JP2019066647A - Optical device suitable for display/illumination and method for driving the same - Google Patents

Optical device suitable for display/illumination and method for driving the same Download PDF

Info

Publication number
JP2019066647A
JP2019066647A JP2017191571A JP2017191571A JP2019066647A JP 2019066647 A JP2019066647 A JP 2019066647A JP 2017191571 A JP2017191571 A JP 2017191571A JP 2017191571 A JP2017191571 A JP 2017191571A JP 2019066647 A JP2019066647 A JP 2019066647A
Authority
JP
Japan
Prior art keywords
mirror
mirror member
display
optical device
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017191571A
Other languages
Japanese (ja)
Other versions
JP7063565B2 (en
Inventor
恵介 加藤
Keisuke Kato
恵介 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2017191571A priority Critical patent/JP7063565B2/en
Priority to PCT/JP2018/035205 priority patent/WO2019065538A1/en
Publication of JP2019066647A publication Critical patent/JP2019066647A/en
Application granted granted Critical
Publication of JP7063565B2 publication Critical patent/JP7063565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an optical device suitable for display/illumination that can change a distance in a depth direction.SOLUTION: An optical device suitable for display/illumination according to an example comprises: a first mirror member that is a semi-transmissive mirror; a second mirror member that is arranged opposite to the first mirror member; and a light source that is arranged in a space between the first mirror member and second mirror member and the periphery of the space. At least one of the first mirror member and second mirror member can change its reflectance.SELECTED DRAWING: Figure 1-1

Description

本発明は、光学装置とその駆動方法に関し、特に奥行きのある像空間を形成することのできる、表示/照明に適した光学装置とその駆動方法に関する。   The present invention relates to an optical device and its driving method, and more particularly to an optical device suitable for display / illumination that can form a deep image space and its driving method.

合わせ鏡のように、第1と第2の鏡部材を対向配置し、両者の間に配置した光源を点灯すると、光源から発した光線は第1、第2の鏡部材の間で多重反射する。対向する鏡部材の少なくとも一方を半透過鏡とすれば、半透過鏡を介して多重反射光を観察でき、観察者の注意を引ける奥行きのある表示/照明を行うことができる(例えば特許文献1)。   When the first and second mirror members are disposed opposite to each other and the light source disposed between the two is turned on like a laminated mirror, light rays emitted from the light source are multiply reflected between the first and second mirror members. . If at least one of the opposing mirror members is a semi-transmissive mirror, multiple reflected light can be observed through the semi-transmissive mirror, and display / illumination with a depth that can draw the attention of the observer can be performed (for example, Patent Document 1) ).

図6Aに示すように、円筒型支持材104を介して、半透過鏡である第1の鏡部材102と全反射鏡である第2の鏡部材103とを平行に支持し、それらの間に複数の光源105を配置した光学部材101を形成する。光源105から発した光ビームは、第1、第2の鏡部材102,103の間で多重反射することができる。観察者106は、半透過鏡である第1の鏡部材102側から光学部材101を観察すると、多重反射する各光ビームを観察できる。   As shown in FIG. 6A, the first mirror member 102, which is a semi-transmissive mirror, and the second mirror member 103, which is a total reflection mirror, are supported in parallel via a cylindrical support member 104, and between them. An optical member 101 in which a plurality of light sources 105 are arranged is formed. The light beam emitted from the light source 105 can be multiply reflected between the first and second mirror members 102 and 103. When observing the optical member 101 from the side of the first mirror member 102 which is a semi-transmissive mirror, the observer 106 can observe each light beam that is multi-reflected.

図6Bは光学部材101を半透過鏡である第1の鏡部材102の中央部から観察した時の光源像の見え方を示す平面図である。実際に光源が配置された位置から中央に向かって複数の光源像105gが観察される。最も外側の光源像は光源を発した後反射せずに半透過鏡である第1の鏡部材102を透過した光ビームであり、光源そのものの像である。第1の反射部材と第2の反射部材による多重反射を経て出射する光ビームは、虚像である光源像を形成する。多重反射の回数に応じて、中央に向うに従って虚像である光源像までの距離が増大し、その径が小さくなっている。中央部には光源像が存在しない暗黒部が存在する。   FIG. 6B is a plan view showing how the light source image looks when the optical member 101 is observed from the central portion of the first mirror member 102 which is a semitransparent mirror. A plurality of light source images 105g are observed from the position where the light source is actually arranged toward the center. The outermost light source image is a light beam transmitted through the first mirror member 102 which is a semi-transmissive mirror without being reflected after emitting the light source, and is an image of the light source itself. A light beam emitted through multiple reflection by the first reflecting member and the second reflecting member forms a light source image which is a virtual image. According to the number of multiple reflections, the distance to the light source image, which is a virtual image, increases toward the center, and the diameter thereof decreases. In the center, there is a dark part where no light source image exists.

図6Cは、観察者が第1の鏡部材の中央から外れた位置から光学部材101の第1の鏡部材102を観察した時の平面図である。観察者の位置に対応して、光源像、暗黒部の位置が変化している。   FIG. 6C is a plan view when the observer observes the first mirror member 102 of the optical member 101 from a position deviated from the center of the first mirror member. The positions of the light source image and the dark part are changed corresponding to the position of the observer.

図7A,7B,7Cは、第1、第2の鏡部材102,103の少なくとも一方を対向する鏡部材の方向に突出する曲面形状とした構成を示す。図7Aでは、半透過鏡である第1の鏡部材102が第2の鏡部材103に向って突出する曲面を形成している。図7Bでは、全反射鏡である第2の鏡部材103が第1の鏡部材102に向って突出する曲面を形成している。図7Cでは、第1の鏡部材102、第2の鏡部材103が互いに他方に向って突出する曲面を形成している。   FIGS. 7A, 7B, and 7C show a configuration in which at least one of the first and second mirror members 102 and 103 has a curved shape that protrudes in the direction of the opposite mirror member. In FIG. 7A, the first mirror member 102, which is a semitransparent mirror, forms a curved surface that protrudes toward the second mirror member 103. In FIG. 7B, the second mirror member 103, which is a total reflection mirror, forms a curved surface that protrudes toward the first mirror member. In FIG. 7C, the first mirror member 102 and the second mirror member 103 form curved surfaces which project toward each other.

図7Dは、図7A,7B,7Cの場合、第1の鏡部材中央部から観察した光源像を示す平面図である。各光源から中央に向って光源像が配列され、中央の暗黒部107の大きさが縮小している。   FIG. 7D is a plan view showing a light source image observed from the center portion of the first mirror member in the case of FIGS. 7A, 7B and 7C. A light source image is arranged from each light source toward the center, and the size of the central dark portion 107 is reduced.

実開昭56−139191号Japanese Utility Model Application No. 56-139191

少なくとも一方が半透過鏡である第1、第2の鏡部材を対向配置し、その間に光源を配置し、半透過鏡である鏡部材側から光源を観察すると、多重反射により奥行き方向に配列した複数の光源像を観察することができる。多重反射により奥行きのある視野を提供することができる。複数の光源像は、多重反射する次数に応じて固定された像である。奥行き方向の距離、例えば奥行き方向に配列される光源像の数、を変化させることができれば、動きのある視野を提供でき、さらに観察者の注意を引くことができる。   The first and second mirror members, at least one of which is a semitransparent mirror, are disposed opposite to each other, and the light source is disposed between them, and the light source is observed from the mirror member side which is a semitransparent mirror. Multiple light source images can be observed. Multiple reflections can provide a deep field of view. The plurality of light source images are images fixed according to the order of multiple reflection. If the distance in the depth direction, for example, the number of light source images arranged in the depth direction can be changed, a moving visual field can be provided, and the viewer's attention can be drawn.

実施例による表示/照明に適した光学装置は、半透過鏡である第1の鏡部材と、第1の鏡部材と対向配置された第2の鏡部材と、第1の鏡部材と第2の鏡部材の間の空間乃至その側方に配置された光源とを含み、第1の鏡部材と第2の鏡部材との少なくとも一方は反射率を変化することができる。   An optical apparatus suitable for display / illumination according to an embodiment includes a first mirror member which is a semitransparent mirror, a second mirror member disposed opposite to the first mirror member, a first mirror member, and a second mirror member. And a light source disposed laterally of the space between the mirror members, and at least one of the first mirror member and the second mirror member can change the reflectance.

第1の鏡部材と第2の鏡部材との合成反射率を変化させると、観察者が第1の鏡部材側から観察した時の視野の奥行きを変化させることができる。   By changing the combined reflectance of the first mirror member and the second mirror member, it is possible to change the depth of the visual field when the observer observes from the first mirror member side.

および、and, 図1Aは半透過鏡である第1の鏡部材と第2の鏡部材とを対向配置させ、間に光源を配置し、光源を発光させた時の主たる光ビームの動きを示す断面図、図1Bは第2の鏡部材が透明体である場合の主たる光ビームの動きを示す断面図、図1Cは第2の鏡部材の反射率を可変にした時の主たる光ビームの動きを示す断面図、図1Dは対向基板間に3重に光源を配置した構成を示す断面図、図1Eはミラーデバイスの反射率を変化させた時の光源の虚像の明るさの変化を示すグラフ、図1FはミラーデバイスをOFFとした時の表示を概略的に示す平面図、図1GはミラーデバイスをONとした時の表示を概略的に示す平面図である。FIG. 1A is a sectional view showing the movement of the main light beam when the first mirror member and the second mirror member, which are semitransparent mirrors, are disposed opposite to each other, the light source is disposed between them, and the light source emits light. 1B is a cross sectional view showing the movement of the main light beam when the second mirror member is a transparent body, and FIG. 1C is a cross sectional view showing the movement of the main light beam when the reflectance of the second mirror member is variable. 1D is a cross-sectional view showing a configuration in which light sources are arranged in a triple manner between opposing substrates, FIG. 1E is a graph showing a change in brightness of a virtual image of the light source when the reflectance of the mirror device is changed, FIG. FIG. 1G is a plan view schematically showing a display when the mirror device is turned on. 図2Aは表示/照明に適した光学装置の構成を概略的に示す断面図、図2Bは光学装置の構成要素であるミラーデバイスが液相電気光学素子である構成例を概略的に示す断面図である。FIG. 2A is a cross-sectional view schematically showing the configuration of an optical device suitable for display / illumination, and FIG. 2B is a cross-sectional view schematically showing a configuration example in which a mirror device which is a component of the optical device is a liquid phase electro-optic element. It is. 図3Aは電解液を用いたミラーデバイスの駆動電圧の時間変化の例を反射率の変化と共に概略的に示すグラフ、図3B、図3Cは電解液を用いたミラーデバイスの反射率の変化による虚像の明るさの変化を、リニアスケールおよびセミログスケールで概略的に示すグラフである。FIG. 3A is a graph schematically showing an example of the time change of the drive voltage of the mirror device using an electrolytic solution, along with the change of the reflectance; FIGS. 3B and 3C are virtual images due to the change of the reflectance of the mirror device using an electrolytic solution Is a graph schematically showing the change in brightness of the image in the linear scale and the semi-log scale. 図4は、曲面で形成された表示面の一部に光源が配置された構成のミラーデバイスを示す平面図である。FIG. 4 is a plan view showing a mirror device having a configuration in which a light source is disposed on a part of a display surface formed by a curved surface. 図5A,5B,5Cはミラーデバイスの他の構成例を示す概略断面図である。5A, 5B and 5C are schematic cross-sectional views showing other configuration examples of the mirror device. 図6Aは従来技術による、対向基板間の多重反射を利用した表示素子の構成を概略的に示す斜視図、図6B,6Cは表示素子に表示される光源像の例を示す平面図である。FIG. 6A is a perspective view schematically showing the configuration of a display device utilizing multiple reflection between opposing substrates according to the prior art, and FIGS. 6B and 6C are plan views showing examples of light source images displayed on the display device. 図7A,7B,7Cは対向基板に曲面を採用した構成を示す概略断面図、図7Dは図7A,7B,7Cの構成により分布を変化させた光源像を示す平面図である。7A, 7B, and 7C are schematic cross-sectional views showing a configuration in which a curved surface is adopted for the opposite substrate, and FIG. 7D is a plan view showing a light source image in which distribution is changed by the configurations of FIGS. 7A, 7B and 7C.

1,101 光学装置、 2,102 (半透過鏡である)第1の鏡部材、
3,103 (可変反射率を有する)第2の鏡部材、 5,105 光源、
6,106 観察者、 8 反射防止膜、 9 制御装置。
1, 101 optical device, 2, 102 first mirror member (which is a semi-transmissive mirror),
3, 103 second mirror member (having variable reflectance), 5, 105 light source,
6,106 observers, 8 anti-reflective coatings, 9 controls.

図1Aを参照して、対向する第1、第2の鏡部材間空間乃至その側方に光源を配置した構成における、多重反射光ビームの挙動を考察する。一部の光を反射し、一部の光を透過する半透過鏡(ハーフミラー)2と全反射鏡3を対向させ、側方に光源5を配置する。簡略化のため、光源5は全反射鏡3端部表面上の位置に配置するとする。一部の光が透過する半透過鏡2の前方から観察者6が観察する。光源5から発する光は、広く分布するが、観察者6に観察される光ビームのみを考察する。   With reference to FIG. 1A, the behavior of the multiply reflected light beam in the configuration in which the light source is disposed in the space between the first and second opposing mirror members or to the side thereof will be considered. A semi-transmissive mirror (half mirror) 2 that reflects part of the light and transmits part of the light is opposed to the total reflection mirror 3, and a light source 5 is disposed on the side. For the sake of simplicity, it is assumed that the light source 5 is disposed on the end surface of the total reflection mirror 3. The observer 6 observes from the front of the semitransparent mirror 2 through which a part of light passes. Although the light emitted from the light source 5 is widely distributed, only the light beam observed by the observer 6 is considered.

光源5から観察者6に直接向かう光ビームをb1とし、第1の鏡部材2、第2の鏡部材3でそれぞれ1回反射した後、観察者6に向う光ビームをb2とし、第1の鏡部材2、第2の鏡部材3でそれぞれ2回(3回)反射した後、観察者6に向う光ビームをb3(b4)とする。光ビームb2、b3、b4によって観察される光源5の虚像5−1,5−2,5−3は、第2の鏡部材3の後方、対向基板間往復距離、及びその2倍、3倍の位置に配置される。観察者は、光源の虚像を観察することにより、奥行きを増加した視野を感じる。   A light beam directed directly from the light source 5 to the observer 6 is b1, and after being reflected once by each of the first mirror member 2 and the second mirror member 3, a light beam directed to the observer 6 is b2; After each reflecting twice by the mirror member 2 and the second mirror member 3 (three times), the light beam directed to the observer 6 is b3 (b4). The virtual images 5-1, 5, 2 and 5-3 of the light source 5 observed by the light beams b2, b3 and b4 are the back distance of the second mirror member 3, the distance between the opposing substrates, and the double and triple thereof. Placed in the position of. By observing the virtual image of the light source, the observer feels a field of view with increased depth.

図1Bは、第2の鏡部材が透明体3tである場合を示す。光源から第2の鏡部材に向って進行した光ビームは、第2の鏡部材で反射することなく、第2の鏡部材を透過する透過光3tとなる。多重反射は生じず、視野(像空間)の奥行きは増加しない。   FIG. 1B shows the case where the second mirror member is a transparent body 3t. The light beam traveling from the light source toward the second mirror member becomes the transmitted light 3t transmitted through the second mirror member without being reflected by the second mirror member. Multiple reflections do not occur and the depth of the field of view (image space) does not increase.

図1Cは、第2の鏡部材3の反射率が変化する場合を示す。第2の鏡部材3の下方に示したグラフのように、第2の鏡部材の反射率は徐々に増大する。ここで、反射率が増加するとともに、増加の割合である増加率は徐々に減少する。第2の鏡部材の反射率がゼロから増加すると、図1Bの動作から図1Aの動作への変化が生じる。第2の鏡部材の反射率が増加するにつれ、光源5の虚像が次第に増加する。虚像5−1,5−2,5−3,5−4を図示したが、例えば10次の虚像くらいまで観察可能となる。10次の虚像は、第2の鏡部材3の後方、対向基板間距離の10倍の位置に認識され、深い視野を提供することになる。   FIG. 1C shows the case where the reflectance of the second mirror member 3 changes. As in the graph shown below the second mirror member 3, the reflectance of the second mirror member gradually increases. Here, as the reflectance increases, the rate of increase, which is the rate of increase, gradually decreases. As the reflectivity of the second mirror member increases from zero, a change from the operation of FIG. 1B to the operation of FIG. 1A occurs. As the reflectance of the second mirror member increases, the virtual image of the light source 5 gradually increases. Although virtual images 5-1, 5-2, 5-3 and 5-4 are illustrated, it is possible to observe up to, for example, a 10th-order virtual image. The tenth-order virtual image is recognized behind the second mirror member 3 at a position ten times the distance between the opposing substrates, and provides a deep field of view.

図1Eは、ミラーデバイス(第2の鏡部材)の反射率をパラメータとして、シミュレーションにより、光源の虚像の明るさを多重反射の次数の関数として示したグラフである。なお、多重反射の次数は、対向鏡部材間1往復を次数1とする。反射率がゼロであれば、虚像は生じない。反射率が20%、40%、60%と増加すると、例えば、3次、5次、7次虚像が認められるようになり、反射率が80%の時には10次虚像も認められる。   FIG. 1E is a graph showing the brightness of the virtual image of the light source as a function of the order of multiple reflection by simulation using the reflectance of the mirror device (second mirror member) as a parameter. The order of multiple reflection is assumed to be the order 1 for one round trip between the opposing mirror members. If the reflectivity is zero, no virtual image will occur. When the reflectance increases to 20%, 40%, and 60%, for example, third, fifth, and seventh virtual images are recognized, and when the reflectance is 80%, a tenth virtual image is also recognized.

図1Dは対向する第1、第2の鏡部材2,3間に3重に光源を配置した構成を示す断面図である。図1Cでは、対向鏡部材2,3間に1つの光源を配置する例を示したが、奥行き方向を増加した視野の効果を明確にするには虚像の位置も増加する方が効果的になる。図1Dの構成では、対向する第1、第2の鏡部材2,3間の光軸方向に3つの光源を重ねて配置している。対向基板間の距離、対向基板間の距離内に重ねて配置する光源の数は種々変更可能である。   FIG. 1D is a cross-sectional view showing a configuration in which the light sources are arranged in triple between the opposing first and second mirror members 2 and 3. Although FIG. 1C shows an example in which one light source is disposed between the facing mirror members 2 and 3, it is more effective to increase the position of the virtual image in order to clarify the effect of the field of view in which the depth direction is increased. . In the configuration of FIG. 1D, three light sources are arranged in an overlapping manner in the optical axis direction between the opposing first and second mirror members 2 and 3. The distance between the opposing substrates and the number of light sources disposed overlapping in the distance between the opposing substrates can be changed variously.

図1Fは、対向基板間に3重に光源を配置し、ミラーデバイスをOFF(反射率ゼロ)とした場合の半透過鏡側から観察した視野画像であり、図1GはミラーデバイスをONとして第2の鏡部材を実効的な反射鏡とし、多重反射を生じさせた場合の半透過鏡側から観察した視野画像を示す。多重反射を利用することにより、視野の奥行きを深めることが可能となる。   FIG. 1F is a field of view image observed from the semitransparent mirror side in the case where the light source is triplely disposed between the opposing substrates and the mirror device is turned off (reflectance is zero), and FIG. The mirror image of 2 is made into an effective reflecting mirror, and the view-field image observed from the semi-transmission mirror side at the time of making multiple reflection is shown is shown. By using multiple reflections, it is possible to deepen the depth of vision.

図2Aは、表示/照明に適した光学装置1の構成を概略的に示す断面図である。半透過鏡である第1の鏡部材2と反射率を変化できる第2の鏡部材3の間に発光ダイオード(IED)で形成された複数の光源5が配置される。第2の鏡部材の両面には、反射防止膜8が配置されている。第2の鏡部材3はAg等の鏡面を形成可能な電気化学素子であり、制御装置9から供給される電圧が印加される。観察者6は、半透過鏡である第1の鏡部材2側から光学装置を観察する。   FIG. 2A is a cross-sectional view schematically showing the configuration of the optical device 1 suitable for display / illumination. A plurality of light sources 5 formed of light emitting diodes (IEDs) are disposed between the first mirror member 2 which is a semitransparent mirror and the second mirror member 3 which can change the reflectance. Antireflection films 8 are disposed on both sides of the second mirror member. The second mirror member 3 is an electrochemical element capable of forming a mirror surface of Ag or the like, and a voltage supplied from the control device 9 is applied. The observer 6 observes the optical device from the side of the first mirror member 2 which is a semitransparent mirror.

図2Bに示すように、第2の鏡部材3は透明電極23,24を有する一対の透明基板21,22を電極を内側にして対向させ、封止材25で閉じた空間を形成し、閉じた空間内に電解液26を封じた構成である。電解液26は、Agを析出するAg塩として200mMのAgBr、支持塩として800mMのLiBr,メディエータとして800mMのTaCl、溶媒としてガンマブチルラクトン(GBL)を含む。透明電極23,24間に直流電圧を印加すると、負局側の透明電極上にAg層が析出する。 As shown in FIG. 2B, the second mirror member 3 has a pair of transparent substrates 21 and 22 having transparent electrodes 23 and 24 facing each other with the electrodes facing inward, forming a closed space with a sealing material 25 and closing it. The electrolytic solution 26 is sealed in the space. The electrolytic solution 26 contains 200 mM AgBr as an Ag salt which precipitates Ag, 800 mM LiBr as a support salt, 800 mM TaCl 5 as a mediator, and gamma butyl lactone (GBL) as a solvent. When a DC voltage is applied between the transparent electrodes 23 and 24, an Ag layer is deposited on the negative electrode-side transparent electrode.

図3Aは、上述の光学装置1の駆動例における印加電圧波形を示すグラフである。ON期間には正極性の電圧Vonが印加され、OFF期間の主期間には負極性の電圧Voffが印加され、OFF期間の接地期間には接地電圧が印加される。On期間に負電極側の透明電極上にAg層が析出し、OFF期間には印加電圧反転により析出層が溶解する。   FIG. 3A is a graph showing an applied voltage waveform in the driving example of the optical device 1 described above. The positive voltage Von is applied in the ON period, the negative voltage Voff is applied in the main period of the OFF period, and the ground voltage is applied in the ground period of the OFF period. An Ag layer is deposited on the transparent electrode on the negative electrode side in the On period, and the deposited layer is dissolved by the inversion of the applied voltage in the OFF period.

図3Bは、第2の鏡部材3の反射率をパラメータとした、光源の虚像次数に対する明るさを示すグラフである。反射率がゼロの場合は虚像が発生しない。反射率が20%、40%、60%、80%の場合、次数の増加に従って明るさが減少する虚像が形成される。反射率20%では3次の虚像まで認識でき、反射率40%では5次の虚像まで認識でき、反射率60%では7次虚像まで認識できる。反射率80%では10次の虚像も認識できる。   FIG. 3B is a graph showing the brightness with respect to the virtual image order of the light source with the reflectance of the second mirror member 3 as a parameter. When the reflectance is zero, no virtual image is generated. When the reflectance is 20%, 40%, 60% and 80%, a virtual image is formed in which the brightness decreases as the order increases. A reflectance of 20% can recognize up to a third virtual image, a reflectance of 40% can recognize up to a fifth virtual image, and a reflectance of 60% can recognize up to a seventh virtual image. A reflectance of 80% can also recognize a 10th-order virtual image.

図3Cは、図3Bのグラフをセミログスケールで示す。内容は同じである。低輝度領域での変化が、リニアスケールの場合より明確に表れている。   FIG. 3C shows the graph of FIG. 3B on a semilog scale. The contents are the same. The change in the low luminance region is more apparent than in the linear scale.

なお、多重反射の強度は対向する第1、第2の鏡部材全体としての反射率に依存する。第2の鏡部材の反射率を固定反射率とし、第1の鏡部材の反射率を変化させても多重反射の次数は変化する。すなわち、第1、第2の鏡部材の少なくとも一方の反射率を可変とすることにより、多重反射の次数を変化することが可能である。   The intensity of the multiple reflection depends on the reflectance of the opposing first and second mirror members as a whole. Even if the reflectance of the second mirror member is a fixed reflectance, and the reflectance of the first mirror member is changed, the order of multiple reflection changes. That is, it is possible to change the order of multiple reflection by making the reflectance of at least one of the first and second mirror members variable.

第1の鏡部材2と第2の鏡部材3との間で多重反射を生じさせる場合、対向鏡部材間を1往復することにより多重反射の次数が1増加する。第1の鏡部材2と第2の鏡部材3との間の距離をgとすれば、多重反射の次数が1増加することは、像空間の奥行きが(2g)増加することを意味する。n次までの多重反射を生じさせると、像空間の奥行きは2(ng)となり、実際の鏡部材間極gの2n倍となる。車両用テールランプの場合、対向する鏡部材間の距離は、1cm〜50cmとすることが好ましいであろう。他の要件なども考慮すると、対向する鏡部材間の距離は、2cm〜30cmとすることがより好ましいであろう。   When multiple reflection is caused between the first mirror member 2 and the second mirror member 3, the order of multiple reflection is increased by 1 by reciprocating between the opposing mirror members. Assuming that the distance between the first mirror member 2 and the second mirror member 3 is g, an increase in the order of multiple reflection means that the depth of the image space is increased by (2 g). When multiple reflections up to the n-th order are generated, the depth of the image space is 2 (ng), which is 2n times the actual inter-mirror member electrode g. In the case of a vehicle tail lamp, the distance between the opposing mirror members may preferably be 1 cm to 50 cm. It is more preferable that the distance between the opposing mirror members be 2 cm to 30 cm in consideration of other requirements and the like.

図4は、表示面が曲面の光学装置30の例を示す。前述の例同様、半透過鏡の下側に反射率を変化できる鏡部材が配置された構成を有する。領域1の表示面31aと領域2の表示面31bが上下に隣接配置され、領域1内にターンランプ32が配置され、領域2内にブレーキランプ33が配置される。反射率を増加することにより、明るさの増加と共に多重反射次数が増加し、像空間の奥行きが深くなる。続いて反射率を減少させると、明るさが減少し、多重反射次数が減少し、像空間の奥行きが浅くなる。多重反射により、ターンランプ乃至ブレーキランプの内側にサイズを縮小した虚像が形成される。虚像の変化により、後続車の運転者は先行車の表示を認識し易くなり、安全運転に寄与する。   FIG. 4 shows an example of the optical device 30 whose display surface is a curved surface. As in the previous example, it has a configuration in which a mirror member capable of changing the reflectance is disposed below the semitransparent mirror. The display surface 31 a of the area 1 and the display surface 31 b of the area 2 are vertically adjacent to each other, the turn lamp 32 is arranged in the area 1, and the brake lamp 33 is arranged in the area 2. By increasing the reflectivity, the order of multiple reflections increases with increasing brightness and the depth of the image space is deeper. Subsequent reductions in reflectivity reduce brightness, reduce multiple reflection orders, and reduce the depth of the image space. The multiple reflections form a reduced-size virtual image inside the turn lamp or the brake lamp. The change of the virtual image makes it easier for the driver of the following vehicle to recognize the display of the preceding vehicle, which contributes to safe driving.

反射率を変化することができるミラーデバイスとして、上述した電解液を用いてAg等の鏡層を析出/溶解できる可変ミラーに換えて、以下に記載するような構成を用いることもできる。   As a mirror device capable of changing the reflectance, the configuration described below can be used instead of a variable mirror capable of depositing / dissolving a mirror layer of Ag or the like using the above-described electrolytic solution.

図5Aは、液晶素子35の前側に通常の偏光子P1,液晶素子の後ろ側に反射型の偏光子P2が配置され、制御装置9によって制御された液晶素子35の状態に応じて入射光が反射、遮光される構成を示す。液晶素子の状態によって反射率を変化することができる。なお、前側の偏光子P1も反射型の偏光子としてもよい。   In FIG. 5A, a normal polarizer P1 is disposed on the front side of the liquid crystal element 35, and a reflective polarizer P2 is disposed on the rear side of the liquid crystal element, and incident light is The structure which is reflected and shielded is shown. The reflectance can be changed according to the state of the liquid crystal element. The front polarizer P1 may also be a reflective polarizer.

図5Bは、基板37表面にマグネシウム/イットリウム合金の鏡層38が形成されており、鏡層38を水素ガス流39に曝すことができる構成である。合金層と水素との結合状態に応じて、透明状態/鏡状態が変化する。水素の結合状態によって、反射率を変化することができる。   In FIG. 5B, the mirror layer 38 of magnesium / yttrium alloy is formed on the surface of the substrate 37, and the mirror layer 38 can be exposed to the hydrogen gas flow 39. The transparent state / mirror state changes according to the bonding state of the alloy layer and hydrogen. Depending on the bonding state of hydrogen, the reflectance can be changed.

図5Cは、基板41上に形成した全反射鏡42の前にエレクトロクロミックセル43を配置した構成を示す。エレクトロクロミックセル43内でクロミック層44が形成されると、全反射鏡42を含む全体の反射率が低下する。クロミック層の遮光程度に応じて、全体としての反射率を変化することができる。   FIG. 5C shows a configuration in which the electrochromic cell 43 is disposed in front of the total reflection mirror 42 formed on the substrate 41. When the chromic layer 44 is formed in the electrochromic cell 43, the overall reflectance including the total reflection mirror 42 is reduced. The overall reflectance can be changed according to the degree of light shielding of the chromic layer.

これらの構成を用い、入射光に対する反射率を変化させ、多重反射の次数を変化させることにより視野(像空間)の奥行きを変化させる表示を行うことも可能であろう。   Using these configurations, it is also possible to change the reflectance to incident light and change the depth of the field of view (image space) by changing the order of multiple reflections.

以上実施例に沿って説明したが、本発明はこれらに限定されるものではない。例えば種々の偏光、改良、組み合わせ等が可能なことは、当業者に自明であろう。   Although the embodiments have been described above, the present invention is not limited to these. For example, it will be obvious to those skilled in the art that various polarizations, modifications, combinations etc. are possible.

Claims (12)

半透過鏡である第1の鏡部材と、
前記第1の鏡部材と対向配置された第2の鏡部材と、
前記第1の鏡部材と前記第2の鏡部材の間の空間乃至その側方に配置された光源と、
を含み、前記第1の鏡部材と前記第2の鏡部材との少なくとも一方は反射率を変化することができる、表示/照明に適した光学装置。
A first mirror member which is a semitransparent mirror;
A second mirror member disposed opposite to the first mirror member;
A light source disposed in the space between the first mirror member and the second mirror member or to the side thereof;
An optical apparatus suitable for display / illumination, comprising: at least one of the first mirror member and the second mirror member can change a reflectance.
前記第1の鏡部材と前記第2の鏡部材との少なくとも一方の反射率を変化させる制御装置をさらに含む、請求項1に記載の表示/照明に適した光学装置。   The optical device suitable for display / illumination according to claim 1, further comprising a control device for changing the reflectance of at least one of the first mirror member and the second mirror member. 前記第2の鏡部材が、反射鏡層を析出/溶解させることのできるミラーデバイスで構成される請求項1または2に記載の表示/照明に適した光学装置。   An optical apparatus suitable for display / illumination according to claim 1 or 2, wherein said second mirror member comprises a mirror device capable of depositing / dissolving a reflector layer. 前記ミラーデバイスは、前記第1の鏡部材と対向配置された透明基板と、前記透明基板と対向配置された対向基板と、前記透明基板、前記対向基板の対向面上に形成された対向透明電極と、前記対向透明電極間の空間に収容され、電気化学的反応により前記対向透明電極の一方の上に反射鏡層を析出/溶解させることのできる電解液と、を含む請求項3に記載の表示/照明に適した光学装置。   The mirror device includes a transparent substrate disposed opposite to the first mirror member, an opposing substrate disposed opposite to the transparent substrate, and an opposing transparent electrode formed on the opposing surface of the transparent substrate and the opposing substrate. The method according to claim 3, further comprising: an electrolyte solution contained in the space between the opposing transparent electrodes, and capable of depositing / dissolving a reflector layer on one of the opposing transparent electrodes by an electrochemical reaction. Optical device suitable for display / lighting. 前記ミラーデバイスの動作を制御できる制御装置をさらに含む、請求項4に記載の表示/照明に適した光学装置。   5. An optical device suitable for display / illumination according to claim 4, further comprising a controller capable of controlling the operation of the mirror device. 前記ミラーデバイスは、前記第1の鏡部材と対向配置された透明基板と、前記透明基板と対向配置された対向基板と、前記対向基板の対向面上に形成された対向透明電極と、前記透明基板、前記対向基板間の空間に、電気化学的反応により前記対向透明電極上に反射鏡層を析出/溶解させることのできる反応ガスを供給する部材と、を含む、請求項3に記載の表示/照明に適した光学装置。   The mirror device includes: a transparent substrate disposed to face the first mirror member; an opposing substrate disposed to face the transparent substrate; an opposing transparent electrode formed on an opposing surface of the opposing substrate; The display according to claim 3, comprising: a substrate, and a member for supplying a reaction gas capable of depositing / dissolving a reflecting mirror layer on the counter transparent electrode by an electrochemical reaction in the space between the counter substrate. / Optical device suitable for lighting. 前記ミラーデバイスは、鏡面と鏡面の前方に配置された透明面と、前記透明面の上に遮光層を析出/溶解できる機構とを含む、請求項3に記載の表示/照明に適した光学装置。   An optical device suitable for display / illumination according to claim 3, wherein said mirror device comprises a mirror surface, a transparent surface arranged in front of the mirror surface, and a mechanism capable of depositing / dissolving a light shielding layer on said transparent surface. . 前記光学装置が車両用テールランプの少なくとも一部を形成し、前記第2の鏡部材が前記第1の鏡部材の前方に配置される、請求項1〜7のいずれか1項に記載の表示/照明に適した光学装置。   The display according to any one of claims 1 to 7, wherein the optical device forms at least a part of a vehicle tail lamp, and the second mirror member is disposed in front of the first mirror member. Optical device suitable for lighting. 前記第1の鏡部材と前記第2の鏡部材の間隔が、1cm〜50cmの範囲内にある請求項8に記載の表示/照明に適した光学装置。   An optical apparatus suitable for display / illumination according to claim 8, wherein the distance between the first mirror member and the second mirror member is in the range of 1 cm to 50 cm. 前記第1の鏡部材と前記第2の鏡部材の間隔が、2cm〜30cmの範囲内にある請求項9に記載の表示/照明に適した光学装置。   The optical device suitable for display / illumination according to claim 9, wherein a distance between the first mirror member and the second mirror member is in a range of 2 cm to 30 cm. 半透過鏡である第1の鏡部材と、前記第1の鏡部材と対向配置された第2の鏡部材と、前記第1の鏡部材と前記第2の鏡部材の間の空間乃至その側方に配置された光源と、前記第1の鏡部材と前記第2の鏡部材との少なくとも一方の反射率を変化させる制御装置を含む光学装置を準備し、
前記光源を点灯し、
前記制御装置により前記一方の反射率を変化させることにより、視野の奥行きを変化させる、
ことを特徴とする表示/照明に適した光学装置の駆動方法。
A first mirror member which is a semitransparent mirror, a second mirror member disposed opposite to the first mirror member, a space between the first mirror member and the second mirror member or the side thereof Providing an optical device including a light source disposed on one side and a controller for changing the reflectance of at least one of the first mirror member and the second mirror member;
Turn on the light source,
The depth of the field of view is changed by changing the reflectance of the one by the controller.
And a driving method of an optical device suitable for display / illumination.
前記一方の反射率は、増加、減少を繰り返す、請求項11に記載の表示/照明に適した光学装置の駆動方法。   The method of driving an optical device suitable for display / illumination according to claim 11, wherein the reflectance of said one of the light emission and the light emission is repeatedly increased and decreased.
JP2017191571A 2017-09-29 2017-09-29 Optical devices suitable for display / lighting and their driving methods Active JP7063565B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017191571A JP7063565B2 (en) 2017-09-29 2017-09-29 Optical devices suitable for display / lighting and their driving methods
PCT/JP2018/035205 WO2019065538A1 (en) 2017-09-29 2018-09-21 Optical device and method for driving same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017191571A JP7063565B2 (en) 2017-09-29 2017-09-29 Optical devices suitable for display / lighting and their driving methods

Publications (2)

Publication Number Publication Date
JP2019066647A true JP2019066647A (en) 2019-04-25
JP7063565B2 JP7063565B2 (en) 2022-05-09

Family

ID=66338281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017191571A Active JP7063565B2 (en) 2017-09-29 2017-09-29 Optical devices suitable for display / lighting and their driving methods

Country Status (1)

Country Link
JP (1) JP7063565B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166281U (en) * 1983-04-22 1984-11-07 マルイ工業株式会社 pattern display panel
JP2005031627A (en) * 2003-06-18 2005-02-03 Tokai Rika Co Ltd Electrochromic mirror
JP2005309137A (en) * 2004-04-22 2005-11-04 Tokai Rika Co Ltd Reflectivity variable mirror
JP2006173688A (en) * 2004-12-10 2006-06-29 Olympus Corp Spatial light transmission apparatus
JP2007010777A (en) * 2005-06-28 2007-01-18 Nissha Printing Co Ltd Multiple reflection panel
JP2010002573A (en) * 2008-06-19 2010-01-07 Murakami Corp Method for changing reflectivity reversibly, element therefor, method of manufacturing element, and transmittance variable element and reflectivity variable mirror
JP2010044291A (en) * 2008-08-18 2010-02-25 Tokai Kogaku Kk Display device
JP2015076294A (en) * 2013-10-09 2015-04-20 株式会社小糸製作所 Marker lamp for vehicle
US20150198306A1 (en) * 2007-12-13 2015-07-16 Valeo North America, Inc. Dynamic three dimensional effect lamp assembly

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166281U (en) * 1983-04-22 1984-11-07 マルイ工業株式会社 pattern display panel
JP2005031627A (en) * 2003-06-18 2005-02-03 Tokai Rika Co Ltd Electrochromic mirror
JP2005309137A (en) * 2004-04-22 2005-11-04 Tokai Rika Co Ltd Reflectivity variable mirror
JP2006173688A (en) * 2004-12-10 2006-06-29 Olympus Corp Spatial light transmission apparatus
JP2007010777A (en) * 2005-06-28 2007-01-18 Nissha Printing Co Ltd Multiple reflection panel
US20150198306A1 (en) * 2007-12-13 2015-07-16 Valeo North America, Inc. Dynamic three dimensional effect lamp assembly
JP2010002573A (en) * 2008-06-19 2010-01-07 Murakami Corp Method for changing reflectivity reversibly, element therefor, method of manufacturing element, and transmittance variable element and reflectivity variable mirror
JP2010044291A (en) * 2008-08-18 2010-02-25 Tokai Kogaku Kk Display device
JP2015076294A (en) * 2013-10-09 2015-04-20 株式会社小糸製作所 Marker lamp for vehicle

Also Published As

Publication number Publication date
JP7063565B2 (en) 2022-05-09

Similar Documents

Publication Publication Date Title
CN102640034B (en) Transmissive display device, mobile object and control device
EP3285114A1 (en) Rear-view mirror and driving auxiliary apparatus
EP3309609B1 (en) Display device capable of switching between display state and mirror surface state
CN107636513A (en) To the focus region shown by the virtualization three dimensional object of Multi-level display Systems Projection
WO2016138731A1 (en) Rearview mirror
TW200521524A (en) Transflector and transflective display
WO2004038283A1 (en) Backlight unit and liquid crystal display unit using backlight unit
US20030099025A1 (en) Headup display
JP7005589B2 (en) Second surface transflective reflector for electro-optics
TW200428124A (en) Electrophoretic display devices
JP2019500651A (en) Mirror with reflective backlit display
JP2020003539A (en) Optical device and method of driving the same
CN103018953A (en) Double-vision display module
CN109477994B (en) Electrochemical device
JP2019066647A (en) Optical device suitable for display/illumination and method for driving the same
JP2015210298A (en) Double-sided liquid crystal display device and backlight unit
CN212255944U (en) Transparent display device
WO2019065538A1 (en) Optical device and method for driving same
JP6807687B2 (en) Lighting device and liquid crystal display device
JP2015055805A (en) Liquid crystal display device
CN203093887U (en) Electronic anti-dazzle inside rear-view mirror with car-backing image system and car
CN213023867U (en) Display device and vehicle
JP2016109853A (en) Electrochromic display device and drive method of the same
CN113219659B (en) Display device
KR20130101997A (en) Liquid crystal display

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200813

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220421

R150 Certificate of patent or registration of utility model

Ref document number: 7063565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150