JP5120625B2 - Inner surface measuring device - Google Patents

Inner surface measuring device Download PDF

Info

Publication number
JP5120625B2
JP5120625B2 JP2008058215A JP2008058215A JP5120625B2 JP 5120625 B2 JP5120625 B2 JP 5120625B2 JP 2008058215 A JP2008058215 A JP 2008058215A JP 2008058215 A JP2008058215 A JP 2008058215A JP 5120625 B2 JP5120625 B2 JP 5120625B2
Authority
JP
Japan
Prior art keywords
slit light
imaging
light
optical axis
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008058215A
Other languages
Japanese (ja)
Other versions
JP2009216453A (en
Inventor
聡彦 吉川
耕嗣 久野
孝洋 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2008058215A priority Critical patent/JP5120625B2/en
Publication of JP2009216453A publication Critical patent/JP2009216453A/en
Application granted granted Critical
Publication of JP5120625B2 publication Critical patent/JP5120625B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、スリット光を照射するスリット光源と、前記スリット光を照射された被測定物の内面を撮像する撮像手段とを備えた内面測定装置に関する。   The present invention relates to an inner surface measuring apparatus including a slit light source that irradiates slit light and an imaging unit that images an inner surface of a measurement object irradiated with the slit light.

従来、シリンダ内面などの筒体内面の欠陥や形状の検査として、コーンミラー等の円錐状の反射鏡を検査部位に挿入し、反射鏡を上下に動かしたり、回したりすることで広い範囲の検査部位を目視で検査するやり方が知られている。目視による検査では、検査者のスキルによって欠陥基準のばらつきや見逃しが発生する。また、このような目視では内面形状の測定は不可能であり、別に形状測定の作業工程が必要となる。   Conventionally, for inspection of defects and shapes on the inner surface of a cylinder such as the inner surface of a cylinder, a conical reflector such as a cone mirror is inserted into the inspection site, and the reflector is moved up and down or rotated for a wide range of inspections. A method of visually inspecting a site is known. In visual inspection, variations in defect criteria and oversight occur due to the skill of the inspector. In addition, it is impossible to measure the shape of the inner surface by such visual observation, and a separate work process for measuring the shape is required.

被測定物の側面や底面などを測定する装置として、被検物体の側面画像を得るための側面画像取得用プリズム系、もしくは底面画像を得るための底面画像取得用プリズム系の少なくともいずれかを有している多方向同時観察光学系を用いた寸法測定装置がある(例えば、特許文献1)。この寸法測定装置では、側面画像取得用プリズム系及び底面画像取得用プリズム系は、光路方向転換用プリズムまたは光路方向転換用プリズム機能を有し、かつ光路長補正機能を有している。各プリズム系は、それぞれにより出される光の光路が被検物体の上方へ向うように、もしくは相互に平行かつ同一方向となるように、かつ他のプリズム系により光路を遮られないように配置されている。側面画像取得用プリズム系及び底面画像取得用プリズム系の光出力方向に設けられたレンズは被検物体側をテレセントリックとするテレセントリックレンズであり、取得された画像情報に基づき、測定手段が被検物体の所望の寸法を測定する。この寸法測定装置では、被測定物の側面画像や底面画像を同時に撮像面に結像させるために工夫されているが、被測定物に対する照明に関する工夫はされていない。筒体内部の測定などでは、深い位置の測定領域を確実に照射する照明光が要求される。   As a device for measuring the side or bottom surface of the object to be measured, at least one of a prism system for obtaining a side image for obtaining a side image of the object to be measured and a prism system for obtaining a bottom image for obtaining a bottom image is provided. There is a dimension measuring device using a multi-directional simultaneous observation optical system (for example, Patent Document 1). In this dimension measuring apparatus, the side surface image acquisition prism system and the bottom surface image acquisition prism system have an optical path direction changing prism function or an optical path direction changing prism function, and an optical path length correcting function. Each prism system is arranged so that the optical path of the light emitted by each prism is directed upward of the object to be measured, or parallel to and in the same direction as each other, and is not blocked by other prism systems. ing. The lens provided in the light output direction of the side surface image acquisition prism system and the bottom surface image acquisition prism system is a telecentric lens whose object side is telecentric, and based on the acquired image information, the measuring means measures the object to be detected. Measure the desired dimensions. In this dimension measuring device, it is devised to form a side image and a bottom image of the object to be measured on the imaging surface at the same time, but there is no contrivance regarding illumination on the object to be measured. For measurement inside a cylinder, etc., illumination light that reliably irradiates a measurement region at a deep position is required.

スリット光を照明光として用いて被測定物の内部を測定する装置として、シリンダブロックなどの測定対象の筒体内部へ挿入自在としたスリット光用反射鏡によってスリット光源から照射されるスリット光を被測定部位に照射すると共に、スリット光が照射された被測定部位を、筒体内部へ挿入自在とした撮像装置用反射鏡を介して撮像装置によって撮像する内部寸法測定装置がある(例えば、特許文献2参照)。この内部寸法測定装置では、スリット光の照射光軸と撮像装置の撮像光軸とは交差するように方向付けられている。また、撮像装置によって取得された画像データから三角測量法に基づく演算を通じて3次元の内部寸法を算出して良否判定を行うことができる。 As a device for measuring the inside of an object to be measured using slit light as illumination light, the slit light irradiated from the slit light source is received by a slit light reflecting mirror that can be inserted into a cylinder to be measured such as a cylinder block. There is an internal dimension measurement device that irradiates a measurement site and images a measurement site irradiated with slit light by an imaging device through a reflecting mirror for an imaging device that can be inserted into a cylindrical body (for example, Patent Documents) 2). In this internal dimension measuring device, the irradiation optical axis of the slit light and the imaging optical axis of the imaging device are oriented so as to intersect. In addition, it is possible to perform pass / fail judgment by calculating a three-dimensional internal dimension from the image data acquired by the imaging device through a calculation based on a triangulation method.

特開2007−10447号公報(段落番号00015、図2)Japanese Patent Laying-Open No. 2007-10447 (paragraph number 00001, FIG. 2) 特開2004−20340号公報(段落番号0004−0011、図1)JP 2004-20340 (paragraph number 0004-0011, FIG. 1)

特許文献2に開示された内部寸法測定装置は、筒体などの内面を測定するためには有効な装置であるが、撮像装置のレンズを高倍率にして高精度測定を行う場合にレンズの合焦点エリアまでの距離が短くなり、深い筒体内部の測定が不可能となる欠点がある。また、1つの測定ポイントにおいて、その測定領域にレンズのもつ被写界深度を超える距離差のある部分が散在すると、低い測定精度を容認するか、測定ポイントをずらせながら測定をしていくといった対策が必要となる。さらに、円筒の内面測定などの場合、測定ポイントにおけるスリット光の光軸と撮像光軸とのなす角度によっては、内面の特定曲率においてスリット光の正反射成分が撮像装置に入射し、スミアの発生、像形状膨張による測定精度低下や測定不可といった問題も生じうる。
本発明の目的は、上述した実情に鑑み、スリット光を用いて被測定物の内面を測定するにあたって、測定可能な内面条件を広く確保し、より高精度な測定結果が得られる内面測定装置を提供することである。
The internal dimension measuring device disclosed in Patent Document 2 is an effective device for measuring the inner surface of a cylinder or the like. There are disadvantages that the distance to the focal area is shortened, and measurement inside a deep cylinder is impossible. In addition, if a part with a distance difference exceeding the depth of field of the lens is scattered in the measurement area at one measurement point, measures such as accepting low measurement accuracy or measuring while shifting the measurement point Is required. Furthermore, when measuring the inner surface of a cylinder, depending on the angle between the optical axis of the slit light at the measurement point and the imaging optical axis, the specular reflection component of the slit light is incident on the imaging device at a specific curvature of the inner surface, and smear occurs. In addition, problems such as a decrease in measurement accuracy due to image shape expansion and measurement impossibility may occur.
In view of the above situation, an object of the present invention is to provide an inner surface measuring apparatus that can ensure a wide range of measurable inner surface conditions and obtain a more accurate measurement result when measuring the inner surface of an object to be measured using slit light. Is to provide.

スリット光を照射するスリット光源と、前記スリット光を照射された被測定物の円筒内面を撮像する撮像手段と、前記スリット光を前記円筒内面へ偏向させるスリット光偏向手段と、前記円筒内面のうち前記スリット光が照射されたスリット光照射内面へ前記撮像手段の撮像光軸を偏向させる撮像プリズムと、を備え、前記スリット光源は、前記円筒内面の軸方向に沿う方向にスリット光が照射されるように前記円筒内面の外方に配置され、前記撮像手段は、前記撮像光軸に沿って入射する光線を受ける受光素子を有するとともに、前記撮像光軸が前記円筒内面の軸方向に沿うように前記円筒内面の外方に配置され、前記スリット光偏向手段は、入射したスリット光を、前記円筒内面の軸方向に延びるスリット光の形態で前記スリット光照射内面へ照射し、前記スリット光照射内面でのスリット光の反射光量が全測定範囲において前記受光素子の最小感度光量以上でかつ飽和光量内となるように前記スリット光偏向手段から照射されるスリット光の照射方向と前記撮像プリズムの配置位置とが調整されており、前記スリット光照射内面に対する前記スリット光の照射角度と前記撮像光軸の撮像角度とに応じて、前記スリット光照射内面における合焦範囲を拡大するために、前記受光素子の撮像面が前記撮像光軸に対して傾けられており、前記撮像プリズムと前記スリット光照射内面との間に形成される前記撮像光軸と、前記スリット光偏向手段と前記スリット光照射内面との間に形成される光軸とが、前記円筒内面の軸方向に直交する同一平面上に配置される。 Among the slit inner surface, the slit light source for irradiating the slit light, the imaging means for imaging the cylindrical inner surface of the measurement object irradiated with the slit light, the slit light deflecting means for deflecting the slit light to the cylindrical inner surface, An imaging prism that deflects the imaging optical axis of the imaging means to the slit light irradiation inner surface irradiated with the slit light, and the slit light source is irradiated with the slit light in a direction along the axial direction of the cylindrical inner surface The imaging means has a light receiving element that receives a light beam incident along the imaging optical axis, and the imaging optical axis is along the axial direction of the cylindrical inner surface. The slit light deflector disposed outside the cylindrical inner surface irradiates the slit light in the form of slit light extending in the axial direction of the cylindrical inner surface. Irradiating the surface, a slit which is emitted from the slit beam deflecting means such that the reflected light quantity of the slit light at said slit light irradiating the inner surface is minimized sensitivity amount or more and the saturation amount of the light receiving element in the entire measurement range The irradiation direction of light and the arrangement position of the imaging prism are adjusted, and the alignment at the inner surface of the slit light irradiation is made according to the irradiation angle of the slit light with respect to the inner surface of the slit light irradiation and the imaging angle of the imaging optical axis. In order to enlarge the focal range, the imaging surface of the light receiving element is inclined with respect to the imaging optical axis, and the imaging optical axis formed between the imaging prism and the slit light irradiation inner surface, the optical axis formed between the slit light deflecting means and said slit light irradiation inner surface, Ru are arranged on the same plane perpendicular to the axial direction of the cylindrical inner surface.

本発明では、撮像光軸を前記スリット光照射内面に偏向するために偏向ミラーではなく撮像プリズムが用いられている。従って、屈折率1.0を超える材料でこの撮像プリズムを製作すると、プリズム内での光軸の長さに応じて光路長が延長されることになる。従って、撮像手段のレンズ単体では、物体側焦点距離が足りず、組み込めない場合でも、この撮像プリズムの材料として屈折率1.0を超える適切な屈折率を有するものを用いることで光路長を適切に調整でき、撮像手段の組み込みが可能となる。従って、レンズの選択可能性が広くなる。
また、撮像手段の撮像面を構成する受光素子の最小感度光量以上でかつ飽和光量内となるように前記スリット光の照射方向と前記撮像プリズムの配置位置とが調整されている。この特徴により、撮像手段は安定した画像を取得することができ、結果的に測定精度が向上する。
さらに、撮像手段の撮像面を撮像光軸に対して傾斜させているという特徴により、つまりあおり撮影の原理で被写界深度を稼ぐことにより、レンズのもつ被写界深度以上の測定範囲を確保することができる。このことも、高精度な測定に貢献する。
In the present invention, an imaging prism is used instead of a deflection mirror in order to deflect the imaging optical axis toward the slit light irradiation inner surface. Therefore, when this imaging prism is manufactured with a material having a refractive index exceeding 1.0, the optical path length is extended according to the length of the optical axis in the prism. Accordingly, even if the lens of the image pickup means alone has a short focal distance on the object side and cannot be incorporated, the optical path length is appropriately adjusted by using a material having an appropriate refractive index exceeding the refractive index of 1.0 as the material of the image pickup prism. The image pickup means can be incorporated. Therefore, the possibility of selecting a lens is widened.
Further, the irradiation direction of the slit light and the arrangement position of the imaging prism are adjusted so that the light amount is not less than the minimum sensitivity light amount of the light receiving element constituting the image pickup surface of the image pickup means and is within the saturated light amount. With this feature, the imaging unit can acquire a stable image, and as a result, measurement accuracy is improved.
Furthermore, due to the characteristic that the imaging surface of the imaging means is tilted with respect to the imaging optical axis, that is, by increasing the depth of field based on the principle of tilt shooting, a measurement range greater than the depth of field of the lens is secured. can do. This also contributes to highly accurate measurement.

また、本発明に係る内面測定装置は、さらに、前記円筒内面は、周溝を有し、前記周溝を含む前記円筒内面に照射されるスリット光の照射方向に対して、前記撮像プリズムを、前記周溝の底面に相当する最大円および前記周溝の開口面に相当する最小円に取捨されたスリット光の正反射光軸よりも内側となるように、前記スリット光偏向手段に隣接して配置していることを特徴とする。この特徴によれば、スリット光偏向手段によってスリット光を測定すべき内面の測定ポイントに対して鉛直方向にスリット光を照射することができる。また、スリット光偏向手段と撮像プリズムと隣接させて配置することにより、スリット光のスリット光の正反射成分が撮像プリズムに入射する可能性が低下する。特に、測定対象が円筒内面である場合、スリット光偏向手段と撮像プリズムと隣接させるとともにこれらを円筒中心よりスリット光偏向手段側に偏心させた配置を採用することで、スリット光の正反射成分が撮像プリズムに入射する可能性が極めて小さくなる。その結果、内径の小さな円筒内面、あるいは測定深さ範囲が大きな内面といったように内面条件が厳しくても、高精度な測定結果が得られる。




The inner surface measuring apparatus according to the present invention may further include a cylindrical groove on the inner surface of the cylinder, and the imaging prism with respect to the irradiation direction of the slit light applied to the inner surface of the cylinder including the peripheral groove. Adjacent to the slit light deflecting means so as to be inside the specular reflection optical axis of the slit light that is disposed in the maximum circle corresponding to the bottom surface of the circumferential groove and the minimum circle corresponding to the opening surface of the circumferential groove. It is characterized by arranging. According to this feature, the slit light can be irradiated in the vertical direction to the measurement point on the inner surface where the slit light is to be measured by the slit light deflecting means. Further, by disposing the slit light deflecting unit and the imaging prism adjacent to each other, the possibility that the regular reflection component of the slit light of the slit light enters the imaging prism is reduced. In particular, when the measurement target is the inner surface of the cylinder, by adopting an arrangement in which the slit light deflecting unit and the imaging prism are adjacent to each other and decentered from the center of the cylinder toward the slit light deflecting unit side, the specular reflection component of the slit light is reduced. The possibility of entering the imaging prism is extremely reduced. As a result, a highly accurate measurement result can be obtained even if the inner surface conditions are strict, such as a cylindrical inner surface with a small inner diameter or an inner surface with a large measurement depth range.




以下に、本発明に係る内面測定装置を組み込んだ筒体内面検査システムの実施形態について図面を用いて説明する。図1は、本実施形態に係る筒体内面検査システムの構成を模式的に示す斜視図である。この実施形態では、検査対象物は周壁に形断面の周溝が形成された円筒体10であり、特にその周溝11に異物が混在していないかどうかが検査される。   Embodiments of a cylinder inner surface inspection system incorporating an inner surface measuring apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view schematically showing a configuration of a cylindrical body inner surface inspection system according to the present embodiment. In this embodiment, the object to be inspected is a cylindrical body 10 having a peripheral wall formed with a circumferential groove having a cross section, and in particular, it is inspected whether or not foreign matter is mixed in the circumferential groove 11.

筒体内面検査システムは、内面測定装置1と、この内面測定装置1に対する制御及びその測定結果に対する評価を行うコントローラ100を備えている。内面測定装置1は、測定系の主な構成要素として、スリット光を発生させるレーザタイプのスリット光源2、スリット光偏向手段としてのスリット光プリズム3、撮像プリズム4、撮像手段5などを備えている。また内面測定装置1は、機構系の主な構成要素として、上記測定系の構成要素を一体的に支持する一体化フレーム6、この一体化フレーム6を垂直方向の回転軸周りに回転させる回転駆動機構60、一体化フレーム6を垂直方向に直線移動させる垂直移動機構61などを備えている。図示されていないが、検査対象物である円筒体10と一体化フレーム6との間のX−Y面上の相対的な位置関係を変更させるX−Y移動機構も備えられている。   The cylindrical inner surface inspection system includes an inner surface measuring device 1 and a controller 100 that performs control on the inner surface measuring device 1 and evaluates the measurement result. The inner surface measuring apparatus 1 includes a laser-type slit light source 2 that generates slit light, a slit light prism 3 as a slit light deflecting unit, an imaging prism 4, an imaging unit 5, and the like as main components of the measurement system. . In addition, the inner surface measuring apparatus 1 has an integrated frame 6 that integrally supports the components of the measurement system as main components of the mechanism system, and a rotational drive that rotates the integrated frame 6 around a vertical rotation axis. A mechanism 60, a vertical movement mechanism 61 that linearly moves the integrated frame 6 in the vertical direction, and the like are provided. Although not shown, an XY movement mechanism that changes the relative positional relationship on the XY plane between the cylindrical body 10 that is an inspection object and the integrated frame 6 is also provided.

スリット光プリズム3は、スリット光源2から垂直方向に放射されたスリット光を入射させて、その下端部でほぼ直角に偏向させ、端面を下に載置された円筒体10の内周面(以下、単に内面と称する)を軸方向に延びるスリット光の形態で照射させている。従って、このスリット光による光切断線Sは、図1から理解できるように、円筒体10の軸方向に延びている。   The slit light prism 3 makes the slit light emitted in the vertical direction from the slit light source 2 incident thereon, deflects it at a substantially right angle at the lower end portion thereof, and the inner peripheral surface (hereinafter referred to as the cylindrical body 10) having the end face placed below. , Simply referred to as the inner surface) in the form of slit light extending in the axial direction. Therefore, the optical cutting line S by the slit light extends in the axial direction of the cylindrical body 10 as can be understood from FIG.

撮像プリズム4は、円筒体10の内面で反射したスリット光を撮像手段5に導くものである。言い換えると、撮像手段5の垂直方向を向いた撮像光軸をほぼ直角に偏向させ、光切断線Sを含む撮像領域を撮像視野として撮像手段5に導いている。撮像プリズム4は、撮影プリズム内における撮影光の通過距離を長くするため、長尺形状を有している。この長尺形状と、撮像プリズム4を1.0を超える屈折率をもつ材料製とすることとから、実際の光学的な光路長を延長させており、撮像手段5の焦点位置を撮像手段5から遠く離れた円筒体10の内面に合わせることを可能としている。同様に、スリット光プリズム3においても、所望のスリット光を円筒体10の内面に照射できるようにその長さと材料とを適切に選択されている。 The imaging prism 4 guides slit light reflected by the inner surface of the cylindrical body 10 to the imaging means 5. In other words, the imaging optical axis facing the vertical direction of the imaging unit 5 is deflected substantially at a right angle, and the imaging area including the light cutting line S is guided to the imaging unit 5 as an imaging field. The imaging prism 4 has a long shape in order to increase the passing distance of the photographing light in the photographing prism. Since this long shape and the imaging prism 4 are made of a material having a refractive index exceeding 1.0, the actual optical path length is extended, and the focal position of the imaging means 5 is determined by the imaging means 5. It is possible to match the inner surface of the cylindrical body 10 far away from the center. Similarly, the length and material of the slit light prism 3 are appropriately selected so that desired slit light can be applied to the inner surface of the cylindrical body 10.

ここでは、測定箇所に向けてスリット光を照射するスリット光プリズム3と、スリット光の反射光を撮像光として入射させる撮像プリズム4とを合わせて測定ヘッドと称し、この測定ヘッドを円筒体10の内部に挿入して、内面測定を行う。   Here, the slit light prism 3 that irradiates slit light toward the measurement location and the imaging prism 4 that makes the reflected light of the slit light incident as imaging light are collectively referred to as a measurement head. Insert inside and measure inside.

撮像手段5は、レンズユニット50と、面状に配置された多数の受光素子(CCDやCMOS)からなる撮像ユニット51を備えている。スリット光によって照射された円筒体10の内面(スリット光照射内面)を撮像する撮像手段5の撮像光軸(スリット光の反射光軸)と、スリット光軸の関係が展開図の形で模式的に図2に示されている。スリット光の照射光軸と撮像光軸とのなす角度αは45度以下の狭角となっている。図2から理解できるように、スリット光軸方向に沿った測定の深さ(光伝播距離)の違いがレンズユニット50の被写界深度を超えているとピントの合わない領域が生じる。これを回避するため、撮像ユニット51の撮像面51aを撮像光軸に対して傾け、あおり撮影の原理で被写界深度を稼いでいる。これにより、レンズユニット50のもつ被写界深度以上の測定範囲でもピンボケのない撮影画像が取得できる。   The imaging means 5 includes a lens unit 50 and an imaging unit 51 made up of a large number of light receiving elements (CCD and CMOS) arranged in a plane. The relationship between the imaging optical axis (slit optical axis of the slit light) of the imaging means 5 that images the inner surface (slit light irradiation inner surface) of the cylindrical body 10 irradiated with the slit light and the slit optical axis is schematically shown in a developed view. Is shown in FIG. The angle α formed by the slit light irradiation optical axis and the imaging optical axis is a narrow angle of 45 degrees or less. As can be understood from FIG. 2, when the difference in measurement depth (light propagation distance) along the slit optical axis direction exceeds the depth of field of the lens unit 50, an out-of-focus region occurs. In order to avoid this, the imaging surface 51a of the imaging unit 51 is tilted with respect to the imaging optical axis, and the depth of field is earned by the principle of tilt shooting. Thereby, a photographed image without blur can be acquired even in a measurement range that is greater than the depth of field of the lens unit 50.

スリット光プリズム3と撮像プリズム4とを近づけて配置することで、スリット光の照射光軸と撮像光軸とのなす角度αは45度以下の狭角となっている。このスリット光プリズム3と撮像プリズム4との隣接配置は、撮影プリズム4にスリット光の正反射光が入射することを避けるためにも有効である。図3に示すように、スリット光を照射しながら円筒体10の内面を撮像する場合、照射されたスリット光が円筒体10の内面で反射し、撮像プリズム4に入射する。その際、正反射光は強い光強度を有するので、正反射光軸が撮像プリズム4に入射して撮像ユニット51の受光素子を飽和させてしまう可能性を防止しなければならない。そのためには、撮像プリズム4を正反射光軸の内側に位置させるとよい。図3で示すように、測定すべき範囲は所定の値をもっているので、つまりスリット光による光断面線を生じさせる測定ポイントはスリット光の照射方向の変動幅を持っている。従って、最内円(測定最短距離)での正反射光軸と最大円(測定最長距離)での正反射光軸との両者の内側に、撮像プリズム4が配置される。もちろん、最内円での正反射光軸と最大円での正反射光軸との両者の外側に撮像プリズム4を配置させてもよいが、その場合には、撮像プリズム4とスリット光プリズム3の間隔が大きくなり、小さな内径を有する円筒体に挿入することが不可能となる。なお、図3から理解できるように、撮像プリズム4を測定ポイントからより遠ざかる方向に偏位させることで、最内円での正反射光軸と最大円での正反射光軸との両者からより離れることができる。そのため、撮像プリズム4をスリット光プリズム3の後方にずらせるとともに可能な限りスリット光プリズム3に隣接させて、撮像プリズム4とスリット光プリズム3からなる測定ヘッドをスリム化することも好適な形態である。測定ヘッドがスリム化するほど、小さな内径をもつ円筒体10に挿入してその内面を測定することが可能となる。また、図3から理解できるように、正反射光軸を撮像プリズム4から離す目的のためには、正反射光軸の反射角を大きくするように撮像プリズム4とスリット光プリズム3からなる測定ヘッドをスリット光プリズム3側の内面に寄せる配置を行うことも好適である。   By arranging the slit light prism 3 and the imaging prism 4 close to each other, the angle α formed between the irradiation light axis of the slit light and the imaging optical axis is a narrow angle of 45 degrees or less. The adjacent arrangement of the slit light prism 3 and the imaging prism 4 is also effective in preventing the regular reflection light of the slit light from entering the photographing prism 4. As shown in FIG. 3, when imaging the inner surface of the cylindrical body 10 while irradiating the slit light, the irradiated slit light is reflected by the inner surface of the cylindrical body 10 and enters the imaging prism 4. At that time, since the regular reflection light has a strong light intensity, it is necessary to prevent the possibility that the regular reflection optical axis enters the imaging prism 4 and saturates the light receiving element of the imaging unit 51. For this purpose, the imaging prism 4 may be positioned inside the regular reflection optical axis. As shown in FIG. 3, since the range to be measured has a predetermined value, that is, the measurement point that generates the optical cross section line by the slit light has a fluctuation range in the irradiation direction of the slit light. Accordingly, the imaging prism 4 is disposed inside both the regular reflection optical axis at the innermost circle (measurement shortest distance) and the regular reflection optical axis at the maximum circle (longest measurement distance). Of course, the imaging prism 4 may be arranged outside both the regular reflection optical axis in the innermost circle and the regular reflection optical axis in the maximum circle. In this case, the imaging prism 4 and the slit light prism 3 may be arranged. Becomes larger and cannot be inserted into a cylindrical body having a small inner diameter. As can be understood from FIG. 3, by shifting the imaging prism 4 in a direction further away from the measurement point, it is possible to obtain more from both the regular reflection optical axis in the innermost circle and the regular reflection optical axis in the maximum circle. You can leave. For this reason, it is also preferable to make the measuring head made up of the imaging prism 4 and the slit light prism 3 slim by shifting the imaging prism 4 to the rear of the slit light prism 3 and adjacent to the slit light prism 3 as much as possible. is there. As the measuring head becomes slimmer, it can be inserted into the cylindrical body 10 having a small inner diameter and the inner surface thereof can be measured. As can be understood from FIG. 3, for the purpose of separating the specular reflection optical axis from the imaging prism 4, the measuring head composed of the imaging prism 4 and the slit light prism 3 so as to increase the reflection angle of the specular reflection optical axis. It is also preferable to place the lens toward the inner surface on the slit light prism 3 side.

コントローラ100は、実質的にはコンピュータユニットとして形成されており、本発明に関係するものとして、光源制御部80、画像メモリ81、画像処理部82、評価部83、回転駆動制御部84、垂直移動制御部85、X−Y移動制御部86を備えている。X−Y移動制御部86は、図示されていないX−Y移動機構の動作を制御して、測定対象物である円筒体10を内面測定装置1に対する最適位置に設定する。垂直移動制御部85は、撮像プリズム4とスリット光プリズム3からなる測定ヘッドがそのホームポジションから円筒体10の測定すべき高さの内面位置にくるように、垂直移動機構61の動作を制御する。回転駆動制御部84は、回転駆動機構60の動作を制御して、測定高さ位置に設定された測定ヘッドを円筒体10の軸心に実質的に等しい垂直軸周りで360度回転させる。これにより、測定ヘッドは、特定の測定高さ領域、例えば周溝11の領域を全周にわたって走査することができる。   The controller 100 is substantially formed as a computer unit, and as related to the present invention, the light source control unit 80, the image memory 81, the image processing unit 82, the evaluation unit 83, the rotation drive control unit 84, the vertical movement A control unit 85 and an XY movement control unit 86 are provided. The XY movement control unit 86 controls the operation of an XY movement mechanism (not shown) to set the cylindrical body 10 that is a measurement object to an optimum position with respect to the inner surface measuring apparatus 1. The vertical movement control unit 85 controls the operation of the vertical movement mechanism 61 so that the measuring head composed of the imaging prism 4 and the slit light prism 3 comes from the home position to the inner surface position of the cylindrical body 10 to be measured. . The rotation drive control unit 84 controls the operation of the rotation drive mechanism 60 to rotate the measurement head set at the measurement height position 360 degrees around a vertical axis substantially equal to the axis of the cylindrical body 10. Thus, the measurement head can scan a specific measurement height region, for example, the region of the circumferential groove 11 over the entire circumference.

撮像手段5は、光源制御部80による制御によってスリット光源2から発せられたスリット光によって照射された円筒体10の内面、つまり光切断線領域を撮像する。撮像手段5からコントローラ100に送られてきた画像データは、画像メモリに展開される。さらに、必要に応じて、画像処理部82によって座標変換やレベル補正、エッジ検出などの画像処理を施され、スリット光による光切断線Sが検出される。評価部83は、スリット光の照射点や照射角度、スリット光軸と撮像光軸とのなす角度が既知なので、画像処理部82で検出された光切断線Sの座標値から三角測量法に基づいて演算することで、光切断線Sつまり円筒体内面の3次元位置を得ることができる。なお、三角測量法に基づく演算に代えて、その演算結果を格納したテーブルを用いる方法を採用しても良い。例えば、図4に示すような測定対象物としての円筒体10の内面に形成された周溝11の検査をする場合、この周溝11にスリット光を照射して取得された撮像画像データから、模式的表示である図5に示すような光切断線Sが検出される。なお、図5(a)は正常箇所における光切断線Sの検出形態であり、図5(b)は異物が存在している箇所における光切断線Sの検出形態である。測定ヘッドを360度回転させながら測定走査することで、周溝11を全周にわたる測定が実現する。全周走査で得られた全ての光切断線Sの3次元位置を用いて360度展開検査図を作成することができる。例えば、図6は、周溝11の底面を基準面としてその深さ方向の距離を濃淡(基準面が白)で示した展開検査図である。この検査図と、予め用意した検査対象領域の形状寸法図を比較することで、容易に、異物や凹みなどの存在をチェックすることができる。   The imaging unit 5 images the inner surface of the cylindrical body 10 irradiated with the slit light emitted from the slit light source 2 under the control of the light source control unit 80, that is, the light cutting line region. The image data sent from the imaging means 5 to the controller 100 is developed in the image memory. Furthermore, if necessary, the image processing unit 82 performs image processing such as coordinate conversion, level correction, and edge detection, and the light cutting line S by the slit light is detected. Since the evaluation unit 83 knows the irradiation point and irradiation angle of the slit light, and the angle formed by the slit optical axis and the imaging optical axis, the evaluation unit 83 is based on the triangulation method from the coordinate value of the light section line S detected by the image processing unit 82. The three-dimensional position of the light cutting line S, that is, the inner surface of the cylindrical body can be obtained. Instead of the calculation based on the triangulation method, a method using a table storing the calculation result may be employed. For example, when inspecting the circumferential groove 11 formed on the inner surface of the cylindrical body 10 as a measurement object as shown in FIG. 4, from the captured image data obtained by irradiating the circumferential groove 11 with slit light, A light section line S as shown in FIG. 5 which is a schematic display is detected. 5A is a detection form of the light cutting line S at a normal location, and FIG. 5B is a detection form of the light cutting line S at a location where a foreign object is present. By performing measurement scanning while rotating the measuring head 360 degrees, measurement of the circumferential groove 11 over the entire circumference is realized. A 360-degree unfolded inspection drawing can be created using the three-dimensional positions of all the light cutting lines S obtained by the entire circumference scanning. For example, FIG. 6 is a development inspection diagram in which the bottom surface of the circumferential groove 11 is used as a reference surface, and the distance in the depth direction is indicated by shading (reference surface is white). By comparing this inspection drawing with the shape dimension drawing of the inspection target area prepared in advance, it is possible to easily check for the presence of a foreign object, a dent, or the like.

上述したように構成された筒体内面検査システムを用いた、円筒体10の周溝11の検査の手順を図7に示されたフローチャートを用いて以下に説明する。
ここでは、検査対象物は円筒体10であり、検査対象領域は円筒体10の内面に形成された周溝11である。まず、円筒体10をその端面を載置面として、内面測定装置1のX・Y移動機構付きの測定台に載置する(#01)。X・Y移動制御装置86によってX・Y移動機構を制御するとともに、垂直移動制御部85によって垂直移動機構61を制御して測定ヘッドを円筒体10の筒内に挿入させスリット光が周溝11を照射する位置を測定開始位置として設定する(#02)。光源制御部80がスリット光源2のレーザを発振制御して、スリット光をスリット光プリズム3を介して周溝11に照射して、輝度差による光切断線Sを作り出す(#03)。コントローラ100は、この光切断線Sを含む周溝11の測定領域を撮影領域として撮像手段5が取得した撮像画像を画像データとして画像メモリ81に展開する(#04)。画像処理部82が、画像データを処理して、光切断線Sを検出する(#05)。検出された光切断線Sの画素位置に基づいて、評価部83がその3次元寸法(周溝11の断面形状)を算出して、記憶する(#06)。回転駆動制御部84が回転駆動部60を制御して、所定の測定角度ピッチ分だけ測定ヘッドを回転させる(#07)。全周にわたる周溝11の測定が完了したかどうか、つまり測定ヘッドを360度回転させたかどうかをチェックする(#08)。測定完了でない場合(#08No分岐)、ステップ#04から#07の処理を測定角度ピッチ毎に繰り返す。測定完了となった場合(#08Yes分岐)、測定ヘッドをホームポジションまで復帰させ、次の検査に備える(#09)。評価部83は、記憶されている全周にわたる光切断線S((周溝11の断面)の3次元寸法を読み出し、例えば、図5に模式的に示されているような検査面の形状データを構築する(#10)。さらに、構築された検査面の形状データと正常な形状データを比較して、欠陥の形状を抽出する(#11)。次いで、抽出された欠陥形状の大きさから、検査対象物の良否判定を行う(#12)。
The procedure for inspecting the circumferential groove 11 of the cylindrical body 10 using the cylindrical body inner surface inspection system configured as described above will be described below with reference to the flowchart shown in FIG.
Here, the inspection target is the cylindrical body 10, and the inspection target area is the circumferential groove 11 formed on the inner surface of the cylindrical body 10. First, the cylindrical body 10 is placed on a measuring table with an XY movement mechanism of the inner surface measuring apparatus 1 with its end face as a mounting surface (# 01). The X / Y movement control device 86 controls the X / Y movement mechanism, and the vertical movement control unit 85 controls the vertical movement mechanism 61 to insert the measurement head into the cylinder of the cylindrical body 10 so that the slit light is emitted from the circumferential groove 11. Is set as the measurement start position (# 02). The light source controller 80 controls the oscillation of the laser of the slit light source 2 and irradiates the slit light to the circumferential groove 11 via the slit light prism 3 to create the light cutting line S due to the luminance difference (# 03). The controller 100 develops the captured image acquired by the imaging unit 5 in the image memory 81 as image data using the measurement region of the circumferential groove 11 including the light cutting line S as the imaging region (# 04). The image processing unit 82 processes the image data and detects the light section line S (# 05). Based on the detected pixel position of the light cutting line S, the evaluation unit 83 calculates and stores the three-dimensional dimension (cross-sectional shape of the circumferential groove 11) (# 06). The rotation drive control unit 84 controls the rotation drive unit 60 to rotate the measurement head by a predetermined measurement angle pitch (# 07). It is checked whether or not the measurement of the circumferential groove 11 over the entire circumference is completed, that is, whether or not the measurement head has been rotated 360 degrees (# 08). If the measurement is not completed (# 08 No branch), the processing from step # 04 to # 07 is repeated for each measurement angle pitch. When the measurement is completed (# 08 Yes branch), the measurement head is returned to the home position to prepare for the next inspection (# 09). The evaluation unit 83 reads the stored three-dimensional dimension of the optical cutting line S ((cross section of the circumferential groove 11) over the entire circumference, for example, inspection surface shape data as schematically shown in FIG. Further, the shape data of the inspection surface is compared with the normal shape data to extract the shape of the defect (# 11), and then from the size of the extracted defect shape Then, the quality of the inspection object is determined (# 12).

上述したように、その本発明による内面測定装置1では、円筒体10の外方に位置するスリット光源2から円筒体10の筒内に挿入されたスリット光プリズム3を介して導入されたスリット光を用いて円筒体内面を照射する。そして、照射された内面は、円筒体10の外方に位置する撮像手段5が、同様に円筒体10の筒内に挿入された撮像プリズム4を介して導入される撮像光を用いて撮像する。取得された撮像画像データがコントローラ100によって処理されることで、円筒体10の内面形状の3次元寸法の算出、および算出された3次元寸法に基づく欠陥検出が高速かつ高精度で実現する。   As described above, in the inner surface measuring apparatus 1 according to the present invention, slit light introduced from the slit light source 2 located outside the cylindrical body 10 through the slit light prism 3 inserted into the cylinder of the cylindrical body 10. Is used to irradiate the inner surface of the cylinder. Then, the irradiated inner surface is imaged by the imaging means 5 located outside the cylindrical body 10 by using imaging light introduced through the imaging prism 4 similarly inserted into the cylinder of the cylindrical body 10. . The acquired captured image data is processed by the controller 100, so that the calculation of the three-dimensional dimension of the inner surface shape of the cylindrical body 10 and the defect detection based on the calculated three-dimensional dimension are realized at high speed and with high accuracy.

本発明による内面測定装置を組み込んだ筒体内面検査システムの構成を模式的に示す斜視図The perspective view which shows typically the structure of the cylinder inner surface inspection system incorporating the inner surface measuring apparatus by this invention. スリット光軸と撮像光軸との関係及び撮像光軸と撮像面との関係を模式的に示す展開図Development view schematically showing the relationship between the slit optical axis and the imaging optical axis and the relationship between the imaging optical axis and the imaging surface. スリット光プリズムからのスリット光軸と撮像プリズムに向かうその反射光軸との関係を説明する平面図The top view explaining the relationship between the slit optical axis from the slit optical prism and the reflected optical axis toward the imaging prism 検査対象物としての周溝付き円筒体の斜視図Perspective view of cylindrical body with circumferential groove as inspection object 周溝における光切断線を示す説明図Explanatory drawing which shows the optical cutting line in a circumferential groove 周溝断面形状を濃淡表示した360度展開検査図360 ° unfolded inspection drawing showing the cross-sectional shape of the circumferential groove in shades 筒体内面検査システムにおける検査手順をしめすフローチャートFlow chart showing the inspection procedure in the cylinder inner surface inspection system

符号の説明Explanation of symbols

1:内面測定装置
2:スリット光源
3:スリット光プリズム(スリット光偏向手段)
4:撮像プリズム
5:撮像手段
50:レンズユニット
51:撮像ユニット
51a:撮像面
60:回転駆動機構
82:画像処理部
83:評価部
100:コントローラ
1: Inner surface measuring device 2: Slit light source 3: Slit light prism (slit light deflection means)
4: Imaging prism 5: Imaging means 50: Lens unit 51: Imaging unit 51a: Imaging surface 60: Rotation drive mechanism 82: Image processing unit 83: Evaluation unit 100: Controller

Claims (2)

スリット光を照射するスリット光源と、
前記スリット光を照射された被測定物の円筒内面を撮像する撮像手段と、
前記スリット光を前記円筒内面へ偏向させるスリット光偏向手段と、
前記円筒内面のうち前記スリット光が照射されたスリット光照射内面へ前記撮像手段の撮像光軸を偏向させる撮像プリズムと、を備え、
前記スリット光源は、前記円筒内面の軸方向に沿う方向にスリット光が照射されるように前記円筒内面の外方に配置され、
前記撮像手段は、前記撮像光軸に沿って入射する光線を受ける受光素子を有するとともに、前記撮像光軸が前記円筒内面の軸方向に沿うように前記円筒内面の外方に配置され、
前記スリット光偏向手段は、入射したスリット光を、前記円筒内面の軸方向に延びるスリット光の形態で前記スリット光照射内面へ照射し、
前記スリット光照射内面でのスリット光の反射光量が全測定範囲において前記受光素子の最小感度光量以上でかつ飽和光量内となるように前記スリット光偏向手段から照射されるスリット光の照射方向と前記撮像プリズムの配置位置とが調整されており、
前記スリット光照射内面に対する前記スリット光の照射角度と前記撮像光軸の撮像角度とに応じて、前記スリット光照射内面における合焦範囲を拡大するために、前記受光素子の撮像面が前記撮像光軸に対して傾けられており、
前記撮像プリズムと前記スリット光照射内面との間に形成される前記撮像光軸と、前記スリット光偏向手段と前記スリット光照射内面との間に形成される光軸とが、前記円筒内面の軸方向に直交する同一平面上に配置される内面測定装置。
A slit light source for irradiating slit light;
Imaging means for imaging the cylindrical inner surface of the object to be measured irradiated with the slit light;
Slit light deflecting means for deflecting the slit light toward the inner surface of the cylinder;
An imaging prism that deflects the imaging optical axis of the imaging means to the slit light irradiation inner surface irradiated with the slit light among the cylindrical inner surface ,
The slit light source is disposed outside the cylindrical inner surface so that slit light is irradiated in a direction along the axial direction of the cylindrical inner surface,
The imaging means has a light receiving element that receives a light beam incident along the imaging optical axis, and is disposed outside the cylindrical inner surface so that the imaging optical axis is along the axial direction of the cylindrical inner surface,
The slit light deflection unit irradiates the slit light irradiation inner surface with incident slit light in the form of slit light extending in the axial direction of the cylindrical inner surface,
The irradiation direction of the slit light amount of reflected light of the slit light at said slit light irradiating the inner surface is emitted from the slit beam deflecting means so that the light reception merit amount or more and the saturation amount of the element in the entire measurement range The arrangement position of the imaging prism is adjusted,
In order to expand the focusing range on the inner surface of the slit light irradiation according to the irradiation angle of the slit light with respect to the inner surface of the slit light irradiation and the imaging angle of the imaging optical axis, the imaging surface of the light receiving element is the imaging light. Tilted with respect to the axis ,
The imaging optical axis formed between the imaging prism and the slit light irradiation inner surface, and the optical axis formed between the slit light deflection means and the slit light irradiation inner surface are axes of the cylindrical inner surface. the inner surface measuring device that will be located on the same plane perpendicular to the direction.
前記円筒内面は、周溝を有し、
前記周溝を含む前記円筒内面に照射されるスリット光の照射方向に対して、前記撮像プリズムを、前記周溝の底面に相当する最大円および前記周溝の開口面に相当する最小円に照射されたスリット光の正反射光軸よりも内側となるように、前記スリット光偏向手段に隣接して配置している請求項1に記載の内面測定装置。
The cylindrical inner surface has a circumferential groove,
Irradiating the imaging prism to the maximum circle corresponding to the bottom surface of the circumferential groove and the minimum circle corresponding to the opening surface of the circumferential groove with respect to the irradiation direction of the slit light irradiated to the inner surface of the cylinder including the circumferential groove The inner surface measuring apparatus according to claim 1, wherein the inner surface measuring apparatus is disposed adjacent to the slit light deflecting unit so as to be inside the regular reflection optical axis of the slit light.
JP2008058215A 2008-03-07 2008-03-07 Inner surface measuring device Expired - Fee Related JP5120625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008058215A JP5120625B2 (en) 2008-03-07 2008-03-07 Inner surface measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008058215A JP5120625B2 (en) 2008-03-07 2008-03-07 Inner surface measuring device

Publications (2)

Publication Number Publication Date
JP2009216453A JP2009216453A (en) 2009-09-24
JP5120625B2 true JP5120625B2 (en) 2013-01-16

Family

ID=41188476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008058215A Expired - Fee Related JP5120625B2 (en) 2008-03-07 2008-03-07 Inner surface measuring device

Country Status (1)

Country Link
JP (1) JP5120625B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5313862B2 (en) * 2009-12-25 2013-10-09 株式会社日立製作所 Dimension measuring method and apparatus by two-dimensional light cutting method
JP2013522599A (en) * 2010-03-09 2013-06-13 フェデラル−モーグル コーポレイション Bore inspection system and inspection method using the same
JP5776282B2 (en) * 2011-04-08 2015-09-09 株式会社ニコン Shape measuring apparatus, shape measuring method, and program thereof
JP2017044476A (en) * 2015-08-24 2017-03-02 澁谷工業株式会社 Article inspection device
JP6790380B2 (en) * 2016-02-29 2020-11-25 日本電産トーソク株式会社 Internal inspection device
JP6206527B2 (en) 2016-03-16 2017-10-04 横浜ゴム株式会社 Device for measuring the inner circumference of a circular member
JP6233434B2 (en) 2016-03-16 2017-11-22 横浜ゴム株式会社 Measuring method of inner circumference of circular member
JP7134253B2 (en) * 2018-12-11 2022-09-09 本田技研工業株式会社 WORK INSPECTION DEVICE AND WORK INSPECTION METHOD
DE102018222876A1 (en) * 2018-12-21 2020-06-25 Leica Microsystems Cms Gmbh Microscope and method for microscopic examination of large samples
KR20210151160A (en) * 2019-11-14 2021-12-13 샹하이 프리시전 메져먼트 세미콘덕터 테크놀러지 인코포레이티드 Surface detection device and method
JP2023547139A (en) * 2020-10-29 2023-11-09 シン アドバンスド システムズ グループ ソシエダッド リミターダ Device and method for inspecting the inner surface of a hollow body
CN113091643A (en) * 2021-04-28 2021-07-09 广东安达智能装备股份有限公司 Assembling method of 3D measuring device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131909A (en) * 1984-07-25 1986-02-14 Hitachi Ltd Detecting device for solid shape
JPH07198348A (en) * 1993-12-30 1995-08-01 Sony Corp Measurement device of surface shape
JPH09145339A (en) * 1995-11-20 1997-06-06 Ricoh Co Ltd Surface flaw inspection method
JP2003315020A (en) * 2002-04-19 2003-11-06 Nissan Motor Co Ltd Apparatus, method, and program for measuring gap and step
JP2007278705A (en) * 2006-04-03 2007-10-25 Moritex Corp Inner surface inspection device using slit light

Also Published As

Publication number Publication date
JP2009216453A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP5120625B2 (en) Inner surface measuring device
US9618329B2 (en) Optical inspection probe
JP5252184B2 (en) Uneven surface inspection device
CN104416290B (en) Laser processing apparatus
JP5568947B2 (en) Inspection device for internal surface defects of screw holes or holes
JP6121016B1 (en) Processing nozzle inspection apparatus and method in laser processing machine
JP2010164334A (en) Device and method for measuring inside shape
JP2007327836A (en) Appearance inspection apparatus and method
KR101754108B1 (en) System for measuring vignetting caused by camera lenz
JP2018009807A (en) Photo cutting device for tank inner weld dent inspection
JP5006005B2 (en) Foreign matter inspection apparatus and foreign matter inspection method
JP5042503B2 (en) Defect detection method
JP2021032580A (en) Measuring device and measuring method
CN107121058B (en) Measuring method
JP2020056620A (en) Shape measuring device, structure manufacturing system, shape measuring method, fixing unit, and structure manufacturing method
JP7205832B2 (en) Hole internal inspection device
JP2007163227A (en) Optical characteristics measuring apparatus and optical characteristics measuring method for laser scanning optical system
JP2006010429A (en) Mounted board inspection device
JP6530437B2 (en) Optical connector end face inspection apparatus and acquisition method of focused image data thereof
JP5768349B2 (en) Slit light intensity distribution design method and light cutting uneven surface wrinkle detecting device
KR100790706B1 (en) Device for detecting focal lenghth of lenses
JP2002062220A (en) Inspection method and inspection device of scanning optical system
JP5356187B2 (en) Method and apparatus for measuring lens ball height
CN111983795B (en) Method and device for monitoring the focus state of a microscope
JP2017067459A (en) Inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees