JP3021122B2 - DC high voltage generator and X-ray apparatus using the same - Google Patents

DC high voltage generator and X-ray apparatus using the same

Info

Publication number
JP3021122B2
JP3021122B2 JP3253113A JP25311391A JP3021122B2 JP 3021122 B2 JP3021122 B2 JP 3021122B2 JP 3253113 A JP3253113 A JP 3253113A JP 25311391 A JP25311391 A JP 25311391A JP 3021122 B2 JP3021122 B2 JP 3021122B2
Authority
JP
Japan
Prior art keywords
voltage
positive
negative
high voltage
upper lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3253113A
Other languages
Japanese (ja)
Other versions
JPH0568370A (en
Inventor
清美 渡辺
哲也 松本
一夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP3253113A priority Critical patent/JP3021122B2/en
Publication of JPH0568370A publication Critical patent/JPH0568370A/en
Application granted granted Critical
Publication of JP3021122B2 publication Critical patent/JP3021122B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】この発明は,X線管に高電圧を供
給するのに適した直流高電圧発生装置,およびその直流
高電圧発生装置を備えたX線装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC high voltage generator suitable for supplying a high voltage to an X-ray tube, and an X-ray apparatus provided with the DC high voltage generator.

【従来の技術】近年,高速応答性と低リプル性の利点か
ら,数kHz〜数十kHzの高周波インバータを用いた
X線用電源装置が実用化されている。このようにX線用
電源装置のインバータ部分の小型化は着々と進められて
いるが,高電圧トランスと高電圧整流回路を含むオイル
タンク,即ち,直流高電圧発生装置の小型化は比較的に
遅れている。この理由は,従来の直流高電圧発生装置の
高電圧整流方式が,第8図に示す中性点接地のブリッジ
整流回路であることに起因している。同図において51
は,中性点を接地した2個の2次巻線52、53を持つ
高電圧トランス,54,55,56,57はブリッジ接
続された高電圧ダイオードである。この方式では,全て
の高電圧ダイオード54〜57の両極が高電位にあるの
で,高電圧ダイオードの配線と取り付けに高絶縁材料が
必要なこと,また高電圧トランス51には,2個の高電
圧巻線52,53を必要とし,かつ巻線間の電気絶縁も
必要であることなどから高電圧トランスが大きくなるこ
とにより,直流高電圧発生装置の寸法を小さくすること
が困難である。また,その他にも高電圧部位と低電圧部
位とが入り組んだ構造となっていたので,それらの間の
電気絶縁を確保するためには高電圧部位と低電圧部位間
の距離を大きくせねばならず,このことも直流高電圧発
生装置を小型・軽量化できない一因となっていた。
2. Description of the Related Art In recent years, power supplies for X-rays using high-frequency inverters of several kHz to several tens of kHz have been put into practical use due to the advantages of high-speed response and low ripple. As described above, the miniaturization of the inverter portion of the X-ray power supply is steadily proceeding, but the oil tank including the high-voltage transformer and the high-voltage rectifier circuit, that is, the DC high-voltage generator is relatively small. Is late. The reason for this is that the high voltage rectification method of the conventional DC high voltage generator is a neutral-point grounded bridge rectification circuit shown in FIG. In FIG.
Is a high-voltage transformer having two secondary windings 52 and 53 having a neutral point grounded, and 54, 55, 56 and 57 are bridge-connected high-voltage diodes. In this method, since both poles of all the high-voltage diodes 54 to 57 are at a high potential, a high insulating material is required for wiring and mounting of the high-voltage diodes, and the high-voltage transformer 51 has two high-voltage diodes. Since the windings 52 and 53 are required and electrical insulation between the windings is required, it is difficult to reduce the size of the DC high-voltage generator by increasing the size of the high-voltage transformer. In addition, the high-voltage part and the low-voltage part have a complicated structure, so the distance between the high-voltage part and the low-voltage part must be increased to ensure electrical insulation between them. This, too, was one of the reasons why the DC high-voltage generator could not be reduced in size and weight.

【発明が解決しようとする課題】本発明は,X線用の直
流高電圧発生装置を小型・軽量化することによって,小
型・軽量のX線装置を実現することを課題としている。
SUMMARY OF THE INVENTION An object of the present invention is to realize a compact and lightweight X-ray apparatus by reducing the size and weight of a DC high voltage generator for X-rays.

【課題を解決するための手段】したがって,本発明で
は,ケース本体と上蓋からなるオイルタンク内に,1個
の2次巻線をもつ高電圧トランス,該2次巻線からの交
流高電圧を昇圧・整流する直流高電圧発生回路,フィラ
メント用トランス,および高電圧検出用デバイダを絶縁
油で封入した直流高電圧発生装置において,上記上蓋
に,正極と負極の2個の高電圧用ソケットを並置して取
り付けると共に,これらの高電圧用ソケットに沿って,
上記高電圧トランスをその2次巻線を下方にして取り付
け,さらに,直流高電圧発生回路を形成する正極と負極
の2組の倍電圧整流回路を搭載してなる回路基板を,上
記高電圧用ソケットの下方で,該高電圧用ソケットの正
極,負極と上記2組の倍電圧整流回路の正極,負極がそ
れぞれ対応するよう配置して上蓋とほぼ平行に固定し,
また,上記正極と負極の2組の倍電圧整流回路の正,負
極の各高電圧出力をそれぞれ上記正,負極の各高電圧用
ソケットに接続している。
Therefore, according to the present invention, a high-voltage transformer having one secondary winding and an AC high voltage from the secondary winding are provided in an oil tank comprising a case body and an upper lid. Two high voltage sockets, a positive electrode and a negative electrode, are juxtaposed on the upper lid in a DC high voltage generator that encloses a DC high voltage generating circuit for boosting and rectifying, a transformer for filament, and a divider for high voltage detection with insulating oil. Along with these high voltage sockets,
The high-voltage transformer is mounted with its secondary winding downward, and a circuit board on which two sets of positive and negative voltage doubler rectifier circuits forming a DC high-voltage generating circuit are mounted is mounted on the high-voltage transformer. Below the socket, the positive and negative poles of the high-voltage socket and the positive and negative poles of the above two sets of voltage doubler rectifiers are arranged so as to correspond to each other and fixed substantially parallel to the upper lid.
Also, the positive and negative high voltage outputs of the two sets of positive and negative voltage doubler rectifier circuits are connected to the positive and negative high voltage sockets, respectively.

【実施例】本発明は主として直流高電圧発生装置を構成
する部材の配置・構成にあるが,本発明の理解を容易な
らしめるために,第1図に示す本発明の実施例の回路構
成の一例から先ず説明を行う。同図において,1は接地
された金属製のオイルタンクであり,このタンクの中
に、高電圧トランス2,正極倍電圧整流回路3と負極倍
電圧整流回路4とからなる直流高電圧発生回路32,フ
ィラメント用トランス5,および高電圧検出用デバイダ
26などを絶縁油で封入している。6と7は高電圧用高
周波インバータ8の出力に接続される高周波入力端子,
9と10はフィラメント用インバータ11の出力に接続
されるフィラメント用インバータ入力端子,12はX線
管13のアノードAに接続される高電圧ケーブル14の
挿入・接続を行う正極高電圧用ソケット,15はX線管
13のカソードKに接続され高電圧ケーブル16を挿入
・接続を行う負極高電圧用ソケットである。正極倍電圧
整流回路3は,1個の倍電圧用コンデンサ17と,耐圧
を上げるために複数のダイオードを直列接続した2組の
高電圧用ダイオードブロック18と19,耐圧を上げる
ために複数のコンデンサを直列接続したフィルタ用コン
デンサブロック20からなる。負極倍電圧整流回路4も
同様に,1個の倍電圧用コンデンサ21と,2個の高電
圧用ダイオードブロック22,23と,フィルタ用コン
デンサブロック24とから成る。この実施例では,単一
フィラメントを有するX線管であるが,大焦点フィラメ
ントと小焦点フィラメントの2つのフィラメントを有す
るX線管にも適用できるよう,負極高電圧用ソケット1
5は3極のもので,共通端子C,大焦点フィラメント端
子L,小焦点フィラメント端子Sを有する。共通端子C
に負極倍電圧整流回路4の負出力とフィラメント用トラ
ンス5の2次巻線25の一端が接続され,端子S,Lに
2次巻線25の他端が接続されている。また,正極高電
圧用ソケット12も3極であり,全ての端子は短絡され
て,正極倍電圧整流回路3の正出力に接続されている。
26は耐圧を上げるために複数の抵抗を直列接続した高
電圧検出用デバイダであり,正極倍電圧整流回路3の正
出力と管電圧検出端子27間に接続され,その管電圧検
出信号は高電圧出力を安定化するための制御圧回路28
に接続される。29は高電圧出力電流を検出する端子,
即ち,管電流検出端子であり,高電圧用ダイオードブロ
ック22のカソード電流を検出し,その管電流検出信号
を管電流測定回路30に与える。このカソード電流はパ
ルス状であるが,平均化すると管電流に等しい。管電流
の検出は,高電圧用ダイオードブロック19のアノード
電流を検出してもよい。31は管電圧検出信号と管電流
検出信号の信号リターン端子であり,オイルタンク内
壁,場合によってはタンク外壁に接続され,接地され
る。なお,33は信号リターン端子31の相当する直流
高電圧発生回路32の端子,34は管電流検出ライン,
35は管電流検出ライン34により管電流検出端子29
に接続された直流高電圧発生回路32の端子を示す。第
2図は高電圧トランス2の構造の例を示す。UU型,ま
たはUI型の鉄心を組み合わせた口型鉄心40の片脚に
1次巻線N1が巻かれ,更にその上に1個の2次巻線N
2が巻かれている。fは2次巻線N2の接地される巻始
め端子,gはその高電圧側端子である。このように2次
巻線N2の巻始め端子fが接地電位にあるので,巻線N
1とN2間の耐圧をそれ程必要とせず,例えばAC2,
000Vでよく,高電圧トランスの製作が容易である。
本発明では,2つの倍電圧整流回路3,4によって,高
電圧トランス2の2次巻線電圧Eは+2E,−2Eに整
流され,X線管13に4Eの電圧を印加することができ
る。また,X線管13のアノードA,カソードKに加わ
る管電圧のリプルは,第3図に示すように高周波インバ
ータ8の動作周波数と同じであるが,互いに逆位相であ
る事から打ち消しあう。その結果,X線管のアノード,
カソードに加わるリプルは,動作周波数の2倍であり,
且つ,小さくなる利点がある。この様に,本発明では高
電圧トランス2の2次巻線が1個ですみ,また倍電圧整
流回路3と4によって,高電圧トランスの2次巻線電圧
が必要なX線管電圧の1/4で良いので,従来の2次巻
線電圧の1/2で良い。その代わり,巻線電流容量は2
倍となるが,巻数が少ない2次巻線が1個ですむ経済的
効果は大きい。また,高電圧用ダイオードブロックの数
も4個と増えるが,耐圧は従来に比べて1/2でよい。
その電流容量は2倍になるが,高電圧ダイオードは電流
容量を大きくするよりも,耐圧を上げるほうが技術的に
困難であり,低耐圧のものでよいので,経済的効果は大
きい。特にX線装置では,運転時間が数秒と短いことが
多いと同時に,その運転時間に比べて休止期間がかなり
長いということもあり,高電圧ダイオードと高電圧トラ
ンスの2次巻線に過負荷をかけることも十分可能であ
る。これらの利点に対し,本発明では倍電圧用コンデン
サ17,21が2個増加するが,高周波インバータ8の
動作周波数が高い程,小容量のコンデンサを使うことが
でき,耐圧も管電圧の1/4ですむために,大きな欠点
とはならない。また,本発明の実施態様として接地側の
高電圧用ダイオードブロック22に流れる電流を測定す
ることにより,高電圧トランス2の分布容量による電流
などが流れないので,正確な電流検出が可能である。な
お,本発明の実施において,X線管電圧のリプル電圧の
要求が厳しくない場合は,フィルタ用コンデンサ20と
24を除去し,高電圧ケーブル14と16の静電容量の
みに頼ってもよい。実験では管電圧100kV,管電流
100mAを出力するのに,20kHzの高周波インバ
ータと,約25kVの2次巻線電圧を発生する高電圧ト
ランスと,1000pF,30kVの倍電圧用コンデン
サと,耐圧60kVの高電圧用ダイオードブロック4個
と,各2mの高電圧ケーブルとにより,十分に実用可能
な出力特性を得ることができた。なお,電流検出は高電
圧用ダイオードブロック19のアノード電流で検出する
こともできる。第4図(A),(B)は,本発明の一実
施例におけるオイルタンクの上蓋を外した状態の上面図
と,断面透視図を示す。同図において,第1図と同一符
号はその説明に準じる。絶縁油を封入したタンクケース
本体41と上蓋42は,油漏れを防ぐゴムパッキング4
3を挟んで図示していないボルトなどで接続されてい
る。上蓋42には,JISなどにより定まる構造の正極
および負極の高電圧用ソケット12,15が貫通して溶
接されている。これら高電圧用ソケット12,15はオ
イルタンク外から高電圧ケーブル14,16を受け入れ
て,その底部近傍の高電圧金具(図示せず)でオイルタ
ンク内外の接続を行う構造になっている。高電圧トラン
ス2は,高電圧用ソケット12と15からほぼ等しい位
置にそれらに沿う形で,図示していない取付け金具によ
って上蓋42にその2次巻線N2を下方向にして取り付
けられている。また,上蓋42から下方に4本の角型絶
縁支柱44,45,46,47が延び,これらの支柱の
下端に高電圧用の回路基板48,例えばプリント基板が
ほぼ水平に吊されている。この回路基板48には,第1
図の一点鎖線で囲った高電圧整流回路が,図上で,向か
って右側に負極倍電圧整流回路4,左に正極倍電圧整流
回路3がほぼ左右対称に配置されている。回路基板48
上で,17と21は倍電圧用コンデンサ,20と24は
フィルタ用コンデンサブロックであり,高電圧用ダイオ
ードブロック18,19,22,23の配置についても
示している。この配置から分かるように,回路基板48
の左右方向が高電位で,正極倍電圧整流回路3と負極倍
電圧整流回路4とのほぼ中間に位置するライン上に接地
電位がある。次に49は,回路基板48上の接地点33
と上蓋42を接続する金属製アース支柱となる金属導体
であり,管電流検出線34がこの金属導体49に沿って
回路基板48から立ち上がっている。この金属導体49
は,正極と負極の高電圧用ソケット12,15間のほぼ
中間に配置され,ソケットの電極間の電位分布の中点と
なるので,電位分布を2分割して安定化し,正負電極間
の放電防止に役立っている。また,金属導体49は管電
流検出線34の支柱の役割も果たし得る。なお,第4図
(A)では,高電圧トランス2,正,負極の高電圧用ソ
ケット12と15を一点鎖線で示している。さらに,6
1は,第5図に示すように高電圧検出用デバイダ26を
構成する複数直列接続したデバイダ抵抗26Aを取り付
けたプリント基板で,角型絶縁支柱44と47の長手方
向の沿って取り付けられている。反対側の角型絶縁支柱
45と46には,第6図に示すようにフィラメント用ト
ランス5を取り付けた絶縁基板62が,角型絶縁支柱4
5と46の長手方向の沿って取り付けられている。フィ
ラメント用トランス5は,通常のフィラメント電圧が3
〜10Vなので,リングコア63に図示しない1次巻線
を数十ターン巻き,その上に高電圧絶縁電線64を数タ
ーン巻いて2次巻線としたものである。2次巻線は,1
次巻線に対し、管電圧の1/2,たとえば62.5kV
以上の耐圧を必要とするので,線材自体に耐圧を持たせ
たものである。これらはいずれも高電圧側は下方に位置
するよう配置され,オイルタンク壁との間の電気絶縁も
十分確保されている。なお,第4図(A)では図面が煩
雑になるので,フィラメント用トランス5,高電圧検出
用デバイダ26は省略しており,またオイルタンク壁に
設けられた各端子6,7,9,10,27,29,31
は通常の構造のものであるので説明を省略する。次に、
本発明によって定格出力10kW,定格電圧125kV
のX線用高電圧発生装置を製作した実施例では,W
(幅)250mm,D(奥行き)190mm,H(高
さ)204mmの外形寸法のタンクにまとめることがで
きた。主要部品の寸法は以下の通りである。 正負極の高電圧用ソケット(JIS Z4731によ
る)………直径約50mm,長さ約150mm 高電圧トランス(2)………………… W×H×D=1
00×120×100 フィラメント用トランス(5)……………………………
外径60×厚さ30 高電圧用の回路基板(48)…………… W×H×D=
200×140×20 (ただし,倍電圧用コンデンサの高さ40を除く)
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention mainly resides in the arrangement and configuration of members constituting a DC high voltage generator. In order to facilitate understanding of the present invention, the circuit configuration of the embodiment of the present invention shown in FIG. First, an example will be described. In the figure, reference numeral 1 denotes a grounded metal oil tank, in which a high-voltage transformer 2, a positive voltage doubler rectifying circuit 3, and a negative voltage doubler rectifying circuit 4 are provided. , A filament transformer 5, a high-voltage detection divider 26, and the like are sealed with insulating oil. 6 and 7 are high-frequency input terminals connected to the output of the high-voltage high-frequency inverter 8;
Reference numerals 9 and 10 denote a filament inverter input terminal connected to the output of the filament inverter 11; 12 denotes a positive electrode high voltage socket for inserting and connecting a high voltage cable 14 connected to the anode A of the X-ray tube 13; A negative high voltage socket is connected to the cathode K of the X-ray tube 13 and inserts and connects the high voltage cable 16. The positive voltage doubler rectifier circuit 3 includes a single voltage doubler capacitor 17, two sets of high voltage diode blocks 18 and 19 in which a plurality of diodes are connected in series to increase the withstand voltage, and a plurality of capacitors for increasing the withstand voltage. Are connected in series. Similarly, the negative voltage doubler rectifier circuit 4 includes one capacitor for voltage doubler 21, two diode blocks for high voltage 22 and 23, and a capacitor block for filter 24. In this embodiment, an X-ray tube having a single filament is used. However, in order to be applicable to an X-ray tube having two filaments, a large focus filament and a small focus filament, the negative electrode high voltage socket 1 is used.
Reference numeral 5 denotes a triode having a common terminal C, a large focal filament terminal L, and a small focal filament terminal S. Common terminal C
The negative output of the negative voltage doubler rectifier circuit 4 is connected to one end of the secondary winding 25 of the filament transformer 5, and the terminals S and L are connected to the other end of the secondary winding 25. The positive electrode high voltage socket 12 also has three poles, and all terminals are short-circuited and connected to the positive output of the positive electrode voltage doubler rectifier circuit 3.
Reference numeral 26 denotes a high-voltage detection divider in which a plurality of resistors are connected in series to increase the withstand voltage. The divider 26 is connected between the positive output of the positive electrode voltage doubler rectifier circuit 3 and the tube voltage detection terminal 27, and the tube voltage detection signal is high voltage. Control pressure circuit 28 for stabilizing output
Connected to. 29 is a terminal for detecting a high voltage output current,
That is, it is a tube current detection terminal, detects the cathode current of the high voltage diode block 22, and supplies the tube current detection signal to the tube current measurement circuit 30. This cathode current is pulse-shaped, but is equal to the tube current when averaged. The tube current may be detected by detecting the anode current of the diode block 19 for high voltage. Reference numeral 31 denotes a signal return terminal for the tube voltage detection signal and the tube current detection signal, which is connected to the inner wall of the oil tank, and in some cases, the outer wall of the tank, and is grounded. 33 is a terminal of the DC high voltage generating circuit 32 corresponding to the signal return terminal 31, 34 is a tube current detection line,
35 is a tube current detection terminal 29 by a tube current detection line 34
Shows the terminals of the DC high-voltage generating circuit 32 connected to. FIG. 2 shows an example of the structure of the high-voltage transformer 2. A primary winding N1 is wound on one leg of a mouth-shaped iron core 40 in which a UU-type or UI-type iron core is combined, and one secondary winding N is further wound thereon.
Two are wound. f is a ground start terminal of the secondary winding N2, and g is a high voltage side terminal thereof. As described above, since the winding start terminal f of the secondary winding N2 is at the ground potential, the winding N
It does not require much withstand voltage between 1 and N2.
000 V is sufficient, and it is easy to manufacture a high-voltage transformer.
In the present invention, the secondary winding voltage E of the high-voltage transformer 2 is rectified to + 2E and -2E by the two voltage doubler rectifier circuits 3 and 4, and a voltage of 4E can be applied to the X-ray tube 13. The ripples of the tube voltage applied to the anode A and the cathode K of the X-ray tube 13 are the same as the operating frequency of the high-frequency inverter 8 as shown in FIG. 3, but cancel each other because they have opposite phases. As a result, the anode of the X-ray tube,
The ripple applied to the cathode is twice the operating frequency,
In addition, there is an advantage that the size is reduced. As described above, in the present invention, only one secondary winding of the high-voltage transformer 2 is required, and the voltage doubler rectifier circuits 3 and 4 require one of the X-ray tube voltages required for the secondary winding voltage of the high-voltage transformer. / 4, so it is sufficient to be 2 of the conventional secondary winding voltage. Instead, the winding current capacity is 2
The economical effect is large, but only one secondary winding with a small number of turns is required. Further, the number of high voltage diode blocks also increases to four, but the withstand voltage may be 1 / of the conventional one.
Although the current capacity is doubled, it is technically more difficult to increase the breakdown voltage of the high-voltage diode than to increase the current capacity, and a low breakdown voltage type is sufficient, so that the economic effect is large. In particular, in the case of X-ray equipment, the operation time is often as short as several seconds, and at the same time, the downtime is considerably longer than the operation time. It is also possible to apply. In contrast to these advantages, the present invention increases the number of the doubler capacitors 17 and 21 by two. However, as the operating frequency of the high-frequency inverter 8 increases, a capacitor having a smaller capacity can be used, and the withstand voltage becomes 1 / the tube voltage. There is no major drawback because only 4 is needed. In addition, by measuring the current flowing through the high-voltage diode block 22 on the ground side as an embodiment of the present invention, a current due to the distributed capacitance of the high-voltage transformer 2 does not flow, so that accurate current detection is possible. In the embodiment of the present invention, if the demand for the ripple voltage of the X-ray tube voltage is not severe, the capacitors 20 and 24 for the filter may be removed and only the capacitance of the high voltage cables 14 and 16 may be used. In the experiment, to output a tube voltage of 100 kV and a tube current of 100 mA, a high-frequency inverter of 20 kHz, a high-voltage transformer for generating a secondary winding voltage of about 25 kV, a capacitor for double voltage of 1000 pF and 30 kV, and a withstand voltage of 60 kV were used. With four high-voltage diode blocks and 2 m high-voltage cables each, sufficiently practical output characteristics could be obtained. The current can be detected by the anode current of the high-voltage diode block 19. 4 (A) and 4 (B) are a top view and a cross-sectional perspective view of an embodiment of the present invention in which an oil tank upper lid is removed. In the figure, the same reference numerals as in FIG. 1 correspond to the description. The tank case body 41 and the upper lid 42 filled with insulating oil are provided with a rubber packing 4 for preventing oil leakage.
3 are connected by bolts or the like (not shown). High voltage sockets 12 and 15 for positive and negative electrodes having a structure determined by JIS or the like are penetrated and welded to the upper lid 42. These high-voltage sockets 12 and 15 receive the high-voltage cables 14 and 16 from outside the oil tank, and are connected to the inside and outside of the oil tank by high-voltage fittings (not shown) near the bottom thereof. The high-voltage transformer 2 is attached to the upper lid 42 by a mounting bracket (not shown) with the secondary winding N2 facing downward at substantially the same position as the high-voltage sockets 12 and 15 along the same. Also, four rectangular insulating posts 44, 45, 46, 47 extend downward from the upper lid 42, and a circuit board 48 for high voltage, for example, a printed board is suspended substantially horizontally at the lower ends of these posts. The circuit board 48 has a first
In the figure, a high voltage rectifier circuit surrounded by a dashed line has a negative voltage doubler rectifier circuit 4 on the right side and a positive voltage doubler rectifier circuit 3 on the left side in a substantially symmetrical manner. Circuit board 48
In the above, reference numerals 17 and 21 denote capacitors for voltage doubling, reference numerals 20 and 24 denote capacitor blocks for filters, and also show the arrangement of the high voltage diode blocks 18, 19, 22, 23. As can be seen from this arrangement, the circuit board 48
Has a high potential in the left-right direction, and has a ground potential on a line located substantially in the middle between the positive voltage doubler rectifier circuit 3 and the negative voltage doubler rectifier circuit 4. Next, 49 is the ground point 33 on the circuit board 48.
The tube current detection line 34 rises from the circuit board 48 along the metal conductor 49. This metal conductor 49
Is located almost in the middle between the high voltage sockets 12 and 15 of the positive and negative electrodes, and serves as a middle point of the potential distribution between the electrodes of the socket. It has helped prevent it. Further, the metal conductor 49 can also serve as a support for the tube current detection line 34. In FIG. 4A, the high-voltage transformers 2, the positive and negative high-voltage sockets 12 and 15 are indicated by alternate long and short dash lines. In addition, 6
Reference numeral 1 denotes a printed circuit board to which a plurality of serially connected divider resistors 26A constituting the high voltage detection divider 26 are attached as shown in FIG. 5, and is attached along the longitudinal direction of the rectangular insulating columns 44 and 47. . As shown in FIG. 6, an insulating substrate 62 on which a transformer 5 for filament is mounted is mounted on the rectangular insulating posts 45 and 46 on the opposite sides.
5 and 46 are mounted along the longitudinal direction. The filament transformer 5 has a normal filament voltage of 3
Since the voltage is 10 to 10 V, a primary winding (not shown) is wound around the ring core 63 for several tens of turns, and a high-voltage insulated wire 64 is wound several turns thereon to form a secondary winding. The secondary winding is 1
For the next winding, 1/2 of the tube voltage, for example, 62.5 kV
Since the above withstand voltage is required, the wire itself has a withstand voltage. These are all arranged so that the high voltage side is located below, and the electrical insulation between the oil tank wall and the oil tank is sufficiently ensured. In FIG. 4 (A), since the drawing becomes complicated, the filament transformer 5 and the high voltage detecting divider 26 are omitted, and the terminals 6, 7, 9, 10 provided on the oil tank wall are omitted. , 27,29,31
Has a normal structure, and a description thereof will be omitted. next,
According to the present invention, the rated output is 10 kW and the rated voltage is 125 kV.
In the embodiment in which the high voltage generator for X-rays of
It was possible to put together a tank having external dimensions of (width) 250 mm, D (depth) 190 mm, and H (height) 204 mm. The dimensions of the main parts are as follows. Positive and negative sockets for high voltage (according to JIS Z4731)... Approximately 50 mm in diameter and approximately 150 mm in length. High voltage transformer (2)... W × H × D = 1
00 × 120 × 100 Filament transformer (5) ……………………………
Outer diameter 60 x thickness 30 High voltage circuit board (48) ... W x H x D =
200 × 140 × 20 (excluding height of capacitor for double voltage)

【発明の効果】以上述べたように本発明の直流高電圧発
生装置は,タンクケース本体と上蓋からなるオイルタン
ク内に高電圧発生回路を絶縁油で封入した構造におい
て,上記上蓋に,正極と負極の2個の高電圧用ソケット
を並置して取り付けると共に,これらの高電圧用ソケッ
トに沿って,1個の2次巻線を持つ高電圧トランスをそ
の2次巻線を下方にして取り付け,さらに正極と負極の
2組の倍電圧整流回路をほぼ左右対称に搭載した回路基
板を,上記高電圧用ソケットの下方に,それらの正負極
と上記2組の倍電圧整流回路の正負極が対応する方向
に、上蓋とほぼ平行に固定し,上記2組の倍電圧整流回
路の入力を上記高電圧トランスの2次巻線に接続すると
共に,それらの正負各高電圧出力をそれぞれ上記正負極
の各高電圧用ソケットに接続した回路と構造である。本
発明によれば,このような回路と構造により,タンクの
高さを高電圧用ソケットの長さと,高電圧整流回路を搭
載の回路基板の厚さと,必要な絶縁距離をとるだけの高
さ寸法で製作でき,直流高電圧発生装置を小型化するこ
とができるので,X線装置本体の小型化も可能となる。
また、オイルタンクの絶縁油の量も減少するので、コス
トを下げ、軽量化することが可能となる。
As described above, the DC high voltage generator according to the present invention has a structure in which a high voltage generating circuit is sealed with insulating oil in an oil tank composed of a tank case body and an upper lid. Two high voltage sockets of the negative electrode are mounted side by side, and along these high voltage sockets, a high voltage transformer having one secondary winding is mounted with its secondary winding down. In addition, a circuit board on which two sets of positive and negative voltage doubler rectifier circuits are mounted almost symmetrically, below the high voltage socket, their positive and negative electrodes correspond to the positive and negative electrodes of the two sets of doubler voltage rectifier circuits. The input of the two sets of voltage doubler rectifier circuits is connected to the secondary winding of the high voltage transformer, and their positive and negative high voltage outputs are respectively connected to the positive and negative electrodes. Socket for each high voltage Is a circuit and structure connected. According to the present invention, such a circuit and structure allows the height of the tank to be equal to the length of the high voltage socket, the thickness of the circuit board on which the high voltage rectifier circuit is mounted, and the height sufficient to provide the necessary insulation distance. Since it can be manufactured in dimensions and the size of the DC high voltage generator can be reduced, the size of the X-ray apparatus itself can be reduced.
Further, since the amount of insulating oil in the oil tank is also reduced, the cost can be reduced and the weight can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を説明するための回路図であ
る。
FIG. 1 is a circuit diagram for explaining an embodiment of the present invention.

【図2】本発明の一実施例に使用する高電圧トランスの
構造の1例を示す図である。
FIG. 2 is a diagram showing an example of the structure of a high-voltage transformer used in one embodiment of the present invention.

【図3】本発明の一実施例における高電圧出力のリプル
を説明するための図である。
FIG. 3 is a diagram for explaining ripple of a high voltage output in one embodiment of the present invention.

【図4】(A)は 本発明の一実施例においてオイルタ
ンクの上蓋を外した状態の上面図,(B)はオイルタン
クの断面透視図である。
FIG. 4A is a top view of the embodiment of the present invention with an oil tank upper lid removed, and FIG. 4B is a cross-sectional perspective view of the oil tank.

【図5】本発明の一実施例に使用する高電圧検出デバイ
ダの説明図である。
FIG. 5 is an explanatory diagram of a high voltage detection divider used in one embodiment of the present invention.

【図6】本発明の一実施例に使用するフィラメント用ト
ランスの説明図である。
FIG. 6 is an explanatory diagram of a filament transformer used in one embodiment of the present invention.

【図7】従来のX線用高電圧整流方式の1例を示す図で
ある。
FIG. 7 is a diagram showing an example of a conventional high voltage rectification method for X-rays.

【符号の説明】[Explanation of symbols]

1・・・直流高電圧発生装置 2・・・高電圧トランス 3,4・・・倍電圧整流回路 5・・・フィラメント用トランス 8・・・高周波インバータ 12,15・・・高電圧用ソケット 13・・・X線管 14,16・・・高電圧用ケーブル 17,21・・・倍電圧用コンデンサ 18,23・・・高電圧用ダイオードブロック 19,22・・・高電圧用ダイオードブロック 26・・・高電圧検出用デバイダ 28・・・制御回路 30・・・管電流検出回路 32・・・高電圧発生回路 41・・・タンクケス本体 42・・・上蓋 44,45,46,47・・・角型絶縁支柱 48・・・ 高電圧用の回路基板 49・・・接地用の金属導体 61・・・高電圧検出用デバイダ26取付け用のプリン
ト回路基板 62・・・フィラメント用トランス取付け用の絶縁基板
DESCRIPTION OF SYMBOLS 1 ... DC high voltage generator 2 ... High voltage transformer 3, 4 ... Double voltage rectification circuit 5 ... Filament transformer 8 ... High frequency inverter 12, 15 ... High voltage socket 13 ... X-ray tubes 14, 16 ... High voltage cable 17, 21 ... Double voltage capacitor 18, 23 ... High voltage diode block 19, 22 ... High voltage diode block 26 ..Divider for high-voltage detection 28... Control circuit 30... Tube current detection circuit 32... High-voltage generation circuit 41... Tank body 42... Top cover 44, 45, 46, 47. Square insulating support 48 48 High-voltage circuit board 49 Metal ground 61 61 Printed circuit board for high-voltage detection divider 26 62 Transformer for filament Insulating substrate for

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02M 3/28 H02J 1/00 308 H02M 7/10 H05G 1/06 H05G 1/12 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) H02M 3/28 H02J 1/00 308 H02M 7/10 H05G 1/06 H05G 1/12

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ケース本体と上蓋からなるオイルタンク
内に,1個の2次巻線をもつ高電圧トランス,および該
2次巻線からの交流高電圧を昇圧・整流する直流高電圧
発生回路を絶縁油で封入した直流高電圧発生装置におい
て, 上記上蓋に,正極と負極の2個の高電圧用ソケットを並
置して取り付けると共に, これらの高電圧用ソケットに沿って,上記高電圧トラン
スをその2次巻線を下方にして取り付け, さらに,直流高電圧発生回路を形成する正極と負極の2
組の倍電圧整流回路を搭載してなる回路基板を,上記高
電圧用ソケットの下方で,該高電圧用ソケットの正極,
負極と上記2組の倍電圧整流回路の正極,負極がそれぞ
れ対応するよう配置して上蓋とほぼ平行に固定し, また,上記正極と負極の2組の倍電圧整流回路の正,負
極の各高電圧出力をそれぞれ上記正,負極の各高電圧用
ソケットに接続したことを特徴とする直流高電圧発生装
置。
1. A high-voltage transformer having one secondary winding in an oil tank comprising a case body and an upper lid, and a DC high-voltage generating circuit for boosting and rectifying an AC high voltage from the secondary winding. In a DC high-voltage generator in which is sealed with insulating oil, two high-voltage sockets, a positive electrode and a negative electrode, are mounted side by side on the upper lid, and the high-voltage transformer is mounted along these high-voltage sockets. The secondary winding is mounted downward, and the positive and negative electrodes that form the DC high voltage generation circuit
The circuit board on which the set of voltage doubler rectifier circuits is mounted is placed below the high voltage socket, and the positive electrode of the high voltage socket,
The negative electrode and the positive and negative electrodes of the two sets of voltage doubler rectifiers are arranged so as to correspond to each other and fixed substantially parallel to the upper cover. A DC high-voltage generator, wherein a high-voltage output is connected to each of the positive and negative high-voltage sockets.
【請求項2】 ケース本体と上蓋からなるオイルタンク
内に,1個の2次巻線をもつ高電圧トランス,および該
2次巻線からの交流高電圧を昇圧・整流する直流高電圧
発生回路を絶縁油で封入した直流高電圧発生装置におい
て, 上記上蓋に,正極と負極の2個の高電圧用ソケットを並
置して取り付けると共に, これらの高電圧用ソケットに沿って,上記高電圧トラン
スをその2次巻線を下方にして上記上蓋に取り付け, 直流高電圧発生回路を形成する正極と負極の2組の倍電
圧整流回路を搭載してなる回路基板を,上記高電圧用ソ
ケットの下方で,該高電圧用ソケットの正極,負極と上
記2組の倍電圧整流回路の正極,負極がそれぞれ対応す
るよう配置して上蓋とほぼ平行に固定し, 上記正極と負極の2組の倍電圧整流回路のほぼ中間に位
置する接地点と上記上蓋との間にこれらを接続する接地
導体を備え, そして上記倍電圧整流回路の正,負極の各高電圧出力を
それぞれ上記正,負極の各高電圧用ソケットに接続した
ことを特徴とする直流高電圧発生装置。
2. A high voltage transformer having one secondary winding in an oil tank comprising a case body and an upper lid, and a DC high voltage generating circuit for boosting and rectifying an AC high voltage from the secondary winding. In a DC high-voltage generator in which is sealed with insulating oil, two high-voltage sockets, a positive electrode and a negative electrode, are mounted side by side on the upper lid, and the high-voltage transformer is mounted along these high-voltage sockets. The secondary winding is mounted on the upper lid with the lower side facing downward, and a circuit board on which two sets of positive and negative voltage doubler rectifier circuits forming a DC high voltage generating circuit are mounted is mounted below the high voltage socket. The positive and negative poles of the high-voltage socket and the positive and negative poles of the two sets of voltage doubler rectifiers are arranged so as to correspond to each other and fixed substantially in parallel with the upper lid. Almost in the middle of the circuit A grounding conductor for connecting them between the grounding point to be connected and the upper lid, and connecting the positive and negative high-voltage outputs of the voltage doubler rectifier circuit to the positive and negative high-voltage sockets, respectively. A DC high voltage generator.
【請求項3】 ケース本体と上蓋からなるオイルタンク
内に,1個の2次巻線をもつ高電圧トランス,および該
2次巻線からの交流高電圧を昇圧・整流する直流高電圧
発生回路を絶縁油で封入した直流高電圧発生装置におい
て, 上記上蓋に,正極と負極の2個の高電圧用ソケットを並
置して取り付けると共に, これら双方の高電圧用ソケットにほぼ等しい位置に,上
記高電圧トランスをその2次巻線を下方にして上記上蓋
に取り付け, 直流高電圧発生回路を形成する正極と負極の2組の倍電
圧整流回路をほぼ左右対称に搭載してなる回路基板を,
上記高電圧用ソケットの下方で,該高電圧用ソケットの
正極,負極と上記2組の倍電圧整流回路の正極,負極が
それぞれ対応するよう配置して上蓋とほぼ平行に固定
し, 上記正極と負極の2組の倍電圧整流回路のほぼ中間に位
置する接地点と上記上蓋との間にこれらを接続する接地
導体を備え, 上記回路基板上の管電流検出ラインから上記接地導体に
沿って管電流の検出線を延ばし,上記上蓋を通して上記
オイルタンクの外に配設された管電流検出回路に接続
し, また上記倍電圧整流回路の正,負極の各高電圧出力をそ
れぞれ上記正,負極の各高電圧用ソケットに接続したこ
とを特徴とする直流高電圧発生装置。
3. A high voltage transformer having one secondary winding in an oil tank comprising a case body and an upper lid, and a DC high voltage generating circuit for boosting and rectifying an AC high voltage from the secondary winding. In a DC high-voltage generator in which the high-voltage socket is filled with insulating oil, two high-voltage sockets, a positive electrode and a negative electrode, are mounted side by side on the upper lid, and the high-voltage socket is placed at a position substantially equal to both high-voltage sockets. A voltage transformer is mounted on the upper lid with its secondary winding downward, and a circuit board on which two sets of positive and negative voltage doubler rectifier circuits forming a DC high voltage generating circuit are mounted almost symmetrically is provided.
Below the high voltage socket, the positive electrode and the negative electrode of the high voltage socket and the positive electrode and the negative electrode of the two sets of voltage doubler rectifiers are arranged so as to correspond to each other and fixed substantially parallel to the upper lid. A grounding conductor is provided between a grounding point located approximately at the center of the two sets of voltage doubler rectifier circuits of the negative electrode and the upper cover, and a grounding conductor is provided along the grounding conductor from the tube current detection line on the circuit board. The current detection line is extended and connected to the tube current detection circuit provided outside the oil tank through the upper lid, and the positive and negative high voltage outputs of the voltage doubler rectifier circuit are respectively connected to the positive and negative electrodes. A DC high voltage generator connected to each high voltage socket.
【請求項4】 上記正,負極の高電圧用ソケットのそれ
ぞれに,上記オイルタンクの外側に位置せるX線管に接
続された高電圧ケーブルを挿入し接続したことを特徴と
する請求項1乃至請求項3のいずれかに記載のX線装
置。
4. A high voltage cable connected to an X-ray tube located outside the oil tank is inserted and connected to each of the positive and negative high voltage sockets. The X-ray apparatus according to claim 3.
JP3253113A 1991-09-04 1991-09-04 DC high voltage generator and X-ray apparatus using the same Expired - Lifetime JP3021122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3253113A JP3021122B2 (en) 1991-09-04 1991-09-04 DC high voltage generator and X-ray apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3253113A JP3021122B2 (en) 1991-09-04 1991-09-04 DC high voltage generator and X-ray apparatus using the same

Publications (2)

Publication Number Publication Date
JPH0568370A JPH0568370A (en) 1993-03-19
JP3021122B2 true JP3021122B2 (en) 2000-03-15

Family

ID=17246682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3253113A Expired - Lifetime JP3021122B2 (en) 1991-09-04 1991-09-04 DC high voltage generator and X-ray apparatus using the same

Country Status (1)

Country Link
JP (1) JP3021122B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101556571B1 (en) * 2014-03-31 2015-10-01 (주)월드트렌드 Spectacle frame for locking ornament jewelry

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427678B (en) * 2012-09-26 2015-07-29 上海埃斯凯变压器有限公司 A kind of test control system of X-ray machine pressure-oil tank
CN108257837B (en) 2018-03-14 2019-11-15 苏州博思得电气有限公司 Mono-tank and ray image documentation equipment
CN111880055B (en) * 2020-07-09 2024-04-16 上海联影医疗科技股份有限公司 Spark detection device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101556571B1 (en) * 2014-03-31 2015-10-01 (주)월드트렌드 Spectacle frame for locking ornament jewelry

Also Published As

Publication number Publication date
JPH0568370A (en) 1993-03-19

Similar Documents

Publication Publication Date Title
JP4474360B2 (en) X-ray generator
US5272612A (en) X-ray power supply utilizing A.C. frequency conversion to generate a high D.C. voltage
US3904928A (en) Flyback transformer
US4720844A (en) High-voltage generating assembly and an X-ray device
JPH05508298A (en) high voltage dc power supply
US5187737A (en) Power supply device for X-ray tube
US3723846A (en) High voltage power supply
JP3021122B2 (en) DC high voltage generator and X-ray apparatus using the same
EP0084912A1 (en) High-voltage supply for an X-ray generator
US4569010A (en) High voltage power supply
JPH1041093A (en) High voltage generating device for x-rays
WO2018025560A1 (en) High-voltage generating device, and x-ray high-voltage generator in which same is used
JP3497050B2 (en) High voltage generator for X-ray equipment
KR840001416A (en) TV receiver high voltage generator
JP2711930B2 (en) X-ray power supply
JP2549185Y2 (en) X-ray equipment
US3849701A (en) Integrated dual voltage power supply
EP0405399B1 (en) X-ray generator apparatus
CN114051308B (en) High voltage power supply system for neutron generator
JP2814016B2 (en) X-ray power supply
JP2814014B2 (en) X-ray power supply
JP2631165B2 (en) X-ray power supply
CN115985645A (en) High voltage generator and medical instrument
JPS6222351B2 (en)
JPS6016191B2 (en) High pressure generator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12