JP5117180B2 - Power supply device for deuterium discharge tube, control method thereof and analysis device - Google Patents

Power supply device for deuterium discharge tube, control method thereof and analysis device Download PDF

Info

Publication number
JP5117180B2
JP5117180B2 JP2007336321A JP2007336321A JP5117180B2 JP 5117180 B2 JP5117180 B2 JP 5117180B2 JP 2007336321 A JP2007336321 A JP 2007336321A JP 2007336321 A JP2007336321 A JP 2007336321A JP 5117180 B2 JP5117180 B2 JP 5117180B2
Authority
JP
Japan
Prior art keywords
discharge tube
discharge
deuterium
voltage
power converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007336321A
Other languages
Japanese (ja)
Other versions
JP2009158344A (en
Inventor
恒治 筒田
健一郎 高橋
卓哉 佐伯
剛 西垂水
勇夫 古矢
篤 檜山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2007336321A priority Critical patent/JP5117180B2/en
Publication of JP2009158344A publication Critical patent/JP2009158344A/en
Application granted granted Critical
Publication of JP5117180B2 publication Critical patent/JP5117180B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Description

本発明は、重水素放電管用電源装置とその制御方法に係り、また、それを用いた分析装置に関する。   The present invention relates to a power supply device for a deuterium discharge tube and a control method thereof, and also relates to an analyzer using the same.

分光光度計における紫外波長域分析の光源として、重水素放電管が使われる。分析精度の向上が進む中で、光源から発せられる光量の安定性向上が要求されてきている。   A deuterium discharge tube is used as a light source for ultraviolet wavelength region analysis in a spectrophotometer. Along with the improvement of analysis accuracy, there is a demand for improvement in the stability of the amount of light emitted from the light source.

光量の安定性を向上させるためには、重水素放電管の放電電流安定化精度を向上させる必要がある。   In order to improve the light quantity stability, it is necessary to improve the discharge current stabilization accuracy of the deuterium discharge tube.

特許文献1には、放電開始用のトリガ電圧発生回路と、放電電流を継続させる定電流回路を設けた重水素放電管電源装置が開示されている。   Patent Document 1 discloses a deuterium discharge tube power supply device provided with a trigger voltage generation circuit for starting discharge and a constant current circuit for continuing the discharge current.

また、特許文献2には、放電電流を検出して電圧を制御する重水素放電管電源装置が開示されている。   Patent Document 2 discloses a deuterium discharge tube power supply device that detects the discharge current and controls the voltage.

特開平5−93752号公報JP-A-5-93752 特開2001−85186号公報JP 2001-85186 A

特許文献1に示される重水素放電管の点灯装置における定電流回路では、放電電流を安定化する上で不十分である。   The constant current circuit in the deuterium discharge tube lighting device disclosed in Patent Document 1 is insufficient for stabilizing the discharge current.

また、特許文献2では、光量は放電管の放電電流に比例するため、放電電流を検出し、目標信号との差分を小さくする負帰還による比例制御がなされている。この比例制御により、電流量が目標値より小の場合、電源の出力電圧を大として放電電流を増加させ、逆に目標値より大の場合、電源の出力電圧を小として放電電流を減少させるように作用する。この作用は負荷の特性が正抵抗であることで成り立つ。   In Patent Document 2, since the amount of light is proportional to the discharge current of the discharge tube, proportional control is performed by negative feedback that detects the discharge current and reduces the difference from the target signal. By this proportional control, when the amount of current is smaller than the target value, the discharge current is increased by increasing the output voltage of the power supply. Conversely, when the current amount is larger than the target value, the discharge current is decreased by decreasing the output voltage of the power supply. Act on. This effect is realized because the load characteristic is a positive resistance.

しかしながら、重水素放電管の場合、アノード(陽極)とカソード(陰極)間に印加するアノード電圧とアノードからカソードに流れる放電電流との特性が負性抵抗になる。このために、放電電流の安定性を向上させるために比例制御の精度を上げても、精度が上がらない。また、このため正帰還制御となってしまい、発振し放電を停止させ消灯に至ることがある。   However, in the case of a deuterium discharge tube, the characteristics of the anode voltage applied between the anode (anode) and the cathode (cathode) and the discharge current flowing from the anode to the cathode become negative resistance. For this reason, even if the accuracy of proportional control is increased in order to improve the stability of the discharge current, the accuracy does not increase. In addition, this results in positive feedback control, which may oscillate, stop discharging, and turn off.

図3は、従来技術における重水素放電管のアノードとカソード間電圧の変化と放電電流の変化の例を示すグラフである。図から明らかなように、トリガ電圧を印加後の初期状態の後、低電流制御区間において、負性抵抗であるために、負帰還制御系が安定できずに発振し、ついには、放電電流が消滅し、消灯に至っている。   FIG. 3 is a graph showing an example of changes in the voltage between the anode and the cathode of the deuterium discharge tube and changes in the discharge current in the prior art. As is apparent from the figure, after the initial state after the trigger voltage is applied, the negative feedback control system oscillates without being stable due to the negative resistance in the low current control period, and finally the discharge current is It has disappeared and has gone out.

また、消灯に至らないまでも、前記の発振は安定度を低下させる原因になっている。   In addition, even if the light does not turn off, the oscillation causes a decrease in stability.

図4は、従来技術の発振状態における重水素放電管のアノードとカソード間電圧の変化と放電電流の変化の例を示すグラフである。重水素放電管の放電状態は継続しているものの、図から明らかなように、放電電流の増減に伴ってアノード電圧を増減させており、安定度を大きく低下させている。   FIG. 4 is a graph showing an example of a change in the voltage between the anode and the cathode of the deuterium discharge tube and a change in the discharge current in the oscillation state of the prior art. Although the discharge state of the deuterium discharge tube continues, as is apparent from the figure, the anode voltage is increased or decreased with the increase or decrease of the discharge current, and the stability is greatly reduced.

本発明の目的は、分光光度計や液体クロマトグラフ等の分析装置の光源として好適な重水素放電管を確実に点灯させ、点灯した重水素放電管より放射される光量の安定性を向上させることである。   An object of the present invention is to reliably turn on a deuterium discharge tube suitable as a light source for an analyzer such as a spectrophotometer or a liquid chromatograph, and to improve the stability of the amount of light emitted from the lighted deuterium discharge tube. It is.

本発明の他の目的は、放射光量の安定性を向上した重水素放電管を光源とする分光光度計や液体クロマトグラフ等の分析装置を提供することである。   Another object of the present invention is to provide an analyzer such as a spectrophotometer or a liquid chromatograph using a deuterium discharge tube with improved stability of radiant light quantity as a light source.

本発明の望ましい実施態様においては、重水素放電管のアノード−カソード間に、放電開始時に比較的高い放電開始トリガ電圧を印加するとともに、その後の放電中に比較的低い放電継続電圧を印加しながら、前記重水素放電管の放電継続電流を所定値に制御する制御装置を備えた重水素放電管用電源装置において、前記放電開始トリガ電圧と前記放電継続電流の両者を供給する共通線路上に抵抗器を備え、電源側から見て、前記重水素放電管のアノード−カソード間と前記抵抗器の直列回路が、電圧対電流特性において正抵抗特性となるように設定したことを特徴とする。すなわち、放電管と直列に抵抗器を接続し、重水素放電管の負性抵抗特性に対し、抵抗器による正抵抗特性を加えることにより、電源から見た負荷特性を正抵抗特性に補正するのである。   In a preferred embodiment of the present invention, a relatively high discharge start trigger voltage is applied between the anode and the cathode of the deuterium discharge tube at the start of discharge, and a relatively low discharge continuation voltage is applied during the subsequent discharge. A deuterium discharge tube power supply device comprising a control device for controlling a discharge continuation current of the deuterium discharge tube to a predetermined value, a resistor on a common line supplying both the discharge start trigger voltage and the discharge continuation current When viewed from the power source side, the anode-cathode of the deuterium discharge tube and the series circuit of the resistors are set to have positive resistance characteristics in voltage-current characteristics. That is, by connecting a resistor in series with the discharge tube and adding a positive resistance characteristic by the resistor to the negative resistance characteristic of the deuterium discharge tube, the load characteristic viewed from the power source is corrected to the positive resistance characteristic. is there.

また、本発明の望ましい実施形態においては、放電開始の初期状態と放電電流の安定制御状態とで、前記抵抗器の抵抗値を切り替える手段を備える。すなわち、放電開始初期のグロー放電状態においてはより大きな負性抵抗特性をもつので、比較的大きな抵抗器を接続し、一方、放電電流を安定に継続させるアーク放電状態では比較的小さな負性抵抗特性をもつので、比較的小さな抵抗器を接続して補正するのである。   In a preferred embodiment of the present invention, there is provided means for switching the resistance value of the resistor between an initial state of discharge start and a stable control state of discharge current. In other words, since it has a larger negative resistance characteristic in the glow discharge state at the beginning of the discharge, a relatively large resistor is connected, while a relatively small negative resistance characteristic is present in the arc discharge state where the discharge current is stably maintained. Therefore, it is corrected by connecting a relatively small resistor.

本発明の望ましい実施態様によれば、重水素放電管の点灯を確実に継続させ、放射光量の安定度を向上させることができる。   According to the preferred embodiment of the present invention, the lighting of the deuterium discharge tube can be reliably continued and the stability of the amount of radiated light can be improved.

また、本発明の望ましい他の実施態様によれば、測定精度を向上した分光光度計や液体クロマトグラフ等の分析装置を提供することができる。   Moreover, according to another desirable embodiment of the present invention, it is possible to provide an analyzer such as a spectrophotometer or a liquid chromatograph with improved measurement accuracy.

本発明のその他の目的と特徴は、以下に述べる実施形態の中で明らかにする。   Other objects and features of the present invention will be clarified in the embodiments described below.

本発明の望ましい一実施例においては、複数の抵抗器を接続して、放電開始時に必要な最大抵抗値を形成し、放電開始直後には、接続された抵抗器の一部を短絡して、継続放電状態に合わせた抵抗値を形成するように構成する。   In a preferred embodiment of the present invention, a plurality of resistors are connected to form a maximum resistance value required at the start of discharge, and immediately after the start of discharge, a part of the connected resistors is short-circuited, A resistance value is formed in accordance with the continuous discharge state.

図1は、本発明の一実施例による重水素放電管の電源装置の電気回路構成図である。   FIG. 1 is an electric circuit configuration diagram of a power supply device for a deuterium discharge tube according to an embodiment of the present invention.

電源入力端子1には、直流電圧を入力する。電力変換器2は、入力された直流電圧をパルス幅変調することにより、トランス3の1次側コイル301に印加する電圧をパルス幅にて制御するDCチョッパである。もちろん、PWMインバータを用いることもできるが、本実施例では、DCチョッパを用い、スイッチング素子1個の簡単な構成で実現している。   A DC voltage is input to the power input terminal 1. The power converter 2 is a DC chopper that controls the voltage applied to the primary coil 301 of the transformer 3 with the pulse width by performing pulse width modulation on the input DC voltage. Of course, a PWM inverter can also be used, but in this embodiment, a DC chopper is used and a simple configuration with one switching element is realized.

さて、DCチョッパのパルス周期を一定にしてパルス幅を広げるとコイル301に流れる電流は増加し、パルス幅を狭くすると、コイル301に流れる電流は減少する。トランス3の2次側のコイル302には、1次側コイル301に流れる電流に比例したパルス電圧が発生する。   When the pulse width of the DC chopper is kept constant and the pulse width is widened, the current flowing through the coil 301 increases. When the pulse width is narrowed, the current flowing through the coil 301 decreases. A pulse voltage proportional to the current flowing through the primary coil 301 is generated in the secondary coil 302 of the transformer 3.

3倍圧整流回路4の出力側には、トランジスタ11によるスイッチが開放の状態では無負荷状態となり、2次側コイル302に発生するパルス電圧のピーク電圧を3倍した直流高電圧が発生する。この実施例では、3倍圧としたが、必要に応じて、倍電圧または4倍圧以上とすることもできる。3倍圧整流回路4の出力電圧は、リアクトル7とコンデンサ8によるLCフィルタ回路により平滑され、滑らかな直流高電圧が得られる。   On the output side of the triple voltage rectifier circuit 4, when the switch by the transistor 11 is in an open state, a no-load state occurs, and a DC high voltage that is three times the peak voltage of the pulse voltage generated in the secondary coil 302 is generated. In this embodiment, the voltage is tripled, but can be doubled or quadrupled as necessary. The output voltage of the triple voltage rectifier circuit 4 is smoothed by the LC filter circuit including the reactor 7 and the capacitor 8, and a smooth DC high voltage is obtained.

この直流高電圧は、分圧抵抗器18により、直流高電圧の大きさに比例した信号を出力し、ダイオード19のアノードに伝わる。ダイオード19のカソードは、ダイオード20のカソードと接続されており、ダイオード19のアノード電圧が、ダイオード20のアノード電圧より大きい時だけ、カソードに伝わり、設定(指令)値と比較され、差分がPWM制御装置21に伝えられる。すなわち、ダイオード19と20の突合せによる高位優先回路を構成している。   This DC high voltage is output by the voltage dividing resistor 18 to a signal proportional to the magnitude of the DC high voltage and transmitted to the anode of the diode 19. The cathode of the diode 19 is connected to the cathode of the diode 20, and is transmitted to the cathode only when the anode voltage of the diode 19 is larger than the anode voltage of the diode 20, and is compared with the set (command) value, and the difference is PWM controlled. It is transmitted to the device 21. That is, a high-order priority circuit is formed by matching the diodes 19 and 20.

設定値と負帰還値との差分出力信号は、PWM制御装置21に伝えられ、差分を小さくするように、PWMのパルス幅制御を行なう。この結果、コンデンサ8に充電される直流電圧、あるいは、重水素放電管24の放電電流の値が設定値と等しくなるように制御される。つまり、LCフィルタのコンデンサ8の電圧が高いうちは、そのAVR制御系を構成し、コンデンサ8の電圧が低くなると、相対的に放電電流検出値の方が大きくなるので、前記高位優先回路により、自動的にACR制御系へと移行する。   The difference output signal between the set value and the negative feedback value is transmitted to the PWM control device 21 and performs PWM pulse width control so as to reduce the difference. As a result, the direct current voltage charged in the capacitor 8 or the discharge current value of the deuterium discharge tube 24 is controlled to be equal to the set value. That is, while the voltage of the capacitor 8 of the LC filter is high, the AVR control system is configured, and when the voltage of the capacitor 8 is low, the discharge current detection value becomes relatively large. The system automatically shifts to the ACR control system.

トランス3の2次側のコイル303にも、1次側コイル301に流れる電流相当の電圧が発生する。この電圧は、ダイオード16で整流され、コンデンサ15に充電され、コンデンサ15の両端に直流電圧を発生させる。なお、22は、重水素放電管24のカソード用のヒータ回路である。   A voltage corresponding to the current flowing in the primary coil 301 is also generated in the secondary coil 303 of the transformer 3. This voltage is rectified by the diode 16 and charged in the capacitor 15 to generate a DC voltage across the capacitor 15. Reference numeral 22 denotes a heater circuit for the cathode of the deuterium discharge tube 24.

さて、点灯開始信号入力端子25に電圧が印加されると、ホトカプラ14内の発光ダイオードに電流が流れ発光し、同ホトカプラ14内のホトトランジスタをONにする。この結果、コンデンサ15の両端に発生した直流電圧がトランジスタ11のゲートとソース間に印加され、トランジスタ11がオンする。このため、コンデンサ8に充電されていた直流高電圧が、重水素放電管24への接続端子23を通して、重水素放電管24のアノードとカソード間に印加され、重水素放電管24は、直流高電圧により放電を開始する。   When a voltage is applied to the lighting start signal input terminal 25, a current flows through the light emitting diode in the photocoupler 14 to emit light, and the phototransistor in the photocoupler 14 is turned on. As a result, a DC voltage generated at both ends of the capacitor 15 is applied between the gate and source of the transistor 11, and the transistor 11 is turned on. Therefore, the DC high voltage charged in the capacitor 8 is applied between the anode and the cathode of the deuterium discharge tube 24 through the connection terminal 23 to the deuterium discharge tube 24, and the deuterium discharge tube 24 is connected to the DC high voltage. Discharge starts with voltage.

放電開始時の放電電流は、抵抗器9と抵抗器10を通り、重水素放電管24に流れこむ。放電開始時の重水素放電管24のアノードとカソード間抵抗は、放電開始前の開放状態から数μsで数Ω程度まで変化する。このため、急激に放電電流が増加し、電源からの出力電流が増加すると、コンデンサ8に充電された直流高電圧は放電により低下し、3倍圧整流回路4内のコンデンサの充電により3倍圧の電圧を発生していた電荷も放電し、出力電圧は低下する。   The discharge current at the start of discharge passes through the resistor 9 and the resistor 10 and flows into the deuterium discharge tube 24. The resistance between the anode and the cathode of the deuterium discharge tube 24 at the start of discharge changes from the open state before the start of discharge to about several Ω in several μs. For this reason, when the discharge current suddenly increases and the output current from the power supply increases, the DC high voltage charged in the capacitor 8 decreases due to the discharge, and the voltage in the triple voltage rectifier circuit 4 is charged by the triple voltage. The electric charge that generated the voltage is also discharged, and the output voltage decreases.

図2は、本発明の一実施例における3倍圧整流回路4の回路図である。図中、Cはコンデンサ、Dはダイオードを示し、公知であるので、その動作説明は省略する。   FIG. 2 is a circuit diagram of the triple voltage rectifier circuit 4 in one embodiment of the present invention. In the figure, C is a capacitor, D is a diode, and since it is known, its description is omitted.

さて、図1に戻り、トランス3の2次側コイル302から出力されるパルス電圧をダイオード5で整流し、LCフィルタのリアクトル7とコンデンサ8に流し込み、コンデンサ8を充電すると共に、重水素放電管24の放電電流として供給する。   Now, returning to FIG. 1, the pulse voltage output from the secondary coil 302 of the transformer 3 is rectified by the diode 5, flows into the reactor 7 and the capacitor 8 of the LC filter, charges the capacitor 8, and deuterium discharge tube 24 discharge current is supplied.

トランス3の2次側コイル302から出力されるパルスが、ONからOFF状態になると、リアクトル7は、OFFになる前に流れ込んだ電流に近い電流を放出する。この電流は、コンデンサ8に充電されると共に、重水素放電管24の放電電流として供給され、電流検出回路17を通り、ダイオード6を通りリアクトル7に戻る。   When the pulse output from the secondary coil 302 of the transformer 3 changes from the ON state to the OFF state, the reactor 7 releases a current close to the current that flows before turning OFF. This current is charged into the capacitor 8 and supplied as a discharge current of the deuterium discharge tube 24, passes through the current detection circuit 17, passes through the diode 6, and returns to the reactor 7.

この結果、電流検出回路17から放電電流に比例した電流信号が出力され、高位優先回路のダイオード20のアノードに伝わる。一方、高位優先回路の他方のダイオード19のアノード電圧は、前述の理由により低下するため、ダイオード20を通る電流信号が、設定値と比較され差分をPWM制御回路21に伝えるように、自動的に切り替わる。設定(指令)値と負帰還値との差分出力信号は、PWM制御回路21に伝えられ、差分を小さくするように、DCチョッパ2の出力電圧を増減する制御を行なう。   As a result, a current signal proportional to the discharge current is output from the current detection circuit 17 and transmitted to the anode of the diode 20 of the high priority circuit. On the other hand, since the anode voltage of the other diode 19 of the high priority circuit decreases for the above-described reason, the current signal passing through the diode 20 is automatically compared with the set value and the difference is transmitted to the PWM control circuit 21. Switch. The difference output signal between the set (command) value and the negative feedback value is transmitted to the PWM control circuit 21 and performs control to increase / decrease the output voltage of the DC chopper 2 so as to reduce the difference.

図5は、本発明の一実施例による重水素放電管用電源装置における重水素放電管の点灯開始特性である電圧と電流の変化を示すグラフである。図5の点灯開始特性と、図3の従来技術における点灯開始特性を比較すると、放電電流が放電開始時の過渡状態から設定電流値へ発振現象もなく安定して制御されていることが判る。   FIG. 5 is a graph showing changes in voltage and current, which are lighting start characteristics of a deuterium discharge tube in a deuterium discharge tube power supply device according to an embodiment of the present invention. Comparing the lighting start characteristic of FIG. 5 with the lighting start characteristic in the prior art of FIG. 3, it can be seen that the discharge current is stably controlled from the transient state at the start of discharge to the set current value without an oscillation phenomenon.

本実施例によれば、点灯開始から200μs経過した時点で、放電電流が設定値の0.3(A)に達している。また、図3の従来技術における点灯開始特性の点灯開始直後の電流ピーク値は、10(A)を超えていたが、図5の本発明の一実施例における点灯開始特性においては、点灯開始直後の電流ピーク値は約3(A)である。これは、抵抗器9と抵抗器10の和により電流が制限された結果である。放電電流が、設定値の0.3(A)に達する過程での重水素放電管24の大きな負性抵抗特性を、抵抗器9と抵抗器10の和により放電補正され、電源から見た負荷特性が正抵抗特性になっている。このため、負帰還による比例制御によって従来発生していた発振現象は発生しない。   According to this embodiment, the discharge current reaches the set value of 0.3 (A) when 200 μs has elapsed from the start of lighting. Further, the current peak value immediately after the start of lighting of the lighting start characteristic in the prior art of FIG. 3 exceeded 10 (A). However, in the lighting start characteristic in one embodiment of the present invention of FIG. The current peak value of is about 3 (A). This is a result of the current being limited by the sum of the resistor 9 and the resistor 10. The large negative resistance characteristic of the deuterium discharge tube 24 in the process in which the discharge current reaches the set value of 0.3 (A) is discharge-corrected by the sum of the resistor 9 and the resistor 10, and the load as viewed from the power source The characteristic is a positive resistance characteristic. For this reason, the oscillation phenomenon which occurred conventionally by proportional control by negative feedback does not occur.

点灯開始信号入力端子25に電圧が印加されて、ホトカプラ14内の発光ダイオードに電流が流れ発光し、同ホトカプラ14内のホトトランジスタをONにすることで、遅延回路13にコンデンサ15の両端に発生した直流電圧が加わる。本実施例では、500μs後に遅延回路13を通過した電圧が、トランジスタ12によるスイッチを閉じる。この結果、抵抗器10の両端が短絡され、重水素放電管24と直列に接続される抵抗器は、抵抗器9のみとなる。放電開始直後は、放電電流の変化領域が数アンペアになり、広い範囲の負性抵抗特性を補正する必要があるが、設定電流に到達した後の放電電流の変動幅は、1(mA)以下になる。このため、負性抵抗の補正領域は大幅に狭められ、抵抗器9だけで負性抵抗特性を補正することが可能になる。この実施例においては、抵抗器9が約40Ω、抵抗器10は約100Ωとした。   When a voltage is applied to the lighting start signal input terminal 25, a current flows through the light emitting diode in the photocoupler 14 to emit light, and the phototransistor in the photocoupler 14 is turned on, so that the delay circuit 13 is generated at both ends of the capacitor 15. Applied DC voltage. In this embodiment, the voltage passing through the delay circuit 13 after 500 μs closes the switch by the transistor 12. As a result, both ends of the resistor 10 are short-circuited, and only the resistor 9 is connected in series with the deuterium discharge tube 24. Immediately after the start of discharge, the change region of the discharge current is several amperes, and it is necessary to correct a wide range of negative resistance characteristics. However, the fluctuation range of the discharge current after reaching the set current is 1 (mA) or less. become. For this reason, the correction region of the negative resistance is greatly narrowed, and it becomes possible to correct the negative resistance characteristic only by the resistor 9. In this embodiment, the resistor 9 is about 40Ω and the resistor 10 is about 100Ω.

図6は、本発明の一実施例による重水素放電管の負性抵抗特性と抵抗器による補正特性を示すグラフである。図には、安定アーク放電継続状態における補正前特性と、抵抗器9のみによる補正後の特性を示している。したがって、両者間の差電圧が、抵抗器9の両端に掛かる補正電圧である。補正後の特性は、右上がりの正抵抗特性になっており、負帰還による比例制御系によって、放電電流を設定(指令)電流値に一致させ安定させることができる。   FIG. 6 is a graph showing a negative resistance characteristic of a deuterium discharge tube according to an embodiment of the present invention and a correction characteristic by a resistor. The figure shows the pre-correction characteristics in the stable arc discharge continuation state and the characteristics after correction using only the resistor 9. Therefore, the difference voltage between the two is a correction voltage applied to both ends of the resistor 9. The corrected characteristic is a positive resistance characteristic that rises to the right, and the discharge current can be made equal to the set (command) current value and stabilized by a proportional control system using negative feedback.

図7は、本発明の一実施例による重水素放電管用電源装置を用いた分析装置である分光光度計の概略機能構成図である。重水素放電管24は、分光光度計や液体クロマトグラフ等の分析装置用検出器における紫外波長域分析の光源として使われる。この点灯用電源となる放電管電源を搭載した装置(図7)の一実施例を以下に示す。   FIG. 7 is a schematic functional configuration diagram of a spectrophotometer which is an analyzer using a power supply device for a deuterium discharge tube according to an embodiment of the present invention. The deuterium discharge tube 24 is used as a light source for ultraviolet wavelength region analysis in a detector for an analyzer such as a spectrophotometer or a liquid chromatograph. An example of an apparatus (FIG. 7) equipped with a discharge tube power source serving as a lighting power source is shown below.

重水素放電管24を点灯させるために、装置全体を制御するマイコン39からヒータON/OFF信号31のON信号が、約20秒後にランプON/OFF信号40のON信号が、それぞれ放電管電源30に出力される。重水素放電管24が点灯すると、放電管電源30から点灯ステータス信号41のON信号がマイコン39へ出力される。   In order to light the deuterium discharge tube 24, the ON signal of the heater ON / OFF signal 31 from the microcomputer 39 that controls the entire apparatus, and the ON signal of the lamp ON / OFF signal 40 after about 20 seconds, respectively, are discharged from the discharge tube power supply 30. Is output. When the deuterium discharge tube 24 is lit, an ON signal of the lighting status signal 41 is output from the discharge tube power supply 30 to the microcomputer 39.

オペレータ指定の測定波長はマイコン39からの波長設定信号46により、回折格子32が駆動され、設定される。   The measurement wavelength designated by the operator is set by driving the diffraction grating 32 by a wavelength setting signal 46 from the microcomputer 39.

重水素放電管24からの放射光は、回折格子32にて分光され、オペレータ指定波長光がハーフミラー33に照射され、参照光となるリファレンス光(R光)35と測定試料の存在するセル34への照射光に分けられる。リファレンス光(R光)35は、R光検知器36とR光プリアンプ37を介してアナログ電気信号に変換され、R光AD変換器38によりデジタルデータが生成され、マイコン39へ入力される。   Radiated light from the deuterium discharge tube 24 is split by the diffraction grating 32, and the operator-designated wavelength light is irradiated to the half mirror 33, and the reference light (R light) 35 serving as reference light and the cell 34 in which the measurement sample is present. It is divided into the irradiation light. The reference light (R light) 35 is converted into an analog electric signal via the R light detector 36 and the R light preamplifier 37, digital data is generated by the R light AD converter 38, and is input to the microcomputer 39.

一方、セル34を通過し、試料により吸収されなかったサンプル光(S光)42は、S光検知器43に照射され、S光プリアンプ44、S光AD変換器45を介して、マイコン39へ入力される。ここで、マイコン39ではリファレンス光(R光)35、サンプル光(S光)42、各々のデジタルデータを基に吸光度演算を行い、装置の測定データとして出力する。   On the other hand, the sample light (S light) 42 that has passed through the cell 34 and has not been absorbed by the sample is irradiated to the S light detector 43, and is sent to the microcomputer 39 via the S light preamplifier 44 and the S light AD converter 45. Entered. Here, the microcomputer 39 performs absorbance calculation based on the digital data of the reference light (R light) 35, the sample light (S light) 42, and outputs the result as measurement data of the apparatus.

本実施例によれば、分光光度計や液体クロマトグラフなどの分析装置において、吸光度データの光源ゆらぎノイズを低減することができる   According to the present embodiment, light source fluctuation noise in absorbance data can be reduced in an analyzer such as a spectrophotometer or a liquid chromatograph.

本発明の一実施例による重水素放電管の電源装置の電気回路構成図である。It is an electric circuit block diagram of the power supply device of the deuterium discharge tube by one Example of this invention. 本発明の一実施例における3倍圧整流回路4の回路図である。It is a circuit diagram of the triple voltage rectifier circuit 4 in one Example of this invention. 従来技術における重水素放電管のアノードとカソード間電圧の変化と放電電流の変化の例を示すグラフである。It is a graph which shows the example of the change of the voltage between the anodes and cathodes of a deuterium discharge tube, and the change of discharge current in a prior art. 従来技術の前記発振状態における重水素放電管のアノードとカソード間電圧の変化と放電電流の変化の例を示すグラフである。It is a graph which shows the example of the change of the anode-cathode voltage of the deuterium discharge tube in the said oscillation state of a prior art, and the change of discharge current. 本発明の一実施例による重水素放電管用電源装置における重水素放電管の点灯開始特性である電圧と電流の変化を示すグラフである。It is a graph which shows the change of the voltage and electric current which are the lighting start characteristics of the deuterium discharge tube in the power supply device for deuterium discharge tubes by one Example of this invention. 本発明の一実施例による重水素放電管の負性抵抗特性と抵抗器による補正特性を示すグラフである。It is a graph which shows the negative resistance characteristic of the deuterium discharge tube by one Example of this invention, and the correction characteristic by a resistor. 本発明の一実施例による重水素放電管用電源装置を用いた分析装置である分光光度計の概略機能構成図である。It is a schematic functional block diagram of the spectrophotometer which is an analyzer which used the power supply device for deuterium discharge tubes by one Example of this invention.

符号の説明Explanation of symbols

1…電源の入力端子、2…電力変換器(DCチョッパ)、3…トランス、301…1次側コイル、302…2次側コイル、303…2次側コイル、4…3倍圧整流回路、5,6,16,19,20…ダイオード、7…リアクトル、8,15…コンデンサ、9,10…抵抗器、11,12…トランジスタ、13…遅延回路、14…ホトカプラ、17…電流検出回路、18…電圧検出用分圧抵抗器、21…PWM制御装置、22…ヒータ回路、23…重水素放電管接続端子、24…重水素放電管、30…放電管電源、32…回折格子、33…ハーフミラー、34…セル、35…リファレンス光(R光)、36…R光検知器、37…R光プリアンプ、38…R光AD変換器、39…マイコン、42…サンプル光(S光)、43…S光検知器、44…S光プリアンプ、45…S光AD変換器。   DESCRIPTION OF SYMBOLS 1 ... Input terminal of power supply, 2 ... Power converter (DC chopper), 3 ... Transformer, 301 ... Primary side coil, 302 ... Secondary side coil, 303 ... Secondary side coil, 4 ... Triple voltage rectifier circuit, 5, 6, 16, 19, 20 ... diode, 7 ... reactor, 8, 15 ... capacitor, 9, 10 ... resistor, 11, 12 ... transistor, 13 ... delay circuit, 14 ... photocoupler, 17 ... current detection circuit, DESCRIPTION OF SYMBOLS 18 ... Voltage detection voltage dividing resistor, 21 ... PWM controller, 22 ... Heater circuit, 23 ... Deuterium discharge tube connection terminal, 24 ... Deuterium discharge tube, 30 ... Discharge tube power supply, 32 ... Diffraction grating, 33 ... Half mirror, 34 ... cell, 35 ... reference light (R light), 36 ... R light detector, 37 ... R light preamplifier, 38 ... R light AD converter, 39 ... microcomputer, 42 ... sample light (S light), 43 ... S light detector, 44 ... Optical pre-amplifier, 45 ... S optical AD converter.

Claims (8)

重水素放電管のアノード−カソード間に、放電開始時に比較的高い放電開始トリガ電圧を印加するとともに、その後の放電中に比較的低い放電継続電圧を印加しながら、前記重水素放電管の放電継続電流を所定値に制御する制御装置を備えた重水素放電管用電源装置において、
出力電圧を調整可能な電力変換器と、
前記電力変換器の出力電圧を、前記重水素放電管のアノード−カソード間に印加する回路内に直列接続された抵抗値の異なる第1および第2の抵抗器と、
前記2つの抵抗器のうち、抵抗値の大きい方の第1の抵抗器に並列に接続された短絡スイッチ手段と、
点灯開始信号に基づいて、前記短絡スイッチ手段を開放したまま前記2つの抵抗器を介して、前記電力変換器の出力電圧を前記重水素放電管のアノード−カソード間に印加してグロー放電を開始させる起動スイッチ手段と、
前記起動スイッチ手段の投入後、所定の短時間後に、前記短絡スイッチ手段を投入し抵抗値の大きい方の前記第1の抵抗器を短絡し、抵抗値の小さい方の前記第2の抵抗器を介して前記電力変換器の出力電圧を前記重水素放電管のアノード−カソード間に印加してアーク放電を継続させる切り替え手段と、
前記電力変換器の出力電圧または前記重水素放電管の放電電流を負帰還して設定値に近づけるように、前記電力変換器を制御する制御装置とを備え、
前記電力変換器から見て、前記グロー放電中の前記重水素放電管のアノード−カソード間と前記第1および第2の抵抗器の直列回路の電圧対電流特性が正抵抗特性となるように、前記第1および第2の抵抗器の抵抗値が設定され、かつ
前記電力変換器から見て、前記アーク放電中の前記重水素放電管のアノード−カソード間と抵抗値の小さい方の前記第2の抵抗器の直列回路の電圧対電流特性が正抵抗特性となるように、前記第2の抵抗器の抵抗値が設定されていることを特徴とする重水素放電管用電源装置。
While a relatively high discharge start trigger voltage is applied between the anode and cathode of the deuterium discharge tube at the start of discharge, and a relatively low discharge continuation voltage is applied during the subsequent discharge, the discharge of the deuterium discharge tube is continued. In a deuterium discharge tube power supply device equipped with a control device for controlling the current to a predetermined value,
A power converter with adjustable output voltage;
First and second resistors having different resistance values connected in series in a circuit for applying an output voltage of the power converter between an anode and a cathode of the deuterium discharge tube;
Of the two resistors, a short-circuit switch means connected in parallel to the first resistor having the larger resistance value;
Based on the lighting start signal, glow discharge is started by applying the output voltage of the power converter between the anode and cathode of the deuterium discharge tube via the two resistors with the short-circuit switch means open. Starting switch means
After a predetermined short time after the activation switch means is turned on, the short-circuit switch means is turned on to short-circuit the first resistor having the larger resistance value, and the second resistor having the smaller resistance value is turned on. Switching means for applying an output voltage of the power converter via the anode and cathode of the deuterium discharge tube to continue arc discharge,
A control device for controlling the power converter so that the output voltage of the power converter or the discharge current of the deuterium discharge tube is negatively fed back to a set value;
As viewed from the power converter, the voltage-current characteristic of the series circuit of the first and second resistors between the anode and the cathode of the deuterium discharge tube during the glow discharge and the first and second resistors is a positive resistance characteristic. Resistance values of the first and second resistors are set, and
When viewed from the power converter, the voltage-current characteristic of the series circuit of the second resistor having the smaller resistance value between the anode and the cathode of the deuterium discharge tube during the arc discharge becomes a positive resistance characteristic. As described above, the deuterium discharge tube power supply device is characterized in that the resistance value of the second resistor is set .
請求項1において、前記直列回路に印加される電圧検出値または前記放電電流の検出値を切り替えて前記負帰還制御系に負帰還する負帰還値切り替え手段を備えたことを特徴とする重水素放電管用電源装置。 2. The deuterium discharge according to claim 1, further comprising negative feedback value switching means for switching a voltage detection value applied to the series circuit or a detection value of the discharge current to perform negative feedback to the negative feedback control system. Pipe power supply. 請求項において、前記負帰還値切り替え手段は、前記直列回路に印加される電圧検出値または前記放電電流の検出値とを入力し、前記電力変換器の制御装置に出力する高位優先回路を備えたことを特徴とする重水素放電管用電源装置。 3. The high feedback circuit according to claim 2 , wherein the negative feedback value switching means inputs a voltage detection value applied to the series circuit or a detection value of the discharge current, and outputs the detected value to the control device of the power converter. A power supply device for a deuterium discharge tube. 請求項1〜3のいずれかにおいて、前記電力変換器は、チョッパであることを特徴とする重水素放電管用電源装置。 4. The deuterium discharge tube power supply device according to claim 1, wherein the power converter is a chopper. 請求項1〜4のいずれかにおいて、前記電力変換器の出力電圧を1次側に印加され、2次側に2倍以上の複数倍圧整流回路を接続されたトランスとを備え、この複数倍圧整流回路の出力側に前記重水素放電管のアノード−カソード間と前記抵抗器の直列回路を接続したことを特徴とする重水素放電管用電源装置。 In any one of claims 1 to 4, wherein the applied output voltage of the power converter to the primary side, the secondary side and a transformer connected to multiple voltage doubler rectifier circuit having more than doubled, the multiples A power supply device for a deuterium discharge tube, wherein an anode-cathode of the deuterium discharge tube and a series circuit of the resistor are connected to an output side of the pressure rectifier circuit. 請求項1〜5のいずれかに記載の重水素放電管用電源装置からの放射光をリファレンス光と試料への照射光とに分光し、吸光度演算により試料に関するデータを分析する分析装置。 An analyzer for analyzing the data relating to the sample by calculating the absorbance by dispersing the radiated light from the power supply device for the deuterium discharge tube according to any one of claims 1 to 5 into reference light and irradiation light to the sample. 重水素放電管のアノード−カソード間に、放電開始時に比較的高い放電開始トリガ電圧を印加するとともに、その後の放電中に比較的低い放電継続電圧を印加しながら、前記重水素放電管の放電継続電流を所定値に制御する重水素放電管用電源の制御方法において、
出力電圧を調整可能な電力変換器の出力電圧を、前記重水素放電管のアノード−カソード間に印加する回路内に、抵抗値の異なる第1および第2の抵抗器を直列に接続し、
前記2つの抵抗器のうち、抵抗値の大きい方の第1の抵抗器と並列に短絡スイッチ手段を接続し、
起動時に、前記短絡スイッチ手段を開放したままで、起動スイッチ手段を投入することにより、前記第1および第2の抵抗器を介して、前記電力変換器の出力電圧を前記重水素放電管のアノード−カソード間に印加するグロー放電ステップと、
前記起動スイッチ手段の投入後、所定の短時間後に、前記短絡スイッチ手段を投入して抵抗値の大きい方の前記第1の抵抗器を短絡し、抵抗値の小さい方の前記第2の抵抗器を介して前記電力変換器の出力電圧を前記重水素放電管のアノード−カソード間に印加するアーク放電ステップと、
前記電力変換器の出力電圧または前記重水素放電管の放電電流を負帰還して設定値に近づけるように、前記電力変換器を制御するステップとを備え、
前記グロー放電中に、前記電力変換器から見て、前記重水素放電管のアノード−カソード間と前記第1および第2の抵抗器の直列回路の電圧対電流特性が正抵抗特性となるように、前記第1および第2の抵抗器の抵抗値を設定するとともに、
前記アーク放電中に、前記電力変換器から見て、前記重水素放電管のアノード−カソード間と抵抗値の小さい方の前記第2の抵抗器の直列回路の電圧対電流特性が正抵抗特性となるように、前記第2の抵抗器の抵抗値を設定することを特徴とする重水素放電管用電源の制御方法。
While a relatively high discharge start trigger voltage is applied between the anode and cathode of the deuterium discharge tube at the start of discharge, and a relatively low discharge continuation voltage is applied during the subsequent discharge, the discharge of the deuterium discharge tube is continued. In the control method of the power source for the deuterium discharge tube for controlling the current to a predetermined value,
A first resistor and a second resistor having different resistance values are connected in series in a circuit for applying an output voltage of a power converter capable of adjusting an output voltage between an anode and a cathode of the deuterium discharge tube,
A short-circuit switch means is connected in parallel with the first resistor having the larger resistance value of the two resistors.
At the time of start-up, the short-circuit switch means is kept open, and the start-up switch means is turned on so that the output voltage of the power converter is supplied to the anode of the deuterium discharge tube via the first and second resistors. A glow discharge step applied between the cathodes;
After a predetermined short time after the activation switch means is turned on, the short-circuit switch means is turned on to short-circuit the first resistor having the larger resistance value, and the second resistor having the smaller resistance value. An arc discharge step of applying an output voltage of the power converter between an anode and a cathode of the deuterium discharge tube via
Controlling the power converter so that the output voltage of the power converter or the discharge current of the deuterium discharge tube is negatively fed back to a set value,
During the glow discharge, when viewed from the power converter, the voltage-current characteristics of the series circuit of the first and second resistors between the anode and the cathode of the deuterium discharge tube become positive resistance characteristics. , Setting resistance values of the first and second resistors,
During the arc discharge, when viewed from the power converter, the voltage-current characteristic of the series circuit of the second resistor having the smaller resistance value between the anode and the cathode of the deuterium discharge tube is a positive resistance characteristic. The control method of the power source for the deuterium discharge tube is characterized in that the resistance value of the second resistor is set .
請求項において、前記電力変換器を制御するステップは、設定された指令値に対して、前記直列回路に印加される電圧検出値と、放電電流の検出値とを切り替えて負帰還制御系に負帰還することを特徴とする重水素放電管用電源の制御方法。 8. The negative feedback control system according to claim 7 , wherein the step of controlling the power converter switches between a voltage detection value applied to the series circuit and a detection value of the discharge current with respect to the set command value. A method for controlling a power source for a deuterium discharge tube, characterized by performing negative feedback.
JP2007336321A 2007-12-27 2007-12-27 Power supply device for deuterium discharge tube, control method thereof and analysis device Expired - Fee Related JP5117180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007336321A JP5117180B2 (en) 2007-12-27 2007-12-27 Power supply device for deuterium discharge tube, control method thereof and analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007336321A JP5117180B2 (en) 2007-12-27 2007-12-27 Power supply device for deuterium discharge tube, control method thereof and analysis device

Publications (2)

Publication Number Publication Date
JP2009158344A JP2009158344A (en) 2009-07-16
JP5117180B2 true JP5117180B2 (en) 2013-01-09

Family

ID=40962129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007336321A Expired - Fee Related JP5117180B2 (en) 2007-12-27 2007-12-27 Power supply device for deuterium discharge tube, control method thereof and analysis device

Country Status (1)

Country Link
JP (1) JP5117180B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8524957B2 (en) 2008-10-24 2013-09-03 Tosoh Corporation Process for producing p-dichlorobenzene
US11758623B2 (en) 2019-04-26 2023-09-12 Shimadzu Corporation Detector for chromatograph

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868594B (en) * 2012-12-16 2017-06-16 北京普源精仪科技有限责任公司 A kind of ultraviolet specrophotometer with deuterium lamp control circuit
CN113390012B (en) * 2021-06-10 2022-09-23 中国工程物理研究院核物理与化学研究所 Supply equipment and method for deuterium-tritium mixed gas

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296975U (en) * 1976-01-20 1977-07-20
US4438370A (en) * 1981-03-03 1984-03-20 Isco, Inc. Lamp circuit
JPH0422560Y2 (en) * 1985-07-09 1992-05-22
JPH0744827B2 (en) * 1986-11-06 1995-05-15 株式会社東芝 Power supply
JP2862887B2 (en) * 1989-02-21 1999-03-03 浜松ホトニクス株式会社 Gas discharge tube drive circuit
JPH0593752A (en) * 1991-10-01 1993-04-16 Hitachi Ltd Lighting apparatus for deuterium discharge tube
JPH0896976A (en) * 1994-09-28 1996-04-12 Toshiba Lighting & Technol Corp Rare gas discharge lamp lighting circuit and lighting system
JP3786331B2 (en) * 1999-01-27 2006-06-14 日本ビクター株式会社 Lamp power circuit
JP2000348891A (en) * 1999-06-08 2000-12-15 Hitachi Ltd Discharge lamp lighting device
JP4161480B2 (en) * 1999-09-20 2008-10-08 株式会社日立製作所 Deuterium discharge tube power supply
JP2001093681A (en) * 1999-09-28 2001-04-06 Toshiba Lighting & Technology Corp High-voltage pulse generator and high-voltage discharge lamp lighting device
JP2003051392A (en) * 2001-08-06 2003-02-21 Hamamatsu Photonics Kk Driving circuit for gas discharge tube
JP2006228676A (en) * 2005-02-21 2006-08-31 Mitsubishi Electric Corp Discharge lamp lighting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8524957B2 (en) 2008-10-24 2013-09-03 Tosoh Corporation Process for producing p-dichlorobenzene
US11758623B2 (en) 2019-04-26 2023-09-12 Shimadzu Corporation Detector for chromatograph

Also Published As

Publication number Publication date
JP2009158344A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
US7002305B2 (en) Electronic ballast for a discharge lamp
US9144856B2 (en) Welding power supply with digital controller
JP5117180B2 (en) Power supply device for deuterium discharge tube, control method thereof and analysis device
US20020012367A1 (en) Laser processing apparatus
TW201336213A (en) Controller, power converter for controlling transformer, and load driving circuit thereof
US6515882B2 (en) Power supply apparatus for lamp
US6525491B2 (en) Stabilizing the operation of gas discharged lamps
US7141938B2 (en) Power control device, apparatus and method of controlling the power supplied to a discharge lamp
JPH05251800A (en) He-ne laser power supply
US7015651B2 (en) Light source device having a discharge lamp with high radiance and a current feed controller
JPS63106706A (en) Fusion splicing device for optical fiber
JP2001143890A (en) Control circuit for discharge lamp lighting device
JP3981208B2 (en) Arc machining power supply
KR101375458B1 (en) Xenon lamp drive unit, method for driving xenon lamp, and artificial solar light irradiation unit
US8729831B2 (en) Light source apparatus
JP2000349376A (en) Power unit for laser oscillator
JP2000340873A (en) Optical output control method of solid-state laser, the solid-state laser and laser power source
JPH0924829A (en) Signal lamp driving device
JP2722057B2 (en) Proportional valve controller
JPH07135086A (en) Discharge lamp lighting device
JPH0357194A (en) High frequency heating device
JP5174558B2 (en) Spectroscopic analyzer and light source power source
JPH09108837A (en) Method and device for pulse arc welding
JP2021023955A (en) Pulse arc welding control method
JP2005209759A (en) Semiconductor laser heating device and laser processing machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121017

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees