JP5119759B2 - Electric motor control device and control method thereof - Google Patents

Electric motor control device and control method thereof Download PDF

Info

Publication number
JP5119759B2
JP5119759B2 JP2007158805A JP2007158805A JP5119759B2 JP 5119759 B2 JP5119759 B2 JP 5119759B2 JP 2007158805 A JP2007158805 A JP 2007158805A JP 2007158805 A JP2007158805 A JP 2007158805A JP 5119759 B2 JP5119759 B2 JP 5119759B2
Authority
JP
Japan
Prior art keywords
phase
command
current
voltage
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007158805A
Other languages
Japanese (ja)
Other versions
JP2008312384A (en
JP2008312384A5 (en
Inventor
祐敦 稲積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2007158805A priority Critical patent/JP5119759B2/en
Publication of JP2008312384A publication Critical patent/JP2008312384A/en
Publication of JP2008312384A5 publication Critical patent/JP2008312384A5/ja
Application granted granted Critical
Publication of JP5119759B2 publication Critical patent/JP5119759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

本発明は、速度センサレスで速度制御する電動機制御装置及びその制御方法に関する。   The present invention relates to an electric motor control device that performs speed control without a speed sensor and a control method thereof.

従来の速度センサレスで速度制御する電動機制御装置は、交流電圧信号を重畳し、重畳した交流電圧信号とその際に流れる出力電流を用いて推定した位置推定値と、電動機の電圧電流方程式より推定した位置推定値の2つの推定値を駆動情況に応じて切り換えている(特許文献1参照)。
図3は、従来の電動機制御装置の概略ブロック図で、5はインバータであり、電圧指令値v* 1,α,v* 1,βに高周波電圧指令値v* h,α,v* h,βを重畳した電圧が入力される。6は3/2相変換部であり、インバータ5から検出される電圧vu,vv,vw及び電流iu,iv,iwを相変換して電圧vα,vβ及び電流iα,iβを求める。11はλ演算部であり、電圧vα,vβと電流iα,iβ、突極モータ2のq軸インダクタンスLとに基づいて磁束鎖交数λd,α,λd,βを求める。12はBPF部であり、前記磁束鎖交数を角周波数ω近傍で濾波して高周波成分λd,h,α,λd,h,βを求める。15は識別信号発生部であり、d軸電流の高周波成分idhを求める。13は位置角演算部であり、高周波成分λd,h,α,λd,h,β,idhから突極モータ2の回転位置角θreを推定して求める。
このように、従来の電動機制御装置は、インバータに高周波電圧を重畳し、その際の電圧、電流と突極モータのインダクタンスから磁束鎖交数を求め、この磁束鎖交数を重畳信号の角周波数の近傍で濾波して第1の高周波成分を求め、さらにこの角周波数近傍の角周波数を有する第2の高周波成分を求め、第1の高周波成分と前記第2の高周波成分とから突極モータの回転位置角を推定するのである。
特開2005−160287号公報(図1)
A conventional motor control device that performs speed control without a speed sensor superimposes an AC voltage signal, and estimates it from the estimated position using the superimposed AC voltage signal and the output current that flows at that time, and the voltage-current equation of the motor. Two estimated values of the position estimated value are switched according to the driving situation (see Patent Document 1).
FIG. 3 is a schematic block diagram of a conventional motor control device, in which 5 is an inverter, and voltage command values v * 1, α , v * 1, β are added to high-frequency voltage command values v * h, α , v * h, A voltage with β superimposed is input. Reference numeral 6 denotes a 3/2 phase conversion unit, which converts the voltages vu, vv, vw and currents iu, iv, iw detected from the inverter 5 to obtain voltages v α , v β and currents i α , i β . . 11 is a lambda d arithmetic unit, the voltage v alpha, v beta current i alpha, i beta, the salient pole motor 2 q-axis inductance L q and flux linkage lambda d based on, alpha, lambda d, beta Ask for. Reference numeral 12 denotes a BPF unit which filters the number of magnetic flux linkages in the vicinity of the angular frequency ω h to obtain high frequency components λ d, h, α , λ d, h, β . Reference numeral 15 denotes an identification signal generator, which determines a high frequency component i dh of the d-axis current. Reference numeral 13 denotes a position angle calculation unit which estimates and determines the rotational position angle θ re of the salient pole motor 2 from the high frequency components λ d, h, α , λ d, h, β , i dh .
As described above, the conventional motor control device superimposes the high frequency voltage on the inverter, obtains the number of magnetic flux linkages from the voltage and current at that time and the inductance of the salient pole motor, and calculates the number of magnetic flux linkages as the angular frequency of the superimposed signal. The first high-frequency component is obtained by filtering near the angular frequency, a second high-frequency component having an angular frequency near the angular frequency is obtained, and the salient pole motor is determined from the first high-frequency component and the second high-frequency component. The rotational position angle is estimated.
Japanese Patent Laying-Open No. 2005-160287 (FIG. 1)

従来の電動機制御装置は、高周波電圧を重畳し、その際の電圧、電流と突極モータのインダクタンスの設定値を用いて磁束鎖交数を求めて回転位置角を推定するため、電圧、電流及び設定される電動機電気定数は精度のよい正確な値が要求されるので、それら値の誤差の程度によっては正常な駆動ができなくなるという問題があった。
本発明はこのような問題点に鑑みてなされたものであり、電圧、電流の精度及び電動機の電気定数の設定誤差に対し、ロバストに電動機の回転位置角を推定することが可能な電動機制御装置及びその制御方法を提供することを目的とする。
The conventional motor control device superimposes the high-frequency voltage, and uses the set values of the voltage, current and salient pole motor inductance at that time to determine the number of magnetic flux linkages to estimate the rotational position angle. Since the motor electric constants to be set are required to be accurate and accurate values, there has been a problem that normal driving cannot be performed depending on the degree of error of these values.
The present invention has been made in view of such problems, and an electric motor control apparatus capable of robustly estimating the rotational position angle of an electric motor with respect to setting errors of voltage and current accuracy and electric constants of the electric motor. And it aims at providing the control method.

上記問題を解決するため、本発明は、次のように構成したのである。
請求項1に記載の発明は、電動機への速度指令に応じた電圧指令を出力する電圧指令器と、位相補償用の交流電圧指令を出力する電圧重畳器と、前記速度指令を積分し補正前の位相指令を生成する積分器と、前記積分器により生成された前記補正前の位相指令に対し、前記電動機に流れる電動機電流に基づき生成される位相補正量を加算する補正処理を行うことにより、補正後の位相指令を生成する加算器と、前記電動機電流を検出する電流検出器と、前記電流検出器により検出された前記電動機電流を、前記補正後の位相指令と同位相成分(γ軸電流)、及び、前記補正後の位相指令に対し90度進んだ位相成分(δ軸電流)、にそれぞれ座標変換する電流座標変換器と、前記電流座標変換器により変換された前記δ軸電流から前記位相補償用の交流電圧指令と同じ周波数成分の電流振幅を抽出する電流抽出器と、前記電流抽出器より出力された、前記位相補償用の交流電圧指令と同じ周波数成分の電流振幅を用いて、前記加算器における前記補正処理で用いる前記位相補正量を算出する位相補正器と、前記電圧指令器から出力された前記電圧指令、前記電圧重畳器から出力された前記位相補償用の交流電圧指令、及び、前記加算器により生成された前記補正後の位相指令に基づく電圧を前記電動機に供給する電力変換器と、を備えたことを特徴とするものである。
In order to solve the above problem, the present invention is configured as follows.
According to the first aspect of the present invention, a voltage command device that outputs a voltage command corresponding to a speed command to the motor, a voltage superimposing device that outputs an AC voltage command for phase compensation, and the speed command are integrated and corrected. By performing a correction process of adding a phase correction amount generated based on the motor current flowing through the motor to the phase command before correction generated by the integrator and the phase command generated by the integrator. an adder for generating a phase command after correction, a current detector for detecting the motor current, the motor current detected by said current detector, a phase command the same phase components of the corrected (gamma axis current), and the phase command to the 90-degree advanced phase component after correction ([delta] -axis current), the current coordinate converter for coordinate transformation respectively, converted the [delta] -axis current by the current coordinate converter from, the Using a current extractor for extracting a current amplitude of the same frequency component and an AC voltage command for phase compensation, the output from the current extractor, the current amplitude of the same frequency component and an AC voltage command for the phase compensation, said correction phase corrector that issues calculate the phase correction amount used in the said adder, said voltage command output from the voltage command unit, an AC voltage command for the phase compensation output from the voltage superimposing unit and, a voltage based on the phase command, after the correction generated by the adder, is characterized in that and a power converter for supplying the motor.

また、請求項2に記載の発明は、請求項1に記載の発明において、前記電力変換器は、前記電圧指令を、前記補正後の位相指令に対し90度進んだ位相成分(δ軸電圧)とするとともに、前記交流電圧指令を、前記補正後の位相指令と同位相成分(γ軸電圧)として含む、電圧として、前記電動機に供給することを特徴とするものである。
また、請求項3に記載の発明は、請求項1又は2に記載の発明において、前記電流抽出器は、前記δ軸電流と前記交流電圧指令と同じ周波数の正弦波信号との積を演算する第1の乗算器と、前記δ軸電流と前記交流電圧指令と同じ周波数の余弦波信号との積を演算する第2の乗算器と、前記第1の乗算器からの出力にローパスフィルタ処理を行う第1のフィルタと、前記第2の乗算器からの出力にローパルフィルタ処理を行う第2のフィルタと、前記第1のフィルタからの出力及び前記第2のフィルタからの出力をそれぞれ直交する成分として前記電流振幅を演算する振幅演算器と、を備えることを特徴とするものである。
Further, the invention according to claim 2 is the invention according to claim 1, wherein the power converter has a phase component (δ-axis voltage) advanced by 90 degrees with respect to the voltage command. In addition , the AC voltage command is supplied to the electric motor as a voltage including a component (γ-axis voltage) having the same phase as the corrected phase command .
Further, the invention according to claim 3, in the invention of claim 1 or 2, wherein the current extractor, the a δ-axis current, the sine wave signal having the same frequency as the AC voltage command, a product a first multiplier for calculating the a δ-axis current, and the cosine wave signal having the same frequency as the AC voltage command, a second multiplier for calculating the product, the output from the first multiplier A first filter that performs low-pass filter processing, a second filter that performs low-pass filtering on the output from the second multiplier, an output from the first filter, and an output from the second filter And an amplitude calculator that calculates the current amplitude as components orthogonal to each other.

請求項4に記載の発明は、請求項1乃至3のいずれか1項に記載の発明において、前記位相補正器は、前記電流抽出器から出力される前記電流振幅が零になるように制御して前記位相補正量を算出していることを特徴とするものである。
また、請求項5に記載の発明は、請求項1乃至4のいずれか1項に記載の発明において、前記位相補償用の交流電圧指令は高周波信号であることを特徴とするものである。
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the phase corrector controls the current amplitude output from the current extractor to be zero. Thus, the phase correction amount is calculated.
The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the AC voltage command for phase compensation is a high-frequency signal.

上記問題を解決するため、本発明は、次のようにしたのである。
また、請求項6に記載の発明は、電動機への速度指令に応じた電圧指令を出力する第1ステップと、位相補償用の交流電圧指令を出力する第2ステップと、前記速度指令を積分し補正前の位相指令を生成する第3ステップと、前記第3ステップで生成された前記補正前の位相指令に対し、前記電動機に流れる電動機電流に基づき生成される位相補正量を加算する補正処理を行うことにより、補正後の位相指令を生成する第4ステップと、前記電動機に流れる電動機電流を検出する第5ステップと、前記第5ステップで検出された前記電動機電流を、前記補正後の位相指令と同位相成分(γ軸電流)、及び、前記補正後の位相指令に対し90度進んだ位相成分(δ軸電流)、にそれぞれ座標変換する第6ステップと、前記第6ステップで変換された前記δ軸電流から前記位相補償用の交流電圧指令と同じ周波数成分の電流振幅を抽出する第7ステップと、前記第7ステップで抽出された、前記位相補償用の交流電圧指令と同じ周波数成分の電流振幅を用いて、前記第4ステップにおける前記補正処理で用いる前記位相補正量を算出す第8ステップと、前記第1ステップで出力された前記電圧指令、前記第2ステップで出力された前記位相補償用の交流電圧指令、及び、前記第4ステップで生成された前記補正後の位相指令に基づく電圧を、前記電動機に供給する第9ステップと、を備えたことを特徴とするものである。
In order to solve the above problem, the present invention is as follows.
According to a sixth aspect of the present invention, the first step of outputting a voltage command corresponding to the speed command to the motor, the second step of outputting an AC voltage command for phase compensation, and the speed command are integrated. A third step for generating a pre-correction phase command, and a correction process for adding a phase correction amount generated based on the motor current flowing through the motor to the pre-correction phase command generated in the third step. by performing a fourth step of generating a phase command after correction, the a fifth step of detecting a motor current flowing through the electric motor, the motor current detected by the fifth step, the corrected phase command the same phase component (gamma-axis current), and the phase command to the 90-degree advanced phase component after correction ([delta] -axis current), in the sixth step of the coordinate transformation, respectively, varying in the sixth step From been the δ-axis current, and a seventh step of extracting the current amplitude of the same frequency component and an AC voltage command for the phase compensation, the extracted in the seventh step, the same as the AC voltage command for the phase compensation using a current amplitude of the frequency component, the fourth and the eighth step that gives calculated the phase correction amount used in the correction process in the step, the voltage command output by the first step, the output at the second step AC voltage command for the phase compensation, and a wherein the fourth phase command after generated the correction in step, a voltage based on, with a, a ninth step of supplying to said electric motor To do.

請求項に記載の発明によると、電圧、電流の精度及び電動機の電気定数の設定誤差に対しロバストに電動機の回転位置角を推定することができ、位置センサ及び速度センサを用いなくても非常にロバストに電動機の速度制御を行うことができる。   According to the invention described in the claims, the rotational position angle of the electric motor can be estimated robustly with respect to the setting error of the accuracy of the voltage and current and the electric constant of the electric motor. The speed control of the motor can be performed robustly.

以下、本発明の方法の具体的実施例について、図に基づいて説明する。   Hereinafter, specific examples of the method of the present invention will be described with reference to the drawings.

図1は、本発明の電動機制御装置の概略ブロック図である。図において、電圧指令器21は、FV変換を行い、電動機24への速度指令ωrefに比例した誘起電圧指令をδ軸電圧指令Vδrefとして出力する。積分器22は、速度指令ωrefを積分して位相指令θrefを生成する。電流検出器30は、電動機24に流れる電動機電流Iu、Iwを検出し、電力変換器23は、δ軸電圧指令がVδref、後述のγ軸電圧指令がVγrefの電圧指令を与えられた位相指令で3相電圧指令に変換し、さらに図示していないが搬送波信号を用いてパルス幅変調した3相電圧Vu,Vv,Vwを発生し、負荷である電動機24に供給する。   FIG. 1 is a schematic block diagram of an electric motor control device of the present invention. In the figure, a voltage command device 21 performs FV conversion and outputs an induced voltage command proportional to a speed command ωref to the motor 24 as a δ-axis voltage command Vδref. The integrator 22 integrates the speed command ωref to generate a phase command θref. The current detector 30 detects motor currents Iu and Iw flowing through the motor 24, and the power converter 23 is a phase command in which a voltage command of Vδref is given as a δ-axis voltage command and a voltage command of Vγref as described later is a γ-axis voltage command. Although it is converted into a three-phase voltage command, and further not shown, three-phase voltages Vu, Vv, and Vw that are pulse width modulated using a carrier wave signal are generated and supplied to an electric motor 24 that is a load.

また、電圧重畳器25は、交流電圧指令をγ軸の電圧指令に重畳し、γ軸電圧指令Vγrefとして出力する。電流座標変換器26は、電流検出器30で検出した電動機電流Iu、Iwを入力して与えられた位相指令と同位相成分電流(γ軸電流)と90度進んだ位相成分電流(δ軸電流)に座標変換して、それぞれIγ、Iδとして出力する。電流抽出器27は、δ軸電流Iδからγ軸電圧指令に重畳したγ軸電圧指令Vγrefと同じ周波数成分の電流Iδinjを抽出する。位相補正器28は、抽出されたδ軸電流Iδinjを用いて位相補正量Δθを演算する。加算器29は、積分器22で生成された位相指令θrefと位相補正器28で演算された位相補正量Δθを加算する。このようにして、電動機24の速度制御は行われる。   The voltage superimposing unit 25 superimposes the AC voltage command on the γ-axis voltage command and outputs the γ-axis voltage command Vγref. The current coordinate converter 26 inputs the motor currents Iu and Iw detected by the current detector 30 and the phase component current (γ-axis current) and the phase component current advanced by 90 degrees (δ-axis current). ) And output as Iγ and Iδ, respectively. The current extractor 27 extracts a current Iδinj having the same frequency component as the γ-axis voltage command Vγref superimposed on the γ-axis voltage command from the δ-axis current Iδ. The phase corrector 28 calculates the phase correction amount Δθ using the extracted δ-axis current Iδinj. The adder 29 adds the phase command θref generated by the integrator 22 and the phase correction amount Δθ calculated by the phase corrector 28. In this way, the speed control of the electric motor 24 is performed.

本発明が従来技術と異なる部分は、重畳した交流電圧信号とその際の電動機電流に基づき推定した位置推定値と、電動機の電圧電流方程式に基づき推定した位置推定値の2つの推定値を駆動情況に応じて切り換えていた処理を削除していること、及び位相指令を速度指令の積分値θrefと重畳した交流電圧指令と同じ周波数成分の電流値を用いて演算した補正値Δθの加算値として求めている部分である。   The difference between the present invention and the prior art is that two estimated values, a position estimated value estimated based on the superimposed AC voltage signal and the motor current at that time, and a position estimated value estimated based on the voltage-current equation of the motor are used as driving conditions. And the phase command is obtained as an addition value of the correction value Δθ calculated using the current value of the same frequency component as the AC voltage command superimposed with the integral value θref of the speed command. It is a part that.

以下、位相補正値Δθの演算処理を中心に、従来技術と異なる部分について説明する。
電流座標変換器26は、電流検出器30で検出した電動機電流Iu、Iwを(1)式に示す座標変換により、γ軸電流Iγ、δ軸電流Iδを求めるが、この際、キルヒホッフの法則を利用し、電動機電流(Iu、Iv、Iw)の1相分の検出をIv = -(Iu+Iw)のように置き換えてもよい。なお、(1)式に示すθは、後述する加算器19が出力する補正された位相指令θref’を示すものとする。
In the following, the differences from the prior art will be described focusing on the calculation processing of the phase correction value Δθ.
The current coordinate converter 26 obtains the γ-axis current Iγ and the δ-axis current Iδ by the coordinate conversion shown in the equation (1) using the motor currents Iu and Iw detected by the current detector 30. At this time, Kirchhoff's law is obtained. The detection of one phase of the motor current (Iu, Iv, Iw) may be used as Iv = − (Iu + Iw). It should be noted that θ shown in equation (1) represents a corrected phase command θref ′ output from an adder 19 described later.

次に、電流抽出器27は、図2に示す構成となっていて、電流座標変換器26が出力するδ軸電流Iδとsinωt信号、cosωt信号(ω:重畳した交流電圧指令の周波数)との積を乗算器41、42を用いて乗算し、その乗算結果をそれぞれローパスフィルタ43、44に入力し、さらにその振幅を振幅演算器45で求め、抽出δ軸電流Iδinjとし、このようにして、重畳したγ軸電圧指令Vγrefと同じ周波数成分ωの電流を抽出δ軸電流Iδinjとして求めている。
この処理は、ローパスフィルタ43、44の時定数をT、時間をt、ラプラス変換演算子をsとして、(2)式のように表すことができる。なお、ローパスフィルタ43、44の時定数Tは重畳した交流電圧指令の周波数ωに対して10/ω以下に設定するのが望ましい。
Next, the current extractor 27 has the configuration shown in FIG. 2, and the δ-axis current Iδ output from the current coordinate converter 26, the sin ωt signal, and the cos ωt signal (ω: the frequency of the superimposed AC voltage command). The product is multiplied using multipliers 41 and 42, and the multiplication results are input to low-pass filters 43 and 44, respectively, and the amplitude is obtained by the amplitude calculator 45 to obtain the extracted δ-axis current Iδinj. A current having the same frequency component ω as the superimposed γ-axis voltage command Vγref is obtained as the extracted δ-axis current Iδinj.
This process can be expressed as in equation (2), where T is the time constant of the low-pass filters 43 and 44, t is the time, and s is the Laplace transform operator. The time constant T of the low-pass filters 43 and 44 is desirably set to 10 / ω or less with respect to the frequency ω of the superimposed AC voltage command.

次に、位相補正器28は、抽出δ軸電流Iδinjが零になるようにPI(比例・積分)制御して位相補正量Δθを出力している。抽出δ軸電流Iδinjの大きさは制御位相と電動機位相の誤差に比例するという知見に基づく。この処理は、(3)式のように表すことができる。   Next, the phase corrector 28 performs PI (proportional / integral) control so that the extracted δ-axis current Iδinj becomes zero, and outputs a phase correction amount Δθ. The magnitude of the extracted δ-axis current Iδinj is based on the finding that it is proportional to the error between the control phase and the motor phase. This process can be expressed as in equation (3).

加算器29は、(3)式で求めた位相補正量Δθと速度指令ωrefを積分して求めた位相指令θrefとを加算する。この加算値を位相指令θref’として電力変換器23、電流座標変換器26と入力している。
なお、電流抽出器27で重畳した交流電圧指令Vγrefの周波数ω近傍の電流成分だけを容易に取り出すためには、速度指令の周波数と周波数ωにできるだけ大きな差があることが望ましい。つまり、重畳する電圧指令の周波数ωは、高周波であることが望ましい。
また、上記説明では、電圧指令器21の出力をδ軸電圧指令Vδref、電圧重畳器25の出力である交流電圧指令をγ軸電圧指令Vγrefとしたが、電動機電気定数、電動機電流、速度指令のいくつかを用いてγ軸成分の電圧指令を作成し、電圧重畳器25の出力である交流電圧指令に加算して、新たにγ軸電圧指令Vγrefとする構成であっても本発明は同様に実施できる。
The adder 29 adds the phase correction amount Δθ obtained by the equation (3) and the phase command θref obtained by integrating the speed command ωref. This added value is input to the power converter 23 and the current coordinate converter 26 as a phase command θref ′.
In order to easily extract only the current component in the vicinity of the frequency ω of the AC voltage command Vγref superimposed by the current extractor 27, it is desirable that the frequency of the speed command has a difference as large as possible. That is, the frequency ω of the voltage command to be superimposed is desirably a high frequency.
In the above description, the output of the voltage command device 21 is the δ-axis voltage command Vδref, and the AC voltage command that is the output of the voltage superimposing device 25 is the γ-axis voltage command Vγref, but the motor electrical constant, motor current, and speed command The present invention is similarly applied to a configuration in which a voltage command for a γ-axis component is created using some and added to an AC voltage command that is an output of the voltage superimposing unit 25 to be a new γ-axis voltage command Vγref. Can be implemented.

このように、位相指令を電動機電気定数、電流、電圧情報の影響を受けない速度指令値の積分値を主な位相情報とし、この位相指令と電動機位置の補正量のみを電圧重畳方式で抽出した情報で演算するような構成をしているので、電圧、電流の精度及び電動機の電気定数の設定誤差に対し、非常にロバストに電動機の速度制御を行うことができる。
なお、上述した実施の形態においては、磁石を有する突極性のあるモータや磁石を有さない例えばリラクタンスモータへも適用することもできる。
In this way, the phase command is the integral value of the speed command value that is not affected by the motor electrical constant, current, and voltage information as the main phase information, and only the phase command and motor position correction amount are extracted by the voltage superposition method. Since the configuration is such that the calculation is performed based on the information, the speed control of the motor can be performed very robustly with respect to the setting error of the accuracy of the voltage and current and the electric constant of the motor.
In addition, in embodiment mentioned above, it can also apply to the reluctance motor which does not have a saliency motor which has a magnet, or a magnet.

本発明の第1実施例を示す電動機制御装置の概略ブロック図1 is a schematic block diagram of an electric motor control device showing a first embodiment of the present invention. 本発明の電流抽出器27の構成図Configuration diagram of current extractor 27 of the present invention 従来の電動機制御装置の概略ブロック図Schematic block diagram of a conventional motor control device

符号の説明Explanation of symbols

2 突極モータ
5 インバータ
6 3/2相変換部
11 λ演算部
12 BPF部
13 位置角演算部
15 識別信号発生部
21 電圧指令器
22 積分器
23 電力変換器
24 電動機
25 電圧重畳器
26 電流座標変換器
27 電流抽出器
28 位相補正器
29 加算器
30 電流検出器
41、42 乗算器
43、44 ローパスフィルタ
45 振幅演算器
2 Salient pole motor 5 Inverter 6 3/2 phase conversion unit 11 λ d calculation unit 12 BPF unit 13 Position angle calculation unit 15 Identification signal generation unit 21 Voltage command unit 22 Integrator 23 Power converter 24 Electric motor 25 Voltage superimposer 26 Current Coordinate converter 27 Current extractor 28 Phase corrector 29 Adder 30 Current detector 41, 42 Multiplier 43, 44 Low-pass filter 45 Amplitude calculator

Claims (6)

電動機への速度指令に応じた電圧指令を出力する電圧指令器と、
位相補償用の交流電圧指令を出力する電圧重畳器と、
前記速度指令を積分し補正前の位相指令を生成する積分器と、
前記積分器により生成された前記補正前の位相指令に対し、前記電動機に流れる電動機電流に基づき生成される位相補正量を加算する補正処理を行うことにより、補正後の位相指令を生成する加算器と、
前記電動機電流を検出する電流検出器と、
前記電流検出器により検出された前記電動機電流を、前記補正後の位相指令と同位相成分(γ軸電流)、及び、前記補正後の位相指令に対し90度進んだ位相成分(δ軸電流)、にそれぞれ座標変換する電流座標変換器と、
前記電流座標変換器により変換された前記δ軸電流から前記位相補償用の交流電圧指令と同じ周波数成分の電流振幅を抽出する電流抽出器と、
前記電流抽出器より出力された、前記位相補償用の交流電圧指令と同じ周波数成分の電流振幅を用いて、前記加算器における前記補正処理で用いる前記位相補正量を算出する位相補正器と、
前記電圧指令器から出力された前記電圧指令、前記電圧重畳器から出力された前記位相補償用の交流電圧指令、及び、前記加算器により生成された前記補正後の位相指令に基づく電圧を前記電動機に供給する電力変換器と、
を備えたことを特徴とする電動機制御装置。
A voltage command device that outputs a voltage command corresponding to a speed command to the motor;
A voltage superimposing device that outputs an AC voltage command for phase compensation;
An integrator that integrates the speed command to generate a phase command before correction ;
An adder for generating a corrected phase command by performing a correction process for adding a phase correction amount generated based on a motor current flowing through the motor to the phase command before correction generated by the integrator. When,
A current detector for detecting the motor current,
The motor current detected by the current detector is converted into a component having the same phase as the corrected phase command (γ-axis current) and a phase component advanced by 90 degrees with respect to the corrected phase command (δ-axis current). ), respectively, a current coordinate converter for coordinate transformation,
A current extractor that extracts the current amplitude of the same frequency component as the phase compensation AC voltage command from the δ-axis current converted by the current coordinate converter ;
The output from the current extractor, using the current amplitude of the same frequency component and an AC voltage command for the phase compensation, and the phase corrector that issues calculate the phase correction amount used in the correction process in the adder,
Said voltage command output from the voltage command unit, an AC voltage command for the phase compensation output from the voltage superimposing unit, and a voltage based on the phase command, after the correction generated by the adder, A power converter for supplying to the motor;
An electric motor control device comprising:
前記電力変換器は、
前記電圧指令を、前記補正後の位相指令に対し90度進んだ位相成分(δ軸電圧)とするとともに、前記交流電圧指令を、前記補正後の位相指令と同位相成分(γ軸電圧)として含む、電圧として、前記電動機に供給する
ことを特徴とする請求項1に記載の電動機制御装置。
The power converter is
Said voltage command, wherein while the phase command to the 90-degree advanced phase component after correction ([delta] -axis voltage), the AC voltage command, the phase command the same phase component (gamma-axis voltage) of the corrected The electric motor control device according to claim 1, wherein the electric motor is supplied to the electric motor as a voltage.
前記電流抽出器は、
前記δ軸電流と前記交流電圧指令と同じ周波数の正弦波信号との積を演算する第1の乗算器と、
前記δ軸電流と前記交流電圧指令と同じ周波数の余弦波信号との積を演算する第2の乗算器と、
前記第1の乗算器からの出力にローパスフィルタ処理を行う第1のフィルタと、
前記第2の乗算器からの出力にローパルフィルタ処理を行う第2のフィルタと、
前記第1のフィルタからの出力及び前記第2のフィルタからの出力をそれぞれ直交する成分として前記電流振幅を演算する振幅演算器と、
を備えることを特徴とする請求項1又は2に記載の電動機制御装置。
The current extractor is
A first multiplier for calculating the a δ-axis current, the sine wave signal having the same frequency as the AC voltage command, a product,
Wherein the δ-axis current, and the cosine wave signal having the same frequency as the AC voltage command, a second multiplier for calculating a product,
A first filter that performs low-pass filtering on the output from the first multiplier;
A second filter that performs a low pass filtering on the output from the second multiplier;
An amplitude calculator that calculates the current amplitude using the output from the first filter and the output from the second filter as orthogonal components ;
The motor control device according to claim 1, comprising:
前記位相補正器は、
前記電流抽出器から出力される前記電流振幅が零になるように制御して前記位相補正量を算出している
ことを特徴とする請求項1乃至3のいずれか1項に記載の電動機制御装置。
The phase corrector is
4. The motor control device according to claim 1, wherein the phase correction amount is calculated by performing control so that the current amplitude output from the current extractor becomes zero. 5. .
前記位相補償用の交流電圧指令は高周波信号である
ことを特徴とする請求項1乃至4のいずれか1項に記載の電動機制御装置。
5. The motor control device according to claim 1, wherein the phase compensation AC voltage command is a high-frequency signal. 6.
電動機への速度指令に応じた電圧指令を出力する第1ステップと、
位相補償用の交流電圧指令を出力する第2ステップと、
前記速度指令を積分し補正前の位相指令を生成する第3ステップと、
前記第3ステップで生成された前記補正前の位相指令に対し、前記電動機に流れる電動機電流に基づき生成される位相補正量を加算する補正処理を行うことにより、補正後の位相指令を生成する第4ステップと、
前記電動機に流れる電動機電流を検出する第5ステップと、
前記第5ステップで検出された前記電動機電流を、前記補正後の位相指令と同位相成分(γ軸電流)、及び、前記補正後の位相指令に対し90度進んだ位相成分(δ軸電流)、にそれぞれ座標変換する第6ステップと、
前記第6ステップで変換された前記δ軸電流から前記位相補償用の交流電圧指令と同じ周波数成分の電流振幅を抽出する第7ステップと、
前記第7ステップで抽出された、前記位相補償用の交流電圧指令と同じ周波数成分の電流振幅を用いて、前記第4ステップにおける前記補正処理で用いる前記位相補正量を算出す第8ステップと、
前記第1ステップで出力された前記電圧指令、前記第2ステップで出力された前記位相補償用の交流電圧指令、及び、前記第4ステップで生成された前記補正後の位相指令に基づく電圧を、前記電動機に供給する第9ステップと、
を備えたことを特徴とする電動機制御装置の制御方法。
A first step of outputting a voltage command corresponding to a speed command to the electric motor;
A second step of outputting an AC voltage command for phase compensation;
A third step of integrating the speed command to generate a phase command before correction ;
A correction process for adding a phase correction amount generated based on the motor current flowing in the motor to the phase command before correction generated in the third step is performed to generate a corrected phase command. 4 steps,
A fifth step of detecting a motor current flowing through the motor;
The motor current detected in the fifth step is divided into a component having the same phase as the corrected phase command (γ-axis current) and a phase component advanced by 90 degrees with respect to the corrected phase command (δ-axis current). ) And 6th step of transforming the coordinates respectively ,
A seventh step of extracting a current amplitude having the same frequency component as the AC voltage command for phase compensation from the δ-axis current converted in the sixth step ;
The seventh extracted in step, by using the current amplitude of the same frequency component and an AC voltage command for the phase compensation, and the eighth step that gives calculated the phase correction amount used in the correction process in the fourth step ,
Said voltage command output by the first step, an AC voltage command for the phase compensation output in the second step, and a voltage based on the phase command, after the correction generated by the fourth step A ninth step of supplying the electric motor;
A control method for an electric motor control device.
JP2007158805A 2007-06-15 2007-06-15 Electric motor control device and control method thereof Active JP5119759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007158805A JP5119759B2 (en) 2007-06-15 2007-06-15 Electric motor control device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007158805A JP5119759B2 (en) 2007-06-15 2007-06-15 Electric motor control device and control method thereof

Publications (3)

Publication Number Publication Date
JP2008312384A JP2008312384A (en) 2008-12-25
JP2008312384A5 JP2008312384A5 (en) 2011-07-07
JP5119759B2 true JP5119759B2 (en) 2013-01-16

Family

ID=40239454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007158805A Active JP5119759B2 (en) 2007-06-15 2007-06-15 Electric motor control device and control method thereof

Country Status (1)

Country Link
JP (1) JP5119759B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4419220B2 (en) * 1999-08-25 2010-02-24 株式会社安川電機 Vector control device for induction motor
JP4596200B2 (en) * 2000-11-27 2010-12-08 富士電機システムズ株式会社 Control device for permanent magnet type synchronous motor
JP2006158046A (en) * 2004-11-26 2006-06-15 Yaskawa Electric Corp Sensorless control method and apparatus of ac electric motor
JP4631672B2 (en) * 2005-11-29 2011-02-16 株式会社デンソー Magnetic pole position estimation method, motor speed estimation method, and motor control apparatus
WO2007063766A1 (en) * 2005-11-30 2007-06-07 Kabushiki Kaisha Yaskawa Denki Motor controller

Also Published As

Publication number Publication date
JP2008312384A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP6324627B2 (en) AC rotating machine control device and electric power steering control device
JP4988329B2 (en) Beatless control device for permanent magnet motor
JP3529752B2 (en) DC brushless motor rotor angle detector
CN109075734B (en) Fault determination device and fault determination method for rotating electrical machine control device
JP4882645B2 (en) Permanent magnet motor inductance identification control device and inverter module
JP3914108B2 (en) DC brushless motor control device
US20170264227A1 (en) Inverter control device and motor drive system
JP2015136237A (en) Dynamo-electric machine controller, dynamo-electric machine control method, and creation method of control map
JP5493536B2 (en) Electric motor control device
WO2020213178A1 (en) Electric motor control device
JP4583257B2 (en) AC rotating machine control device
JP3914107B2 (en) DC brushless motor control device
JP5104219B2 (en) Control device for permanent magnet type synchronous motor
KR101109909B1 (en) A device and a method for controlling AC motor
JP2008206330A (en) Device and method for estimating magnetic pole position of synchronous electric motor
JP4596092B2 (en) Induction motor magnetic flux position estimation method and control apparatus
JP2012253982A (en) Angular velocity estimating apparatus
JP5119759B2 (en) Electric motor control device and control method thereof
JP2006136053A (en) Control device of motor
KR102409792B1 (en) Control device of permanent magnet synchronization electric motor, microcomputer, electric motor system, and driving method of permanent magnet synchronization electric motor
JP2008301619A (en) Motor controller and motor-constant calculation method therefor
JP4153619B2 (en) Electric motor control device
US11155294B2 (en) Electric power steering apparatus and electric power steering control method
JP4119184B2 (en) DC brushless motor rotor angle detector
JP4119183B2 (en) DC brushless motor rotor angle detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5119759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150