JP5120365B2 - Toroidal continuously variable transmission and vehicle equipped with toroidal continuously variable transmission - Google Patents

Toroidal continuously variable transmission and vehicle equipped with toroidal continuously variable transmission Download PDF

Info

Publication number
JP5120365B2
JP5120365B2 JP2009267016A JP2009267016A JP5120365B2 JP 5120365 B2 JP5120365 B2 JP 5120365B2 JP 2009267016 A JP2009267016 A JP 2009267016A JP 2009267016 A JP2009267016 A JP 2009267016A JP 5120365 B2 JP5120365 B2 JP 5120365B2
Authority
JP
Japan
Prior art keywords
continuously variable
variable transmission
pressing device
toroidal
cam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009267016A
Other languages
Japanese (ja)
Other versions
JP2011112104A (en
Inventor
俊郎 豊田
尚 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2009267016A priority Critical patent/JP5120365B2/en
Publication of JP2011112104A publication Critical patent/JP2011112104A/en
Application granted granted Critical
Publication of JP5120365B2 publication Critical patent/JP5120365B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)

Description

この発明は、自動車用自動変速機として利用するトロイダル型無段変速機の改良に関する。具体的には、停止時にエンジンを自動的に停止させるアイドリングストップ機能を備えたアイドリングストップ車に搭載した場合でも、伝達効率が高く、しかも有害な滑りが発生しにくい構造を、特に大型化する事なく実現可能にするものである。   The present invention relates to an improvement of a toroidal type continuously variable transmission used as an automatic transmission for an automobile. Specifically, even when installed in an idling stop vehicle equipped with an idling stop function that automatically stops the engine when the vehicle is stopped, a structure that has high transmission efficiency and is less likely to cause harmful slippage is particularly large. It makes it feasible.

自動車用自動変速機としてトロイダル型無段変速機が研究され、一部で実施されている。トロイダル型無段変速機は、互いに同心に配置されて相対回転する入力側ディスクと出力側ディスクとの軸方向側面同士の間に複数個のパワーローラを挟持し、これら各パワーローラを介して、前記入力側ディスクから前記出力側ディスクに動力を伝達する。そして、これら各パワーローラの傾斜角度を変える事により、これら両ディスク同士の間の変速比を調節する。この様なトロイダル型無段変速機の運転時に、これら両ディスクの軸方向側面と前記各パワーローラの周面との転がり接触部(トラクション部)には、トラクションオイルの油膜が形成され、前記両ディスク同士の間で動力は、この油膜を介して伝達される。トロイダル型無段変速機では、この様な油膜を介しての動力伝達が確実に行われる様にする為に、押圧装置を設けて、前記両ディスクを互いに近づく方向に押圧している。   Toroidal type continuously variable transmissions have been studied and partially implemented as automatic transmissions for automobiles. The toroidal continuously variable transmission has a plurality of power rollers sandwiched between axial side surfaces of an input side disk and an output side disk that are arranged concentrically and rotate relative to each other, and through these power rollers, Power is transmitted from the input side disk to the output side disk. Then, the gear ratio between these two disks is adjusted by changing the inclination angle of each of these power rollers. During operation of such a toroidal-type continuously variable transmission, an oil film of traction oil is formed on the rolling contact portion (traction portion) between the axial side surface of these two disks and the peripheral surface of each power roller. Power is transmitted between the disks via this oil film. In the toroidal-type continuously variable transmission, in order to ensure that power transmission through such an oil film is reliably performed, a pressing device is provided to press the disks in a direction approaching each other.

この様な押圧装置としては、機械式の押圧装置であるローディングカム装置が、一般的に使用されているが、油圧式アクチュエータを使用する事も研究されて、広く知られている。このうちのローディングカム装置は、伝達トルクの大きさに比例した押圧力を機械的に発生する為、押圧装置の運転に伴って特に動力を消費しない、と言った利点を有する。但し、伝達すべきトルクの大きさと必要とする押圧力とは、必ずしも比例しない為、前記ローディングカム装置のみでは、運転状況(トラクションオイルの温度、変速比等)の変化に拘らず、前記各トラクション部の面圧を常に適正値に維持する事はできない。具体的には、これら各トラクション部で、グロススリップと呼ばれる過大な滑りが発生する事を確実に防止すべく、前記ローディングカム装置が発生する押圧力を十分に大きく(トロイダル型無段変速機の運転時に要求される押圧力の最大値に規制)すると、運転状況によっては、前記各トラクション部の面圧が過大となり、トロイダル型無段変速機の伝達効率及び耐久性が低下する。   As such a pressing device, a loading cam device which is a mechanical pressing device is generally used, but the use of a hydraulic actuator has been studied and widely known. Among these, the loading cam device mechanically generates a pressing force proportional to the magnitude of the transmission torque, and therefore has an advantage that power is not particularly consumed when the pressing device is operated. However, since the magnitude of the torque to be transmitted and the required pressing force are not necessarily proportional, the traction traction can be achieved only with the loading cam device, regardless of changes in operating conditions (temperature of traction oil, gear ratio, etc.). The surface pressure of the part cannot always be maintained at an appropriate value. Specifically, the pressing force generated by the loading cam device is sufficiently large (in the toroidal type continuously variable transmission) in order to surely prevent the occurrence of excessive slip called gross slip in each of these traction sections. If the maximum pressing force required during operation is regulated), the surface pressure of each of the traction sections becomes excessive depending on the driving condition, and the transmission efficiency and durability of the toroidal continuously variable transmission are reduced.

これに対して油圧アクチュエータの場合には、運転状況に応じて適切な押圧力を発生させられる代わりに、油圧発生用のポンプを運転する為に動力が消費され、この動力消費分だけ、トロイダル型無段変速機全体としての効率が低下する。この様な効率の低下は、駆動源であるエンジンの出力が小さい、低速走行時に顕著になる。又、このポンプが起動されてから前記油圧アクチュエータ内の油圧が十分に上昇するまでに或る程度時間を要する事が避けられない。この為、例えば、停止時にエンジンを自動的に停止させる、所謂アイドリングストップ機能を備えた車両にトロイダル型無段変速機を搭載した場合、走行開始直後には油圧アクチュエータ内の油圧が不足し、各トラクション部でグロススリップが発生し易くなる。この様な状況は、アイドリングストップ後の発進時に限らず、停止状態からの急発進時にも発生する。前記ポンプの駆動を、エンジンではなく電動モータにより行う様にし、エンジンの停止時にもこの電動モータにより前記ポンプを駆動し続ければ、アイドリングストップ状態からの発進時に於ける前記グロススリップの発生を防止できる。但し、前記油圧アクチュエータで必要とされる油圧を電動モータにより賄おうとした場合、この電動モータとして或る程度大型のものが必要になる。そして、バッテリーやオルタネータを大型化する必要が生じる等、小型・軽量化の妨げとなるだけでなく、車両全体としての効率の低下が避けられない。又、停止状態からの急発進時に於けるグロススリップ防止には不十分である。   On the other hand, in the case of a hydraulic actuator, instead of being able to generate an appropriate pressing force according to the operating situation, power is consumed to operate the pump for generating hydraulic pressure. The efficiency of the continuously variable transmission as a whole decreases. Such a decrease in efficiency becomes conspicuous during low-speed traveling where the output of the engine that is the drive source is small. In addition, it is inevitable that a certain amount of time is required until the hydraulic pressure in the hydraulic actuator sufficiently increases after the pump is started. For this reason, for example, when a toroidal continuously variable transmission is mounted on a vehicle equipped with a so-called idling stop function that automatically stops the engine when stopped, the hydraulic pressure in the hydraulic actuator is insufficient immediately after the start of traveling. Gloss slip easily occurs in the traction section. Such a situation occurs not only at the time of start after idling stop but also at the time of sudden start from the stop state. If the pump is driven by an electric motor instead of the engine, and the pump is continuously driven by the electric motor even when the engine is stopped, the occurrence of the gloss slip at the start from the idling stop state can be prevented. . However, when an electric motor is used to supply the hydraulic pressure required by the hydraulic actuator, a certain size of the electric motor is required. And not only does it hinder downsizing and weight reduction, such as the need to increase the size of the battery and alternator, but also the reduction in efficiency of the entire vehicle is inevitable. Moreover, it is insufficient for preventing gross slip at the time of sudden start from the stop state.

一方、ローディングカム装置と油圧式アクチュエータとを組み合わせた複合型押圧装置も、特許文献1に記載される等により従来から知られている。図4は、この特許文献1に記載された、複合型押圧装置を備えたトロイダル型無段変速機の1例を示している。次に、この従来構造の1例に就いて説明する。   On the other hand, a composite pressing device in which a loading cam device and a hydraulic actuator are combined is also conventionally known as described in Patent Document 1. FIG. 4 shows an example of a toroidal continuously variable transmission provided with a composite pressing device described in Patent Document 1. Next, an example of this conventional structure will be described.

入力回転軸1の両端部に1対の入力側ディスク2a、2bを、ボールスプラインを介して、この入力回転軸1と同軸に支持し、これら両入力側ディスク2a、2bを遠近動を可能に、且つ、同期して回転する様にしている。又、前記入力回転軸1の中間部周囲に、この入力回転軸1とは独立した回転を可能に、且つ、この入力回転軸1と同軸に支持した出力スリーブ3の両端部に1対の出力側ディスク4a、4bを、この出力スリーブ3と同軸にスプライン係合させて、これら両出力側ディスク4a、4bが、同期して回転する様にしている。これら各ディスク2a、2b、4a、4bの互いに対向する軸方向側面は、それぞれ断面円弧形の凹面(トロイダル曲面)としている。   A pair of input-side disks 2a and 2b are supported on both ends of the input rotating shaft 1 coaxially with the input rotating shaft 1 via a ball spline so that both the input-side disks 2a and 2b can be moved in the near and far directions. In addition, the rotation is synchronized. Further, a pair of outputs can be provided at both ends of the output sleeve 3 that can be rotated independently of the input rotary shaft 1 and coaxially with the input rotary shaft 1 around the intermediate portion of the input rotary shaft 1. The side disks 4a and 4b are splined coaxially with the output sleeve 3 so that both the output side disks 4a and 4b rotate synchronously. The axial side surfaces of the disks 2a, 2b, 4a, and 4b facing each other are concave surfaces (toroidal curved surfaces) each having an arc cross section.

又、前記入力回転軸1の軸方向に関して、互いに対向する入力側ディスク2aと出力側ディスク4aとの間部分、及び、互いに対向する入力側ディスク2bと出力側ディスク4bとの間部分に、支持部材であるトラニオン5、5を、それぞれ前記入力回転軸1の軸方向に対し捩れ位置の方向に、揺動変位を可能に配置している。そして、前記各トラニオン5、5にそれぞれパワーローラ6、6を1個ずつ、回転自在に支持し、部分球面状の凸曲面であるこれら各パワーローラ6、6の外周面を、前記各ディスク2a、2b、4a、4bの軸方向側面の転がり接触させている。又、これら各面の転がり接触部である各トラクション部の面圧を確保し、これら各トラクション部での動力伝達を可能にすべく、前記各ディスク2a、2b、4a、4bを、互いに対向する軸方向側面同士を近づけ合う方向に押圧する、複合型押圧装置7を設けている。   Further, with respect to the axial direction of the input rotating shaft 1, it is supported by a portion between the input side disk 2a and the output side disk 4a facing each other and a portion between the input side disk 2b and the output side disk 4b facing each other. The trunnions 5 and 5 that are members are arranged so as to be able to swing and displace in the direction of the twisted position with respect to the axial direction of the input rotary shaft 1. The trunnions 5 and 5 each support one power roller 6 and 6 rotatably, and the outer peripheral surface of each power roller 6 and 6 which is a partially spherical convex curved surface is formed on each disk 2a. 2b, 4a and 4b are in rolling contact with the side surfaces in the axial direction. Further, the disks 2a, 2b, 4a, and 4b are opposed to each other in order to secure the surface pressure of each traction portion that is a rolling contact portion of each surface and to enable power transmission in each traction portion. A composite pressing device 7 is provided for pressing in the direction in which the axial side surfaces approach each other.

この複合型押圧装置7は、機械式押圧装置であるローディングカム装置8と、油圧式押圧装置である油圧アクチュエータ9とから成る。このうちのローディングカム装置8は、前側(駆動源側で図4の左側)の入力側ディスク2aに加えて、この入力側ディスク2aと同心のカム板10と、それぞれが転動体である複数個のローラ11、11とを備える。これら入力側ディスク2aとカム板10との互いに対向する軸方向側面に、それぞれが円周方向に関する凹凸面である、被駆動側カム面12と駆動側カム面13とを設けている。前記各ローラ11、11は、それぞれの中心軸を放射状に配置した状態で、前記両カム面12、13同士の間に挟持している。又、前記カム板10を、駆動軸14により回転駆動自在としている。   The composite pressing device 7 includes a loading cam device 8 that is a mechanical pressing device and a hydraulic actuator 9 that is a hydraulic pressing device. Among them, the loading cam device 8 includes a plurality of cam plates 10 that are concentric with the input side disk 2a, in addition to the input side disk 2a on the front side (the left side in FIG. 4 on the drive source side), each of which is a rolling element. The rollers 11 and 11 are provided. A driven cam surface 12 and a driving cam surface 13, which are concave and convex surfaces in the circumferential direction, are provided on the axial side surfaces of the input side disk 2 a and the cam plate 10 facing each other. The rollers 11 and 11 are sandwiched between the cam surfaces 12 and 13 with their central axes arranged radially. Further, the cam plate 10 can be driven to rotate by a drive shaft 14.

上述の様な、特許文献1に記載された従来構造の場合、前記ローディングカム装置8は、トロイダル型無段変速機の運転時に必要となる押圧力の最大値を、前記各トラクション部の面圧を上昇させる方向に発生する。これに対して前記油圧アクチュエータ9は、これら各トラクション部の面圧を低下させる方向に押圧力を発生させるもので、この押圧力を、前記トロイダル型無段変速機の運転状況に応じて変化させる。そして、前記各トラクション部の面圧を、運転状況に応じた最適値に制御すると共に、前記油圧アクチュエータの故障時にも、前記各トラクション部でグロススリップが発生する事を防止する。   In the case of the conventional structure described in Patent Document 1 as described above, the loading cam device 8 determines the maximum value of the pressing force required during operation of the toroidal type continuously variable transmission as the surface pressure of each traction section. Occurs in the direction of rising. On the other hand, the hydraulic actuator 9 generates a pressing force in a direction in which the surface pressure of each of these traction portions is reduced, and this pressing force is changed according to the operating state of the toroidal continuously variable transmission. . And while controlling the surface pressure of each said traction part to the optimal value according to a driving | running condition, it is prevented that gross slip generate | occur | produces in each said traction part also at the time of the failure of the said hydraulic actuator.

尚、特許文献2には、ローディングカム装置により、必要最小限の押圧力を発生させ、運転状況に応じて不足する押圧力を油圧アクチュエータにより付加する、トロイダル型無段変速機に関する発明が記載されている。又、特許文献3には、高速回転時に生じる遠心力に基づいて油圧アクチュエータに押圧力を惹起させ、ローディングカム装置のみでは高速運転時に不足する押圧力を、当該油圧アクチュエータによって補完する、トロイダル型無段変速機に関する発明が記載されている。   Patent Document 2 describes an invention relating to a toroidal type continuously variable transmission that generates a minimum necessary pressing force by a loading cam device and adds a pressing force that is insufficient depending on an operation situation by a hydraulic actuator. ing. Further, Patent Document 3 discloses a toroidal type non-rotating type in which a pressing force is generated in a hydraulic actuator based on a centrifugal force generated during high-speed rotation, and the pressing force that is insufficient during high-speed operation with only a loading cam device is supplemented by the hydraulic actuator. An invention relating to a step transmission is described.

上述の様な各従来構造の場合、前記トロイダル型無段変速機の運転状況に拘らず前記各トラクション部の面圧を適正値にし、これら各トラクション部での伝達効率を確保する面からは優れている。但し、トロイダル型無段変速機全体としての効率を向上させるべく、前記油圧アクチュエータに導入する油圧を発生させる為のポンプによる損失をより一層低減する面からは、改良の余地がある。即ち、前記特許文献1〜3に記載された何れの従来構造の場合も、前記トロイダル型無段変速機に入力されるトルク(入力トルク)の大きさとローディングカム装置が発生する押圧力の大きさとの関係を変化させるものではない。この為、例えば変速比や油温等の条件が同じであると仮定した場合には、前記入力トルクの大小に拘らず、前記油圧アクチュエータが発生する押圧力の大きさと、前記ローディングカム装置が発生する押圧力の大きさとの割合は同じになる。   In the case of each conventional structure as described above, the surface pressure of each traction part is set to an appropriate value regardless of the operation state of the toroidal continuously variable transmission, and it is excellent in terms of ensuring the transmission efficiency in each traction part. ing. However, in order to further improve the efficiency of the entire toroidal type continuously variable transmission, there is room for improvement in terms of further reducing the loss caused by the pump for generating the hydraulic pressure introduced into the hydraulic actuator. That is, in any of the conventional structures described in Patent Documents 1 to 3, the magnitude of the torque (input torque) input to the toroidal type continuously variable transmission and the magnitude of the pressing force generated by the loading cam device It does not change the relationship. For this reason, for example, assuming that the conditions such as gear ratio and oil temperature are the same, the magnitude of the pressing force generated by the hydraulic actuator and the loading cam device are generated regardless of the magnitude of the input torque. The ratio to the magnitude of the pressing force to be made is the same.

この為、例えば特許文献2に記載された従来構造の場合には、前記入力トルクが小さい低速走行時にも前記油圧アクチュエータに油圧を導入する必要がある。この入力トルクが小さい状態、即ち、走行用エンジンの出力が低い状態で前記油圧アクチュエータに油圧を導入する為のポンプを駆動する事は、前記走行用エンジンの効率を悪化させる比率が高くなる。この事は、例えば都市部を低速走行する様な場合の燃費悪化の原因となる。又、特許文献1に記載された従来構造の場合も、ローディングカム装置が発生する押圧力が過大である場合には、低速走行時にも前記油圧アクチュエータに油圧を導入する為のポンプを駆動しなければならなくなり、燃費悪化の原因となる。更に、特許文献3に記載された従来構造の場合には、高速回転時に不足する押圧力を補完する事のみを考慮したものであり、変速比、油温等の変化に対応し、運転状況に応じて最適の押圧力を得られる構造ではない。   For this reason, for example, in the case of the conventional structure described in Patent Document 2, it is necessary to introduce hydraulic pressure to the hydraulic actuator even when the input torque is low. Driving the pump for introducing hydraulic pressure to the hydraulic actuator in a state where the input torque is small, that is, in a state where the output of the traveling engine is low, increases the ratio of deteriorating the efficiency of the traveling engine. This causes a deterioration in fuel consumption when traveling at a low speed in an urban area, for example. Also in the case of the conventional structure described in Patent Document 1, if the pressing force generated by the loading cam device is excessive, the pump for introducing hydraulic pressure to the hydraulic actuator must be driven even during low-speed traveling. This will cause a deterioration in fuel consumption. Further, in the case of the conventional structure described in Patent Document 3, only the supplement of the pressing force that is insufficient during high-speed rotation is taken into consideration, and it corresponds to changes in gear ratio, oil temperature, etc. Accordingly, it is not a structure that can obtain the optimum pressing force.

本発明は、上述の様な事情に鑑みて、押圧力の最適値が変動し易い高速走行時に、運転状況に応じて最適の押圧力を得られる構造で、従来構造の場合に伝達効率が悪化し易かった低速走行時にも優れた伝達効率を得る事ができ、しかも、発進時や低速走行時にトラクション部で過大な滑りを発生する事がない構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention has a structure in which an optimum pressing force can be obtained according to the driving situation during high-speed traveling where the optimum value of the pressing force is likely to fluctuate. The invention has been invented to realize a structure that can obtain excellent transmission efficiency even during low-speed traveling, which is easy to perform, and that does not cause excessive slippage in the traction section during starting or low-speed traveling.

本発明のトロイダル型無段変速機は、前述した従来から知られているトロイダル型無段変速機と同様に、入力側ディスク及び出力側ディスクと、複数個の支持部材と、複数個のパワーローラと、押圧装置とを備える。
このうちの入力側ディスク及び出力側ディスクは、それぞれが断面円弧形の凹面である軸方向側面同士を互いに対向させた状態で、互いに同心に、且つ、相対回転を可能に支持されている。
又、前記各支持部材は、前記各ディスクの軸方向に関してこれら各ディスクの軸方向側面同士の間部分に、それぞれこれら各ディスクの軸方向に対し捩れ位置の方向に、揺動変位を可能に配置されている。
又、前記各パワーローラは、前記各支持部材に回転自在に支持された状態で、部分球面状の凸曲面であるそれぞれの外周面を、前記各ディスクの軸方向側面に転がり接触させている。
更に、前記押圧装置は、前記各ディスクを、互いに対向する軸方向側面同士を近づけ合う方向に押圧する。
The toroidal type continuously variable transmission of the present invention includes an input side disk, an output side disk, a plurality of support members, and a plurality of power rollers in the same manner as the previously known toroidal type continuously variable transmission. And a pressing device.
Of these, the input side disk and the output side disk are supported concentrically and capable of relative rotation, with the axial side surfaces, which are concave surfaces each having an arcuate cross section, facing each other.
The support members are arranged between the axial side surfaces of the disks with respect to the axial direction of the disks so as to be able to swing and displace in the direction of twist relative to the axial direction of the disks. Has been.
In addition, each of the power rollers is in a state of being rotatably supported by each of the support members, and each outer peripheral surface which is a partially spherical convex curved surface is in rolling contact with the axial side surface of each of the disks.
Further, the pressing device presses each of the disks in a direction in which the axial side surfaces facing each other approach each other.

特に、本発明のトロイダル型無段変速機に於いては、前記押圧装置は、機械式押圧装置と油圧式押圧装置とを組み合わせて、これら両押圧装置が発生する押圧力の和により前記各ディスクを押圧する、複合型押圧装置である。
そして、この複合型押圧装置を構成する機械式押圧装置が発生する押圧力の、同じく油圧式押圧装置が発生する押圧力に対する割合を、前記入力軸と前記出力軸との間を通過する動力の発生源である駆動源部分の発生トルクが低い領域で、同じく高い領域に比べて高くしている。
In particular, in the toroidal-type continuously variable transmission according to the present invention, the pressing device is a combination of a mechanical pressing device and a hydraulic pressing device, and each disk is determined by the sum of the pressing forces generated by both the pressing devices. Is a composite pressing device.
Then, the ratio of the pressing force generated by the mechanical pressing device constituting the composite pressing device to the pressing force generated by the hydraulic pressing device is the ratio of the power passing between the input shaft and the output shaft. In the region where the generated torque of the drive source portion which is the generation source is low, it is higher than that in the same high region.

上述の様な本発明のトロイダル型無段変速機を実施する場合、具体的には、請求項2に記載した発明の様に、前記機械式押圧装置を、軸方向に隣接した状態で設けられて回転方向に相対変位する1対の部材の互いに対向する軸方向片側面に、それぞれ円周方向に関する凹凸として形成された1対のカム面と、これら両カム面同士の間に挟持された複数個の転動体とを備えたローディングカム装置とする。そして、これら両カム面のうちの少なくとも一方のカム面のカムリードを、当該カム面の底部寄り部分で頂部寄り部分よりも小さくする。   When implementing the toroidal type continuously variable transmission of the present invention as described above, specifically, as in the invention described in claim 2, the mechanical pressing device is provided in an axially adjacent state. And a pair of cam surfaces formed as irregularities in the circumferential direction on one side surface of the pair of members that are displaced relative to each other in the rotational direction, and a plurality of the cam surfaces sandwiched between the two cam surfaces. A loading cam device including a single rolling element is provided. The cam lead of at least one of the two cam surfaces is made smaller at the portion near the bottom of the cam surface than at the portion near the top.

又、請求項3に記載したトロイダル型無段変速機を搭載した車両は、エンジンによりトロイダル型無段変速機を介して駆動輪を回転駆動する事により走行する車両で、停止時に前記エンジンを自動的に停止させるアイドリングストップ機能を備える。
特に、請求項3に記載したトロイダル型無段変速機を搭載した車両に於いては、前記トロイダル型無段変速機が、請求項1〜2のうちの何れか1項に記載したトロイダル型無段変速機である。
Further, a vehicle equipped with the toroidal continuously variable transmission according to claim 3 is a vehicle that travels by driving a drive wheel through the toroidal continuously variable transmission by means of an engine. It has an idling stop function that stops automatically.
In particular, in a vehicle equipped with the toroidal type continuously variable transmission according to claim 3, the toroidal type continuously variable transmission is provided with the toroidal type continuously variable transmission according to any one of claims 1 to 2. It is a step transmission.

上述の様に構成する本発明のトロイダル型無段変速機によれば、押圧力の最適値が変動し易い高速走行時に、運転状況に応じて最適の押圧力を得られる構造で、従来構造の場合に伝達効率が悪化し易かった低速走行時に優れた伝達効率を得る事ができ、しかも、発進時や低速走行時にトラクション部で過大な滑りを発生する事がない構造を実現できる。   According to the toroidal-type continuously variable transmission of the present invention configured as described above, the optimum pressing force can be obtained in accordance with the driving situation during high-speed travel where the optimum value of the pressing force is likely to fluctuate. In this case, it is possible to obtain an excellent transmission efficiency during low-speed traveling, in which the transmission efficiency is likely to deteriorate, and it is possible to realize a structure that does not cause excessive slip in the traction section during start-up or low-speed traveling.

先ず、押圧力の最適値が変動し易い高速走行時に、運転状況に応じて最適の押圧力を得る事は、押圧装置を、機械式押圧装置と油圧式押圧装置とを組み合わせた複合型押圧装置とする事により図れる。例えば、変速比、油温等の運転状況の変化に伴って前記押圧力の最適値が、伝達すべきトルクの大きさとは独立して変化しても、前記油圧式押圧装置に導入する油圧を調節する事により、前記最適な押圧力を得られる。この結果、高速走行時に於ける伝達効率及び耐久性の確保を図れる。   First, to obtain the optimum pressing force according to the driving situation during high-speed travel where the optimum value of the pressing force is likely to fluctuate, the pressing device is a combined pressing device that combines a mechanical pressing device and a hydraulic pressing device. You can plan by doing. For example, even if the optimum value of the pressing force changes independently of the magnitude of torque to be transmitted with changes in operating conditions such as gear ratio and oil temperature, the hydraulic pressure to be introduced into the hydraulic pressing device is reduced. The optimum pressing force can be obtained by adjusting. As a result, transmission efficiency and durability during high-speed traveling can be ensured.

又、低速走行時には押圧力を、前記複合型押圧装置を構成する前記機械式押圧装置のみで発生させるか、仮に前記油圧式押圧装置により押圧力を発生させても、その割合を僅少に抑えられる。この為、エンジン等の駆動源の出力が低い低速走行時には、油圧発生用のポンプを駆動する必要がないか、仮に駆動させる場合でも、低圧の油圧を発生させる為だけの、小さな動力が必要になるだけである。この結果、低速走行時に、前記駆動源の出力のうちの多くの割合を、油圧を発生させる為に消費する必要がなくなり、低速走行時の伝達効率を向上させられる。例えば、請求項2に記載した発明の場合には、カム面のうち、入力トルクが小さい場合に各転動体の転動面が転がり接触する底部寄り部分のカムリードを小さくしている為、前記低速走行時に前記機械式押圧装置が発生する押圧力を十分に確保できる。これに対して、前記入力トルクが大きい場合に上記各転動体の転動面が転がり接触する、前記各面の頂部寄り部分のカムリードを大きくしている為、前記トルクが大きい場合に、前記機械式押圧装置が発生する押圧力が過大になる事を防止できる。そして、前記油圧式押圧装置による、運転状況に応じた押圧力の調節を行い易くできる。   In addition, when driving at low speed, even if the pressing force is generated only by the mechanical pressing device constituting the composite pressing device, or the pressing force is generated by the hydraulic pressing device, the ratio can be suppressed to a small extent. . For this reason, it is not necessary to drive the pump for generating hydraulic pressure when driving at a low speed with a low output of a driving source such as an engine, or even if it is to be driven, small power is required only to generate low-pressure hydraulic pressure. It only becomes. As a result, when driving at a low speed, it is not necessary to consume a large proportion of the output of the drive source in order to generate the hydraulic pressure, and the transmission efficiency during low-speed driving can be improved. For example, in the case of the invention described in claim 2, when the input torque is small among the cam surfaces, the cam lead at the portion near the bottom where the rolling surface of each rolling element comes into rolling contact is made small. A sufficient pressing force generated by the mechanical pressing device during traveling can be ensured. On the other hand, when the input torque is large, the rolling contact surfaces of the rolling elements are in rolling contact with each other, and the cam lead near the top of each surface is enlarged. It is possible to prevent the pressing force generated by the type pressing device from becoming excessive. And it is easy to adjust the pressing force according to the driving situation by the hydraulic pressing device.

更に、前記機械式押圧装置は、低速走行時に対応する、駆動源部分の発生トルクが低い領域で発生する押圧力の割合を多くする為、発進時や低速走行時に、前記油圧式押圧装置に導入する油圧が零乃至は僅少であっても、前記複合型押圧装置全体としての押圧力を十分に確保できる。この為、発進時や低速走行時、前記油圧が零乃至は僅少の場合であっても必要且つ十分な押圧力を確保して、トラクション部で過大な(必要且つ不可避なスピン滑りや微小なクリープ以外の)滑り(グロススリップ)が発生する事を防止できる。この為、請求項3に記載した発明の様に、トロイダル型無段変速機を、アイドリングストップ機能を備えた車両に搭載しても、過大な滑りの発生を防止して、滑らかな発進と耐久性の確保とを図れる。   Furthermore, the mechanical pressing device is introduced into the hydraulic pressing device at the time of starting or at low speed traveling in order to increase the ratio of the pressing force generated in the region where the generated torque of the drive source portion is low, corresponding to the low speed traveling. Even if the hydraulic pressure is zero or very small, it is possible to sufficiently secure the pressing force as the entire composite pressing device. For this reason, when starting or running at low speed, the necessary and sufficient pressing force is ensured even if the hydraulic pressure is zero or very small, and excessive (necessary and unavoidable spin slip and minute creep are required in the traction section. It is possible to prevent slippage (gross slip) from occurring. Therefore, as in the invention described in claim 3, even if the toroidal continuously variable transmission is mounted on a vehicle having an idling stop function, the occurrence of excessive slip is prevented, and smooth start and durability are achieved. To secure the sex.

本発明の実施の形態の1例を示す模式図。The schematic diagram which shows one example of embodiment of this invention. 機械式押圧装置に設けるカム面の形状を説明する為の模式図。The schematic diagram for demonstrating the shape of the cam surface provided in a mechanical press apparatus. 入力トルクの大きさと、複合型押圧装置が発生する押圧力との関係の2例を示す線図。The diagram which shows two examples of the relationship between the magnitude | size of input torque, and the pressing force which a composite-type press apparatus generate | occur | produces. 従来から知られているトロイダル型無段変速機の1例を示す断面図。Sectional drawing which shows an example of the toroidal type continuously variable transmission conventionally known.

図1〜3により、本発明の実施の形態の1例に就いて説明する。尚、本例の特徴は、機械式押圧装置と油圧式押圧装置とを組み合わせた複合型押圧装置の構造を工夫する事により、駆動源であるエンジンの出力消費を抑えつつ、停止状態からの発進時及び低速走行時、更には高速走行時にも最適な押圧力を得られる構造を実現する点にある。その他の部分の構造及び作用は、前述の図4に記載した構造を含めて、従来から広く知られている構造と同様であるから、重複する図示並びに説明は、省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。   An example of an embodiment of the present invention will be described with reference to FIGS. In addition, the feature of this example is that the start of the engine from a stop state is achieved while suppressing the output consumption of the engine that is the driving source by devising the structure of the combined pressing device combining the mechanical pressing device and the hydraulic pressing device This is to realize a structure capable of obtaining an optimum pressing force during running at low speeds and at high speeds. Since the structure and operation of the other parts are the same as those widely known in the art including the structure shown in FIG. 4 described above, overlapping illustrations and explanations are omitted or simplified. The description will focus on the features of the example.

1対の入力側ディスク2A、2Bを一体型の出力側ディスク4Aに向けて押圧する為に、機械式押圧装置であるローディングカム装置8aと、油圧式押圧装置である油圧アクチュエータ9aとを組み合わせた、複合型押圧装置7aを設けている。この複合型押圧装置7aは、これらローディングカム装置8aと油圧アクチュエータ9aとを、押圧力の発生方向に関して互いに並列に配置したもので、これらローディングカム装置8aと油圧アクチュエータ9aとが発生する押圧力の和により、前記両入力側ディスク2A、2Bを前記出力側ディスク4Aに向けて押圧する様に構成している。この為に、例えば前述の図4に示した従来構造と同様に、前記油圧アクチュエータ9aを中心部に設けると共に、前記ローディングカム装置8aを、この油圧アクチュエータ9aよりも外径寄り部分に設ける。   In order to press the pair of input side disks 2A and 2B toward the integrated output side disk 4A, a loading cam device 8a which is a mechanical pressing device and a hydraulic actuator 9a which is a hydraulic pressing device are combined. A composite pressing device 7a is provided. In this composite pressing device 7a, the loading cam device 8a and the hydraulic actuator 9a are arranged in parallel with each other with respect to the generation direction of the pressing force, and the pressing force generated by the loading cam device 8a and the hydraulic actuator 9a is reduced. According to the sum, both the input side disks 2A and 2B are pressed toward the output side disk 4A. For this purpose, for example, the hydraulic actuator 9a is provided at the center, and the loading cam device 8a is provided at a portion closer to the outer diameter than the hydraulic actuator 9a, as in the conventional structure shown in FIG.

このうちのローディングカム装置8aは、従来からトロイダル型無段変速機用の押圧装置等として広く知られているローディングカム装置と同様に、互いに同心に、且つ、相対回転を可能に組み合わされた、駆動側カム板(前述の図4に記載したカム板10参照)と被駆動側カム板(前述の図4に記載した入力側ディスク2a参照)とを有する。これら駆動側カム板と被駆動側カム板との互いに対向する面に、円周方向に関する凹凸であるカム面を設けている。即ち、これら両カム板のカム面は、それぞれが軸方向に凹んだ部分である複数箇所(通常は3〜5箇所)の底部と、同じく突出した部分である頂部とを、傾斜面により連続させた形状を有する。尚、これら各傾斜面は、前記両カム板の中心軸に対し直角方向に存在する仮想平面αに対し傾斜している。そして、これら両カム板のカム面同士の間に、それぞれが転動体である、複数個のローラ11a(図2)を挟持している。これら各ローラ11aの自転軸(中心軸)は、前記両カム板の径方向に配置している。この様なローディングカム装置8aの基本的構造は、従来から広く知られているローディングカム装置と同様である。   Of these, the loading cam device 8a is combined with each other concentrically and capable of relative rotation in the same manner as a loading cam device conventionally known as a pressing device for a toroidal-type continuously variable transmission or the like. It has a driving cam plate (see the cam plate 10 described in FIG. 4 above) and a driven cam plate (see the input side disk 2a described in FIG. 4 above). Cam surfaces that are irregularities in the circumferential direction are provided on the mutually facing surfaces of the driving side cam plate and the driven side cam plate. That is, the cam surfaces of these two cam plates are formed by connecting the bottoms of a plurality of locations (usually 3 to 5 locations), each of which is a concave portion in the axial direction, and the top portion, which is also a protruding portion, by an inclined surface. Have a different shape. Each of these inclined surfaces is inclined with respect to a virtual plane α existing in a direction perpendicular to the central axis of both the cam plates. A plurality of rollers 11a (FIG. 2), each of which is a rolling element, are sandwiched between the cam surfaces of both cam plates. The rotation axis (center axis) of each roller 11a is arranged in the radial direction of the two cam plates. The basic structure of such a loading cam device 8a is the same as that of a conventionally known loading cam device.

特に、本例の構造の場合には、前記両カム板のカム面の傾斜角度を、途中で変えている。即ち、図2に示す様に、前記仮想平面αに対する傾斜角度である、これら両カム板のカム面15(図4に示した被駆動側カム面12及び駆動側カム面13)のカムリードを、これら両カム面15の底部寄り部分で小さく、頂部寄り部分でこの底部寄り部分よりも大きくしている。周知の様に、入力トルクに基づいてローディングカム装置が発生する押圧力(軸方向の推力)は、カムリード(前記仮想平面αに対する傾斜角度)が小さいほど大きくなる。又、前記ローラ11aは、前記両カム板同士の間で伝達するトルク(駆動側カム板に入力されるトルク)が小さい場合には前記両カム面の底部寄り部分に存在し、このトルクが大きくなるほど、これら両カム面の頂部寄り部分に移動して、前記両カム板同士の間隔を拡げる。本例の構造に組み込むローディングカム装置8aは、上述の様な構成を採用する事により、駆動源であるエンジン16から伝えられるトルクが小さい場合には、このトルクに応じて発生する押圧力の割合を高くし、このトルクが大きい場合には、このトルクに応じて発生する押圧力の割合を低くする様にしている。尚、カムリードの大きさを、底部寄りで小さく、頂部寄りで大きくする構造は、特許文献4に記載されている。但し、この特許文献4に記載された構造は、単に高トルク入力時に押圧力が過大になるのを防止する事を考慮しただけのものであり、駆動源の出力消費を抑えつつ、停止状態からの発進時及び低速走行時、更には高速走行時にも最適な押圧力を得られる構造を実現する、本発明の構造を示唆するものではない。   In particular, in the case of the structure of this example, the inclination angles of the cam surfaces of the two cam plates are changed halfway. That is, as shown in FIG. 2, the cam leads of the cam surfaces 15 (the driven cam surface 12 and the driven cam surface 13 shown in FIG. 4) of the both cam plates, which are inclined with respect to the virtual plane α, These cam surfaces 15 are small at the portion near the bottom and larger at the portion near the top than the portion near the bottom. As is well known, the pressing force (axial thrust) generated by the loading cam device based on the input torque increases as the cam lead (inclination angle with respect to the virtual plane α) decreases. Further, when the torque transmitted between the two cam plates (torque input to the drive side cam plate) is small, the roller 11a is present near the bottom of the two cam surfaces, and this torque is large. Indeed, it moves to the part near the top part of these both cam surfaces, and the space | interval of the said both cam plates is expanded. The loading cam device 8a incorporated in the structure of the present example employs the above-described configuration, so that when the torque transmitted from the engine 16 that is the drive source is small, the ratio of the pressing force generated according to this torque. When the torque is large, the ratio of the pressing force generated according to the torque is reduced. A structure in which the size of the cam lead is made smaller near the bottom and larger near the top is described in Patent Document 4. However, the structure described in Patent Document 4 merely considers preventing the pressing force from becoming excessive at the time of high torque input, and suppresses the output consumption of the driving source, while stopping from the stop state. It does not suggest the structure of the present invention that realizes a structure capable of obtaining an optimum pressing force at the time of starting, running at a low speed, and even at a high speed.

一方、前記油圧アクチュエータ9aには、前記エンジン16により駆動されるポンプ17から吐出された圧油が送り込まれて、前記ローディングカム装置8aと同方向の押圧力を発生する様にしている。尚、前記ポンプ17と前記油圧アクチュエータ9aとの間には、図示しない調圧弁装置を設けて、この油圧アクチュエータ9aに導入する油圧を調節可能としている。具体的には、図示しない制御器が、前記トロイダル型無段変速機を通過するトルクの大きさ、変速比、油温に応じて、前記複合型押圧装置7a全体として必要とされる押圧力の大きさ(総押圧力)を求める。そして、この総押圧力から前記ローディングカム装置8aが発生する押圧力を減じた値(このローディングカム装置8aが発生する押圧力では不足する分)を、前記油圧アクチュエータ9aに発生させるべく、この油圧アクチュエータ9aの油圧室に適切な油圧を導入する。過大な滑りの発生を確実に防止すべく、この油圧に多少の余裕を持たせる事は勿論である。   On the other hand, pressure oil discharged from a pump 17 driven by the engine 16 is sent to the hydraulic actuator 9a to generate a pressing force in the same direction as the loading cam device 8a. A pressure regulating valve device (not shown) is provided between the pump 17 and the hydraulic actuator 9a so that the hydraulic pressure introduced into the hydraulic actuator 9a can be adjusted. Specifically, a controller (not shown) determines the pressing force required for the composite pressing device 7a as a whole according to the magnitude of the torque passing through the toroidal continuously variable transmission, the gear ratio, and the oil temperature. Find the size (total pressing force). In order to cause the hydraulic actuator 9a to generate a value obtained by subtracting the pressing force generated by the loading cam device 8a from the total pressing force (the amount insufficient for the pressing force generated by the loading cam device 8a). An appropriate hydraulic pressure is introduced into the hydraulic chamber of the actuator 9a. Needless to say, this hydraulic pressure has some allowance to surely prevent the occurrence of excessive slipping.

前記複合型押圧装置7aを構成する、前記ローディングカム装置8aと前記油圧アクチュエータ9aとは、それぞれ上述の様に構成している。この為、前記複合型押圧装置7a全体として発生する総押圧力のうち、前記ローディングカム装置8aが発生する押圧力の割合は、図3に示す様に、前記エンジン16で発生し、トロイダル型無段変速機に入力されるトルクが低い領域で高く、同じく高い領域で低くなる。尚、前記図2に示したカム面15のうちで底部寄り部分のカムリード(前記仮想平面αに対する傾斜角度)を十分に小さくすれば、図3の(A)に示す様に、発進直後の低速域では、前記ローディングカム8aのみで必要とする押圧力を確保できる。この様な構成は、アイドリングストップ車用の構成として適切である。これに対して、前記底部寄り部分のカムリードを少し大きめに設定すれば、図3の(B)に示す様に、発進直後の低速域から、前記油圧アクチュエータ9aの押圧力を利用する様にして、この油圧アクチュエータ9aにより、押圧力調節を可能にできる。この様な構成は、アイドリングストップ車以外で、低速域から押圧力の調節を可能にする場合に適切である。   The loading cam device 8a and the hydraulic actuator 9a constituting the composite pressing device 7a are respectively configured as described above. For this reason, the ratio of the pressing force generated by the loading cam device 8a out of the total pressing force generated by the composite pressing device 7a as a whole is generated by the engine 16 as shown in FIG. The torque input to the step transmission is high in the low region and low in the same high region. If the cam lead (inclination angle with respect to the virtual plane α) near the bottom of the cam surface 15 shown in FIG. 2 is made sufficiently small, as shown in FIG. In the region, the required pressing force can be ensured only by the loading cam 8a. Such a configuration is suitable as a configuration for an idling stop vehicle. On the other hand, if the cam lead near the bottom is set slightly larger, as shown in FIG. 3B, the pressing force of the hydraulic actuator 9a is used from the low speed range immediately after starting. The pressing force can be adjusted by the hydraulic actuator 9a. Such a configuration is appropriate when it is possible to adjust the pressing force from a low speed range except for an idling stop vehicle.

上述の様に構成する本例の構造によれば、図3の(A)(B)の実線イと破線ロとの間分、前記複合型押圧装置7aが発生する押圧力を調節できる。即ち、これら実線イと破線ロとの間部分(の縦軸分)は、前記油圧アクチュエータ9aが発生する押圧力であるから、この間部分の縦軸分を調節する事により、前記複合型押圧装置7a全体として発生する総押圧力を調節できる。この為、最適な押圧力が変動し易い高速走行時に、運転状況に応じて最適の押圧力を得られて、高速走行時に於ける伝達効率及び耐久性の確保を図れる。   According to the structure of the present example configured as described above, the pressing force generated by the composite pressing device 7a can be adjusted between the solid line A and the broken line B in FIGS. That is, the portion between the solid line A and the broken line B (the vertical axis portion thereof) is the pressing force generated by the hydraulic actuator 9a, so that the composite type pressing device can be adjusted by adjusting the vertical axis portion of this portion. The total pressing force generated as a whole can be adjusted. For this reason, the optimum pressing force can be obtained in accordance with the driving situation during high-speed traveling where the optimum pressing force is likely to vary, and transmission efficiency and durability during high-speed traveling can be ensured.

又、低速走行時には前記総押圧力を、図3の(A)に示す様に、前記ローディングカム装置8aのみで発生させるか、仮に図3の(B)に示す様に、前記油圧アクチュエータ9aにより押圧力を発生させても、その割合を僅少に抑えられる。この為、前記エンジン16の出力が低い低速走行時には、油圧発生用のポンプ17を駆動する必要がないか、仮に駆動する場合でも、低圧の油圧を発生させる為だけの、小さな動力が必要になるだけである。この結果、低速走行時に、前記エンジン16の出力のうちの多くの割合を、油圧を発生させる為に消費する必要がなくなり、低速走行時の効率を向上させられる。   When the vehicle is traveling at a low speed, the total pressing force is generated only by the loading cam device 8a as shown in FIG. 3A or by the hydraulic actuator 9a as shown in FIG. 3B. Even if the pressing force is generated, the ratio can be suppressed to a small level. For this reason, it is not necessary to drive the hydraulic pressure generating pump 17 during low speed traveling with a low output of the engine 16, or even if it is driven, a small amount of power is required only to generate a low pressure hydraulic pressure. Only. As a result, it is not necessary to consume a large portion of the output of the engine 16 for generating hydraulic pressure during low-speed running, and the efficiency during low-speed running can be improved.

尚、図3に示した線図では、入力トルクが零の場合に、前記複合型押圧装置7aが発生する押圧力も零となっている。但し、実際のトロイダル型無段変速機には、予圧ばね18(図4参照)を設けている為、前記入力トルクが零であっても、前記各ディスク2A、2B、4Aと各パワーローラ6、6(図4参照)の周面との転がり接触部(トラクション部)の面圧が零になる訳ではない。従って、前記トロイダル型無段変速機での動力伝達は、軌道(車両の発進)直後から、過大な滑りを発生する事なく、円滑に行われる。   In the diagram shown in FIG. 3, when the input torque is zero, the pressing force generated by the composite pressing device 7a is also zero. However, since the actual toroidal continuously variable transmission is provided with the preload spring 18 (see FIG. 4), even if the input torque is zero, the disks 2A, 2B, 4A and the power rollers 6 , 6 (see FIG. 4), the surface pressure of the rolling contact portion (traction portion) with the peripheral surface does not become zero. Therefore, power transmission in the toroidal-type continuously variable transmission is smoothly performed without causing excessive slip immediately after the track (start of the vehicle).

本発明は、図示の様なハーフトロイダル型に限らず、フルトロイダル型のトロイダル型無段変速機でも実施できる。又、カムリードの大きさを、底部寄り部分で小さく、頂部寄り部分で大きくするカム面は、駆動側、被駆動側両カム面とする事が好ましいが、何れか一方のカム面のみ、カムリードを途中で変化させ、他方のカム面のカムリードは、底部から頂部まで一定としても良い。   The present invention is not limited to the half toroidal type as shown in the figure, but can be implemented by a full toroidal type toroidal continuously variable transmission. In addition, it is preferable that the cam surface that makes the size of the cam lead smaller at the bottom portion and larger at the top portion is both the driving side and the driven side cam surface, but only one of the cam surfaces has the cam lead. The cam lead on the other cam surface may be constant from the bottom to the top.

1 入力回転軸
2a、2b、2A、2B 入力側ディスク
3 出力スリーブ
4a、4b、4A 出力側ディスク
5 トラニオン
6 パワーローラ
7、7a 複合型押圧装置
8、8a ローディングカム装置
9、9a 油圧アクチュエータ
10 カム板
11、11a ローラ
12 被駆動側カム面
13 駆動側カム面
14 駆動軸
15 カム面
16 エンジン
17 ポンプ
18 予圧ばね
DESCRIPTION OF SYMBOLS 1 Input rotating shaft 2a, 2b, 2A, 2B Input side disk 3 Output sleeve 4a, 4b, 4A Output side disk 5 Trunnion 6 Power roller 7, 7a Composite type press device 8, 8a Loading cam device 9, 9a Hydraulic actuator 10 Cam Plate 11, 11a Roller 12 Driven side cam surface 13 Drive side cam surface 14 Drive shaft 15 Cam surface 16 Engine 17 Pump 18 Preload spring

特開2003−28257号公報JP 2003-28257 A 特公平6−72652号公報Japanese Patent Publication No. 6-72652 特開2004−347071号公報JP 2004-347071 A 特開2003−42254号公報JP 2003-42254 A

Claims (3)

それぞれが断面円弧形の凹面である軸方向側面同士を互いに対向させた状態で、互いに同心に、且つ、相対回転を可能に支持された入力側ディスク及び出力側ディスクと、これら各ディスクの軸方向に関してこれら各ディスクの軸方向側面同士の間部分に、それぞれこれら各ディスクの軸方向に対し捩れ位置の方向に、揺動変位を可能に配置された複数個の支持部材と、これら各支持部材に回転自在に支持された状態で、部分球面状の凸曲面であるそれぞれの外周面を、前記各ディスクの軸方向側面に転がり接触させた複数個のパワーローラと、これら各ディスクを、互いに対向する軸方向側面同士を近づけ合う方向に押圧する押圧装置とを備えたトロイダル型無段変速機に於いて、
前記押圧装置は、機械式押圧装置と油圧式押圧装置とを組み合わせて、これら両押圧装置が発生する押圧力の和により、前記各ディスクを押圧する複合型押圧装置であり、
この複合型押圧装置を構成する機械式押圧装置が発生する押圧力の、同じく油圧式押圧装置が発生する押圧力に対する割合が、前記入力軸と前記出力軸との間を通過する動力の発生源である駆動源部分の発生トルクが低い領域で、同じく高い領域に比べて高い事を特徴とするトロイダル型無段変速機。
An input side disk and an output side disk that are supported concentrically and capable of relative rotation in a state in which the axial side surfaces, which are concave surfaces each having an arcuate cross section, face each other, and the shafts of these disks A plurality of support members arranged so as to be able to swing and displace in the direction of the torsional position with respect to the axial direction of each of these discs in the portion between the axial side surfaces of each of these discs in terms of direction, and each of these support members A plurality of power rollers, each of which has a partially spherical convex curved surface in rolling contact with the axial side surface of each of the disks, and each of the disks facing each other. A toroidal continuously variable transmission having a pressing device that presses the axial side surfaces close to each other.
The pressing device is a combined pressing device that combines a mechanical pressing device and a hydraulic pressing device, and presses each of the disks by the sum of the pressing forces generated by both the pressing devices.
A source of motive power in which the ratio of the pressing force generated by the mechanical pressing device constituting the composite pressing device to the pressing force generated by the hydraulic pressing device passes between the input shaft and the output shaft A toroidal continuously variable transmission characterized in that the generated torque of the drive source portion is low and high compared to the high region.
機械式押圧装置は、軸方向に隣接した状態で設けられて回転方向に相対変位する1対の部材の互いに対向する軸方向片側面に、それぞれ円周方向に関する凹凸として形成された1対のカム面と、これら両カム面同士の間に挟持された複数個の転動体とを備えたローディングカム装置であり、これら両カム面のうちの少なくとも一方のカム面のカムリードが、当該カム面の底部寄り部分で頂部寄り部分よりも小さい、請求項1に記載したトロイダル型無段変速機。   The mechanical pressing device is provided with a pair of cams formed as concavities and convexities in the circumferential direction on one side surface of the pair of axially opposed members that are provided adjacent to each other in the axial direction and that are relatively displaced in the rotational direction. And a plurality of rolling elements sandwiched between the two cam surfaces, and the cam lead of at least one of the two cam surfaces is a bottom portion of the cam surface. The toroidal-type continuously variable transmission according to claim 1, wherein the toroidal-type continuously variable transmission is smaller at a near portion than at a top portion. エンジンによりトロイダル型無段変速機を介して駆動輪を回転駆動する事により走行する車両で、停止時に前記エンジンを自動的に停止させるアイドリングストップ機能を備えた、トロイダル型無段変速機を搭載した車両に於いて、前記トロイダル型無段変速機が、請求項1〜2のうちの何れか1項に記載したトロイダル型無段変速機である事を特徴とする、トロイダル型無段変速機を搭載した車両。   A vehicle that travels by rotating the drive wheels through a toroidal type continuously variable transmission with an engine, equipped with an idling stop function that automatically stops the engine when stopped, equipped with a toroidal type continuously variable transmission A toroidal continuously variable transmission according to claim 1, wherein the toroidal continuously variable transmission is the toroidal continuously variable transmission according to claim 1. Installed vehicle.
JP2009267016A 2009-11-25 2009-11-25 Toroidal continuously variable transmission and vehicle equipped with toroidal continuously variable transmission Expired - Fee Related JP5120365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009267016A JP5120365B2 (en) 2009-11-25 2009-11-25 Toroidal continuously variable transmission and vehicle equipped with toroidal continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009267016A JP5120365B2 (en) 2009-11-25 2009-11-25 Toroidal continuously variable transmission and vehicle equipped with toroidal continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2011112104A JP2011112104A (en) 2011-06-09
JP5120365B2 true JP5120365B2 (en) 2013-01-16

Family

ID=44234601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009267016A Expired - Fee Related JP5120365B2 (en) 2009-11-25 2009-11-25 Toroidal continuously variable transmission and vehicle equipped with toroidal continuously variable transmission

Country Status (1)

Country Link
JP (1) JP5120365B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6029211B2 (en) * 2013-07-19 2016-11-24 本田技研工業株式会社 Control device for toroidal transmission mechanism

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672652B2 (en) * 1986-05-01 1994-09-14 日産自動車株式会社 Toroidal type continuously variable transmission
JPH06174030A (en) * 1992-12-03 1994-06-21 Jatco Corp Friction wheel type continuously variable transmission
JP2003042254A (en) * 2001-07-30 2003-02-13 Nsk Ltd Toroidal continuously variable transmission and continuously variable transmission system
JP2003278906A (en) * 2002-03-25 2003-10-02 Mazda Motor Corp Oil supply control device for automatic transmission
JP3714289B2 (en) * 2002-05-30 2005-11-09 日産自動車株式会社 Control device for hybrid vehicle

Also Published As

Publication number Publication date
JP2011112104A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP4378898B2 (en) Toroidal continuously variable transmission and continuously variable transmission
WO2011114494A1 (en) Continuously variable transmission
US20150018167A1 (en) Electric automobile drive apparatus
JP5120365B2 (en) Toroidal continuously variable transmission and vehicle equipped with toroidal continuously variable transmission
JP2004169719A (en) Toroidal type continuously variable transmission, and continuously variable transmission device
JP2006312973A (en) Loading cam apparatus, toroidal-type continuously variable transmission and friction transmission
JP2014040885A (en) Friction roller-type change gear
JP5234015B2 (en) Continuously variable transmission
JP5786367B2 (en) Drive device having speed change function and rotation direction conversion function
JP4010145B2 (en) Toroidal continuously variable transmission and continuously variable transmission
JP2011153645A (en) Continuously variable transmission and control device of continuously variable transmission
JP4529442B2 (en) Toroidal continuously variable transmission
JP3674264B2 (en) Continuously variable transmission
JP6558075B2 (en) Continuously variable transmission
JP5304688B2 (en) Power transmission device
JP2014040892A (en) Frictional roller type transmission
JP5126206B2 (en) Toroidal continuously variable transmission
JP5884332B2 (en) Power transmission device
JP2013024276A (en) Toroidal type continuously variable transmission
JP5857473B2 (en) Toroidal continuously variable transmission
JP5187301B2 (en) Toroidal continuously variable transmission and continuously variable transmission
JP6447065B2 (en) Continuously variable transmission
JP6153498B2 (en) Toroidal continuously variable transmission
JP6311452B2 (en) Toroidal continuously variable transmission
JP4192398B2 (en) Toroidal continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5120365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees