JP5122778B2 - High voltage circuit and X-ray generator - Google Patents

High voltage circuit and X-ray generator Download PDF

Info

Publication number
JP5122778B2
JP5122778B2 JP2006228740A JP2006228740A JP5122778B2 JP 5122778 B2 JP5122778 B2 JP 5122778B2 JP 2006228740 A JP2006228740 A JP 2006228740A JP 2006228740 A JP2006228740 A JP 2006228740A JP 5122778 B2 JP5122778 B2 JP 5122778B2
Authority
JP
Japan
Prior art keywords
high voltage
voltage circuit
voltage
cockcroft
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006228740A
Other languages
Japanese (ja)
Other versions
JP2008053076A (en
Inventor
真二郎 大貫
順 高橋
美奈 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2006228740A priority Critical patent/JP5122778B2/en
Publication of JP2008053076A publication Critical patent/JP2008053076A/en
Application granted granted Critical
Publication of JP5122778B2 publication Critical patent/JP5122778B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02E40/647

Description

本発明は高電圧回路に係り、特にX線発生装置に適した回路構成に関する。   The present invention relates to a high voltage circuit, and more particularly to a circuit configuration suitable for an X-ray generator.

例えば、直流高電圧出力回路には多段倍電圧整流回路として知られるコッククロフト・ウォルトン回路がある。直流高電圧を必要とする多くのX線発生装置には、この技術が利用されている。   For example, a DC high voltage output circuit includes a Cockcroft-Walton circuit known as a multistage voltage doubler rectifier circuit. This technique is used in many X-ray generators that require DC high voltage.

X線発生装置は数十kV〜百数十kVの電圧を出力する必要があるため、出力端子や最終段のキャパシタ及びダイオードのリード線には同様に数十kV〜百数十kVの電位になる。この高電位部分とそれを収納する筐体の間には大きな電位差が生じることにより、上記リード線や端子付近などに電界が過度に集中する極端な不平等電界になり、信頼性確保のためには、その最大電界強度が許容値以下となるようこの間には適切な絶縁距離をとらなければならない。   Since the X-ray generator needs to output a voltage of several tens of kV to several hundreds of kV, the output terminal, the capacitor of the final stage, and the lead wire of the diode have the same potential of several tens of kV to several tens of kV. Become. A large potential difference occurs between this high-potential part and the housing that houses it, resulting in an extremely uneven electric field in which the electric field is excessively concentrated near the lead wires and terminals, etc., to ensure reliability. In this case, an appropriate insulation distance must be taken so that the maximum electric field strength is less than the allowable value.

しかし絶縁距離を大きく保つと装置も大型化してしまうため、絶縁距離を短縮する方法として、高電圧端子の周囲に電界シールドを備えて、等電位線の間隔をできるだけ均等にする方法やシールドに高電圧端子と筐体の中間の電位を与えることで電界を緩和し絶縁距離を短くする方法が知られている。(例えば特許文献1参照)
特開2004-22468号公報
However, if the insulation distance is kept large, the size of the device will also increase. Therefore, as a method of shortening the insulation distance, an electric field shield is provided around the high voltage terminal, and the equipotential line spacing is made as uniform as possible. A method is known in which the electric field is relaxed by applying an intermediate potential between the voltage terminal and the casing, and the insulation distance is shortened. (For example, see Patent Document 1)
JP2004-22468

上記のような電界シールドにより電界緩和をする方法は、数百kVもしくは数千kVの電位差を絶縁する上では有用な方法である。しかし、数十kV〜百数十kVの電圧に対して、必要な絶縁距離は数十ミリメートル、またはそれ以下である。よってシールドを備える十分な距離がなく、シールドを備えることで逆にシールドと高電圧端子間、シールドと筺体間に電界集中を起こしてしまうこともある。
また、上記多段昇圧回路はその段数が多くなるに従い、長い実装スペースを必要とすることが多く、装置の仕様によっては目標のスペースに収まり難いという問題点があった。
The method of relaxing the electric field by the electric field shield as described above is a useful method for insulating a potential difference of several hundred kV or several thousand kV. However, for a voltage of several tens of kV to several hundreds of kV, the necessary insulation distance is several tens of millimeters or less. Therefore, there is not a sufficient distance for providing the shield, and the provision of the shield may conversely cause electric field concentration between the shield and the high voltage terminal and between the shield and the casing.
In addition, the multistage booster circuit often requires a long mounting space as the number of stages increases, and it is difficult to fit in the target space depending on the specifications of the device.

本発明の目的は、電気部品同志及びその筐体間の絶縁距離を短縮し、回路スペースの小型化が可能な高電圧回路及びX線発生装置を提供することにある。   An object of the present invention is to provide a high-voltage circuit and an X-ray generator capable of reducing the circuit space by reducing the insulation distance between electrical components and their housings.

上記目的は、キャパシタと半導体整流素子を含む電気部品を複数個組み合わせて形成される高電圧回路において、前記高電圧回路の入力端から出力端までの間の電気部品を実質的に渦巻き型に配置することを特徴としたものである。   In the high voltage circuit formed by combining a plurality of electrical components including a capacitor and a semiconductor rectifying element, the electrical components between the input end and the output end of the high voltage circuit are arranged in a substantially spiral shape. It is characterized by doing.

本発明によれば、電気部品同志及びその筐体間の絶縁距離を短縮し、回路スペースの小型化ができる。   According to the present invention, it is possible to reduce the insulation distance between the electrical components and the casing, and to reduce the circuit space.

以下、本発明の実施の形態について図を用いて説明する。図1に本発明の高電圧出力回路を利用するX線発生装置の全体構成図を示す。図1のように商用の交流電圧を一旦整流する整流回路1、整流回路1で得られた直流電圧を高周波の交流電圧に変換するインバータ2、そのインバータ2の出力電圧を入力電圧とし、昇圧する高電圧変圧器3、高電圧変圧器3の出力を入力とし、昇圧、整流を行なうコッククロフト・ウォルトン回路4を備え、昇圧、整流した直流高電圧がX線管5のアノード5aに印加される。X線管5はカソード5bが接地されるカソード接地方式であり、アノード5aに対アースで最大100kV程度の直流高電圧が管電圧として印加される。高電圧変圧器3、コッククロフト・ウォルトン回路4は絶縁油が封入された高電圧タンク6内に実装される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an overall configuration diagram of an X-ray generator using the high voltage output circuit of the present invention. As shown in Fig. 1, rectifier circuit 1 that once rectifies commercial AC voltage, inverter 2 that converts DC voltage obtained by rectifier circuit 1 into high-frequency AC voltage, and the output voltage of inverter 2 is used as the input voltage to boost the voltage. A high-voltage transformer 3 and a Cockcroft-Walton circuit 4 that performs boosting and rectification using the outputs of the high-voltage transformer 3 as inputs are provided, and a DC high voltage that has been boosted and rectified is applied to the anode 5a of the X-ray tube 5. The X-ray tube 5 is a cathode grounding method in which the cathode 5b is grounded, and a direct current high voltage of about 100 kV at the maximum is applied to the anode 5a as a tube voltage. The high voltage transformer 3 and the Cockcroft-Walton circuit 4 are mounted in a high voltage tank 6 filled with insulating oil.

このようにしてX線高電圧装置に用いられるコッククロフト・ウォルトン回路4は、図2に示すように、キャパシタ10、ダイオード11を組み合わせた構成になっており、数段もしくは数十段、多段接続していくことで、整流、昇圧し、直流高電圧を発生させる。この回路は段数を上げていくに従い、その部分の電位も上昇していくことを特徴としている。
このコッククロフト・ウォルトン回路4の出力端子9、及び、最上段のキャパシタ10aの片端、最上段のダイオード11aの片端はX線管に印加される電圧(管電圧)と同等の数十kV〜百数十kVの電位となる。コッククロフト・ウォルトン回路4は図2の他にも対称形などいくつか形状が異なる方式が知られており、本発明においては、どの方式においても利用できる。
As shown in FIG. 2, the Cockcroft-Walton circuit 4 used in the X-ray high-voltage device has a configuration in which the capacitor 10 and the diode 11 are combined, and is connected in several stages or several tens of stages. By rectifying and boosting, a high DC voltage is generated. This circuit is characterized in that as the number of stages is increased, the potential at that portion also increases.
The output terminal 9 of this Cockcroft-Walton circuit 4, one end of the uppermost capacitor 10a, and one end of the uppermost diode 11a are several tens of kV to hundreds equivalent to the voltage (tube voltage) applied to the X-ray tube. The potential is 10 kV. The Cockcroft-Walton circuit 4 is known in several ways other than that shown in FIG. 2, such as a symmetric shape. In the present invention, any system can be used.

本発明における高電圧発生部の実装形式を図3に示す。ここでは高電圧変圧器3とコッククロフト・ウォルトン回路4は、絶縁油が封入されている高電圧タンク6内に実装されている。本実施例では、コッククロフト・ウォルトン回路4を20段としており、初段〜4段15までを高電圧タンク6の左面に沿って配置し、5段〜8段16までを高電圧タンク6下面に平行に配置している。同様に高電圧タンク6右面と平行に9段〜12段17を、高電圧タンク6上面と平行に13段目〜16段目18を配置している。次に17段〜18段19は図のように初段〜4段15に平行に配置し、19段〜最終段(20段目)20は5段〜8段16に平行に配置している。このように段数が上昇するに従って、コッククロフト・ウォルトン回路4のキャパシタとダイオードを順に、およそ渦巻き型の軌道を描きながら内側へ配置していくことを特徴としている。コッククロフト・ウォルトン回路4内部で隣接する箇所、例えば初段〜4段15と17段〜18段19との絶縁距離は、その間に発生する電位差に応じて適切な絶縁距離が設けられる。   FIG. 3 shows a mounting format of the high voltage generator in the present invention. Here, the high voltage transformer 3 and the Cockcroft-Walton circuit 4 are mounted in a high voltage tank 6 in which insulating oil is sealed. In this embodiment, the Cockcroft-Walton circuit 4 has 20 stages, the first stage to the fourth stage 15 are arranged along the left surface of the high voltage tank 6, and the fifth stage to the eighth stage 16 are parallel to the lower surface of the high voltage tank 6. Is arranged. Similarly, the 9th to 12th stages 17 are arranged in parallel to the right surface of the high voltage tank 6, and the 13th to 16th stages 18 are arranged in parallel to the upper surface of the high voltage tank 6. Next, the 17th to 18th stages 19 are arranged in parallel to the first stage to the 4th stage 15 as shown in the figure, and the 19th stage to the last stage (20th stage) 20 are arranged in parallel to the 5th to 8th stages 16. In this way, as the number of stages increases, the capacitor and the diode of the Cockcroft-Walton circuit 4 are arranged in order while drawing a spiral trajectory in order. The insulation distance between the adjacent locations in the Cockcroft-Walton circuit 4, for example, the first stage to the fourth stage 15 and the 17th stage to the 18th stage 19 is provided with an appropriate insulation distance according to the potential difference generated therebetween.

図4に平板と平行円筒を電極とした場合における両者間の最大電界強度Emax[kV/mm]−絶縁距離l[mm]の解析結果の1例を示す。ここでは、高電圧タンク内壁面を平板に、ダイオードまたはキャパシタのリード線を平行円筒としてモデル化して解析をした結果である。これより、例えば最大電界強度の許容値を10[kV/mm]以下とすると、電位差20kVの場合、約5mmの絶縁距離が必要である。また電位差40kVの場合は約35mm以上の絶縁距離が必要になる。このことから電位差が倍になると7倍以上の絶縁距離が必要であり、電位差を小さくすることは、絶縁距離の短縮に大きく寄与することがわかる。   FIG. 4 shows an example of an analysis result of the maximum electric field strength Emax [kV / mm] −insulation distance l [mm] between a flat plate and a parallel cylinder as electrodes. Here, the analysis results are obtained by modeling the inner wall surface of the high voltage tank as a flat plate and the lead wire of the diode or capacitor as a parallel cylinder. Accordingly, for example, if the allowable value of the maximum electric field strength is 10 [kV / mm] or less, an insulation distance of about 5 mm is required when the potential difference is 20 kV. When the potential difference is 40 kV, an insulation distance of about 35 mm or more is required. This shows that when the potential difference is doubled, an insulation distance of 7 times or more is required, and reducing the potential difference greatly contributes to shortening the insulation distance.

比較のために従来のコッククロフト・ウォルトン回路の実装例を図5に示す。従来はこのように、初段から並べて配置することが多く、縦長になり、コッククロフト・ウォルトン回路の最終段は端に配置されていた。このため、最も高電圧となるコッククロフト・ウォルトン回路の出力段とアース電位である高電圧タンク6の内壁面とが直接対向することとなってしまい、(図4に示す結果の通り)最終段のキャパシタの片端及びダイオードの片端から高電圧タンク6の内壁面に対して、3方向に非常に大きな絶縁距離23を保たなければならなかった。   For comparison, FIG. 5 shows an implementation example of a conventional Cockcroft-Walton circuit. Conventionally, in many cases, the first stage is arranged side by side as described above, which is vertically long, and the final stage of the Cockcroft-Walton circuit is arranged at the end. For this reason, the output stage of the Cockcroft-Walton circuit, which has the highest voltage, and the inner wall surface of the high-voltage tank 6, which is the ground potential, face each other directly (as shown in the results shown in FIG. 4). A very large insulation distance 23 had to be maintained in three directions from one end of the capacitor and one end of the diode to the inner wall surface of the high voltage tank 6.

これに比べ、本発明の構成では、高電圧タンク6(アース電位)の内壁面に近い場所に初段から16段までの部分が配置される。コッククロフト・ウォルトン回路は段数の上昇に従い、部品の電位は高くなるため、高電圧タンク6とキャパシタ及びダイオードとの電位差は従来の実装方法より小さくなる。よってこの間の絶縁距離21を短縮できる。また高電圧端子9、及び、最上段のキャパシタ10aの片端、最上段のダイオード11aの片端の最高電位部分は中央に配置されるため、高電圧タンク6内壁面との絶縁距離22を十分保つことができる。   Compared to this, in the configuration of the present invention, the portions from the first stage to the 16th stage are arranged at a location near the inner wall surface of the high voltage tank 6 (earth potential). In the Cockcroft-Walton circuit, the potential of components increases as the number of stages increases, so the potential difference between the high-voltage tank 6 and the capacitor and diode is smaller than in the conventional mounting method. Therefore, the insulation distance 21 between them can be shortened. In addition, since the highest potential portion of the high voltage terminal 9 and one end of the uppermost capacitor 10a and one end of the uppermost diode 11a are arranged in the center, the insulation distance 22 from the inner wall surface of the high voltage tank 6 must be kept sufficiently. Can do.

上記構成によれば、コッククロフト・ウォルトン回路4において特に初段〜4段15をはじめとして回路部から対高電圧タンク6内壁面への絶縁距離を短くすることができ、装置全体の小型化ができる。
また、従来一辺が直線的に長くなりがちであったコッククロフト・ウォルトン回路4を、本発明によれば4辺の長さを同程度とすることができるので、装置の要求に対して実装の自由度が高められる効果が得られる。
According to the above configuration, particularly in the Cockcroft-Walton circuit 4, the insulation distance from the circuit portion to the inner wall surface of the high-voltage tank 6 including the first stage to the fourth stage 15 can be shortened, and the entire apparatus can be reduced in size.
In addition, according to the present invention, the length of the four sides of the Cockcroft-Walton circuit 4 that has been apt to be long on one side in the past can be made substantially the same, so that it can be freely mounted to meet the requirements of the device. The effect of increasing the degree is obtained.

図6,図7,図8に第2の実施形態によるコッククロフト・ウォルトン回路4の実装例を示す。実施形態2も実施形態1と同様にX線発生装置に利用される。実施形態1と相違する点はコッククロフト・ウォルトン回路4とX線管5の間に保護抵抗24を設けたことと、コッククロフト・ウォルトン回路4の配置方法である。   FIGS. 6, 7 and 8 show implementation examples of the Cockcroft-Walton circuit 4 according to the second embodiment. The second embodiment is also used for the X-ray generation device in the same manner as the first embodiment. The difference from the first embodiment is that a protective resistor 24 is provided between the cockcroft-Walton circuit 4 and the X-ray tube 5 and a method for arranging the cockcroft-Walton circuit 4.

保護抵抗24は、例えばX線管5が管内で放電した場合、放電電流を抑制し、X線管や周辺回路を保護するために備えられている。X線管5内で放電が起きた場合、X線管5に印加されていた電圧(管電圧)が保護抵抗24に掛かるため、保護抵抗24はX線管5に掛かる管電圧と同等の数十kV〜百数十kVの高耐圧抵抗である必要がある。このような高耐圧の抵抗はサイズが大きくなってしまうため、装置全体を小型化するためには、実装方法が課題であった。また高電圧タンク6との間に適切な絶縁距離を保つ必要がある。
配置方法は図7のように、四角垂の各面を頂点へ向かって渦を巻いていく構造25である。四角垂の下部にあるコッククロフト・ウォルトン回路の入力端子7,8から段数が上昇するに従い、四角垂上部へ配置される。この構成は実施形態1の構成において中心部を引き出したような構成となる。
For example, when the X-ray tube 5 is discharged in the tube, the protective resistor 24 is provided to suppress the discharge current and protect the X-ray tube and peripheral circuits. When a discharge occurs in the X-ray tube 5, the voltage (tube voltage) applied to the X-ray tube 5 is applied to the protective resistor 24. Therefore, the protective resistor 24 is the same number as the tube voltage applied to the X-ray tube 5. It is necessary to have a high voltage resistance of 10 kV to several hundreds kV. Since such a high withstand voltage resistor is increased in size, a mounting method has been a problem in order to reduce the size of the entire apparatus. It is also necessary to maintain an appropriate insulation distance from the high voltage tank 6.
As shown in FIG. 7, the arrangement method is a structure 25 in which each face of the quadrangle is spiraled toward the apex. As the number of stages rises from the input terminals 7 and 8 of the Cockcroft-Walton circuit at the lower part of the quadrangle, it is arranged at the upper part of the quadrangle. This configuration is a configuration in which the central portion is pulled out in the configuration of the first embodiment.

また最終段のキャパシタ、ダイオードの端子は四角垂の頂点付近に配置され、コッククロフト・ウォルトン回路の出力端子9に接続される。
そして上記、出力端子9は保護抵抗24に接続される。保護抵抗24はコッククロフト・ウォルトン回路4の内側に配置される。保護抵抗24のもう片方の端子からはケーブルを介してX線管5のアノード5aに接続される。
The terminals of the capacitors and diodes in the final stage are arranged near the apex of the quadrangle and are connected to the output terminal 9 of the Cockcroft-Walton circuit.
The output terminal 9 is connected to the protective resistor 24. The protective resistor 24 is disposed inside the Cockcroft-Walton circuit 4. The other terminal of the protective resistor 24 is connected to the anode 5a of the X-ray tube 5 via a cable.

図8は図7の構成を上から見て高電圧タンク6内に収めたときの様子を表している。このような図7の構成によると、実施例1と同様に外側に比較的低電位部分が配置されるため、コッククロフト・ウォルトン回路4と高電圧タンク6との絶縁距離は高電位部分が周囲に配置された時に比べ短くできる。また最終段の最も高電位部分は四角垂の頂点に配置されるため、高電位部分と高電圧タンク6間の絶縁距離を十分保つことができる。また保護抵抗24もコッククロフト・ウォルトン回路の中心に配置されるので、保護抵抗24と高電圧タンク6間の絶縁距離も十分保つことができる。
このようにして保護抵抗24を含め、スペースを最大限有効活用しつつ、高電圧タンク6との絶縁距離を短くできるため、装置全体の小型化が可能になる。
FIG. 8 shows a state where the configuration of FIG. 7 is stored in the high voltage tank 6 when viewed from above. According to such a configuration of FIG. 7, since the relatively low potential portion is arranged outside as in the first embodiment, the insulation distance between the Cockcroft-Walton circuit 4 and the high voltage tank 6 is around the high potential portion. Can be shorter than when placed. In addition, since the highest potential portion in the final stage is arranged at the apex of the square, the insulation distance between the high potential portion and the high voltage tank 6 can be sufficiently maintained. Since the protective resistor 24 is also arranged at the center of the Cockcroft-Walton circuit, the insulation distance between the protective resistor 24 and the high voltage tank 6 can be kept sufficiently.
In this way, since the insulation distance from the high voltage tank 6 can be shortened while making the most effective use of the space including the protective resistor 24, the entire apparatus can be downsized.

3番目の実施形態を図9,図10,図11に示す。本実施形態は基本的には第一の実施形態と同じである。相違する点は図9,図11に示すように、X線管5が高電圧タンク6内に置かれた一体形X線発生装置であることと配置の方法である。このような一体形のX線発生装置の場合、高電圧タンク6内にX線管5の占める割合が大きくなり、コッククロフト・ウォルトン回路4の形状が実施形態1のとき、入らない場合もある。   A third embodiment is shown in FIG. 9, FIG. 10, and FIG. This embodiment is basically the same as the first embodiment. 9 and FIG. 11, the difference is that the X-ray tube 5 is an integrated X-ray generator in which the X-ray tube 5 is placed in the high voltage tank 6 and the arrangement method. In the case of such an integrated X-ray generator, the proportion of the X-ray tube 5 in the high-voltage tank 6 increases, and when the shape of the Cockcroft-Walton circuit 4 is the first embodiment, it may not enter.

本実施形態の構成は図10に示すように、基板26を横にしており、1枚の基板を加工すれば配置可能な構成になっている。図3と同様に1段〜16段が高電圧タンク6に近い場所に配置され、17段〜20段はその内側に配置される。   As shown in FIG. 10, the configuration of this embodiment is such that the substrate 26 is set sideways and can be arranged by processing one substrate. Similar to FIG. 3, the first to 16th stages are arranged near the high voltage tank 6, and the 17th to 20th stages are arranged inside thereof.

実施形態1と同様にコッククロフト・ウォルトン回路4と高電圧タンク6間の距離を短くできる。キャパシタ、ダイオードの形状や大きさを考慮することと、高電圧タンク6に近いところに低電位部分をおき、段が上昇するに従い内側に渦巻型の軌道を描くように配置していけば、適した形に実装可能であり、かつ装置の小型化が可能になる。   As in the first embodiment, the distance between the Cockcroft-Walton circuit 4 and the high voltage tank 6 can be shortened. Considering the shape and size of capacitors and diodes, placing a low potential part near the high voltage tank 6 and arranging it to draw a spiral orbit inside as the stage rises is suitable. The device can be mounted in a shape and the size of the device can be reduced.

実施形態1〜3ではコッククロフト・ウォルトン回路は絶縁油中に実装される構成であるが、コッククロフト・ウォルトン回路を樹脂モールド化する等、絶縁油以外の絶縁材料内で実装するときも同様の効果が得られる。   In Embodiments 1 to 3, the Cockcroft-Walton circuit is configured to be mounted in insulating oil, but the same effect can be obtained when mounted in an insulating material other than insulating oil, such as resin-molding the Cockcroft-Walton circuit. can get.

本実施形態で用いられる多段スイッチ回路は、パルス透視装置に利用されている。パルス透視はX線診断の際高画質でリアルタイムの画像を見るために用いられている装置である。パルス透視装置の全体構成図を図12に示す。図12のように、商用の交流電圧を一旦整流するコンバータ27、コンバータ27で得られた特流電圧を高周波の交流電圧に変換するインバータ28、インバータ28の出力を入力とし、昇圧する高電圧変圧器29、高電圧変圧器の出力を入力とし、整流する整流器30、この整流器30は2個備えられ、それぞれで整流され、直流高電圧とする。そしてこの2個の整流器30から中性点接地方式でX線管31のアノード31aとカソード31bに管電圧として印加される。パルス透視では、この管電圧をパルス状にON,OFFさせている。   The multistage switch circuit used in the present embodiment is used in a pulse fluoroscopy device. Pulse fluoroscopy is a device used to view high-quality real-time images during X-ray diagnosis. An overall configuration diagram of the pulse fluoroscope is shown in FIG. As shown in FIG. 12, a converter 27 that once rectifies a commercial AC voltage, an inverter 28 that converts a special-current voltage obtained by the converter 27 into a high-frequency AC voltage, and an output from the inverter 28 is an input, and a high-voltage transformer that boosts the voltage. The rectifier 30 that rectifies by using the output of the voltage generator 29 and the high voltage transformer as an input, and two rectifiers 30 are provided, and are rectified to obtain a DC high voltage. The two rectifiers 30 are applied as tube voltages to the anode 31a and the cathode 31b of the X-ray tube 31 by a neutral point grounding method. In pulse fluoroscopy, this tube voltage is turned on and off in pulses.

X線管5に管電圧を印加する際は高電圧ケーブルを利用するため、高電圧ケーブルによる浮遊容量32が存在し、このキャパシタに充電される。管電圧印加を止めた時、このキャパシタに溜まった電荷の放電を速くし、管電圧の立下りを速くすることを目的に、多段スイッチ回路33が設けられている。多段スイッチ回路33は高電圧タンク40内に収納されている。
このような多段スイッチ回路はアノード側31aに最大で+75kV、カソード側31bに最小で−75kVの電圧が印加される。そのため、アノード側31a、カソード側31bそれぞれに半導体スイッチが直列に百数十個接続された構成になっている。
When a tube voltage is applied to the X-ray tube 5, a high voltage cable is used, so that there is a stray capacitance 32 due to the high voltage cable, and this capacitor is charged. A multi-stage switch circuit 33 is provided for the purpose of accelerating the discharge of the electric charge accumulated in the capacitor when the application of the tube voltage is stopped, and the fall of the tube voltage. The multistage switch circuit 33 is accommodated in the high voltage tank 40.
In such a multistage switch circuit, a maximum voltage of +75 kV is applied to the anode side 31a and a minimum voltage of −75 kV is applied to the cathode side 31b. Therefore, it has a configuration in which hundreds of semiconductor switches are connected in series to each of the anode side 31a and the cathode side 31b.

本実施例における、多段スイッチ回路の実装図を図13に示す。アノード側34の配置方法としては、実施例1,3と同様であり、アース電位部分35から高電位になるに従い、内側におよそ渦巻き型の軌道を描くように配置していきほぼ中央に最大電位部分36を配置する。異なる点として、本装置は中性点接地方式であるため、カソード側37は、アース電位部分38から低電位になるに従い、渦の中央に配置することを特徴としている。最低電位部分39はほぼ中央に配置される。さらにアノード側34とカソード側37のアース電位に近い部分を隣接して配置する構成としている。   FIG. 13 shows a mounting diagram of the multistage switch circuit in this embodiment. The arrangement method on the anode side 34 is the same as in the first and third embodiments. As the potential increases from the ground potential portion 35, the anode side 34 is arranged so as to draw a spiral orbit on the inside, and the maximum potential is almost at the center. Place portion 36. As a different point, since this apparatus is a neutral point grounding system, the cathode side 37 is arranged in the center of the vortex as the potential decreases from the ground potential portion 38. The lowest potential portion 39 is disposed substantially at the center. Further, a portion close to the ground potential on the anode side 34 and the cathode side 37 is arranged adjacently.

この構成によると、多段スイッチ回路においても、実施例1〜3と同様に、高電圧タンク40との絶縁距離41を最大電位が高電圧タンク40付近に配置された時に比べ、短縮でき、装置全体の小型化が可能である。   According to this configuration, also in the multistage switch circuit, the insulation distance 41 from the high voltage tank 40 can be shortened as compared with the case where the maximum potential is arranged in the vicinity of the high voltage tank 40, as in the first to third embodiments. Can be miniaturized.

本発明を利用するX線発生装置の全体構成を示す図。The figure which shows the whole structure of the X-ray generator which utilizes this invention. コッククロフト・ウォルトン回路を示す図。The figure which shows a Cockcroft-Walton circuit. 本発明のコッククロフト・ウォルトン回路の実装形式をを示す図。The figure which shows the mounting format of the Cockcroft-Walton circuit of this invention. 最大電界強度−絶縁距離の解析結果例を示す図。The figure which shows the example of an analysis result of maximum electric field strength-insulation distance. 従来のコッククロフト・ウォルトン回路実装例を示す図。The figure which shows the conventional Cockcroft-Walton circuit implementation example. 保護抵抗を追加したコッククロフト・ウォルトン回路とX線管の回路例を示す図。The figure which shows the circuit example of the Cockcroft-Walton circuit and X-ray tube which added protection resistance. 螺旋状に配置した実装例を示す図。The figure which shows the example of mounting arrange | positioned spirally. 図7を上から見た図。The figure which looked at FIG. 7 from the top. 一体型X線発生装置の全体構成を示す図。The figure which shows the whole structure of an integrated X-ray generator. 図9における実装配置を示す図。FIG. 10 is a diagram showing a mounting arrangement in FIG. 図10を横(右)から見た図。The figure which looked at FIG. 10 from the side (right). パルス透視装置の全体構成を示す図。The figure which shows the whole structure of a pulse fluoroscopy apparatus. 多段スイッチ回路の実装例を示す図。The figure which shows the example of mounting of a multistage switch circuit.

符号の説明Explanation of symbols

1 整流回路、2 インバータ、3 高電圧変圧器、4 コッククロフト・ウォルトン回路部、5 X線管、5a X線管のアノード、5b X線管のカソード、6 高電圧タンク、7,8 コッククロフト・ウォルトン回路(入力端子1,2)、9 コッククロフト・ウォルトン回路(出力端子)、10 キャパシタ、10a 最終段のキャパシタ、11 ダイオード、11a 最終段のダイオード、12 1段目(初段)、13 2段目、14 n段目、15 1段〜4段、16 5段〜8段、17 9段〜12段、18 13段〜16段、19 17段、18段、20 19段、20段、21 絶縁距離、22 最終段、高電圧タンク6間絶縁距離、23 絶縁距離、24 保護抵抗、25 実装部分、26 基板、27 コンバータ、28 インバータ、29 高電圧変圧器、30 整流回路、31 X線管、32 浮遊容量、33 多段スイッチ、34 アノード側、35 アース電位部分、36 最高電位部分、37 カソード側部分、38 アース電位部分、39 最低電位部分、40 高電圧タンク、41 絶縁距離   1 Rectifier, 2 Inverter, 3 High-voltage transformer, 4 Cockcroft-Walton circuit, 5 X-ray tube, 5a X-ray tube anode, 5b X-ray tube cathode, 6 High-voltage tank, 7, 8 Cockcroft-Walton Circuit (input terminals 1 and 2), 9 Cockcroft-Walton circuit (output terminal), 10 capacitors, 10a last stage capacitor, 11 diode, 11a last stage diode, 12 1st stage (first stage), 13 2nd stage, 14 nth, 15 1st to 4th, 16 5th to 8th, 17 9th to 12th, 18 13th to 16th, 19 17th, 18th, 20 19th, 20th, 21 Insulation distance , 22 Final stage, High voltage tank 6 insulation distance, 23 Insulation distance, 24 Protection resistance, 25 Mounting area, 26 Substrate, 27 Converter, 28 Inverter, 29 High voltage transformer, 30 Rectifier circuit, 31 X-ray tube, 32 Stray capacitance, 33 Multistage switch, 34 Anode side, 35 Earth potential, 36 Maximum potential, 37 Sword side, 38 ground potential, 39 lowest potential, 40 high voltage tank, 41 insulation distance

Claims (3)

キャパシタと半導体整流素子を含む電気部品を複数個組み合わせて形成され、入力端子部から出力端子部に行くに従い高電圧となる高電圧回路において、
前記高電圧回路は、アース電位に接地された高電圧タンクの内壁面近傍から、前記高電圧タンクの中央部に向かって渦巻き型に配置され、前記入力端子部は前記内壁面近傍に位置し、前記出力端子部は前記中央部に位置することを特徴とする高電圧回路。
In a high voltage circuit that is formed by combining a plurality of electrical components including a capacitor and a semiconductor rectifier, and becomes a high voltage as it goes from the input terminal portion to the output terminal portion,
The high voltage circuit is arranged in a spiral shape from the vicinity of the inner wall surface of the high voltage tank grounded to the ground potential toward the center of the high voltage tank, and the input terminal portion is located near the inner wall surface, The high-voltage circuit according to claim 1, wherein the output terminal portion is located at the central portion .
前記高電圧回路は、前記中央部に行くに従い高さ方向に位置するように配置され、前記出力端子部には、X線を発生するX線源と、前記高電圧回路との間に設けられた保護抵抗が接続され、前記保護抵抗は、前記高さ方向に沿って配置されることを特徴とする請求項1に記載の高電圧回路。The high voltage circuit is disposed so as to be positioned in the height direction as it goes to the central portion, and the output terminal portion is provided between an X-ray source that generates X-rays and the high voltage circuit. The high-voltage circuit according to claim 1, wherein a protective resistor is connected, and the protective resistor is disposed along the height direction. X線を発生するX線源と、このX線源に電源を供給するために接続される高電圧回路と、を含むX線発生装置において、前記高電圧回路は請求項1又は2に記載の高電圧回路が一部に含まれることを特徴とするX線発生装置。3. An X-ray generator including an X-ray source for generating X-rays and a high voltage circuit connected to supply power to the X-ray source, wherein the high voltage circuit is defined in claim 1 or 2. An X-ray generator characterized in that a part of a high voltage circuit is included.
JP2006228740A 2006-08-25 2006-08-25 High voltage circuit and X-ray generator Expired - Fee Related JP5122778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006228740A JP5122778B2 (en) 2006-08-25 2006-08-25 High voltage circuit and X-ray generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006228740A JP5122778B2 (en) 2006-08-25 2006-08-25 High voltage circuit and X-ray generator

Publications (2)

Publication Number Publication Date
JP2008053076A JP2008053076A (en) 2008-03-06
JP5122778B2 true JP5122778B2 (en) 2013-01-16

Family

ID=39236925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006228740A Expired - Fee Related JP5122778B2 (en) 2006-08-25 2006-08-25 High voltage circuit and X-ray generator

Country Status (1)

Country Link
JP (1) JP5122778B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691170B2 (en) * 2008-03-04 2011-06-01 株式会社ジョブ X-ray irradiation equipment
JP5835845B2 (en) * 2012-07-18 2015-12-24 株式会社リガク Industrial X-ray generator for nondestructive inspection
US9281156B2 (en) 2013-03-15 2016-03-08 Thermo Scientific Portable Analytical Instruments Inc. Volumetrically efficient miniature X-ray system
JP2016136531A (en) * 2016-03-23 2016-07-28 オリジン電気株式会社 X-ray generating device and dental x-ray imaging apparatus
US10499484B2 (en) 2017-11-16 2019-12-03 Moxtek, Inc. X-ray source with non-planar voltage multiplier
WO2021241227A1 (en) * 2020-05-27 2021-12-02 株式会社明電舎 High voltage generator and x-ray generator
JP6966027B1 (en) * 2020-05-27 2021-11-10 株式会社明電舎 High voltage generator and X-ray generator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079446U (en) * 1993-07-30 1995-02-10 トリニティ工業株式会社 Rotary atomizing electrostatic coating machine
JP2001045761A (en) * 1999-08-03 2001-02-16 Shimadzu Corp High voltage power supply for x-ray source
JP2002025792A (en) * 2000-07-11 2002-01-25 Shimadzu Corp X-ray generator
JP2002324697A (en) * 2001-04-25 2002-11-08 Toshiba Corp High voltage generating circuit of x-ray generating device
JP2004281170A (en) * 2003-03-14 2004-10-07 Origin Electric Co Ltd High voltage device for x-ray tube
JP4033052B2 (en) * 2003-06-23 2008-01-16 松下電器産業株式会社 Control unit integrated compressor and air conditioner

Also Published As

Publication number Publication date
JP2008053076A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP5122778B2 (en) High voltage circuit and X-ray generator
JP4474360B2 (en) X-ray generator
CN101902140B (en) Power generation system and x-ray generator system
US7620151B2 (en) High voltage tank assembly for radiation generator
EP0471601A2 (en) Electrostatic particle accelerator having linear axial and radial fields
JP2012049123A (en) Industrial x-ray generator
US9369060B2 (en) Power generation system and package
JP5490994B2 (en) X-ray generator
KR102524759B1 (en) Ionizer
US9087670B2 (en) Electric potential control of high voltage insulation
KR200412212Y1 (en) High voltage tube tank of movable x-ray generator
KR101370598B1 (en) Apparatus for driving high voltage for x-ray tube
JP2003257697A (en) High voltage generating device for x-rays
JP5923961B2 (en) AC / DC converter
KR102474592B1 (en) Ionizer
JP6670704B2 (en) High voltage generator and X-ray high voltage device using the same
JP5193795B2 (en) High voltage generator
JP5586284B2 (en) High voltage generator and X-ray high voltage apparatus using the same
JP2008041318A (en) Device for generating direct current high voltage
JP3021122B2 (en) DC high voltage generator and X-ray apparatus using the same
US8929513B2 (en) Compact radiation generator
JP2004281170A (en) High voltage device for x-ray tube
JP5335185B2 (en) High voltage generator
CN213279500U (en) Miniaturized high-pressure splicing module
US20160262250A1 (en) Power generation system and package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees