JP2006010429A - Mounted board inspection device - Google Patents

Mounted board inspection device Download PDF

Info

Publication number
JP2006010429A
JP2006010429A JP2004186086A JP2004186086A JP2006010429A JP 2006010429 A JP2006010429 A JP 2006010429A JP 2004186086 A JP2004186086 A JP 2004186086A JP 2004186086 A JP2004186086 A JP 2004186086A JP 2006010429 A JP2006010429 A JP 2006010429A
Authority
JP
Japan
Prior art keywords
ray
inspection
inspection object
height data
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004186086A
Other languages
Japanese (ja)
Other versions
JP4449596B2 (en
Inventor
Kazuo Ouchi
一生 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004186086A priority Critical patent/JP4449596B2/en
Publication of JP2006010429A publication Critical patent/JP2006010429A/en
Application granted granted Critical
Publication of JP4449596B2 publication Critical patent/JP4449596B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mounted board inspection device capable of inspecting with high precision a joined state of a mounted component joined with solder on a printed board. <P>SOLUTION: The inspection device is equipped with a laser instrumentation portion for finding data on the height of an object to be inspected on an inspection board by laser triangulation, an X-ray instrumentation portion for finding height data by calculating a cross-sectional shape of the object to be inspected from an X-ray transmission image obtained by irradiating the board with X-rays and photographing, and an instrumentation inspection unit for calculating an angle of inclination of the external shape of the object to be inspected from the height data acquired by measurement in the laser instrumentation portion, and selectively changing the height data acquired in the laser instrumentation portion and the height data acquired in the X-ray instrumentation portion on the basis of the calculated angle of inclination. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、実装基板検査装置に係り、特に実装済みプリント基板上の実装部品の半田接合部の形状を高精度に計測する事で、半田接合状態の検査に好適に利用できるものである。   The present invention relates to a mounting board inspection apparatus, and particularly can be suitably used for inspection of a solder joint state by measuring the shape of a solder joint portion of a mounted component on a mounted printed board with high accuracy.

従来、プリント基板上に実装された部品の半田接合部の外形形状を計測し、接合状態を検査する実装基板検査装置として、レーザ光を用いた三角測量方式、X線を用いたラミノグラフィ方式があり、以下において、従来の検査装置の説明を行う。   Conventionally, there are a triangulation method using laser light and a laminography method using X-ray as a mounting board inspection device for measuring the outer shape of a solder joint portion of a component mounted on a printed circuit board and inspecting the joining state. In the following, a conventional inspection apparatus will be described.

従来の実装基板検査装置におけるレーザ光を用いた三角測量方式の従来技術として、例えば特許第3064517号公報に開示されており、図10に示すように、検査装置はレーザユニット、ポリゴンミラー、fθレンズ群、集光レンズ群、PSD(Position Sensitive Detector:位置検出素子)、プリント基板をXY方向に移動するXYステージ、及び、計測検査ユニットにより構成されており、レーザユニットから出力されたレーザ光はポリゴンミラーで偏向され、fθレンズ群を通過し、プリント基板上に垂直に照射される。照射されたレーザ光はプリント基板上の検査対象物の照射位置において反射し、その反射光の一部が集光レンズ群を通過してPSD受光面上に集光される。   For example, Japanese Patent No. 3064517 discloses a conventional triangulation method using laser light in a conventional mounting board inspection apparatus. As shown in FIG. 10, the inspection apparatus includes a laser unit, a polygon mirror, and an fθ lens. Group, condensing lens group, PSD (Position Sensitive Detector), XY stage that moves printed circuit board in XY direction, and measurement / inspection unit. Laser beam output from laser unit is polygon The light is deflected by the mirror, passes through the fθ lens group, and is irradiated vertically onto the printed circuit board. The irradiated laser light is reflected at the irradiation position of the inspection object on the printed board, and a part of the reflected light passes through the condenser lens group and is condensed on the PSD light receiving surface.

この際、三角測量の原理により、反射光は検査対象物へのレーザ光照射位置の高さに対応するPSD受光面上の任意の位置に集光され、PSDより出力される集光位置に相当する出力信号を、計測検査ユニットにおいて演算する事で、検査対象物のレーザ光照射位置の高さが算出される。また、ポリゴンミラーを回転する事で、レーザ光はX軸方向に走査されるため、走査に同期してプリント基板をY軸方向に移動する事でプリント基板のエリア計測が可能となり、計測された検査対象物の高さデータを再構成する事で、プリント基板上の検査対象物の外形形状が計測される。また、前記エリア計測後、プリント基板をX軸方向に走査長さ分移動し、エリア計測を繰り返し行う事でプリント基板全面の計測が可能となり、計測された検査対象物の外形形状の良否判定を行う事で、プリント基板上の実装部品の半田接合状態の検査を行う。   At this time, based on the principle of triangulation, the reflected light is condensed at an arbitrary position on the PSD light receiving surface corresponding to the height of the laser light irradiation position on the inspection object, and corresponds to the light collecting position output from the PSD. By calculating the output signal to be performed in the measurement / inspection unit, the height of the laser light irradiation position of the inspection object is calculated. Since the laser beam is scanned in the X-axis direction by rotating the polygon mirror, the printed circuit board area can be measured by moving the printed circuit board in the Y-axis direction in synchronization with the scanning. By reconstructing the height data of the inspection object, the outer shape of the inspection object on the printed circuit board is measured. In addition, after the area measurement, the printed circuit board is moved in the X-axis direction by the scanning length and the area measurement is repeatedly performed, thereby enabling measurement of the entire surface of the printed circuit board, and determining the quality of the outer shape of the measured inspection object. By doing so, inspection of the solder joint state of the mounted component on the printed circuit board is performed.

次にX線を用いたラミノグラフィ方式の従来技術として、例えば特開平5−157708号公報に開示されており、図12、13を用いて説明する。検査装置は図12に示すように、X線源、X線を可視光に変換して画像化するX線II(Image Intensifier)カメラ、X線IIカメラをZ軸に沿って回転させるθステージ、プリント基板をXYZ方向に移動するXYZステージ、及び、Z軸に沿って回転させるθステージ、及び、計測検査ユニットにより構成されている。ここで、X線IIカメラの回転中心は受光面の中心と一致する。   Next, as a conventional technique of a laminography method using X-rays, for example, it is disclosed in Japanese Patent Laid-Open No. 5-157708, and will be described with reference to FIGS. As shown in FIG. 12, the inspection apparatus includes an X-ray source, an X-ray II (Image Intensifier) camera that converts X-rays into visible light and forms an image, a θ stage that rotates the X-ray II camera along the Z-axis, It comprises an XYZ stage that moves the printed circuit board in the XYZ directions, a θ stage that rotates along the Z axis, and a measurement / inspection unit. Here, the rotation center of the X-ray II camera coincides with the center of the light receiving surface.

また、X線源から出射されるX線はプリント基板、及びX線IIカメラの受光面に対して斜め方向(45度)から入射し、X線源の発光点とX線IIカメラの受光面の中心を結ぶラインと、プリント基板の回転軸が45度の角度で交差するようにプリント基板及びXYZθステージが配置されており、X線源からコーンビーム状に広がり出射されるX線はプリント基板を斜め方向に透過し、透過したX線をX線IIカメラで検出する事でプリント基板のX線透過画像が撮影される。その際、プリント基板とX線IIカメラを同期して、同一な回転方向及び回転角で回転させる事で、X線源の発光点とX線IIカメラの受光面の中心を結ぶラインと、プリント基板の回転軸との交点と交わるXY平面上の断層情報が、図13に示すように、常にX線IIカメラの同じ位置に像を結ぶ。   X-rays emitted from the X-ray source are incident on the printed circuit board and the light-receiving surface of the X-ray II camera from an oblique direction (45 degrees), and the light emitting point of the X-ray source and the light-receiving surface of the X-ray II camera. The printed circuit board and the XYZθ stage are arranged so that the line connecting the centers of the two and the rotation axis of the printed circuit board intersect at an angle of 45 degrees. Is transmitted in an oblique direction, and the transmitted X-ray is detected by an X-ray II camera, whereby an X-ray transmission image of the printed circuit board is taken. At that time, the printed circuit board and the X-ray II camera are synchronized and rotated with the same rotation direction and rotation angle, so that the line connecting the light emitting point of the X-ray source and the center of the light receiving surface of the X-ray II camera, The tomographic information on the XY plane that intersects the intersection with the rotation axis of the substrate always forms an image at the same position of the X-ray II camera, as shown in FIG.

従って、前記XY平面とは異なるZ軸座標の断層情報は、1回転する間、常に異なる位置に像を結ぶため、回転する間、X線透過画像を蓄積する事で、前記交点位置、即ち、X線源の発光点とX線IIカメラの受光面の中心を結ぶラインと、プリント基板の回転軸との交点のXY平面上の断層情報は強調され、それ以外の平面上の断層情報がボケた画像となり、前記画像を画像処理する事で抽出された断層形状を用いて、プリント基板上の実装部品の半田接合状態の検査を行っており、また、プリント基板をZ方向に移動する事で、異なる高さの断層検査が、また、XY方向に移動する事でプリント基板の全面検査が可能となる。
特開平5−149733号公報
Therefore, since the tomographic information of the Z-axis coordinate different from the XY plane always forms an image at a different position during one rotation, the X-ray transmission image is accumulated during the rotation, so that the intersection position, that is, The tomographic information on the XY plane at the intersection of the line connecting the light emitting point of the X-ray source and the center of the light receiving surface of the X-ray II camera and the rotation axis of the printed circuit board is emphasized, and the tomographic information on the other planes is blurred. Using the tomographic shape extracted by image processing of the image, the mounting state of the mounted components on the printed circuit board is inspected, and the printed circuit board is moved in the Z direction. Further, the tomographic inspection at different heights can be performed in the XY directions, and the entire surface of the printed circuit board can be inspected.
JP-A-5-149733

しかしながら、従来の計測手法であるレーザ光を用いた三角測量方式では、検査対象物がプリント基板上の半田接合部のような、実装部品からプリント基板への半田部の傾斜がプリント基板に対して45度から90度までの急峻な傾斜を有し、且つ、表面が金属光沢面である場合、図11に示すように、急峻な傾斜面であるaの位置に照射されたレーザ光の多くが、PSDの方向ではなくプリント基板上のbの方向に反射する。そのため、本来aの位置からPSD上に入射する(1)の位置におけるレーザ反射光の光量と比較して、bの位置からPSD上の(2)の位置に入射するレーザ反射光の光量が大きいため、PSDの出力信号から検査対象物の高さを算出すると、レーザ光が照射されるaの位置より低く、プリント基板表面よりも低い位置cからレーザの反射光がPSD上に入射した場合と同じ値となり、計測される高さデータは、高さaと高さcに相当するそれぞれの高さの差の絶対値である|c−a|に相当する測定誤差を生じる。   However, in the triangulation method using laser light, which is a conventional measurement method, the inclination of the solder part from the mounting component to the printed board, such as the solder joint on the printed board, is inspected with respect to the printed board. When the surface has a steep inclination from 45 degrees to 90 degrees and the surface is a metallic glossy surface, as shown in FIG. 11, most of the laser light irradiated to the position of a that is a steep inclined surface. , Reflected in the direction of b on the printed circuit board, not in the direction of PSD. Therefore, the amount of laser reflected light incident on the PSD from the position b to the position (2) on the PSD is larger than the amount of laser reflected light at the position (1) incident on the PSD from the position a. Therefore, when the height of the inspection object is calculated from the output signal of the PSD, the reflected laser beam is incident on the PSD from a position c lower than the position a where the laser light is irradiated and lower than the printed circuit board surface. The measured height data has the same value, and causes a measurement error corresponding to | c−a |, which is the absolute value of the difference between the heights a and c.

従って、半田接合部の特に急峻な傾斜角を有する領域において、高精度な外形形状の計測が困難になる、即ち、レーザ光線の垂直方向の入射光線の半田接合部での接線と水平面との角度が45度から90度と急峻になると、レーザ光線を用いての高さの算出が困難になるという課題を有していた。   Therefore, it is difficult to measure the outer shape with high accuracy in a region having a particularly steep inclination angle of the solder joint, that is, the angle between the tangent at the solder joint of the incident beam in the vertical direction of the laser beam and the horizontal plane. When the angle becomes steep from 45 degrees to 90 degrees, it has been difficult to calculate the height using a laser beam.

また、X線を用いた計測手法であるラミノグラフィ方式では、図14で示すように、例えば半田ボールのようなX線透過率の低い検査対象物の下端または上端部付近の断層計測を行った場合、図15に示すように、X線透過画像を蓄積して断層画像を生成すると、本来の断層形状の周辺にアーチファクトと呼ばれる影状の虚像が発生する。即ち、X線透過画像(a)、(b)、(c)、(d)を蓄積して断層画像を生成し、これらの生成された断層画像を3次元画像に再構成してY−Z平面での切り口となる断面画像を得る。そして、アーチファクトは図16に示すように、検査対象物のY−Z平面での切り口となる断面画像(断面画像は、断層画像の再構成画像より得られる。)で見ると、検査対象物と、検査対象物の境界部を通過するX線で囲まれる斜線で示す領域で発生し、検査対象物のX−Y平面での切り口となる断層画像で見ると、本来検査対象物が無い領域で発生したり、検査対象物の本来の形状の周辺部に発生するため、検出された検査対象物の断層の輪郭がボケ、高精度な外形形状の計測が困難になるという課題を有していた。   In the laminography method, which is a measurement technique using X-rays, as shown in FIG. 14, for example, when tomographic measurement is performed near the lower end or upper end of an inspection object having a low X-ray transmittance such as a solder ball. As shown in FIG. 15, when a tomographic image is generated by accumulating X-ray transmission images, a shadow-like virtual image called an artifact is generated around the original tomographic shape. That is, X-ray transmission images (a), (b), (c), and (d) are accumulated to generate tomographic images, and these generated tomographic images are reconstructed into three-dimensional images to obtain YZ. A cross-sectional image that is a cut surface in a plane is obtained. Then, as shown in FIG. 16, the artifact is a cross-sectional image that is a cut surface in the YZ plane of the inspection target (the cross-sectional image is obtained from a reconstructed image of the tomographic image). In a tomographic image that is generated in a hatched area surrounded by X-rays passing through the boundary of the inspection object and is a cut surface in the XY plane of the inspection object, it is an area that originally has no inspection object. Since it occurs or occurs in the periphery of the original shape of the inspection object, there is a problem that the tomographic outline of the detected inspection object is blurred and it is difficult to measure a highly accurate outer shape .

本発明は、前記従来の課題を解決するもので、プリント基板上の実装部品の半田接合状態を高精度に検査可能な実装基板検査装置を提供する事を目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a mounting board inspection apparatus capable of inspecting a solder joint state of a mounting component on a printed board with high accuracy.

前記従来の課題を解決するために、本発明の実装基板検査装置は、検査基板上の検査対象物の高さデータをレーザ三角測量により求めるレーザ計測部と、前記基板にX線を照射して撮影されるX線透過像より前記検査対象物の断面形状を算出して高さデータを計測するX線計測部とを備え、前記レーザ計測部において計測された高さデータより検査対象物の外形形状の傾斜角を算出し、その算出された傾斜角に基づいてレーザ計測部において計測された高さデータと前記X線計測部において計測された高さデータとを選択的に切り替えて前記検査対象物を計測することを特徴としたものである。   In order to solve the above-described conventional problems, the mounting board inspection apparatus of the present invention includes a laser measurement unit that obtains height data of an inspection object on an inspection board by laser triangulation, and irradiates the board with X-rays. An X-ray measurement unit that calculates a cross-sectional shape of the inspection object from a photographed X-ray transmission image and measures height data, and an outer shape of the inspection object from the height data measured by the laser measurement unit An inclination angle of the shape is calculated, and the inspection object is selectively switched between height data measured by the laser measurement unit and height data measured by the X-ray measurement unit based on the calculated inclination angle. It is characterized by measuring objects.

また、本発明の実装基板検査装置は、検査対象物が搭載されている検査基板に対し垂直方向となるZ軸方向から、X軸方向に走査しながらレーザ光を照射して前記レーザ光の検査対象物からの反射光を位置検出素子受光面上に集光し、前記位置検出素子からの出力信号により前記検査基板上の検査対象物の高さデータを計測する三角測量の原理によるレーザ計測部と、前記検査基板上の検査対象物をZ軸方向に貫通する所定の広がり角を有するX線を照射し、X線光路中を検査基板がY軸方向に直線移動する際に撮影されるX線透過画像を用いて前記検査対象物の断面形状を算出して高さデータを計測するX線計測部と、前記レーザ計測部において計測された高さデータより検査対象物の外形形状の傾斜角を算出する傾斜角抽出手段とを備え、前記傾斜角抽出手段にて算出された傾斜角に基づいて、前記レーザ計測部において計測された高さデータとX線計測部において計測された高さデータとを選択的に切り替えて検査対象物を検査することを特徴としたものである。   The mounting board inspection apparatus of the present invention also inspects the laser light by irradiating laser light while scanning in the X-axis direction from the Z-axis direction that is perpendicular to the inspection board on which the inspection object is mounted. Laser measurement unit based on the principle of triangulation that collects the reflected light from the object on the light receiving surface of the position detection element and measures the height data of the inspection object on the inspection board by the output signal from the position detection element X-rays having a predetermined divergence angle penetrating the inspection object on the inspection substrate in the Z-axis direction are photographed when the inspection substrate linearly moves in the Y-axis direction in the X-ray optical path. An X-ray measurement unit that calculates the cross-sectional shape of the inspection object using a line transmission image and measures height data, and an inclination angle of the outer shape of the inspection object from the height data measured in the laser measurement unit And an inclination angle extracting means for calculating Based on the tilt angle calculated by the tilt angle extracting means, the height measurement data measured by the laser measurement unit and the height data measured by the X-ray measurement unit are selectively switched to select the inspection object. It is characterized by inspection.

本発明の実装基板検査装置によれば、レーザ計測部における外形形状データにおいて、計測精度が悪化する、例えば半田接合部のような急峻な傾斜角を有する検査領域については、X線計測部において計測した外形形状データと置換える事で、様々な形状を有する検査対象物に対して、高精度な外形形状計測が可能となり、また、BGA/CSP等のような、部品の裏面に半田接合部があり、実装後の外観検査が困難な半田接合部については、X線計測部において撮影したX線透過画像より、半田の有無、ショート、半田量の過少等の検査が可能となるため、本発明により、プリント基板上の全ての実装部品の半田接合状態について、検査精度の高い実装基板検査装置の提供が可能となる。   According to the mounting board inspection apparatus of the present invention, in the outer shape data in the laser measurement unit, the measurement accuracy deteriorates, for example, an inspection region having a steep inclination angle such as a solder joint is measured in the X-ray measurement unit. By replacing the outer shape data, it is possible to measure the outer shape with high accuracy for inspection objects having various shapes, and there is a solder joint on the back side of the component such as BGA / CSP. For solder joints that are difficult to be visually inspected after mounting, it is possible to inspect the presence / absence of solder, a short circuit, an insufficient amount of solder, and the like from an X-ray transmission image taken by the X-ray measurement unit. Accordingly, it is possible to provide a mounting board inspection apparatus with high inspection accuracy for the solder joint state of all the mounting components on the printed board.

以下に、本発明の実装基板検査装置の実施の形態を図面とともに詳細に説明する。 Embodiments of a mounting board inspection apparatus according to the present invention will be described below in detail with reference to the drawings.

図1は、本発明の第1の実施例におけるレーザ光を用いた三角測量方式と、X線を用いたCT方式のX線計測手法を組み合わせた実装基板検査装置の構成を示す。   FIG. 1 shows a configuration of a mounting board inspection apparatus that combines a triangulation method using laser light and a CT method X-ray measurement method using X-rays in the first embodiment of the present invention.

図1において、レーザユニット1より出射されたレーザ光は、ポリゴンミラー2で偏向され、fθレンズ群3を通過し、ミラー4で偏向された後、検査対象物5が実装されているプリント基板6上に焦点を結ぶように垂直上方から照射される。照射されたレーザ光は、プリント基板6上の検査対象物5で反射し、ミラー4で再度偏向された後、集光レンズ群7に入射し、レーザ光が照射された検査対象物5のプリント基板6からの高さに対応して、PSD8受光面上に集光され、その集光位置に相当する信号が計測検査ユニット9に出力され、計測検査ユニット9において前記出力信号を既知のアルゴリズムを用いて高さ演算する事で、プリント基板6を基準高さにして、プリント基板6から検査対象物5のレーザ光照射位置の高さが計測される。   In FIG. 1, the laser light emitted from the laser unit 1 is deflected by the polygon mirror 2, passes through the fθ lens group 3, is deflected by the mirror 4, and then the printed circuit board 6 on which the inspection object 5 is mounted. Irradiate from vertically above to focus on the top. The irradiated laser light is reflected by the inspection object 5 on the printed circuit board 6, deflected again by the mirror 4, then enters the condenser lens group 7, and the print of the inspection object 5 irradiated with the laser light is printed. Corresponding to the height from the substrate 6, the light is condensed on the light receiving surface of the PSD 8, and a signal corresponding to the light condensing position is output to the measurement / inspection unit 9. By using the height calculation using the printed circuit board 6, the height of the laser light irradiation position of the inspection object 5 from the printed circuit board 6 is measured using the printed circuit board 6 as a reference height.

また、前記ポリゴンミラー2を回転する事で、レーザ光はX軸方向に1ライン約30mm走査され、その間1500ポイントのデータ数、即ち、20μmの分解能で画像データを取得する。次に、X軸方向への1ライン30mmの走査が終了した後、順次分解能20μm分だけY軸方向にプリント基板を移動し、次の1ライン分の走査を行い、これを繰り返し行う事でプリント基板上の30mm幅のエリア計測を行い、計測された検査対象物の高さデータを再構成する事で、プリント基板上の検査対象物の外形形状が計測される。また、前記エリア計測後、プリント基板をX軸方向に走査長さ30mmに相当する距離を移動し、エリア計測を繰り返し行う事でプリント基板全面の計測が可能となる。   Further, by rotating the polygon mirror 2, the laser light is scanned about 30 mm per line in the X-axis direction, and during that time, the number of data of 1500 points, that is, image data is acquired with a resolution of 20 μm. Next, after scanning 30 mm per line in the X-axis direction, the printed circuit board is sequentially moved in the Y-axis direction by a resolution of 20 μm, scanning for the next line is performed, and printing is performed by repeating this. By measuring the area of 30 mm width on the substrate and reconstructing the measured height data of the inspection object, the outer shape of the inspection object on the printed circuit board is measured. Further, after the area measurement, the entire surface of the printed board can be measured by moving the printed board in the X-axis direction by a distance corresponding to a scanning length of 30 mm and repeating the area measurement.

また、隣接する測定画素間の高さデータの差を算出し、前述の分解能に相当する画素間距離dを用いて演算することにより、検査対象の傾きである傾斜角を求めることができる。ただし、前述の測定条件では、画素間距離dは、分解能20μmの値を用いて演算を行うが、レーザ光による走査時の測定データ数は可変であり、例えば3000ポイント測定した場合は、分解能は10μmとなり、画素間距離dは10μmで演算を行うものとする。   In addition, by calculating a difference in height data between adjacent measurement pixels and performing calculation using the inter-pixel distance d corresponding to the above-described resolution, an inclination angle that is an inclination of the inspection target can be obtained. However, under the measurement conditions described above, the inter-pixel distance d is calculated using a value with a resolution of 20 μm. However, the number of measurement data during scanning with laser light is variable. For example, when measuring 3000 points, the resolution is It is assumed that the calculation is performed with the inter-pixel distance d being 10 μm.

X線計測に関しては、プリント基板6の一方にX線源10を配置し、プリント基板6上の検査対象物5にX線を照射してX線透過画像をX線検出器11と計測検査ユニット9を介して得る。   Regarding X-ray measurement, an X-ray source 10 is arranged on one side of the printed circuit board 6, and the inspection object 5 on the printed circuit board 6 is irradiated with X-rays to transmit an X-ray transmission image to the X-ray detector 11 and the measurement / inspection unit. 9 through.

次に図2を用いて、傾斜角の演算方法を説明する。なお、演算処理は、計測検査ユニット9にて行う。図2において、レーザ計測部を用いて、プリント基板上の画素位置(x、y)にて計測された高さデータP(x、y)とY軸方向に隣接する画素位置での計測された高さデータP(x、y−1)との高さデータを使用して、高さ差分データS(x、y)を算出する。即ち、S(x、y)=P(x、y)―P(x、y−1)を算出する。そして算出した高さ差分データS(x、y)を用いて傾斜角α(x、y)を、α(x、y)=tan−1(S(x、y)/d)より算出することができる。 Next, a method of calculating the tilt angle will be described with reference to FIG. The arithmetic processing is performed by the measurement / inspection unit 9. In FIG. 2, using the laser measurement unit, the height data P (x, y) measured at the pixel position (x, y) on the printed circuit board and the pixel position adjacent in the Y-axis direction were measured. The height difference data S (x, y) is calculated using the height data with the height data P (x, y-1). That is, S (x, y) = P (x, y) −P (x, y−1) is calculated. Then, the inclination angle α (x, y) is calculated from α (x, y) = tan −1 (S (x, y) / d) using the calculated height difference data S (x, y). Can do.

以上のように、図2に示すように、レーザ計測部で計測された高さデータP(x、y)より、Y軸方向に間隔dで隣接する画素の高さ差分データS(x、y)を算出する。次に、算出した高さ差分データS(x、y)を用いて傾斜角α(x、y)を算出することができ、図2(a)の外形形状データ(高さデータ)より、図2(b)の高さ差分データを算出し、図2(c)の傾斜角データを得ることができる。算出された傾斜角α(x,y)の値が、45度≦α(x,y)≦90度の条件に該当する座標位置での外形形状データについては、レーザ光を用いた三角測量方式では、測定精度が悪化するため、後述するX線計測手法により計測した外形形状データと置換える事で、高精度な外形形状計測が可能となる。
なお、傾斜角は、画素毎に算出される傾斜角を2個から10個程度の複数個の平均を求めて算出する事で、ノイズ成分の影響を除くことができる。
As described above, as shown in FIG. 2, from the height data P (x, y) measured by the laser measurement unit, the height difference data S (x, y) of pixels adjacent in the Y-axis direction at the interval d. ) Is calculated. Next, the inclination angle α (x, y) can be calculated using the calculated height difference data S (x, y). From the outer shape data (height data) of FIG. By calculating the height difference data of 2 (b), the inclination angle data of FIG. 2 (c) can be obtained. Triangulation method using laser light for the outer shape data at the coordinate position where the calculated inclination angle α (x, y) satisfies the condition of 45 ° ≦ α (x, y) ≦ 90 ° Then, since measurement accuracy deteriorates, high-accuracy outer shape measurement can be performed by replacing with outer shape data measured by an X-ray measurement method described later.
Note that the inclination angle is calculated by obtaining an average of a plurality of inclination angles of about 2 to 10 for each pixel, thereby eliminating the influence of noise components.

即ち、検査対象物5であるプリント基板6上の実装部品の半田部分の傾斜角を計測検査ユニット9にて算出し、45度以上の急峻な傾斜である場合、X線計測手法により計測した外形形状データを計測検査ユニット9内の選択手段(図示せず)にて選択する。   That is, the inclination angle of the solder portion of the mounted component on the printed circuit board 6 that is the inspection object 5 is calculated by the measurement / inspection unit 9, and when the inclination is a steep inclination of 45 degrees or more, the outer shape measured by the X-ray measurement method The shape data is selected by a selection means (not shown) in the measurement / inspection unit 9.

次に、X線測定手法について、図4から図7を用いて説明する。
前記レーザ光を用いたプリント基板の高さ計測の際、プリント基板は図4で示すように、X線源よりZ軸方向に例えば120度の広がり角で出射されるコーンビーム状のX線光路中をY軸方向に移動する、その際、複数の任意のY座標位置においてプリント基板のX線透過画像を撮影する。即ち、測定対象物が実装されたプリント基板をY軸からZ軸方向に、30度から150度のあらゆる角度方向から照射されたX線による実装部品の透過画像データを得ることにより、高さデータを抽出することができる。
Next, an X-ray measurement method will be described with reference to FIGS.
When measuring the height of the printed board using the laser beam, as shown in FIG. 4, the printed board is a cone beam-shaped X-ray optical path emitted from the X-ray source with a divergence angle of, for example, 120 degrees in the Z-axis direction. The X-ray transmission image of the printed circuit board is taken at a plurality of arbitrary Y coordinate positions. That is, the height data is obtained by obtaining the transmission image data of the mounted component by X-rays irradiated from any angle direction from 30 degrees to 150 degrees on the printed circuit board on which the measurement object is mounted from the Y axis to the Z axis direction. Can be extracted.

次に、プリント基板が無い状態でX線検出器において検出されるX線源の出射光の輝度分布は、通常、検出器の中央部で高く、周辺部において低くなる輝度分布を有しており、前記輝度分布情報が含まれたX線透過画像データを用いてCT再構成を行うと、断面画像は輝度の低下する周辺部に物体があるものとして演算され、実際の断面形状とは異なる断面画像が算出されるため、撮影されるX線透過画像が画面内で輝度レベルが均一になるよう補正を行う必要がある。そのため、予め、プリント基板が無い状態でX線透過画像を撮影し、撮影されたX線透過画像の画面内の輝度分布が、オフセット補正、及び、係数演算を行う事で均一となるように、各画素ごとの補正テーブルを作成し、撮影されるプリント基板のX線透過画像の各画素ごとに、前記補正テーブルを用いて演算することで輝度補正を行う。   Next, the luminance distribution of the emitted light of the X-ray source detected by the X-ray detector in the absence of the printed circuit board usually has a luminance distribution that is high at the center of the detector and low at the periphery. When CT reconstruction is performed using X-ray transmission image data including the luminance distribution information, the cross-sectional image is calculated as if there is an object in the peripheral portion where the luminance decreases, and the cross-section is different from the actual cross-sectional shape. Since the image is calculated, it is necessary to perform correction so that the luminance level of the photographed X-ray transmission image becomes uniform within the screen. Therefore, an X-ray transmission image is captured in advance without a printed circuit board, and the luminance distribution in the screen of the captured X-ray transmission image is made uniform by performing offset correction and coefficient calculation. A correction table is created for each pixel, and brightness correction is performed by calculating using the correction table for each pixel of the X-ray transmission image of the printed circuit board to be photographed.

次に、図4に示すように、例えば、プリント基板に対して30度の角度で透過するX線光が、X線検出器の座標Y(30°)上に照射されているように、X線透過画像のY方向の各画素のデータは、それぞれ30度から150度の範囲でプリント基板を透過したX線光がX線検出器上に照射され画像化されたものであり、図5aに示すように、プリント基板がY軸上をY−mからYに移動した際に撮影されるX線透過画像の同一のY座標データのみを抽出し、図5bに示すように、横軸をプリント基板のX線透過画像を撮影した際のY軸の位置に対応するようにX線透過画像のX軸方向に画像データを並べる事で、図6に示すように、平行X線光をプリント基板に照射し、30度から150度の角度範囲で回転して得られたX線透過画像に相当する画像が得られる。なお、実際のX線測定手法においては、検査対象物をY軸方向に移動させて測定を行うが、説明の便宜上、図6に示すように、測定対象を固定して、X線源、X線検出器などを移動させ測定したものとして説明を行う。 Next, as shown in FIG. 4, for example, X-ray light transmitted at an angle of 30 degrees with respect to the printed circuit board is irradiated on the coordinate Y (30 °) of the X-ray detector. The data of each pixel in the Y direction of the line transmissive image is an image formed by irradiating the X-ray light transmitted through the printed board in the range of 30 to 150 degrees onto the X-ray detector. as shown, printed circuit board extracts the Y-axis only same Y coordinate data of the X-ray image to be taken when moving from Y -m to Y m, as shown in FIG. 5b, the horizontal axis By arranging image data in the X-axis direction of the X-ray transmission image so as to correspond to the position of the Y-axis when the X-ray transmission image of the printed board is taken, parallel X-ray light is printed as shown in FIG. X-ray transmission image obtained by irradiating the substrate and rotating it within the angle range of 30 to 150 degrees A corresponding image is obtained. In the actual X-ray measurement method, the measurement is performed by moving the inspection object in the Y-axis direction. For convenience of explanation, as shown in FIG. The description will be given on the assumption that the line detector is moved and measured.

X線源から、検査対象に30度から150度の角度範囲で、0.5度或いは1度おきにX線源を回転させて照射し、X線検出器で検査対象各角度方向からのX線透過画像を撮影し、撮影された前記X線透過画像を用いて、CT再構成アルゴリズム(斎藤恒雄 著、アルゴリズムシリーズ2“画像処理アルゴリズム”、第6項、第8項、近代科学社、1993)による再構成演算を行う事で、プリント基板の断面画像が算出され、算出された断面画像について2値化、エッジ抽出等の画像処理を行う事でプリント基板上の検査対象物の外形形状が求められる。   The X-ray source irradiates the object to be inspected at an angle range of 30 to 150 degrees by rotating the X-ray source every 0.5 degrees or every other degree, and the X-ray detector detects X from each direction of the object to be inspected. A line-transmission image was taken, and the CT reconstruction algorithm (written by Saito Tsuneo, Algorithm Series 2 “Image Processing Algorithm”, Item 6, Item 8, Modern Science, 1993, using the imaged X-ray transmission image. ), A cross-sectional image of the printed circuit board is calculated, and the calculated cross-sectional image is subjected to image processing such as binarization and edge extraction, so that the outer shape of the inspection object on the printed circuit board is obtained. Desired.

しかし、前記角度範囲でX線計測を行った場合、検査対象物のY軸に対して0度から30度、及び、150度から180度の角度範囲においては、X線源からのX線が照射されず、X線透過画像が撮影されていないため、CT再構成演算を行うための画像データが欠落し、図7に示すように、CT再構成され画像化された検査対象物のY−Z平面での切り口となる、断面画像のZ軸方向上下の境界部と、データが欠落する0度から30度、及び、150度から180度の角度で囲まれた斜線部の領域において、アーチファクトが発生し、検査対象物のX−Y平面での切り口である断層画像で示すように、検査対象の本来の断面形状の輪郭がボケるため、高精度な断面形状計測が困難となるが、X線透過画像が撮影される30度から150度の角度範囲において、アーチファクトは発生しないため、断面形状の輪郭は明瞭に検出され、高精度な断面形状計測が可能となる。   However, when X-ray measurement is performed in the angle range, X-rays from the X-ray source are not detected in the angle range of 0 to 30 degrees and 150 to 180 degrees with respect to the Y axis of the inspection object. Since the X-ray transmission image is not captured and the X-ray transmission image is not taken, image data for performing the CT reconstruction calculation is lost, and as shown in FIG. Artifacts in the area of the upper and lower boundaries of the cross-sectional image in the Z-axis direction and the hatched area surrounded by the angles of 0 to 30 degrees and 150 degrees to 180 degrees where data is missing, which is the cut surface in the Z plane As shown in the tomographic image which is the cut surface in the XY plane of the inspection object, the outline of the original cross-sectional shape of the inspection object is blurred, so that it is difficult to measure the cross-sectional shape with high accuracy. X-ray transmission image is taken from 30 degrees to 150 degrees In time range, the artifact does not occur, the contour of the cross section is clearly detected, thereby enabling highly accurate sectional shape measurement.

次にレーザ計測手法において生じる、測定精度が悪化する領域を除去する手法について図8を用いて説明する。例えば、検査対象物が実装部品の半田接合部の場合、通常、水平面とほぼ平行な実装部品の電極部と半田接合部の境界において、半田接合部の外形形状が急激に変化するため、前述したように、レーザ計測手法において前述した高さデータより得られる傾斜角データが45度以上になると、実装部品の高さが正確に計測できなくなる(図11参照)。   Next, a method for removing a region where measurement accuracy deteriorates that occurs in the laser measurement method will be described with reference to FIG. For example, when the inspection target is a solder joint of a mounting component, the outer shape of the solder joint changes abruptly at the boundary between the electrode portion of the mounting component and the solder joint, which is generally parallel to the horizontal plane. As described above, when the inclination angle data obtained from the height data described above in the laser measurement method is 45 degrees or more, the height of the mounted component cannot be accurately measured (see FIG. 11).

平坦なX−Y平面を零度基準として、半田接合部のレーザ光照射位置の傾斜が45度以上になると、図11を用いて説明したように、実装部品の高さデータが正確に計測できなくなるので、傾斜角データが45度以上の場合、X線計測手法において計測された外形形状データを選択して、レーザ計測手法において計測された高さデータと置換して用いることで、高精度な外形形状計測が可能となる。   If the inclination of the laser beam irradiation position of the solder joint becomes 45 degrees or more with respect to the flat XY plane as the zero degree reference, the height data of the mounted component cannot be accurately measured as described with reference to FIG. Therefore, when the tilt angle data is 45 degrees or more, it is possible to select the outer shape data measured by the X-ray measurement method and replace it with the height data measured by the laser measurement method to obtain a highly accurate outer shape. Shape measurement is possible.

次に、本実装基板検査装置の構成について図1、図9を用いて説明する。   Next, the configuration of the mounting board inspection apparatus will be described with reference to FIGS.

レーザ計測部において、三角測量方式の原理を用いてレーザ計測を行い、位置検出素子であるPSD8からの出力信号を計測検査ユニット9にて演算して検査対象物の高さデータを算出した後、前記高さデータを記憶手段(図示せず)に保存し、保存された高さデータについて計測検査ユニット9にてデータの補正及び、座標変換等のデータ処理を行うことでレーザ計測部による検査対象物の外形形状データが求められる。また、求められた前記外形形状データより、計測検査ユニット9にて隣接する座標の高さデータと座標間距離を用いて角度演算を行い、各座標ごとの傾斜角を抽出する。高さデータの算出や、傾斜角などは、計測検査ユニット9内にて行う。   In the laser measurement unit, after performing laser measurement using the principle of the triangulation method, the output signal from the PSD 8 as the position detection element is calculated in the measurement inspection unit 9 to calculate the height data of the inspection object, The height data is stored in a storage means (not shown), and the stored height data is subjected to data processing such as data correction and coordinate conversion by the measurement / inspection unit 9 to be inspected by the laser measuring unit. The external shape data of the object is obtained. Further, from the obtained outer shape data, the measurement / inspection unit 9 performs angle calculation using the adjacent coordinate height data and the inter-coordinate distance, and extracts the inclination angle for each coordinate. The calculation of the height data and the inclination angle are performed in the measurement / inspection unit 9.

次に、X線計測部において、検査対象物5にコーンビームX線を照射し、X線検出器11にて撮影されたX線透過画像について、計測検査ユニット9にて輝度分布補正、及び、座標補正等行った後、記憶手段(図示せず)に保存する。そして、計測検査ユニット9にて、既知のCT再構成アルゴリズムを用いて検査対象物5の断層画像を再構成演算し、算出された再構成画像をエッジ抽出等の画像処理を行う事で、検査対象物5の外形形状データを算出した後、前記外形形状データを記憶手段(図示せず)に保存し、保存された外形形状データについてデータの補正及び、座標変換等のデータ処理を行うことでX線計測部による検査対象物5の外形形状データが求められる。   Next, in the X-ray measurement unit, the inspection object 5 is irradiated with cone beam X-rays, and the X-ray transmission image captured by the X-ray detector 11 is corrected for luminance distribution by the measurement / inspection unit 9, and After performing coordinate correction, etc., it is stored in a storage means (not shown). Then, in the measurement / inspection unit 9, a tomographic image of the inspection object 5 is reconstructed using a known CT reconstruction algorithm, and the calculated reconstructed image is subjected to image processing such as edge extraction. After calculating the outer shape data of the object 5, the outer shape data is stored in a storage means (not shown), and the stored outer shape data is subjected to data processing such as data correction and coordinate conversion. External shape data of the inspection object 5 by the X-ray measurement unit is obtained.

次に、前述の図8を用いた説明のように、レーザ計測部において算出された傾斜角度データを用いて、レーザ計測部で求めた外形形状データにおいて、Y軸に対して45度から90度の傾斜角を有するデータについては測定精度が悪化しているため、前記角度範囲を有する座標のデータについては、X線計測部において求められた外形形状データをデータ選択手段にて選択して、外形形状データを合成することで、様々な傾斜角度を有する測定対象物についても高精度な外形形状データの計測が可能となる。   Next, as described above with reference to FIG. 8, in the outer shape data obtained by the laser measurement unit using the tilt angle data calculated by the laser measurement unit, 45 degrees to 90 degrees with respect to the Y axis. Since the measurement accuracy is deteriorated for the data having the inclination angle, the external shape data obtained by the X-ray measuring unit is selected by the data selecting means for the coordinate data having the angle range, and the external shape data is selected. By synthesizing the shape data, it is possible to measure the outer shape data with high accuracy even for a measurement object having various inclination angles.

高さデータを保存する記憶手段、外形形状データを保存する記憶手段及びそれらの記憶手段から読み出されたデータは、データ選択手段にて、傾斜角抽出手段にて抽出された傾斜角に応じて、選択的に選択され、合成データを得て、合成データ保存手段にて保存する。そして、それらの計測データを検査しその結果を表示して検査制度の高い実装基板計測装置を実現するものである。記憶手段、選択手段や他の処理手段などは、計測検査ユニット9に内蔵されるが、別個独立に構成してもよい。また、これらの手段は、半導体素子で構成するが、選択、合成などの処理は、ソフトウェアで処理することができる。   The storage means for storing the height data, the storage means for storing the external shape data, and the data read from these storage means are selected by the data selection means according to the inclination angle extracted by the inclination angle extraction means. Then, the data is selectively selected, and the composite data is obtained and stored in the composite data storage means. Then, the measurement data is inspected and the result is displayed to realize a mounting board measuring apparatus having a high inspection system. The storage means, selection means, other processing means, and the like are built in the measurement / inspection unit 9, but may be configured separately. Moreover, although these means are comprised with a semiconductor element, processes, such as selection and a synthesis | combination, can be processed by software.

以上の様に、実装部品の画像をレーザ計測部とX線計測部を使用して計測し、その画像データを用いて、プリント基板上に実装された状態を高精度に計測して、実装部品の半田の状態や、実装位置などの状態を計測検査ユニット9内に記憶される基準データと比較して検査する。即ち、高精度に計測された計測データと基準となる外形形状データや部品情報などと比較し、検査を行い、その結果を表示することにより、検査精度の高い実装基板検査装置の供給が可能となる。   As described above, the mounted component image is measured using the laser measurement unit and the X-ray measurement unit, and the mounted state is measured with high accuracy using the image data. The state of the solder and the state such as the mounting position are inspected by comparing with reference data stored in the measurement / inspection unit 9. In other words, by comparing the measurement data measured with high precision with the reference external shape data and parts information, etc., and performing the inspection, and displaying the result, it is possible to supply a mounting board inspection apparatus with high inspection accuracy. Become.

ここで、本発明の実装基板検査装置における、外形形状データ選択の際、レーザ計測部で算出された傾斜角度データを用いることを限定されるものではなく、予め、検査対象物の任意の領域について、X線計測部の外形形状データを選択するよう設定を行う事で、傾斜角度算出処理を行うことなく、高速に外形形状データの合成が可能となる。   Here, in selecting the external shape data in the mounting board inspection apparatus of the present invention, the use of the inclination angle data calculated by the laser measurement unit is not limited, and an arbitrary region of the inspection object is previously determined. By setting the external shape data of the X-ray measurement unit to be selected, the external shape data can be synthesized at high speed without performing the tilt angle calculation process.

本発明の実施例1における実装基板検査装置の構成図1 is a configuration diagram of a mounting board inspection apparatus according to a first embodiment of the present invention. 本発明の実施例1における実装基板検査装置のレーザ計測手法による高さデータ及び傾斜角データを示す図The figure which shows the height data and inclination-angle data by the laser measurement method of the mounting board inspection apparatus in Example 1 of this invention. 本発明の実施例1における実装基板検査装置のレーザ計測手法による傾斜角データ算出手法を説明するための図The figure for demonstrating the inclination angle data calculation method by the laser measurement method of the mounting board inspection apparatus in Example 1 of this invention 本発明の実施例1における実装基板検査装置のX線計測部でのプリント基板へのX線照射角を説明するための図The figure for demonstrating the X-ray irradiation angle to the printed circuit board in the X-ray measurement part of the mounting board inspection apparatus in Example 1 of this invention. 本発明の実施例1における実装基板検査装置のX線計測部でのX線透過画像の画像抽出を説明するための図The figure for demonstrating the image extraction of the X-ray transmission image in the X-ray measurement part of the mounting board inspection apparatus in Example 1 of this invention. 本発明の実施例1における実装基板検査装置のX線計測部での計測を模式的に説明するための図The figure for demonstrating typically the measurement in the X-ray-measurement part of the mounting board inspection apparatus in Example 1 of this invention. 本発明の実施例1における実装基板検査装置のX線計測部でのアーチファクト発生を説明するための図The figure for demonstrating the artifact generation | occurrence | production in the X-ray measurement part of the mounting board inspection apparatus in Example 1 of this invention. 本発明の実施例1における実装基板検査装置の外形形状データの選択を説明するための図The figure for demonstrating selection of the external shape data of the mounting board inspection apparatus in Example 1 of this invention 本発明の実施例1における実装基板検査装置のブロック図The block diagram of the mounting board inspection apparatus in Example 1 of this invention 従来のレーザ光を用いた三角測量方式の実装基板検査装置の構成図Configuration of conventional triangulation system mounting board inspection equipment using laser light 従来のレーザ光を用いた三角測量方式での実装基板検査装置の測定精度悪化を説明するための図The figure for demonstrating the measurement precision deterioration of the mounting board inspection apparatus by the triangulation method using the conventional laser beam 従来のX線を用いたラミノグラフィ方式での実装基板検査装置の構成図Configuration diagram of a mounting board inspection device using a conventional laminography method using X-rays 従来のX線を用いたラミノグラフィ方式の実装基板検査装置での断層画像の算出手法を説明するための図The figure for demonstrating the calculation method of the tomographic image in the mounting board inspection apparatus of the laminography system using the conventional X-ray 従来のX線を用いたラミノグラフィ方式の実装基板検査装置でのアーチファクトの発生する測定条件を説明するための図The figure for demonstrating the measurement conditions which the artifact generate | occur | produces in the mounting board inspection apparatus of the laminography system using the conventional X-ray 従来のX線を用いたラミノグラフィ方式の実装基板検査装置でのアーチファクト発生を説明するための図The figure for demonstrating generation | occurrence | production of the artifact in the mounting board inspection apparatus of the laminography system using the conventional X-ray. 従来のX線を用いたラミノグラフィ方式の実装基板検査装置での検査対象物付近に発生するアーチファクトを説明するための図The figure for demonstrating the artifact which generate | occur | produces in the vicinity of the test object in the mounting board inspection apparatus of the laminography system using the conventional X-ray.

符号の説明Explanation of symbols

1 レーザユニット
2 ポリゴンミラー
3 fθレンズ群
4 ミラー
5 検査対象物
6 プリント基板
7 集光レンズ群
8 PSD(位置検出素子)
9 計測検査ユニット
10 X線源
11 X線検出器
DESCRIPTION OF SYMBOLS 1 Laser unit 2 Polygon mirror 3 f (theta) lens group 4 Mirror 5 Inspection object 6 Printed circuit board 7 Condensing lens group 8 PSD (position detection element)
9 Measurement and inspection unit 10 X-ray source 11 X-ray detector

Claims (9)

実装基板検査装置であって、検査基板上の検査対象物の高さデータをレーザ三角測量により求めるレーザ計測部と、前記基板にX線を照射して撮影されるX線透過像より前記検査対象物の断面形状を算出して高さデータを計測するX線計測部とを備え、
前記レーザ計測部において計測された高さデータより検査対象物の外形形状の傾斜角を算出し、その算出された傾斜角に基づいてレーザ計測部において計測された高さデータと前記X線計測部において計測された高さデータとを選択的に切り替えて前記検査対象物を計測することを特徴とする実装基板検査装置。
A mounting board inspection apparatus comprising: a laser measurement unit that obtains height data of an inspection object on an inspection board by laser triangulation; and the inspection object from an X-ray transmission image photographed by irradiating the substrate with X-rays An X-ray measuring unit that calculates the height data by calculating the cross-sectional shape of the object,
The inclination angle of the outer shape of the inspection object is calculated from the height data measured in the laser measurement unit, and the height data measured in the laser measurement unit based on the calculated inclination angle and the X-ray measurement unit A mounting board inspection apparatus, wherein the inspection object is measured by selectively switching the height data measured in step (1).
前記X線計測部は、検査対象物の移動方向であるY軸に対し30度から150度の照射角度範囲で、X線を照射して撮影されるX線透過画像を用いて検査対象物の断面形状を算出することを特徴とする請求項1に記載の実装基板検査装置。   The X-ray measurement unit uses an X-ray transmission image captured by irradiating X-rays in an irradiation angle range of 30 degrees to 150 degrees with respect to the Y axis that is the moving direction of the inspection object. The mounting board inspection apparatus according to claim 1, wherein a cross-sectional shape is calculated. 実装基板検査装置であって、検査対象物が搭載されている検査基板に対し垂直方向となるZ軸方向から、X軸方向に走査しながらレーザ光を照射して前記レーザ光の検査対象物からの反射光を位置検出素子受光面上に集光し、前記位置検出素子からの出力信号により前記検査基板上の検査対象物の高さデータを計測する三角測量の原理によるレーザ計測部と、前記検査基板上の検査対象物をZ軸方向に貫通する所定の広がり角を有するX線を照射し、X線光路中を検査基板がY軸方向に直線移動する際に撮影されるX線透過画像を用いて前記検査対象物の断面形状を算出して高さデータを計測するX線計測部と、前記レーザ計測部において計測された高さデータより検査対象物の外形形状の傾斜角を算出する傾斜角抽出手段とを備え、
前記傾斜角抽出手段にて算出された傾斜角に基づいて、前記レーザ計測部において計測された高さデータとX線計測部において計測された高さデータとを選択的に切り替えて検査対象物を検査することを特徴とする実装基板検査装置。
A mounting board inspection apparatus, wherein a laser beam is irradiated while scanning in the X-axis direction from a Z-axis direction that is perpendicular to an inspection board on which an inspection object is mounted. A laser measurement unit based on the principle of triangulation that collects the reflected light on the light-receiving surface of the position detection element and measures the height data of the inspection object on the inspection substrate from the output signal from the position detection element; An X-ray transmission image taken when X-rays having a predetermined divergence angle penetrating the inspection object on the inspection substrate in the Z-axis direction are taken and the inspection substrate linearly moves in the Y-axis direction in the X-ray optical path. The X-ray measurement unit that calculates the cross-sectional shape of the inspection object using the sensor and measures height data, and the inclination angle of the outer shape of the inspection object is calculated from the height data measured by the laser measurement unit An inclination angle extracting means,
Based on the tilt angle calculated by the tilt angle extracting means, the height measurement data measured by the laser measurement unit and the height data measured by the X-ray measurement unit are selectively switched to select the inspection object. A mounting board inspection apparatus characterized by inspecting.
前記X線計測部のZ軸方向に検査対象物を貫通する所定の広がり角を有するX線を、検査対象物の移動方向であるY軸に対し30度から150度の照射角度範囲で照射して撮影されるX線透過画像を用いて検査対象物の断面形状を算出することを特徴とする請求項3に記載の実装基板検査装置。 X-rays having a predetermined divergence angle penetrating the inspection object in the Z-axis direction of the X-ray measuring unit are irradiated in an irradiation angle range of 30 to 150 degrees with respect to the Y-axis that is the moving direction of the inspection object. The mounting board inspection apparatus according to claim 3, wherein a cross-sectional shape of the inspection object is calculated using an X-ray transmission image photographed in this manner. 前記X線源からのX線の所定の広がり角は、X線源よりZ軸方向に120度のコーンビーム状であることを特徴とする請求項4に記載の実装基板検査装置。 5. The mounting board inspection apparatus according to claim 4, wherein the predetermined spread angle of the X-ray from the X-ray source is a cone beam shape of 120 degrees in the Z-axis direction from the X-ray source. 検査対象物の傾斜部の傾斜角が45度から90度の場合、X線計測部からの高さデータを選択する事を特徴とする請求項3に記載の実装基板検査装置。 The mounting board inspection apparatus according to claim 3, wherein when the inclination angle of the inclined portion of the inspection object is 45 degrees to 90 degrees, the height data from the X-ray measurement section is selected. 前記レーザ計測部による検査対象物の傾斜部の傾斜角度抽出手段は、隣接する測定画素間の高さデータの差を用いて算出することを特徴とする請求項3に記載の実装基板装置。 The mounting substrate apparatus according to claim 3, wherein the inclination angle extraction unit of the inclined portion of the inspection object by the laser measurement unit calculates using a difference in height data between adjacent measurement pixels. 前記傾斜角度抽出手段は、Y軸方向に隣接する測定画素間距離をdとし、計測された画素の高さデータをそれぞれ、P(x、y−1)、P(x、y)とし、Y軸方向に隣接する画素間の傾斜角をα(x、y)とすると、
α(x、y)=tan-1(P(x、y)−P(x、y−1))/d
により抽出することを特徴とする請求項7に記載の実装基板検査装置。
The tilt angle extraction means sets the distance between the measurement pixels adjacent in the Y-axis direction as d, the measured pixel height data as P (x, y−1), P (x, y), and Y When the inclination angle between pixels adjacent in the axial direction is α (x, y),
α (x, y) = tan −1 (P (x, y) −P (x, y−1)) / d
The mounting board inspection apparatus according to claim 7, wherein the extraction is performed by the following.
前記隣接する測定画素間の間隔dは10μm、または20μmのいずれかであることを特徴とする請求項8に記載の実装基板検査装置。 The mounting substrate inspection apparatus according to claim 8, wherein a distance d between the adjacent measurement pixels is 10 μm or 20 μm.
JP2004186086A 2004-06-24 2004-06-24 Mounting board inspection equipment Expired - Fee Related JP4449596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004186086A JP4449596B2 (en) 2004-06-24 2004-06-24 Mounting board inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004186086A JP4449596B2 (en) 2004-06-24 2004-06-24 Mounting board inspection equipment

Publications (2)

Publication Number Publication Date
JP2006010429A true JP2006010429A (en) 2006-01-12
JP4449596B2 JP4449596B2 (en) 2010-04-14

Family

ID=35777859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004186086A Expired - Fee Related JP4449596B2 (en) 2004-06-24 2004-06-24 Mounting board inspection equipment

Country Status (1)

Country Link
JP (1) JP4449596B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191217A (en) * 2010-03-15 2011-09-29 Omron Corp X-ray inspection method, x-ray inspection device, and x-ray inspection program
JP2012149913A (en) * 2011-01-17 2012-08-09 Yamaha Motor Co Ltd Radiation inspection device, radiation inspection method, and imaging condition calculation device
CN104837302A (en) * 2014-02-06 2015-08-12 欧姆龙株式会社 Quality control system and internal checking device
WO2015118997A1 (en) * 2014-02-06 2015-08-13 オムロン株式会社 Quality management system
JP2017032285A (en) * 2015-07-29 2017-02-09 株式会社日立ハイテクサイエンス X-ray transmission inspection device and x-ray transmission inspection method
CN110249199A (en) * 2016-11-24 2019-09-17 株式会社新川 The height detection method of engagement device and subject
WO2021242392A3 (en) * 2020-03-27 2022-03-17 Battelle Memorial Institute Multimodal inspection system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191217A (en) * 2010-03-15 2011-09-29 Omron Corp X-ray inspection method, x-ray inspection device, and x-ray inspection program
JP2012149913A (en) * 2011-01-17 2012-08-09 Yamaha Motor Co Ltd Radiation inspection device, radiation inspection method, and imaging condition calculation device
CN104837302A (en) * 2014-02-06 2015-08-12 欧姆龙株式会社 Quality control system and internal checking device
WO2015118997A1 (en) * 2014-02-06 2015-08-13 オムロン株式会社 Quality management system
JP2015148507A (en) * 2014-02-06 2015-08-20 オムロン株式会社 Quality control system
CN105917217A (en) * 2014-02-06 2016-08-31 欧姆龙株式会社 Quality management system
CN105917217B (en) * 2014-02-06 2019-10-18 欧姆龙株式会社 Quality control system
JP2017032285A (en) * 2015-07-29 2017-02-09 株式会社日立ハイテクサイエンス X-ray transmission inspection device and x-ray transmission inspection method
CN110249199A (en) * 2016-11-24 2019-09-17 株式会社新川 The height detection method of engagement device and subject
WO2021242392A3 (en) * 2020-03-27 2022-03-17 Battelle Memorial Institute Multimodal inspection system
US11756157B2 (en) 2020-03-27 2023-09-12 Battelle Memorial Institute Multimodal inspection system

Also Published As

Publication number Publication date
JP4449596B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
JP4631460B2 (en) X-ray inspection method
JP5125423B2 (en) Method of inspecting solder electrode by X-ray tomographic image and board inspection apparatus using this method
JP5493360B2 (en) X-ray inspection method, X-ray inspection apparatus and X-ray inspection program
CN107843606B (en) X-ray inspection apparatus, control method thereof, and recording medium
US20020015520A1 (en) Automatic X-ray determination of solder joint and view delta Z values from a laser mapped reference surface for circuit board inspection using X-ray laminography
US7245693B2 (en) X-ray inspection system having on-axis and off-axis sensors
JPH02501411A (en) Automatic laminography system for testing electronics
US9157874B2 (en) System and method for automated x-ray inspection
JP2011075470A (en) Image processing program, image processing method, and image processing device
JP2019197018A (en) Flatness detection method, flatness detection device and flatness detection program
JP5830928B2 (en) Inspection area setting method and X-ray inspection system
JP4449596B2 (en) Mounting board inspection equipment
JP4591103B2 (en) X-ray CT inspection apparatus and X-ray CT inspection method
TWI424178B (en) Method for reducing reconstruction artifacts and printed circuit board inspection apparatus
CN111247424A (en) Inspection position specifying method, three-dimensional image generating method, and inspection device
JP2009139285A (en) Solder ball inspection device, its inspection method, and shape inspection device
JP4228773B2 (en) Board inspection equipment
JP2011145160A (en) Device and method for multi-focus inspection
JP5303911B2 (en) Method for adjusting imaging control in automatic inspection apparatus using X-ray and automatic inspection apparatus using X-ray
JP6676023B2 (en) Inspection position specifying method and inspection device
JP2003240736A (en) X-ray section testing method and apparatus thereof
JP4333349B2 (en) Mounting appearance inspection method and mounting appearance inspection apparatus
JP4650076B2 (en) Circuit pattern inspection apparatus and circuit pattern inspection method
JPH07113534B2 (en) Precision contour visual measurement method and device
JP2011080944A (en) X-ray ct apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees