JP7063565B2 - Optical devices suitable for display / lighting and their driving methods - Google Patents

Optical devices suitable for display / lighting and their driving methods Download PDF

Info

Publication number
JP7063565B2
JP7063565B2 JP2017191571A JP2017191571A JP7063565B2 JP 7063565 B2 JP7063565 B2 JP 7063565B2 JP 2017191571 A JP2017191571 A JP 2017191571A JP 2017191571 A JP2017191571 A JP 2017191571A JP 7063565 B2 JP7063565 B2 JP 7063565B2
Authority
JP
Japan
Prior art keywords
mirror
mirror member
reflectance
display
facing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017191571A
Other languages
Japanese (ja)
Other versions
JP2019066647A (en
Inventor
恵介 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2017191571A priority Critical patent/JP7063565B2/en
Priority to PCT/JP2018/035205 priority patent/WO2019065538A1/en
Publication of JP2019066647A publication Critical patent/JP2019066647A/en
Application granted granted Critical
Publication of JP7063565B2 publication Critical patent/JP7063565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Liquid Crystal (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Description

本発明は、光学装置とその駆動方法に関し、特に奥行きのある像空間を形成することのできる、表示/照明に適した光学装置とその駆動方法に関する。 The present invention relates to an optical device and a driving method thereof, and to an optical device suitable for display / illumination and a driving method thereof, which can form a particularly deep image space.

合わせ鏡のように、第1と第2の鏡部材を対向配置し、両者の間に配置した光源を点灯すると、光源から発した光線は第1、第2の鏡部材の間で多重反射する。対向する鏡部材の少なくとも一方を半透過鏡とすれば、半透過鏡を介して多重反射光を観察でき、観察者の注意を引ける奥行きのある表示/照明を行うことができる(例えば特許文献1)。 When the first and second mirror members are arranged facing each other and the light source arranged between them is turned on like a mirror, the light rays emitted from the light source are reflected multiple times between the first and second mirror members. .. If at least one of the facing mirror members is a semi-transmissive mirror, multiple reflected light can be observed through the semi-transmissive mirror, and display / illumination with a depth that attracts the attention of the observer can be performed (for example, Patent Document 1). ).

図6Aに示すように、円筒型支持材104を介して、半透過鏡である第1の鏡部材102と全反射鏡である第2の鏡部材103とを平行に支持し、それらの間に複数の光源105を配置した光学部材101を形成する。光源105から発した光ビームは、第1、第2の鏡部材102,103の間で多重反射することができる。観察者106は、半透過鏡である第1の鏡部材102側から光学部材101を観察すると、多重反射する各光ビームを観察できる。 As shown in FIG. 6A, the first mirror member 102, which is a semi-transmissive mirror, and the second mirror member 103, which is a total reflection mirror, are supported in parallel via the cylindrical support member 104, and between them. An optical member 101 in which a plurality of light sources 105 are arranged is formed. The light beam emitted from the light source 105 can be multiple-reflected between the first and second mirror members 102 and 103. When the observer 106 observes the optical member 101 from the side of the first mirror member 102, which is a semi-transmissive mirror, the observer 106 can observe each light beam that is repeatedly reflected.

図6Bは光学部材101を半透過鏡である第1の鏡部材102の中央部から観察した時の光源像の見え方を示す平面図である。実際に光源が配置された位置から中央に向かって複数の光源像105gが観察される。最も外側の光源像は光源を発した後反射せずに半透過鏡である第1の鏡部材102を透過した光ビームであり、光源そのものの像である。第1の反射部材と第2の反射部材による多重反射を経て出射する光ビームは、虚像である光源像を形成する。多重反射の回数に応じて、中央に向うに従って虚像である光源像までの距離が増大し、その径が小さくなっている。中央部には光源像が存在しない暗黒部が存在する。 FIG. 6B is a plan view showing how the light source image looks when the optical member 101 is observed from the central portion of the first mirror member 102, which is a transflective mirror. A plurality of light source images 105g are observed from the position where the light source is actually arranged toward the center. The outermost light source image is a light beam that has passed through the first mirror member 102, which is a semi-transmissive mirror, without being reflected after emitting the light source, and is an image of the light source itself. The light beam emitted through the multiple reflections by the first reflecting member and the second reflecting member forms a light source image which is a virtual image. Depending on the number of multiple reflections, the distance to the light source image, which is a virtual image, increases toward the center, and the diameter thereof decreases. There is a dark part in the center where there is no light source image.

図6Cは、観察者が第1の鏡部材の中央から外れた位置から光学部材101の第1の鏡部材102を観察した時の平面図である。観察者の位置に対応して、光源像、暗黒部の位置が変化している。 FIG. 6C is a plan view when the observer observes the first mirror member 102 of the optical member 101 from a position deviated from the center of the first mirror member. The position of the light source image and the dark part changes according to the position of the observer.

図7A,7B,7Cは、第1、第2の鏡部材102,103の少なくとも一方を対向する鏡部材の方向に突出する曲面形状とした構成を示す。図7Aでは、半透過鏡である第1の鏡部材102が第2の鏡部材103に向って突出する曲面を形成している。図7Bでは、全反射鏡である第2の鏡部材103が第1の鏡部材102に向って突出する曲面を形成している。図7Cでは、第1の鏡部材102、第2の鏡部材103が互いに他方に向って突出する曲面を形成している。 7A, 7B, and 7C show a configuration in which at least one of the first and second mirror members 102 and 103 has a curved surface shape that protrudes in the direction of the opposing mirror members. In FIG. 7A, the first mirror member 102, which is a semi-transmissive mirror, forms a curved surface that protrudes toward the second mirror member 103. In FIG. 7B, the second mirror member 103, which is a total reflection mirror, forms a curved surface that protrudes toward the first mirror member 102. In FIG. 7C, the first mirror member 102 and the second mirror member 103 form a curved surface that protrudes toward the other.

図7Dは、図7A,7B,7Cの場合、第1の鏡部材中央部から観察した光源像を示す平面図である。各光源から中央に向って光源像が配列され、中央の暗黒部107の大きさが縮小している。 FIG. 7D is a plan view showing a light source image observed from the central portion of the first mirror member in the case of FIGS. 7A, 7B, and 7C. The light source images are arranged from each light source toward the center, and the size of the dark portion 107 in the center is reduced.

実開昭56-139191号No. 56-139191

少なくとも一方が半透過鏡である第1、第2の鏡部材を対向配置し、その間に光源を配置し、半透過鏡である鏡部材側から光源を観察すると、多重反射により奥行き方向に配列した複数の光源像を観察することができる。多重反射により奥行きのある視野を提供することができる。複数の光源像は、多重反射する次数に応じて固定された像である。奥行き方向の距離、例えば奥行き方向に配列される光源像の数、を変化させることができれば、動きのある視野を提供でき、さらに観察者の注意を引くことができる。 When the first and second mirror members, one of which is a semi-transmissive mirror, are arranged facing each other, the light source is arranged between them, and the light source is observed from the mirror member side which is a semi-transmissive mirror, they are arranged in the depth direction by multiple reflection. Multiple light source images can be observed. Multiple reflections can provide a deep field of view. The plurality of light source images are fixed images according to the order of multiple reflections. If the distance in the depth direction, for example, the number of light source images arranged in the depth direction, can be changed, a moving field of view can be provided and the observer's attention can be further drawn.

実施例による表示/照明装置は、半透過鏡である第1の鏡部材と、第1の鏡部材と対向配置された第2の鏡部材と、第1の鏡部材と第2の鏡部材の間の空間乃至その側方に配置された光源とを含み、第1の鏡部材と第2の鏡部材との少なくとも一方反射率を変化させることができる制御装置を備え観察者は対向配置された第1、第2の鏡部材の第1の鏡部材側から観察し、光源から直接向かう光ビームによる像、および第1、第2の鏡部材で反射した後、向かう光ビームによる虚像を観察する
The display / illumination device according to the embodiment includes a first mirror member which is a semi-transmissive mirror, a second mirror member arranged to face the first mirror member, a first mirror member, and a second mirror. The observer includes a space between the members or a light source arranged on the side thereof, and is equipped with a control device capable of changing the reflectance of at least one of the first mirror member and the second mirror member. Observes from the side of the first mirror member of the first and second mirror members arranged so as to face each other, an image of a light beam directly directed from the light source, and a light beam reflected by the first and second mirror members and then headed. Observe the imaginary image by .

第1の鏡部材と第2の鏡部材との合成反射率を変化させると、観察者が第1の鏡部材側から観察した時の視野の奥行きを変化させることができる。 By changing the combined reflectance of the first mirror member and the second mirror member, the depth of the visual field when the observer observes from the first mirror member side can be changed.

および、and, 図1Aは半透過鏡である第1の鏡部材と第2の鏡部材とを対向配置させ、間に光源を配置し、光源を発光させた時の主たる光ビームの動きを示す断面図、図1Bは第2の鏡部材が透明体である場合の主たる光ビームの動きを示す断面図、図1Cは第2の鏡部材の反射率を可変にした時の主たる光ビームの動きを示す断面図、図1Dは対向基板間に3重に光源を配置した構成を示す断面図、図1Eはミラーデバイスの反射率を変化させた時の光源の虚像の明るさの変化を示すグラフ、図1FはミラーデバイスをOFFとした時の表示を概略的に示す平面図、図1GはミラーデバイスをONとした時の表示を概略的に示す平面図である。FIG. 1A is a cross-sectional view showing the movement of a main light beam when a first mirror member and a second mirror member, which are semi-transmissive mirrors, are arranged to face each other, a light source is arranged between them, and the light source is made to emit light. 1B is a cross-sectional view showing the movement of the main light beam when the second mirror member is a transparent body, and FIG. 1C is a cross-sectional view showing the movement of the main light beam when the reflectance of the second mirror member is variable. 1D is a cross-sectional view showing a configuration in which three light sources are arranged between facing substrates, FIG. 1E is a graph showing a change in the brightness of an imaginary image of a light source when the reflectance of a mirror device is changed, and FIG. 1F is a graph. FIG. 1G is a plan view schematically showing a display when the mirror device is turned off, and FIG. 1G is a plan view schematically showing a display when the mirror device is turned on. 図2Aは表示/照明に適した光学装置の構成を概略的に示す断面図、図2Bは光学装置の構成要素であるミラーデバイスが液相電気光学素子である構成例を概略的に示す断面図である。FIG. 2A is a cross-sectional view schematically showing a configuration of an optical device suitable for display / illumination, and FIG. 2B is a cross-sectional view schematically showing a configuration example in which the mirror device, which is a component of the optical device, is a liquid-phase electro-optical element. Is. 図3Aは電解液を用いたミラーデバイスの駆動電圧の時間変化の例を反射率の変化と共に概略的に示すグラフ、図3B、図3Cは電解液を用いたミラーデバイスの反射率の変化による虚像の明るさの変化を、リニアスケールおよびセミログスケールで概略的に示すグラフである。FIG. 3A is a graph schematically showing an example of the time change of the drive voltage of the mirror device using the electrolytic solution together with the change of the reflectance, and FIGS. 3B and 3C are virtual images due to the change of the reflectance of the mirror device using the electrolytic solution. It is a graph which shows the change of the brightness of. 図4は、曲面で形成された表示面の一部に光源が配置された構成のミラーデバイスを示す平面図である。FIG. 4 is a plan view showing a mirror device having a configuration in which a light source is arranged on a part of a display surface formed by a curved surface. 図5A,5B,5Cはミラーデバイスの他の構成例を示す概略断面図である。5A, 5B, and 5C are schematic cross-sectional views showing other configuration examples of the mirror device. 図6Aは従来技術による、対向基板間の多重反射を利用した表示素子の構成を概略的に示す斜視図、図6B,6Cは表示素子に表示される光源像の例を示す平面図である。FIG. 6A is a perspective view schematically showing a configuration of a display element using multiple reflections between facing substrates according to the prior art, and FIGS. 6B and 6C are plan views showing an example of a light source image displayed on the display element. 図7A,7B,7Cは対向基板に曲面を採用した構成を示す概略断面図、図7Dは図7A,7B,7Cの構成により分布を変化させた光源像を示す平面図である。7A, 7B, 7C are schematic cross-sectional views showing a configuration in which a curved surface is adopted for the facing substrate, and FIG. 7D is a plan view showing a light source image in which the distribution is changed according to the configuration of FIGS. 7A, 7B, 7C.

1,101 光学装置、 2,102 (半透過鏡である)第1の鏡部材、
3,103 (可変反射率を有する)第2の鏡部材、 5,105 光源、
6,106 観察者、 8 反射防止膜、 9 制御装置。
1,101 optics, 2,102 (semi-transmissive mirror) first mirror member,
3,103 Second mirror member (with variable reflectance), 5,105 light source,
6,106 Observer, 8 Anti-reflective coating, 9 Control device.

図1Aを参照して、対向する第1、第2の鏡部材間空間乃至その側方に光源を配置した構成における、多重反射光ビームの挙動を考察する。一部の光を反射し、一部の光を透過する半透過鏡(ハーフミラー)2と全反射鏡3を対向させ、側方に光源5を配置する。簡略化のため、光源5は全反射鏡3端部表面上の位置に配置するとする。一部の光が透過する半透過鏡2の前方から観察者6が観察する。光源5から発する光は、広く分布するが、観察者6に観察される光ビームのみを考察する。 With reference to FIG. 1A, the behavior of the multiple reflected light beam in the configuration in which the light sources are arranged in the space between the first and second mirror members facing each other or on the side thereof will be considered. A semi-transmissive mirror (half mirror) 2 that reflects a part of the light and transmits a part of the light and a total reflection mirror 3 face each other, and a light source 5 is arranged on the side. For simplification, the light source 5 is arranged at a position on the surface of the end of the total reflection mirror 3. The observer 6 observes from the front of the semi-transmissive mirror 2 through which a part of the light is transmitted. The light emitted from the light source 5 is widely distributed, but only the light beam observed by the observer 6 is considered.

光源5から観察者6に直接向かう光ビームをb1とし、第1の鏡部材2、第2の鏡部材3でそれぞれ1回反射した後、観察者6に向う光ビームをb2とし、第1の鏡部材2、第2の鏡部材3でそれぞれ2回(3回)反射した後、観察者6に向う光ビームをb3(b4)とする。光ビームb2、b3、b4によって観察される光源5の虚像5-1,5-2,5-3は、第2の鏡部材3の後方、対向基板間往復距離、及びその2倍、3倍の位置に配置される。観察者は、光源の虚像を観察することにより、奥行きを増加した視野を感じる。 The light beam directly directed from the light source 5 to the observer 6 is b1, and the light beam directed to the observer 6 is b2 after being reflected once by the first mirror member 2 and the second mirror member 3, respectively. The light beam directed to the observer 6 after being reflected twice (three times) by the mirror member 2 and the second mirror member 3 is defined as b3 (b4). The virtual images 5-1, 5-2, 5-3 of the light source 5 observed by the light beams b2, b3, and b4 are behind the second mirror member 3, the reciprocating distance between the facing substrates, and twice or three times the same. It is placed in the position of. By observing the virtual image of the light source, the observer feels a field of view with increased depth.

図1Bは、第2の鏡部材が透明体3tである場合を示す。光源から第2の鏡部材に向って進行した光ビームは、第2の鏡部材で反射することなく、第2の鏡部材を透過する透過光3tとなる。多重反射は生じず、視野(像空間)の奥行きは増加しない。 FIG. 1B shows a case where the second mirror member is a transparent body 3t. The light beam traveling from the light source toward the second mirror member becomes transmitted light 3t transmitted through the second mirror member without being reflected by the second mirror member. Multiple reflections do not occur and the depth of the field of view (image space) does not increase.

図1Cは、第2の鏡部材3の反射率が変化する場合を示す。第2の鏡部材3の下方に示したグラフのように、第2の鏡部材の反射率は徐々に増大する。ここで、反射率が増加するとともに、増加の割合である増加率は徐々に減少する。第2の鏡部材の反射率がゼロから増加すると、図1Bの動作から図1Aの動作への変化が生じる。第2の鏡部材の反射率が増加するにつれ、光源5の虚像が次第に増加する。虚像5-1,5-2,5-3,5-4を図示したが、例えば10次の虚像くらいまで観察可能となる。10次の虚像は、第2の鏡部材3の後方、対向基板間距離の10倍の位置に認識され、深い視野を提供することになる。 FIG. 1C shows a case where the reflectance of the second mirror member 3 changes. As shown in the graph shown below the second mirror member 3, the reflectance of the second mirror member gradually increases. Here, as the reflectance increases, the rate of increase, which is the rate of increase, gradually decreases. When the reflectance of the second mirror member increases from zero, a change from the operation of FIG. 1B to the operation of FIG. 1A occurs. As the reflectance of the second mirror member increases, the virtual image of the light source 5 gradually increases. Although the virtual images 5-1, 5-2, 5-3, 5-4 are shown, for example, up to the 10th-order virtual image can be observed. The 10th-order virtual image is recognized at a position 10 times the distance between the facing substrates behind the second mirror member 3, and provides a deep field of view.

図1Eは、ミラーデバイス(第2の鏡部材)の反射率をパラメータとして、シミュレーションにより、光源の虚像の明るさを多重反射の次数の関数として示したグラフである。なお、多重反射の次数は、対向鏡部材間1往復を次数1とする。反射率がゼロであれば、虚像は生じない。反射率が20%、40%、60%と増加すると、例えば、3次、5次、7次虚像が認められるようになり、反射率が80%の時には10次虚像も認められる。 FIG. 1E is a graph showing the brightness of the virtual image of the light source as a function of the order of multiple reflections by simulation with the reflectance of the mirror device (second mirror member) as a parameter. As for the order of multiple reflections, one round trip between facing mirror members is set to order 1. If the reflectance is zero, no virtual image will occur. When the reflectance is increased to 20%, 40%, and 60%, for example, 3rd, 5th, and 7th virtual images are recognized, and when the reflectance is 80%, 10th virtual images are also recognized.

図1Dは対向する第1、第2の鏡部材2,3間に3重に光源を配置した構成を示す断面図である。図1Cでは、対向鏡部材2,3間に1つの光源を配置する例を示したが、奥行き方向を増加した視野の効果を明確にするには虚像の位置も増加する方が効果的になる。図1Dの構成では、対向する第1、第2の鏡部材2,3間の光軸方向に3つの光源を重ねて配置している。対向基板間の距離、対向基板間の距離内に重ねて配置する光源の数は種々変更可能である。 FIG. 1D is a cross-sectional view showing a configuration in which three light sources are arranged between the first and second mirror members 2 and 3 facing each other. FIG. 1C shows an example in which one light source is arranged between the facing mirror members 2 and 3, but it is more effective to increase the position of the virtual image in order to clarify the effect of the visual field in which the depth direction is increased. .. In the configuration of FIG. 1D, three light sources are arranged so as to overlap each other in the optical axis direction between the first and second mirror members 2 and 3 facing each other. The number of light sources arranged so as to be stacked within the distance between the facing boards and the distance between the facing boards can be variously changed.

図1Fは、対向基板間に3重に光源を配置し、ミラーデバイスをOFF(反射率ゼロ)とした場合の半透過鏡側から観察した視野画像であり、図1GはミラーデバイスをONとして第2の鏡部材を実効的な反射鏡とし、多重反射を生じさせた場合の半透過鏡側から観察した視野画像を示す。多重反射を利用することにより、視野の奥行きを深めることが可能となる。 FIG. 1F is a field image observed from the semi-transmissive mirror side when the light sources are triple-arranged between the facing substrates and the mirror device is turned off (reflectance is zero), and FIG. 1G shows a field image observed with the mirror device turned on. The field image observed from the semitransparent mirror side when multiple reflections are generated is shown by using the mirror member of No. 2 as an effective reflecting mirror. By using multiple reflections, it is possible to deepen the depth of the field of view.

図2Aは、表示/照明に適した光学装置1の構成を概略的に示す断面図である。半透過鏡である第1の鏡部材2と反射率を変化できる第2の鏡部材3の間に発光ダイオード(IED)で形成された複数の光源5が配置される。第2の鏡部材の両面には、反射防止膜8が配置されている。第2の鏡部材3はAg等の鏡面を形成可能な電気化学素子であり、制御装置9から供給される電圧が印加される。観察者6は、半透過鏡である第1の鏡部材2側から光学装置を観察する。 FIG. 2A is a cross-sectional view schematically showing the configuration of the optical device 1 suitable for display / illumination. A plurality of light sources 5 formed of light emitting diodes (IEDs) are arranged between the first mirror member 2 which is a semi-transmissive mirror and the second mirror member 3 whose reflectance can be changed. Antireflection films 8 are arranged on both sides of the second mirror member. The second mirror member 3 is an electrochemical element capable of forming a mirror surface such as Ag, and a voltage supplied from the control device 9 is applied. The observer 6 observes the optical device from the side of the first mirror member 2 which is a transflective mirror.

図2Bに示すように、第2の鏡部材3は透明電極23,24を有する一対の透明基板21,22を電極を内側にして対向させ、封止材25で閉じた空間を形成し、閉じた空間内に電解液26を封じた構成である。電解液26は、Agを析出するAg塩として200mMのAgBr、支持塩として800mMのLiBr,メディエータとして800mMのTaCl、溶媒としてガンマブチルラクトン(GBL)を含む。透明電極23,24間に直流電圧を印加すると、負局側の透明電極上にAg層が析出する。 As shown in FIG. 2B, in the second mirror member 3, a pair of transparent substrates 21 and 22 having transparent electrodes 23 and 24 are opposed to each other with the electrodes inside, and a space closed by the sealing material 25 is formed and closed. The structure is such that the electrolytic solution 26 is sealed in the space. The electrolytic solution 26 contains 200 mM AgBr as the Ag salt that precipitates Ag, 800 mM LiBr as the supporting salt, 800 mM TaCl 5 as the mediator, and gamma-butyl lactone (GBL) as the solvent. When a DC voltage is applied between the transparent electrodes 23 and 24, an Ag layer is deposited on the transparent electrode on the negative station side.

図3Aは、上述の光学装置1の駆動例における印加電圧波形を示すグラフである。ON期間には正極性の電圧Vonが印加され、OFF期間の主期間には負極性の電圧Voffが印加され、OFF期間の接地期間には接地電圧が印加される。On期間に負電極側の透明電極上にAg層が析出し、OFF期間には印加電圧反転により析出層が溶解する。 FIG. 3A is a graph showing an applied voltage waveform in the driving example of the above-mentioned optical device 1. A positive voltage Von is applied during the ON period, a negative voltage Voff is applied during the main OFF period, and a ground voltage is applied during the OFF period. During the On period, the Ag layer is deposited on the transparent electrode on the negative electrode side, and during the OFF period, the precipitation layer is dissolved by reversing the applied voltage.

図3Bは、第2の鏡部材3の反射率をパラメータとした、光源の虚像次数に対する明るさを示すグラフである。反射率がゼロの場合は虚像が発生しない。反射率が20%、40%、60%、80%の場合、次数の増加に従って明るさが減少する虚像が形成される。反射率20%では3次の虚像まで認識でき、反射率40%では5次の虚像まで認識でき、反射率60%では7次虚像まで認識できる。反射率80%では10次の虚像も認識できる。 FIG. 3B is a graph showing the brightness with respect to the virtual image order of the light source, with the reflectance of the second mirror member 3 as a parameter. When the reflectance is zero, no virtual image is generated. When the reflectance is 20%, 40%, 60%, and 80%, a virtual image whose brightness decreases as the order increases is formed. With a reflectance of 20%, up to a third-order virtual image can be recognized, with a reflectance of 40%, up to a fifth-order virtual image can be recognized, and with a reflectance of 60%, up to a seventh-order virtual image can be recognized. At a reflectance of 80%, a 10th-order virtual image can be recognized.

図3Cは、図3Bのグラフをセミログスケールで示す。内容は同じである。低輝度領域での変化が、リニアスケールの場合より明確に表れている。 FIG. 3C shows the graph of FIG. 3B on a semi-log scale. The content is the same. The change in the low-luminance region is more pronounced than in the linear scale.

なお、多重反射の強度は対向する第1、第2の鏡部材全体としての反射率に依存する。第2の鏡部材の反射率を固定反射率とし、第1の鏡部材の反射率を変化させても多重反射の次数は変化する。すなわち、第1、第2の鏡部材の少なくとも一方の反射率を可変とすることにより、多重反射の次数を変化することが可能である。 The intensity of multiple reflections depends on the reflectance of the opposing first and second mirror members as a whole. Even if the reflectance of the second mirror member is fixed and the reflectance of the first mirror member is changed, the order of multiple reflections changes. That is, it is possible to change the order of multiple reflections by making the reflectance of at least one of the first and second mirror members variable.

第1の鏡部材2と第2の鏡部材3との間で多重反射を生じさせる場合、対向鏡部材間を1往復することにより多重反射の次数が1増加する。第1の鏡部材2と第2の鏡部材3との間の距離をgとすれば、多重反射の次数が1増加することは、像空間の奥行きが(2g)増加することを意味する。n次までの多重反射を生じさせると、像空間の奥行きは2(ng)となり、実際の鏡部材間極gの2n倍となる。車両用テールランプの場合、対向する鏡部材間の距離は、1cm~50cmとすることが好ましいであろう。他の要件なども考慮すると、対向する鏡部材間の距離は、2cm~30cmとすることがより好ましいであろう。 When multiple reflections are generated between the first mirror member 2 and the second mirror member 3, the order of the multiple reflections is increased by 1 by making one round trip between the opposing mirror members. Assuming that the distance between the first mirror member 2 and the second mirror member 3 is g, an increase in the order of multiple reflections by 1 means an increase in the depth of the image space by (2 g). When multiple reflections up to the nth order are generated, the depth of the image space becomes 2 (ng), which is 2n times the actual mirror member pole g. In the case of a tail lamp for a vehicle, the distance between the facing mirror members is preferably 1 cm to 50 cm. Considering other requirements and the like, it is more preferable that the distance between the facing mirror members is 2 cm to 30 cm.

図4は、表示面が曲面の光学装置30の例を示す。前述の例同様、半透過鏡の下側に反射率を変化できる鏡部材が配置された構成を有する。領域1の表示面31aと領域2の表示面31bが上下に隣接配置され、領域1内にターンランプ32が配置され、領域2内にブレーキランプ33が配置される。反射率を増加することにより、明るさの増加と共に多重反射次数が増加し、像空間の奥行きが深くなる。続いて反射率を減少させると、明るさが減少し、多重反射次数が減少し、像空間の奥行きが浅くなる。多重反射により、ターンランプ乃至ブレーキランプの内側にサイズを縮小した虚像が形成される。虚像の変化により、後続車の運転者は先行車の表示を認識し易くなり、安全運転に寄与する。 FIG. 4 shows an example of an optical device 30 having a curved display surface. Similar to the above example, it has a configuration in which a mirror member capable of changing the reflectance is arranged under the semitransparent mirror. The display surface 31a of the area 1 and the display surface 31b of the area 2 are arranged adjacent to each other vertically, the turn lamp 32 is arranged in the area 1, and the brake lamp 33 is arranged in the area 2. By increasing the reflectance, the multiple reflection order increases with the increase in brightness, and the depth of the image space becomes deeper. Subsequent reductions in reflectance reduce the brightness, reduce the multiple reflection order, and reduce the depth of the image space. Multiple reflections form a reduced size virtual image inside the turn lamp or brake lamp. The change in the virtual image makes it easier for the driver of the following vehicle to recognize the display of the preceding vehicle, which contributes to safe driving.

反射率を変化することができるミラーデバイスとして、上述した電解液を用いてAg等の鏡層を析出/溶解できる可変ミラーに換えて、以下に記載するような構成を用いることもできる。 As a mirror device capable of changing the reflectance, a configuration as described below can be used instead of a variable mirror capable of precipitating / dissolving a mirror layer such as Ag using the above-mentioned electrolytic solution.

図5Aは、液晶素子35の前側に通常の偏光子P1,液晶素子の後ろ側に反射型の偏光子P2が配置され、制御装置9によって制御された液晶素子35の状態に応じて入射光が反射、遮光される構成を示す。液晶素子の状態によって反射率を変化することができる。なお、前側の偏光子P1も反射型の偏光子としてもよい。 In FIG. 5A, a normal polarizing element P1 is arranged on the front side of the liquid crystal element 35, and a reflective polarizing element P2 is arranged on the rear side of the liquid crystal element, and incident light is emitted according to the state of the liquid crystal element 35 controlled by the control device 9. The configuration of reflection and shading is shown. The reflectance can be changed depending on the state of the liquid crystal element. The front-side polarizing element P1 may also be a reflective type polarizing element.

図5Bは、基板37表面にマグネシウム/イットリウム合金の鏡層38が形成されており、鏡層38を水素ガス流39に曝すことができる構成である。合金層と水素との結合状態に応じて、透明状態/鏡状態が変化する。水素の結合状態によって、反射率を変化することができる。 In FIG. 5B, a magnesium / yttrium alloy mirror layer 38 is formed on the surface of the substrate 37, and the mirror layer 38 can be exposed to a hydrogen gas flow 39. The transparent state / mirror state changes depending on the bonding state between the alloy layer and hydrogen. The reflectance can be changed depending on the hydrogen bond state.

図5Cは、基板41上に形成した全反射鏡42の前にエレクトロクロミックセル43を配置した構成を示す。エレクトロクロミックセル43内でクロミック層44が形成されると、全反射鏡42を含む全体の反射率が低下する。クロミック層の遮光程度に応じて、全体としての反射率を変化することができる。 FIG. 5C shows a configuration in which the electrochromic cell 43 is arranged in front of the total reflection mirror 42 formed on the substrate 41. When the chromic layer 44 is formed in the electrochromic cell 43, the overall reflectance including the total reflecting mirror 42 decreases. The reflectance as a whole can be changed according to the degree of shading of the chromic layer.

これらの構成を用い、入射光に対する反射率を変化させ、多重反射の次数を変化させることにより視野(像空間)の奥行きを変化させる表示を行うことも可能であろう。 Using these configurations, it would be possible to display the depth of the visual field (image space) by changing the reflectance with respect to the incident light and changing the order of multiple reflections.

以上実施例に沿って説明したが、本発明はこれらに限定されるものではない。例えば種々の偏光、改良、組み合わせ等が可能なことは、当業者に自明であろう。 Although described above with reference to Examples, the present invention is not limited thereto. For example, it will be obvious to those skilled in the art that various polarizations, improvements, combinations, etc. are possible.

Claims (11)

半透過鏡である第1の鏡部材と、
前記第1の鏡部材と対向配置された第2の鏡部材と、
前記第1の鏡部材と前記第2の鏡部材の間の空間乃至その側方に配置された光源と、
を含み、
前記第1の鏡部材と前記第2の鏡部材との少なくとも一方反射率を変化させることができる制御装置を備え
観察者は対向配置された前記第1、第2の鏡部材の前記第1の鏡部材側から観察し、前記光源から直接向かう光ビームによる像、および前記第1、第2の鏡部材で反射した後、向かう光ビームによる虚像を観察する、
表示/照明装置。
The first mirror member, which is a semi-transmissive mirror,
A second mirror member arranged to face the first mirror member,
A space between the first mirror member and the second mirror member or a light source arranged on the side thereof,
Including
A control device capable of changing the reflectance of at least one of the first mirror member and the second mirror member is provided.
The observer observes from the first mirror member side of the first and second mirror members arranged to face each other, and is reflected by the image of the light beam directly directed from the light source and the first and second mirror members. After that, observe the virtual image by the heading light beam,
Display / lighting equipment .
前記第1の鏡部材は固定反射率を有し、
前記制御装置は、前記第2の鏡部材の反射率を変化させることができる、請求項1に記載の表示/照明装置。
The first mirror member has a fixed reflectance and has a fixed reflectance.
The display / lighting device according to claim 1 , wherein the control device can change the reflectance of the second mirror member .
前記制御装置は、前記第2の鏡部材の反射率を、反射率が増加するとともに反射率の増加率は減少するよう制御する請求項2に記載の表示/照明装置。 The display / lighting device according to claim 2, wherein the control device controls the reflectance of the second mirror member so that the reflectance increases and the increase rate of the reflectance decreases . 前記光源は、前記第1の鏡部材と前記第2の鏡部材の間に複数配置されている請求項1~3のいずれか1項に記載の表示/照明装置。 The display / lighting device according to any one of claims 1 to 3, wherein the light source is a plurality of arranged between the first mirror member and the second mirror member . 前記第2の鏡部材が、反射鏡層を析出/溶解させることのできるミラーデバイスを含んで構成される請求項2または3に記載の表示/照明装置。 The display / lighting device according to claim 2 or 3 , wherein the second mirror member includes a mirror device capable of precipitating / dissolving a reflecting mirror layer. 前記ミラーデバイスは、前記第1の鏡部材と対向配置された透明基板と、前記透明基板と対向配置された対向基板と、前記透明基板、前記対向基板の対向面上に形成された対向透明電極と、前記対向透明電極間の空間に収容され、電気化学的反応により前記対向透明電極の一方の上に反射鏡層を析出/溶解させることのできる電解液と、を含む請求項に記載の表示/照明装置。 The mirror device includes a transparent substrate facing the first mirror member, a facing substrate facing the transparent substrate, the transparent substrate, and a facing transparent electrode formed on the facing surface of the facing substrate. 5. The 5 . Display / lighting device . 前記ミラーデバイスは、前記第1の鏡部材と対向配置された透明基板と、前記透明基板と対向配置された対向基板と、前記対向基板の対向面上に形成された対向透明電極と、前記透明基板、前記対向基板間の空間に、電気化学的反応により前記対向透明電極上に反射鏡層を形成/消滅させることのできる反応ガスを供給する部材と、を含む、請求項に記載の表示/照明装置。 The mirror device includes a transparent substrate facing the first mirror member, a facing substrate facing the transparent substrate, a facing transparent electrode formed on the facing surface of the facing substrate, and the transparency. The display according to claim 5 , further comprising a member for supplying a reaction gas capable of forming / extinguishing a reflecting mirror layer on the facing transparent electrode by an electrochemical reaction in the space between the substrate and the facing substrate. / Lighting device . 前記ミラーデバイスは、鏡面と鏡面の前方に配置された透明面と、前記透明面の上に遮光層を析出/溶解できる機構とを含む、請求項に記載の表示/照明装置。 The display / lighting device according to claim 5 , wherein the mirror device includes a mirror surface, a transparent surface arranged in front of the mirror surface, and a mechanism capable of precipitating / dissolving a light-shielding layer on the transparent surface. 前記表示/照明装置が車両用テールランプの少なくとも一部を形成し、前記第2の鏡部材が前記第1の鏡部材の前方に配置される、請求項1~8のいずれか1項に記載の表示/照明装置。 The one according to any one of claims 1 to 8 , wherein the display / lighting device forms at least a part of a tail lamp for a vehicle, and the second mirror member is arranged in front of the first mirror member. Display / lighting device . 半透過鏡である第1の鏡部材と、前記第1の鏡部材と対向配置された第2の鏡部材と、前記第1の鏡部材と前記第2の鏡部材の間の空間乃至その側方に配置された光源と、前記第1の鏡部材と前記第2の鏡部材との少なくとも一方の反射率を変化させる制御装置を含む表示/照明装置を準備し、
前記光源を点灯し、
前記制御装置により前記第2の鏡部材の反射率を変化させ、
観察者は対向配置された前記第1、第2の鏡部材の前記第1の鏡部材側から観察し、前記光源から直接向かう光ビームによる像、および前記第1、第2の鏡部材で反射した後、向かう光ビームによる虚像を観察することにより、視野の奥行きを変化させる、
ことを特徴とする表示/照明装置の駆動方法。
A first mirror member which is a semi-transmissive mirror, a second mirror member arranged to face the first mirror member, and a space or a side thereof between the first mirror member and the second mirror member. A display / lighting device including a light source arranged in the direction and a control device for changing the reflectance of at least one of the first mirror member and the second mirror member is prepared.
Turn on the light source
The reflectance of the second mirror member is changed by the control device, and the reflectance is changed.
The observer observes from the first mirror member side of the first and second mirror members arranged to face each other, and is reflected by the image of the light beam directly directed from the light source and the first and second mirror members. After that, the depth of the field of view is changed by observing the virtual image of the heading light beam .
A method of driving a display / lighting device , characterized in that.
前記第2の鏡部材の反射率は、増加、減少を繰り返す、請求項10に記載の表示/照明装置の駆動方法。
The method for driving a display / lighting device according to claim 10 , wherein the reflectance of the second mirror member repeatedly increases and decreases.
JP2017191571A 2017-09-29 2017-09-29 Optical devices suitable for display / lighting and their driving methods Active JP7063565B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017191571A JP7063565B2 (en) 2017-09-29 2017-09-29 Optical devices suitable for display / lighting and their driving methods
PCT/JP2018/035205 WO2019065538A1 (en) 2017-09-29 2018-09-21 Optical device and method for driving same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017191571A JP7063565B2 (en) 2017-09-29 2017-09-29 Optical devices suitable for display / lighting and their driving methods

Publications (2)

Publication Number Publication Date
JP2019066647A JP2019066647A (en) 2019-04-25
JP7063565B2 true JP7063565B2 (en) 2022-05-09

Family

ID=66338281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017191571A Active JP7063565B2 (en) 2017-09-29 2017-09-29 Optical devices suitable for display / lighting and their driving methods

Country Status (1)

Country Link
JP (1) JP7063565B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031627A (en) 2003-06-18 2005-02-03 Tokai Rika Co Ltd Electrochromic mirror
JP2005309137A (en) 2004-04-22 2005-11-04 Tokai Rika Co Ltd Reflectivity variable mirror
JP2006173688A (en) 2004-12-10 2006-06-29 Olympus Corp Spatial light transmission apparatus
JP2007010777A (en) 2005-06-28 2007-01-18 Nissha Printing Co Ltd Multiple reflection panel
JP2010002573A (en) 2008-06-19 2010-01-07 Murakami Corp Method for changing reflectivity reversibly, element therefor, method of manufacturing element, and transmittance variable element and reflectivity variable mirror
JP2010044291A (en) 2008-08-18 2010-02-25 Tokai Kogaku Kk Display device
JP2015076294A (en) 2013-10-09 2015-04-20 株式会社小糸製作所 Marker lamp for vehicle
US20150198306A1 (en) 2007-12-13 2015-07-16 Valeo North America, Inc. Dynamic three dimensional effect lamp assembly

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166281U (en) * 1983-04-22 1984-11-07 マルイ工業株式会社 pattern display panel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031627A (en) 2003-06-18 2005-02-03 Tokai Rika Co Ltd Electrochromic mirror
JP2005309137A (en) 2004-04-22 2005-11-04 Tokai Rika Co Ltd Reflectivity variable mirror
JP2006173688A (en) 2004-12-10 2006-06-29 Olympus Corp Spatial light transmission apparatus
JP2007010777A (en) 2005-06-28 2007-01-18 Nissha Printing Co Ltd Multiple reflection panel
US20150198306A1 (en) 2007-12-13 2015-07-16 Valeo North America, Inc. Dynamic three dimensional effect lamp assembly
JP2010002573A (en) 2008-06-19 2010-01-07 Murakami Corp Method for changing reflectivity reversibly, element therefor, method of manufacturing element, and transmittance variable element and reflectivity variable mirror
JP2010044291A (en) 2008-08-18 2010-02-25 Tokai Kogaku Kk Display device
JP2015076294A (en) 2013-10-09 2015-04-20 株式会社小糸製作所 Marker lamp for vehicle

Also Published As

Publication number Publication date
JP2019066647A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP7080951B2 (en) Head-up display system
CN102640034B (en) Transmissive display device, mobile object and control device
US10604075B2 (en) Waveguide mirror display system
JP5633406B2 (en) Virtual image display device
US9013526B2 (en) Display element, image display system, and method of controlling display element
JP5072216B2 (en) Double-sided display device
JP5747538B2 (en) Virtual image display device
CN103140791A (en) See-through display device and vehicle having see-through display device mounted thereon
CN105190421B (en) Electro-deposition element
WO2016138731A1 (en) Rearview mirror
US20150236302A1 (en) Organic light-emitting display device
TW200428124A (en) Electrophoretic display devices
CN212160231U (en) Augmented reality display optical device, system, glasses and HUD display system
CN109477994B (en) Electrochemical device
US20190391447A1 (en) Optical apparatus and driving method thereof
JP7063565B2 (en) Optical devices suitable for display / lighting and their driving methods
JP6807687B2 (en) Lighting device and liquid crystal display device
CN113219659B (en) Display device
JP2015179603A (en) Light emission device
WO2019065538A1 (en) Optical device and method for driving same
CN203093887U (en) Electronic anti-dazzle inside rear-view mirror with car-backing image system and car
US10444498B2 (en) Waveguide mirror display system
JP3785461B2 (en) Head-up display method
JP2015121657A (en) Display device
TWI783282B (en) Rearview mirror with display function

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200813

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220421

R150 Certificate of patent or registration of utility model

Ref document number: 7063565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150