instead of short-circuiting both electrodes 18 and 20, the metal cation 26 is detached from the negative electrode 20. Thus, the transmittance variable element 10 can be returned to the original transparent state.

以上のようにして、両電極18,20間に電場を印加し、また電場の印加を解除することにより、透過率可変素子10の反射率および透過率を可逆的に変化させることができる。この可逆動作の過程では金属陽イオン26と負電極20との間では電極反応は生じない(あるいはほとんど生じない)ので金属陽イオン26はイオンの状態を保ち続け、添加された化合物材料30のみが電極反応を生じるので、全体として電流はわずかしか流れない。また図2のように金属陽イオン26と化合物材料30および陰イオン28の移動が終了した状態では直流電源38から電圧を印加し続けても電流はほとんど流れないので、電力消費はほとんど生じない。なお上記動作におけるフェロセンの電極反応は次式のとおりである。

Figure 0005123749
As described above, the reflectance and transmittance of the transmittance variable element 10 can be reversibly changed by applying an electric field between the electrodes 18 and 20 and canceling the application of the electric field. In the process of this reversible operation, an electrode reaction does not occur (or hardly occurs) between the metal cation 26 and the negative electrode 20, so that the metal cation 26 keeps its ionic state, and only the added compound material 30 is present. Since an electrode reaction occurs, little current flows as a whole. Further, as shown in FIG. 2, in the state where the movement of the metal cation 26, the compound material 30 and the anion 28 is completed, even if the voltage is continuously applied from the DC power source 38, almost no current flows, so that power consumption hardly occurs. The electrode reaction of ferrocene in the above operation is as follows.
Figure 0005123749

透過率可変素子10は例えば建築用調光窓ガラス、自動車用調光窓ガラス等の用途に好適に用いることができる。すなわち夏は透過率を低くする(反射率を高くする)ことにより紫外線、赤外線を反射させて室内の冷房効率を高め、冬は透過率を高くする(反射率を下げる)ことにより室内の暖房効率を高めることができる。その結果、省エネルギー効果が得られる。また透過率を低くする(反射率を高くする)ことにより、室外からの視線に対して目隠し効果を得ることもできる。   The transmittance variable element 10 can be suitably used for applications such as, for example, a building light control window glass and an automobile light control window glass. That is, by reducing the transmittance (increasing the reflectivity) in summer to reflect ultraviolet rays and infrared rays to increase indoor cooling efficiency, and in the winter, increasing the transmittance (decreasing reflectivity) to increase indoor heating efficiency Can be increased. As a result, an energy saving effect can be obtained. Further, by reducing the transmittance (increasing the reflectance), it is possible to obtain a blinding effect with respect to the line of sight from the outside.

また透過率可変素子10はカメラの絞り部の代替デバイスとして利用することもできる。すなわち、透過率可変素子10をカメラ内の光軸上に配置し、両電極18,20間に印加する電圧を段階的にまたは無段階に可変して透過率可変素子10の透過率を段階的にまたは無段階に調整することにより、機械的動作部分を有しない絞り部を構成することができる。   The transmittance variable element 10 can also be used as an alternative device for the diaphragm of the camera. That is, the transmittance variable element 10 is arranged on the optical axis in the camera, and the voltage applied between the electrodes 18 and 20 is varied stepwise or steplessly to vary the transmittance of the transmittance variable element 10 stepwise. By adjusting in a stepless manner or steplessly, it is possible to form a throttle portion that does not have a mechanical operation portion.

また透過率可変素子10は透明導電膜20をセグメントに分割し各セグメントごとに電圧を印加することにより金属反射による表示体として構成することもできる。   The transmittance variable element 10 can also be configured as a display body by metal reflection by dividing the transparent conductive film 20 into segments and applying a voltage to each segment.

<実施例>
図1の透過率可変素子10の実施例を説明する。透過率可変素子10を製造し、使用する手順を説明する。ここでは非水溶媒中に金属イオンを溶解する方法として特開2007−103464号公報に記載の方法を利用する。
(1)脱水メタノールに5重量%の無水NiCl2を、水分が入らないようにN2雰囲気中で溶解する。
(2)上記(1)で得られた溶液と0.8モル/リットルのテトラエチルアンモニウムテトラフルオロボレート−プロピレンカーボネート溶液を体積比1:9で混合する。
(3)上記(2)で得られた溶液に0.01〜0.03モル/リットルのフェロセンを添加して電解液22を調整する。調整された電解液22はテトラエチルアンモニウムテトラフルオロボレート−プロピレンカーボネートを主成分としこれにメタノールを混合した非水溶媒25中に、金属陽イオン26としてのNi2+、陰イオン28としてのCl-、電極反応により可逆的にイオン化する化合物材料30としてのフェロセンが分散した状態にある。このときフェロセンは中性状態(非イオン化状態)にある。
(4)上記(3)で調整された電解液22を、対向面に透明導電膜18,20をそれぞれ形成して対向配置した透明基板14,16間の空隙12(空隙長:1mm)に充填する。充填後空隙12の周囲をシール材24で封止して透過率可変素子10を完成する。完成した透過率可変素子10は厚み方向全体が透明(電解液22がフェロセン含んでいるので、やや黄色味がかった透明)である。
(5)完成した透過率可変素子10に図1のように電気回路を接続し、図2のようにスイッチ36をオンし、スイッチ40をオフして両電極18,20間に直流電源38により2Vの電圧を印加した。その結果、負電極20に金属陽イオン26であるNi2+が堆積して反射膜が析出し、透明基板16の前面側から透明基板16を透過して見て無色の鏡となった。
(6)上記(5)の状態から図1のようにスイッチ36をオフし、スイッチ40をオンして両電極18,20間を短絡すると反射膜が消失し元の透明な状態に戻った。上記(5)の状態からスイッチ36,40を共にオフして両電極18,20間を開放した場合も反射膜が消失し元の透明な状態に戻った。
<Example>
An embodiment of the transmittance variable element 10 of FIG. 1 will be described. A procedure for manufacturing and using the variable transmittance element 10 will be described. Here, a method described in JP-A-2007-103464 is used as a method for dissolving metal ions in a non-aqueous solvent.
(1) 5 wt% anhydrous NiCl 2 is dissolved in dehydrated methanol in an N 2 atmosphere so that moisture does not enter.
(2) The solution obtained in (1) above and 0.8 mol / liter of tetraethylammonium tetrafluoroborate-propylene carbonate solution are mixed at a volume ratio of 1: 9.
(3) 0.01 to 0.03 mol / liter of ferrocene is added to the solution obtained in the above (2) to prepare the electrolytic solution 22. The prepared electrolytic solution 22 is composed of tetraethylammonium tetrafluoroborate-propylene carbonate as a main component and mixed with methanol in a non-aqueous solvent 25, Ni 2+ as a metal cation 26, Cl as an anion 28, an electrode Ferrocene as the compound material 30 that is reversibly ionized by the reaction is in a dispersed state. At this time, ferrocene is in a neutral state (non-ionized state).
(4) Filling the gap 12 (gap length: 1 mm) between the transparent substrates 14 and 16 arranged opposite to each other by forming the transparent conductive films 18 and 20 on the opposite surfaces, respectively, with the electrolytic solution 22 adjusted in the above (3). To do. After filling, the periphery of the gap 12 is sealed with a sealing material 24 to complete the transmittance variable element 10. The completed transmittance variable element 10 is transparent in the entire thickness direction (since the electrolytic solution 22 contains ferrocene, it is slightly yellowish transparent).
(5) An electrical circuit is connected to the completed transmittance variable element 10 as shown in FIG. 1, and the switch 36 is turned on and the switch 40 is turned off as shown in FIG. A voltage of 2V was applied. As a result, Ni 2+, which is the metal cation 26, was deposited on the negative electrode 20 and a reflective film was deposited, and it became a colorless mirror when viewed through the transparent substrate 16 from the front side of the transparent substrate 16.
(6) When the switch 36 is turned off as shown in FIG. 1 from the state (5) and the switch 40 is turned on and the electrodes 18 and 20 are short-circuited, the reflective film disappears and the original transparent state is restored. Even when both the switches 36 and 40 were turned off from the state (5) above and the electrodes 18 and 20 were opened, the reflective film disappeared and the original transparent state was restored.

<比較例>
比較例としてフェロセンを添加しない電解液22を調整して上記実施例と同様の実験を行った。その結果、両電極18,20に2Vの電圧を印加すると負電極20に反射膜が析出して鏡となったが、その後両電極18,20を短絡または開放しても鏡の状態のままであり、元の透明な状態には戻らなかった。したがって実施例によればフェロセン(電極反応により可逆的にイオン化する化合物材料)の添加により金属イオンの移動度が上がることがわかった。このような違いが生じる理由は未だ明らかではないが、一つの推測として、フェロセンを添加しない場合は金属イオンが負電極の表面に移動すると金属イオンと負電極20との間で電極反応が生じて金属イオンが負電極20にメッキされる(つまり金属イオンは電解液22中に分散した元の状態に戻らない)のに対し、フェロセンを添加した場合は、イオン化したフェロセンと金属イオンとが混在した状態で負電極の表面に移動するため、金属イオンと負電極20との間で電極反応が生じにくくなる(メッキされにくくなる)のではないかと考えられる。
<Comparative example>
As a comparative example, an experiment similar to the above example was performed by adjusting the electrolytic solution 22 to which ferrocene was not added. As a result, when a voltage of 2 V was applied to both the electrodes 18 and 20, a reflective film was deposited on the negative electrode 20 to form a mirror, but after that both the electrodes 18 and 20 were short-circuited or opened to remain in the mirror state. There was no return to the original transparent state. Therefore, according to the examples, it was found that the mobility of metal ions is increased by adding ferrocene (compound material that is ionized reversibly by electrode reaction). The reason why such a difference occurs is not yet clear, but as one speculation, when ferrocene is not added, an electrode reaction occurs between the metal ion and the negative electrode 20 when the metal ion moves to the surface of the negative electrode. When metal ions are plated on the negative electrode 20 (that is, the metal ions do not return to the original state dispersed in the electrolytic solution 22), when ferrocene is added, ionized ferrocene and metal ions are mixed. Since it moves to the surface of the negative electrode in a state, it is considered that an electrode reaction is unlikely to occur between the metal ions and the negative electrode 20 (it is difficult to be plated).

《実施の形態2:反射率可変ミラーの実施の形態》
この発明の素子を反射率可変ミラーとして構成した実施の形態を以下説明する。実施の形態1と共通する部分には同一の符号を用いる。図3において反射率可変ミラー42は空隙12を隔てて対向配置された不透明基板44と透明基板16を具えている。不透明基板44は例えば表面が暗色(黒色等)のガラス、セラミックス、樹脂、金属等の基板で構成されたもので、反射率は低い。不透明基板44と透明基板16の対向面には電極対を構成する透明導電膜18,20がそれぞれ形成されている。空隙12には電解液22が充填されている。空隙12の周囲はシール材24で封止されている。電解液22は実施の形態1で使用したものと同じで、テトラエチルアンモニウムテトラフルオロボレート−プロピレンカーボネートを主成分としメタノールを含有する非水溶媒25に、溶質として金属陽イオン26(例えばNi2+)、陰イオン28(例えばCl-)、電極反応により可逆的にイオン化する化合物材料30(例えばフェロセン)を分散させて構成されている。なお不透明基板44と透明基板16が破損したときに電解液22が空隙12から外部に漏出するのを防止するために、電解液22に増粘剤、PMMA、ポリオールイソシアネート、ポリマー等を添加して、電解液22をゲル状にすることもできる。また外部から照射される紫外線により溶媒が劣化するのを防止するために、電解液22に紫外線吸収剤を添加することもできる。透明導電膜18,20にはリード線32,34の一端部がそれぞれ接続されている。リード線32,34の他端部間にはスイッチ36および直流電源38の直列接続回路が接続されている。またリード線32,34間にはスイッチ40が、スイッチ36および直流電源38の直列接続回路と並列に接続されている。スイッチ36,40は相互に連動して互いに逆方向にオン、オフ切り換えされる。
<< Embodiment 2: Embodiment of a reflectivity variable mirror >>
An embodiment in which the element of the present invention is configured as a variable reflectivity mirror will be described below. The same reference numerals are used for portions common to the first embodiment. In FIG. 3, the reflectivity variable mirror 42 includes an opaque substrate 44 and a transparent substrate 16 that are arranged to face each other with a gap 12 therebetween. The opaque substrate 44 is made of a substrate made of glass, ceramics, resin, metal or the like whose surface is dark (black, etc.), for example, and has a low reflectance. Transparent conductive films 18 and 20 constituting electrode pairs are formed on opposing surfaces of the opaque substrate 44 and the transparent substrate 16, respectively. The gap 12 is filled with an electrolytic solution 22. The space around the gap 12 is sealed with a sealing material 24. The electrolytic solution 22 is the same as that used in the first embodiment, and a non-aqueous solvent 25 containing tetraethylammonium tetrafluoroborate-propylene carbonate as a main component and containing methanol, a metal cation 26 (for example, Ni 2+ ) as a solute, An anion 28 (for example, Cl ) and a compound material 30 (for example, ferrocene) that is reversibly ionized by an electrode reaction are dispersed. In order to prevent the electrolytic solution 22 from leaking out of the gap 12 when the opaque substrate 44 and the transparent substrate 16 are damaged, a thickener, PMMA, polyol isocyanate, polymer, or the like is added to the electrolytic solution 22. The electrolyte solution 22 can also be gelled. Further, in order to prevent the solvent from being deteriorated by ultraviolet rays irradiated from the outside, an ultraviolet absorber can be added to the electrolytic solution 22. One end portions of lead wires 32 and 34 are connected to the transparent conductive films 18 and 20, respectively. A series connection circuit of a switch 36 and a DC power source 38 is connected between the other ends of the lead wires 32 and 34. A switch 40 is connected between the lead wires 32 and 34 in parallel with the series connection circuit of the switch 36 and the DC power supply 38. The switches 36 and 40 are turned on and off in opposite directions in conjunction with each other.

以上の構成の反射率可変ミラー42の動作を説明する。図3のようにスイッチ36がオフし、スイッチ40がオンしているときは透明導電膜18,20間は短絡状態となり、透明導電膜18,20間に電場は生じない。したがって電解液22中で金属陽イオン26、陰イオン28、化合物材料30は分散した状態にある。このとき化合物材料30は中性状態(非イオン化状態)にある。このとき電解液22は透明であり、透明基板16の表面側から入射した光は不透明基板44に当たってほとんど吸収される。したがってこのとき透明基板16の前面側から見た反射率は低い。   The operation of the reflectivity variable mirror 42 having the above configuration will be described. When the switch 36 is turned off and the switch 40 is turned on as shown in FIG. 3, the transparent conductive films 18 and 20 are short-circuited, and no electric field is generated between the transparent conductive films 18 and 20. Accordingly, the metal cation 26, the anion 28, and the compound material 30 are dispersed in the electrolytic solution 22. At this time, the compound material 30 is in a neutral state (non-ionized state). At this time, the electrolytic solution 22 is transparent, and light incident from the surface side of the transparent substrate 16 strikes the opaque substrate 44 and is almost absorbed. Therefore, the reflectance seen from the front side of the transparent substrate 16 is low at this time.

図3の状態から図4のようにスイッチ36をオンし、スイッチ40をオフすると直流電源38の電圧が透明導電膜18,20間に印加され(透明導電膜18を正電極、透明導電膜20を負電極とする)、透明導電膜18,20間に電場が生じる。この電場により化合物材料30は酸化反応を生じて陽イオン化する。そして電解液22中の金属陽イオン26および陽イオン化した化合物材料30は電気泳動でこれら両イオン26,30と逆極性の電極すなわち負電極20の表面に移動して堆積し、陰イオン28は正電極18に移動する。負電極20の表面に堆積する金属陽イオン26により負電極20の表面に反射膜が析出する。これにより反射率可変ミラー42は透明基板16の前面側から見た反射率が増大する。透明導電膜18,20間に印加する電圧を段階的にまたは無段階に可変できるようにして、反射率を段階的にまたは無段階に調整可能にすることもできる。   When the switch 36 is turned on and the switch 40 is turned off as shown in FIG. 4 from the state of FIG. 3, the voltage of the DC power supply 38 is applied between the transparent conductive films 18 and 20 (the transparent conductive film 18 is the positive electrode, the transparent conductive film 20 An electric field is generated between the transparent conductive films 18 and 20. This electric field causes the compound material 30 to oxidize by causing an oxidation reaction. Then, the metal cation 26 and the cationized compound material 30 in the electrolytic solution 22 are moved and deposited on the surface of the electrode having the opposite polarity to the both ions 26 and 30, that is, the negative electrode 20 by electrophoresis, and the anion 28 is positive. Move to electrode 18. A reflective film is deposited on the surface of the negative electrode 20 by the metal cation 26 deposited on the surface of the negative electrode 20. As a result, the reflectance of the variable reflectivity mirror 42 as viewed from the front side of the transparent substrate 16 increases. The voltage applied between the transparent conductive films 18 and 20 can be varied stepwise or steplessly so that the reflectance can be adjusted stepwise or steplessly.

図4の状態から再び図3のようにスイッチ36をオフし、スイッチ40をオンすると透明導電膜18,20間が短絡し、透明導電膜18,20間の電場が消失する。これにより金属陽イオン26および化合物材料30は負電極20の表面から離脱し、化合物材料30は還元反応を生じて元の中性状態に戻る。また陰イオン28は正電極18の表面から離脱してそれぞれ電解液22中に分散する。その結果反射率可変ミラー42は透明基板16の前面側から見た反射率が低下して元の状態に戻る。なお両電極18,20間を短絡するのに代えて、両電極18,20間を開放することによっても両電極18,20間の電場が消失するので、金属陽イオン26を負電極20から離脱させて、反射率可変ミラー42の反射率を元の低反射率の状態に戻すことができる。   When the switch 36 is turned off again as shown in FIG. 3 from the state of FIG. 4 and the switch 40 is turned on, the transparent conductive films 18 and 20 are short-circuited, and the electric field between the transparent conductive films 18 and 20 disappears. As a result, the metal cation 26 and the compound material 30 are separated from the surface of the negative electrode 20, and the compound material 30 undergoes a reduction reaction and returns to the original neutral state. The anions 28 are separated from the surface of the positive electrode 18 and dispersed in the electrolytic solution 22. As a result, the reflectivity variable mirror 42 returns to the original state as the reflectivity viewed from the front side of the transparent substrate 16 is lowered. In addition, since the electric field between both electrodes 18 and 20 disappears by opening both electrodes 18 and 20 instead of short-circuiting both electrodes 18 and 20, the metal cation 26 is detached from the negative electrode 20. Thus, the reflectivity of the reflectivity variable mirror 42 can be returned to the original low reflectivity state.

以上のようにして、両電極18,20間に電場を印加し、また電場の印加を解除することにより、反射率可変ミラー42の透明基板16の前面側から見た反射率を可逆的に変化させることができる。この可逆動作の過程では金属陽イオン26と負電極20との間では電極反応は生じない(あるいはほとんど生じない)ので金属陽イオン26はイオンの状態を保ち続け、添加された化合物材料30のみが電極反応を生じるので、全体として電流はわずかしか流れない。また図4のように金属陽イオン26と化合物材料30および陰イオン28の移動が終了した状態では直流電源38から電圧を印加し続けても電流はほとんど流れないので、電力消費はほとんど生じない。   As described above, by applying an electric field between the electrodes 18 and 20 and canceling the application of the electric field, the reflectance of the reflectivity variable mirror 42 viewed from the front surface side of the transparent substrate 16 is reversibly changed. Can be made. In the process of this reversible operation, an electrode reaction does not occur (or hardly occurs) between the metal cation 26 and the negative electrode 20, so that the metal cation 26 keeps its ionic state, and only the added compound material 30 is present. Since an electrode reaction occurs, little current flows as a whole. Further, as shown in FIG. 4, in the state where the movement of the metal cation 26, the compound material 30 and the anion 28 is completed, even if the voltage is continuously applied from the DC power source 38, almost no current flows, so that power consumption hardly occurs.

反射率可変ミラー42は例えば車両用防眩ミラーとして利用することができる。また反射率可変ミラー42は透明導電膜20をセグメントに分割し各セグメントごとに電圧を印加することにより金属反射による表示体として構成することもできる。   The reflectivity variable mirror 42 can be used, for example, as a vehicle anti-glare mirror. The reflectivity variable mirror 42 can also be configured as a display body by metal reflection by dividing the transparent conductive film 20 into segments and applying a voltage to each segment.

前記各実施の形態では金属イオンを形成する金属としてニッケルを使用した場合について説明したが、銀、アルミニウム、コバルト、銅、モリブデン、イリジウム、白金、ルテニウムその他の金属を使用することができる。また前記各実施の形態では電極反応により可逆的にイオン化する化合物材料としてフェロセンを使用した場合について説明したが、フェロセンと類似の性質を有しかつフェロセンと同様に酸化発色型エレクトロクロミック材料として用いられるフェナジン、その他のエレクトロクロミック材料、その他電極反応により可逆的にイオン化する各種化合物材料を使用することができるものと考えられる。また前記各実施の形態では非水溶媒としてテトラエチルアンモニウムテトラフルオロボレート−プロピレンカーボネートを使用したが、γ−ブチロラクトン、スルホラン等を使用することもできる。また前記各実施の形態では透明導電膜18,20を形成する基材としてガラス基板、樹脂基板等を使用したが、樹脂フィルムを基材として使用してその表面に導電膜を形成することもできる。   In each of the above-described embodiments, the case where nickel is used as the metal forming the metal ions has been described. However, silver, aluminum, cobalt, copper, molybdenum, iridium, platinum, ruthenium, and other metals can be used. In each of the embodiments described above, the case where ferrocene is used as a compound material that is reversibly ionized by an electrode reaction has been described. However, it has similar properties to ferrocene and is used as an oxidative coloring electrochromic material similar to ferrocene. It is considered that phenazine, other electrochromic materials, and other various compound materials that ionize reversibly by electrode reaction can be used. In each of the above embodiments, tetraethylammonium tetrafluoroborate-propylene carbonate is used as the non-aqueous solvent, but γ-butyrolactone, sulfolane, or the like can also be used. In each of the above embodiments, a glass substrate, a resin substrate, or the like is used as a base material for forming the transparent conductive films 18 and 20, but a conductive film can be formed on the surface using a resin film as a base material. .

また前記実施の形態2では導電膜18を透明導電膜で構成したが、金属膜(不透明導電膜)を使用することもできる。また前記実施の形態2では不透明基板44の表面に透明導電膜18を形成したものを使用したが、不透明基板44と透明導電膜18の組み合わせに代えて金属板単体を配置して、該金属板単体を基板兼電極として使用することもできる。   In the second embodiment, the conductive film 18 is formed of a transparent conductive film, but a metal film (opaque conductive film) can also be used. In the second embodiment, the transparent conductive film 18 formed on the surface of the opaque substrate 44 is used. However, instead of the combination of the opaque substrate 44 and the transparent conductive film 18, a single metal plate is disposed, and the metal plate A single substance can also be used as a substrate and electrode.

この発明による透過率可変素子の実施の形態を示す模式断面図と電気回路図で、両電極間を短絡したときの状態を示す図である。It is a schematic cross-sectional view and an electric circuit diagram showing an embodiment of a transmittance variable element according to the present invention, and shows a state when both electrodes are short-circuited. 図1の透過率可変素子において両電極間に電圧を印加したときの状態を示す図である。It is a figure which shows a state when a voltage is applied between both electrodes in the transmittance | permeability variable element of FIG. この発明による反射率可変ミラーの実施の形態を示す模式断面図と電気回路図で、両電極間を短絡したときの状態を示す図である。It is a schematic cross-sectional view and an electric circuit diagram showing an embodiment of a reflectivity variable mirror according to the present invention, and shows a state when both electrodes are short-circuited. 図3の反射率可変ミラーにおいて両電極間に電圧を印加したときの状態を示す図である。It is a figure which shows a state when a voltage is applied between both electrodes in the reflectivity variable mirror of FIG.

符号の説明Explanation of symbols

10…透過率可変素子、12…空隙、14,16…透明基板、18,20…透明導電膜(電極対)、22…電解液、24…シール材、25…非水溶媒、26…金属陽イオン、28…陰イオン、30…電極反応により可逆的にイオン化する化合物材料、32,34…リード線、36,40…スイッチ、38…直流電源、42…反射率可変ミラー、44…不透明基板   DESCRIPTION OF SYMBOLS 10 ... Variable transmittance element, 12 ... Air gap, 14, 16 ... Transparent substrate, 18, 20 ... Transparent conductive film (electrode pair), 22 ... Electrolytic solution, 24 ... Sealing material, 25 ... Nonaqueous solvent, 26 ... Metal positive Ion, 28 ... anion, 30 ... Compound material that ionizes reversibly by electrode reaction, 32, 34 ... Lead wire, 36, 40 ... Switch, 38 ... DC power supply, 42 ... Reflectance variable mirror, 44 ... Opaque substrate

Claims (11)

空隙を隔てて電極対を配置し、
前記空隙に、メタノールを含有する非水溶媒中に少なくとも金属イオンおよび電極反応により可逆的にイオン化する化合物材料を分散させた電解液を充填し、
前記電極対間の電場の変化に応じて、前記化合物材料を前記金属イオンと同極性にイオン化しかつ前記電解液中の金属イオンおよび前記イオン化した化合物材料を電気泳動により一方の電極の表面に堆積させて鏡にする状態と、逆に該金属イオンおよび該イオン化した化合物を該電極の表面から離脱しかつ該化合物材料を中性化する状態とに変化させて、該電極の表面の反射率を可逆的に変化させる方法。
Place electrode pairs across the gap,
The void is filled with an electrolytic solution in which at least metal ions and a compound material that is reversibly ionized by an electrode reaction are dispersed in a non-aqueous solvent containing methanol ,
The compound material is ionized to the same polarity as the metal ion in accordance with a change in the electric field between the electrode pairs, and the metal ion in the electrolyte and the ionized compound material are deposited on the surface of one electrode by electrophoresis. And changing the state to be a mirror, and conversely, separating the metal ions and the ionized compound from the surface of the electrode and neutralizing the compound material, thereby changing the reflectivity of the surface of the electrode. Reversible change method.
前記化合物材料がフェロセンである請求項1記載の方法。  The method of claim 1, wherein the compound material is ferrocene. 前記非水溶媒がテトラエチルアンモニウムテトラフルオロボレート−プロピレンカーボネート、γ−ブチロラクトン、スルホランから選ばれた少なくとも一種を主成分とする請求項1または2に記載の方法。  The method according to claim 1 or 2, wherein the non-aqueous solvent contains as a main component at least one selected from tetraethylammonium tetrafluoroborate-propylene carbonate, γ-butyrolactone, and sulfolane. 前記電解液に紫外線吸収剤を添加してなる請求項1から3のいずれか1つに記載の方法。  The method according to claim 1, wherein an ultraviolet absorber is added to the electrolytic solution. 空隙を隔てて配置された電極対と、前記空隙に充填された、メタノールを含有する非水溶媒中に少なくとも金属イオンおよび電極反応により可逆的にイオン化する化合物材料を分散させた電解液とを具備してなり、
前記電極対間の電場の変化に応じて、前記化合物材料が前記金属イオンと同極性にイオン化しかつ前記電解液中の金属イオンおよび前記イオン化した化合物材料が電気泳動により一方の電極の表面に堆積して鏡になる状態と、逆に該金属イオンおよび該イオン化した化合物を該電極の表面から離脱しかつ該化合物材料を中性化する状態とに変化して、該電極の表面の反射率が可逆的に変化する素子。
An electrode pair disposed with a gap therebetween, and an electrolyte solution in which at least metal ions and a compound material that is reversibly ionized by an electrode reaction are dispersed in a methanol-containing nonaqueous solvent filled in the gap. And
The compound material is ionized to the same polarity as the metal ions in accordance with the change in the electric field between the electrode pairs, and the metal ions and the ionized compound material in the electrolyte are deposited on the surface of one electrode by electrophoresis. The state of being a mirror, and conversely, the metal ions and the ionized compound are separated from the surface of the electrode and the compound material is neutralized, and the reflectance of the surface of the electrode is changed. An element that changes reversibly.
前記化合物材料がフェロセンである請求項記載の素子。 The device according to claim 5 , wherein the compound material is ferrocene. 前記非水溶媒がテトラエチルアンモニウムテトラフルオロボレート−プロピレンカーボネート、γ−ブチロラクトン、スルホランから選ばれた少なくとも一種を主成分とする請求項5または6に記載の素子。 The nonaqueous solvent is tetraethylammonium tetrafluoroborate - propylene carbonate, .gamma.-butyrolactone, element according to claim 5 or 6 shall be the main component at least one selected from sulfolane. 前記電解液に紫外線吸収剤を添加してなる請求項からのいずれか1つに記載の方法 The method according to any one of claims 5 to 7 formed by adding an ultraviolet absorber to the electrolyte. 脱水メタノールにNiCl2を溶解し、これにテトラエチルアンモニウムテトラフルオロボレート−プロピレンカーボネート、γ−ブチロラクトン、スルホランから選ばれた少なくとも一種の非水溶媒および電極反応により可逆的にイオン化する化合物材料を添加して非水溶媒中に金属イオンおよび電極反応により可逆的にイオン化する化合物材料を分散させた電解液を調整し、
該電解液を電極対の間の空隙に充填して、
前記電極対間の電場の変化に応じて、前記化合物材料が前記金属イオンと同極性にイオン化しかつ前記電解液中の金属イオンおよび前記イオン化した化合物材料が電気泳動により一方の電極の表面に堆積して鏡になる状態と、逆に該金属イオンおよび該イオン化した化合物を該電極の表面から離脱しかつ該化合物材料を中性化する状態とに変化して、該電極の表面の反射率が可逆的に変化する素子を製造する方法。
NiCl 2 is dissolved in dehydrated methanol, and at least one non-aqueous solvent selected from tetraethylammonium tetrafluoroborate-propylene carbonate, γ-butyrolactone, and sulfolane and a compound material that is ionized reversibly by an electrode reaction are added thereto. Prepare an electrolyte solution in which a metal ion and a compound material that is reversibly ionized by an electrode reaction are dispersed in a non-aqueous solvent,
Filling the gap between the electrode pair with the electrolyte,
The compound material is ionized to the same polarity as the metal ions in accordance with the change in the electric field between the electrode pairs, and the metal ions and the ionized compound material in the electrolyte are deposited on the surface of one electrode by electrophoresis. The state of being a mirror, and conversely, the metal ions and the ionized compound are separated from the surface of the electrode and the compound material is neutralized, and the reflectance of the surface of the electrode is changed. A method for producing a reversibly changing element.
空隙を隔てて対向配置された2枚の透明基板と、
前記2枚の透明基板の対向面にそれぞれ形成された透明導電膜と、
前記空隙に充填された、メタノールを含有する非水溶媒中に金属イオンおよび電極反応により可逆的にイオン化する化合物材料を分散させた電解液とを具備し、
前記透明導電膜対間の電場の変化に応じて、前記化合物材料が前記金属イオンと同極性にイオン化しかつ前記電解液中の金属イオンおよび前記イオン化した化合物材料が電気泳動により前記いずれかの透明導電膜の表面に堆積して鏡になる状態と、逆に該金属イオンおよび該イオン化した化合物を該透明導電膜の表面から離脱しかつ該化合物材料を中性化する状態とに変化して、該透明導電膜の表面の反射率が可逆的に変化し、もって前記両透明基板を透過して見た透過率が可逆的に変化する透過率可変素子。
Two transparent substrates disposed opposite each other with a gap between them;
Transparent conductive films respectively formed on opposing surfaces of the two transparent substrates;
An electrolyte solution in which a metal material and a compound material that is reversibly ionized by an electrode reaction are dispersed in a methanol-containing nonaqueous solvent filled in the voids,
The compound material is ionized to the same polarity as the metal ion according to a change in the electric field between the transparent conductive film pair, and the metal ion and the ionized compound material in the electrolyte solution are either of the above transparent by electrophoresis. A state of being deposited on the surface of the conductive film to become a mirror, and conversely, a state in which the metal ions and the ionized compound are separated from the surface of the transparent conductive film and the compound material is neutralized, A transmittance variable element in which the reflectance of the surface of the transparent conductive film reversibly changes, and thus the transmittance seen through both transparent substrates changes reversibly.
裏面に透明導電膜を形成した透明基板と、
該透明基板の裏面側で該透明基板に対し空隙を隔てて対向配置され、少なくとも前面が電極を構成し、前面側から見て不透明である背面部材と、
前記空隙に充填された、メタノールを含有する非水溶媒中に金属イオンおよび電極反応により可逆的にイオン化する化合物材料を分散させた電解液とを具備し、
前記透明導電膜と前記背面部材の電極間の電場の変化に応じて、前記化合物材料が前記金属イオンと同極性にイオン化しかつ前記電解液中の金属イオンおよび前記イオン化した化合物材料が電気泳動により前記透明導電膜と前記背面部材の電極のいずれかの表面に堆積して鏡になる状態と、逆に該金属イオンおよび該イオン化した化合物を該表面から離脱しかつ該化合物材料を中性化する状態とに変化して、該表面の反射率が可逆的に変化し、もって前記透明基板の前面側から見た反射率が可逆的に変化する反射率可変ミラー。
A transparent substrate having a transparent conductive film formed on the back surface;
A back member disposed opposite to the transparent substrate with a gap on the back side of the transparent substrate, at least the front surface constituting an electrode, and opaque when viewed from the front side;
An electrolyte solution in which a metal material and a compound material that is reversibly ionized by an electrode reaction are dispersed in a methanol-containing nonaqueous solvent filled in the voids,
In response to a change in the electric field between the transparent conductive film and the electrode of the back member, the compound material is ionized to the same polarity as the metal ion, and the metal ion and the ionized compound material in the electrolyte are electrophoresed. A state of being deposited on one of the surfaces of the transparent conductive film and the electrode of the back member to become a mirror, and conversely, the metal ions and the ionized compound are separated from the surface and the compound material is neutralized. The reflectivity variable mirror in which the reflectivity of the surface changes reversibly and the reflectivity seen from the front side of the transparent substrate changes reversibly.
JP2008160275A 2008-06-19 2008-06-19 Method for reversibly changing reflectance, element thereof, method for manufacturing the element, transmittance variable element, and reflectance variable mirror Active JP5123749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008160275A JP5123749B2 (en) 2008-06-19 2008-06-19 Method for reversibly changing reflectance, element thereof, method for manufacturing the element, transmittance variable element, and reflectance variable mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008160275A JP5123749B2 (en) 2008-06-19 2008-06-19 Method for reversibly changing reflectance, element thereof, method for manufacturing the element, transmittance variable element, and reflectance variable mirror

Publications (2)

Publication Number Publication Date
JP2010002573A JP2010002573A (en) 2010-01-07
JP5123749B2 true JP5123749B2 (en) 2013-01-23

Family

ID=41584370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008160275A Active JP5123749B2 (en) 2008-06-19 2008-06-19 Method for reversibly changing reflectance, element thereof, method for manufacturing the element, transmittance variable element, and reflectance variable mirror

Country Status (1)

Country Link
JP (1) JP5123749B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145391A (en) * 2010-01-13 2011-07-28 Seiko Epson Corp Electrophoretic display device and electronic equipment
JP6358611B2 (en) * 2013-10-24 2018-07-18 スタンレー電気株式会社 Optical device, vehicular lamp, and optical element driving method
CN105829960B (en) * 2013-12-19 2019-09-03 株式会社村上开明堂 The manufacturing method of varying reflectivity element and the element
JP6355945B2 (en) * 2014-03-19 2018-07-11 スタンレー電気株式会社 Lighting device
JP6334974B2 (en) * 2014-03-19 2018-05-30 スタンレー電気株式会社 Light emitting device
JP2015210298A (en) * 2014-04-24 2015-11-24 スタンレー電気株式会社 Double-sided liquid crystal display device and backlight unit
JP6314035B2 (en) * 2014-05-23 2018-04-18 スタンレー電気株式会社 Illumination device and photographing auxiliary light source device
WO2019065538A1 (en) * 2017-09-29 2019-04-04 スタンレー電気株式会社 Optical device and method for driving same
JP7063565B2 (en) * 2017-09-29 2022-05-09 スタンレー電気株式会社 Optical devices suitable for display / lighting and their driving methods
WO2019188952A1 (en) * 2018-03-30 2019-10-03 株式会社 村上開明堂 Light-transmissive element
JP7293597B2 (en) * 2018-10-05 2023-06-20 凸版印刷株式会社 Light control device, light control window, and light control system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9303807D0 (en) * 1993-02-25 1993-04-14 Glaverbel Rear-view assembly for a vehicle and an adaptor therefor
JP2005002898A (en) * 2003-06-12 2005-01-06 Nissan Motor Co Ltd Exhaust emission control system
JP4098735B2 (en) * 2003-06-18 2008-06-11 株式会社東海理化電機製作所 Electrochromic mirror
JP2005189299A (en) * 2003-12-24 2005-07-14 Sony Corp Electrochemical display device
JP2007103464A (en) * 2005-09-30 2007-04-19 Okayama Univ Electrolyte
JP2007279163A (en) * 2006-04-03 2007-10-25 Fuji Xerox Co Ltd Display method, display medium, and display element

Also Published As

Publication number Publication date
JP2010002573A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP5123749B2 (en) Method for reversibly changing reflectance, element thereof, method for manufacturing the element, transmittance variable element, and reflectance variable mirror
KR101535100B1 (en) Electrochromic smart window and manufacturing method thereof
CN106886117B (en) Electrochromic device and electrochromic dimming device
US9778534B2 (en) Chromatic systems
JP6798098B2 (en) Electrochromic device and its manufacturing method
WO2017104466A1 (en) Electrochromic apparatus
JP4759139B2 (en) Devices based on poly- (3,4-dioxythiophene) derivatives that are electrochromically switched by protons
US9690163B2 (en) Reflectance variable element and method for manufacturing same
KR20030040361A (en) Fast-switching reversible electrochemical mirror(rem)
US20050248825A1 (en) Reversible electrodeposition optical modulation device with conducting polymer counter electrode
JP6245631B2 (en) Electrodeposition element and mirror device
CN114467054A (en) Electrochromic device with low-resistance transparent electrode structure
JP6171812B2 (en) Electrochromic display element, electrochromic dimming lens, display device, information device, and method for manufacturing electrochromic display element
JP2017026750A (en) Electrochromic device, light control glasses, and method for manufacturing the electrochromic device
JPH0217093B2 (en)
JP6740760B2 (en) Electrochromic device
JP7244492B2 (en) light transmission element
US10338450B2 (en) Electrochromic element unit, dimming window, and imaging device
JP2005181578A (en) Electrochromic device
JP2016018189A (en) Electrochromic device, and driving method of electrochromic element
JP2020016805A (en) Electrochromic device, method of driving the same, lens unit, image capturing device, and window material
JP2013015805A (en) Electrochromic device and manufacturing method thereof
CN114127627B (en) Electrochemical device
JP2017203843A (en) Electrochromic device and method for manufacturing the same
WO2024203202A1 (en) Electrochromic element and apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5123749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250