JPS63106706A - Fusion splicing device for optical fiber - Google Patents

Fusion splicing device for optical fiber

Info

Publication number
JPS63106706A
JPS63106706A JP25399186A JP25399186A JPS63106706A JP S63106706 A JPS63106706 A JP S63106706A JP 25399186 A JP25399186 A JP 25399186A JP 25399186 A JP25399186 A JP 25399186A JP S63106706 A JPS63106706 A JP S63106706A
Authority
JP
Japan
Prior art keywords
discharge
voltage
circuit
atmospheric pressure
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25399186A
Other languages
Japanese (ja)
Other versions
JPH0442643B2 (en
Inventor
Isao Suzuki
功 鈴木
Takeshi Yamada
剛 山田
Mikio Yoshinuma
吉沼 幹夫
Yukio Setaishi
瀬田石 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP25399186A priority Critical patent/JPS63106706A/en
Publication of JPS63106706A publication Critical patent/JPS63106706A/en
Publication of JPH0442643B2 publication Critical patent/JPH0442643B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To always stably splice optical fibers by detecting the air pressure with a pressure sensor and controlling the discharging current in consideration of this detected air pressure. CONSTITUTION:The air pressure detected by a pressure sensor 6 is sent to a CPU (microprocessor) 8 through an A/D converter 7 and a reference voltage switching circuit 9 is switched by the output of the CPU 8. The reference voltage is sent to a dropper circuit 2 to be compared with a voltage (corresponding to the discharging current) taken out from one end of a resistance 51. This dropper circuit 2 is provided with a series transistor TR 21 and an air amplifier 22, and the voltage taken out from one end of the resistance 51 and the reference voltage are compared with each other by the air amplifier 22, and the difference output is given to the base of the TR 21 to control the drop voltage. Thus, the discharging power is automatically kept constant even if the air pressure is changed, and optical fibers are stably spliced.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、放電電極の間での気中放電により発生した
熱で光ファイバの融着接続を行う装置の改良に関する。
The present invention relates to an improvement in an apparatus for fusion splicing optical fibers using heat generated by air discharge between discharge electrodes.

【従来の技術】[Conventional technology]

光ファイバを融着接続する賜金、その熱によって光ファ
イバの溶融状態が異なるので、与える熱を一定にするこ
とが重要である。 放電電極の間での気中放電により発生した熱で光ファイ
バの融着接続を行う装置では、放電電力を一定に保てば
光ファイバに与える熱を一定にでき、安定な接続が可能
であるが、従来、放電電極間にながれる電流を検出し、
この電流が一定になるように制御するようにしている。 すなわち、第4図に示すように、バッテリ等の直流電源
1からの直流電圧(例えば12V)を一旦ドロッパ回路
2で10V程度に電圧低下させた後、チョッパ回路3で
チョッピングして20KH2〜100KHzの交流に変
換し、これを昇圧回路(例えばl・ランス)4により数
千■に昇圧し、放電電極5に送ってこれらの間で気中放
電を生じさせて熱を発生する。そして、このときの放電
電流を抵抗51の両端に発生する電圧として検出し、ド
ロッパ回路2にフィードバックして、放電電流が一定に
なるようにドロッパ回路2の出力電圧を変化させる。こ
のような従来の融着接続装置は、直流電源1がバッテリ
等であって多少不安定でも安定した放電電流とすること
ができる点に利点がある。
Since the melting state of the optical fiber varies depending on the heat used to fusion-splice the optical fiber, it is important to keep the heat applied constant. In devices that fusion splice optical fibers using the heat generated by air discharge between discharge electrodes, if the discharge power is kept constant, the heat given to the optical fiber can be kept constant, making stable connections possible. However, conventionally, the current flowing between the discharge electrodes was detected,
This current is controlled to be constant. That is, as shown in FIG. 4, the DC voltage (for example, 12V) from a DC power source 1 such as a battery is once lowered to about 10V by a dropper circuit 2, and then chopped by a chopper circuit 3 to generate a voltage of 20KH2 to 100KHz. This is converted into alternating current, boosted to several thousand square centimeters by a booster circuit (for example, a lance) 4, and sent to a discharge electrode 5 to cause an air discharge between them and generate heat. Then, the discharge current at this time is detected as a voltage generated across the resistor 51, and is fed back to the dropper circuit 2 to change the output voltage of the dropper circuit 2 so that the discharge current is constant. Such a conventional fusion splicing device has an advantage in that the DC power source 1 is a battery or the like and can provide a stable discharge current even if it is somewhat unstable.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかし、上記のような従来の定電流制御方式では、気圧
が変化したときに放電電力を安定にできないという問題
がある。 放電電力は放電電極間の電圧と電流との積で表されるの
で、放電電流を一定にしたとしても放電電圧が一定でな
ければ、放電電力は一定にならない。この電極間の電圧
が変化する要因としては、電極間隔の変化、気圧の変化
などがあり、電極間隔は、専用の電極棒を使用すること
により一定に保つことができるが、気圧による電極間電
圧の変化については上記の定電流方式では対処しようが
ない。そして、気圧の変化は、接続作業を平地で行う場
合と山頂などの高所で行う場合とがあることや、天候の
変化によって、避けられるものでない。 従来の定電流方式に基づく融着接続装置において、気圧
が変化したときに放電電力がどのように変化するかを調
べてみると、第5図のような結果が得られた。この図に
示すように、気圧が低くなるにしたがって放電電力が減
少するため、最適な放電融着を維持することができなく
なる。従来の装置においてこれを避けようとすれば、気
圧の変化があったときその都度放電電流の設定値を変更
するほかないわけである。 この発明は、気圧の変化があっても自動的に放電電力を
一定に保つことができ光ファイバを安定に接続できる、
融着接続装置を提供することを目的とする。
However, the conventional constant current control method as described above has a problem in that the discharge power cannot be stabilized when the atmospheric pressure changes. Since the discharge power is expressed as the product of the voltage and current between the discharge electrodes, even if the discharge current is constant, unless the discharge voltage is constant, the discharge power will not be constant. Factors that cause the voltage between the electrodes to change include changes in the electrode spacing and changes in atmospheric pressure.The electrode spacing can be kept constant by using a special electrode rod, but the voltage between the electrodes due to atmospheric pressure The constant current method described above cannot deal with changes in . Changes in atmospheric pressure cannot be avoided because the connection work may be performed on a flat surface or at a high place such as a mountain top, or due to changes in the weather. When examining how the discharge power changes when the atmospheric pressure changes in a conventional fusion splicing device based on a constant current method, the results shown in FIG. 5 were obtained. As shown in this figure, as the atmospheric pressure decreases, the discharge power decreases, making it impossible to maintain optimal discharge fusion. To avoid this in conventional devices, the only way to avoid this is to change the set value of the discharge current each time there is a change in atmospheric pressure. This invention automatically maintains the discharge power constant even when atmospheric pressure changes, and allows stable connection of optical fibers.
The purpose of the present invention is to provide a fusion splicing device.

【問題点を解決するための手段】[Means to solve the problem]

この発明による光ファイバの融着接続装置は、放、電電
径と、該放電電極に高い電圧を与える電源装置と、放電
電流を検出する回路と、気圧を検出する圧力センサーと
、これら検出された放電電流及び気圧に応じて上記電源
装置を制御することにより放電電流を変化させて放電電
力を一定にするフィードバック制御回路とを有する。
The optical fiber fusion splicing device according to the present invention includes a discharge electrode, a discharge electrode diameter, a power supply device that applies a high voltage to the discharge electrode, a circuit that detects the discharge current, a pressure sensor that detects the atmospheric pressure, and a circuit that detects the discharge current. It has a feedback control circuit that changes the discharge current and makes the discharge power constant by controlling the power supply device according to the discharge current and the atmospheric pressure.

【作  用】[For production]

放電電流を検出し、これによりフィードバック制御を行
って放電電流を一定に制御する際、圧力センサーで気圧
を検出し、この検出された気圧を加味して制御を行って
いるので、気圧の変化に応じて放電電流を変化させて放
電電力を一定にすることができる。
When detecting the discharge current and performing feedback control to control the discharge current to a constant level, the pressure sensor detects the atmospheric pressure and takes this detected atmospheric pressure into account when controlling. The discharge current can be changed accordingly to keep the discharge power constant.

【実 施 例】【Example】

第1図において、直流電源1からの直流電圧(例えば1
2■)を一旦ドロッパ回路2で10■程度に電圧低下さ
せた後、チョッパ回路3でチョッピングして20KHz
〜100KHzの交流に変換し、これを昇圧回路(例え
ばトランス)4により数千■に昇圧し、放電電極5に送
ってこれらの間で気中放電を生じさせて熱を発生し、こ
のときの放電電流を抵抗51の両端に発生する電圧とし
て検出し、ドロッパ回路2にフィードバックして、ドロ
ッパ回路2の出力電圧を変化させるという構成は第4図
と同じである。ここでは、圧力センサー6がさらに備え
られ、これにより検出された気圧がA/D変換器7を介
してCPU(マイクロプロセッサ)8におくられ、CP
U8の出力で基準電圧切換回路9が切り換えられるよう
になっている。この基準電圧は抵抗51の一端から取り
出した電圧(放電電流に対応)と比較されるためにドロ
ッパ回路2に送られる。このドロッパ回路2は、ここで
は理解が容易になるように原理的にかかれており、直列
トランジスタ21とエラーアンプ22とを有し、抵抗5
1の一端から取り出した電圧と基準電圧とをこのエラー
アンプ22で比較して、その差の出力をトランジスタ2
1のベースに与えて、降下電圧を制御する。基準電圧切
換回路9は、抵抗分圧回路91とリレー92とを有し、
このリレー92の各接点93をオン、オフすることによ
り分圧比を切り換える。すなわち抵抗分圧回路91の一
端にはツェナーダイオード23から得た一定の電圧が加
えられており、この定電圧が抵抗分圧回路91で分圧さ
れて、基準電圧としてエラーアンプ22の正側に与えら
れる。 圧力センサー6によって検出された気圧に応じてリレー
92が動作させられ、エラーアンプ22に送るべき基準
電圧が切り換えられる。その結果、気圧の変化に応じて
変1ヒした放電電圧の変化量に対応するように降下電圧
が制御されて放電′電流が変1ヒさせられる。この実施
例では、第5図の気圧と放電電力との関係から、気圧X
(ミリバール)のとき P −b + 0.018 (1013−x )の式で
定まる放電電流P(mA>が得られるよう制御されてい
る。なお、bは接続する光ファイバの種類に応じた放電
電流の基準値で、ここでは16mAとしたが、ディップ
スイッチなどで設定できるようにしておけば、作業者が
光ファイバの種類に応じてその都度変更できる。 このような構成により、気圧に応じた放電電流制御を行
い、気圧の変化に対する放電電流及び放電電力を測定し
たみたところ、第2図のような結果が得られた。この第
2図から、放電電力が一定になるような放電電流制御が
非常に良好になされていて、高所での接続作業において
も安定な放電電力によって光ファイバを安定に接続でき
ることが分かる。 第3図は他の実施例を示すもので、抵抗51の一端の電
圧と圧力センサー6からの電圧出力とを掛算回路10で
掛算した上でドロッパ回路2のエラーアンプ22にフィ
ードバックしている。この場合、気圧が低下したとする
と、それに応じて圧力センサー6の出力電圧が低くなる
ので、フィードバック量が小さくなり、ドロッパ回路2
の出力電圧が高くなって放電電流が増加させられ、結果
として一定の放電電力となる。この実施例の場合は、第
1図の実施例と比較して、追加部品が少なくて済むこと
が利点である。 【発明の効果] この発明の光フアイバ融着接続装置によれば、圧力セン
サーで気圧を検出し、この検出された気圧を加味して放
電電流の制御を行っているので、気圧の変化があっても
自動的に放電電力を一定にすることができる。そのため
、天候の変化や高所での作業などにおいても、常に安定
に光ファイバを接続することができる。
In FIG. 1, a DC voltage (for example, 1
2■) is once lowered to about 10■ by dropper circuit 2, and then chopped by chopper circuit 3 to 20KHz.
It is converted into an alternating current of ~100KHz, boosted to several thousand square meters by a booster circuit (for example, a transformer) 4, and sent to a discharge electrode 5 to cause an air discharge between them and generate heat. The configuration in which the discharge current is detected as a voltage generated across the resistor 51 and fed back to the dropper circuit 2 to change the output voltage of the dropper circuit 2 is the same as that in FIG. Here, a pressure sensor 6 is further provided, and the atmospheric pressure detected by this is sent to a CPU (microprocessor) 8 via an A/D converter 7.
The reference voltage switching circuit 9 can be switched by the output of U8. This reference voltage is sent to the dropper circuit 2 to be compared with the voltage taken out from one end of the resistor 51 (corresponding to the discharge current). The dropper circuit 2 is shown here in principle for ease of understanding, and includes a series transistor 21 and an error amplifier 22, and a resistor 5.
The error amplifier 22 compares the voltage taken out from one end of the transistor 1 with the reference voltage, and the output of the difference is sent to the transistor 2.
1 to control the voltage drop. The reference voltage switching circuit 9 includes a resistive voltage dividing circuit 91 and a relay 92,
By turning on and off each contact 93 of this relay 92, the voltage division ratio is switched. That is, a constant voltage obtained from the Zener diode 23 is applied to one end of the resistive voltage divider circuit 91, and this constant voltage is divided by the resistive voltage divider circuit 91 and applied to the positive side of the error amplifier 22 as a reference voltage. Given. Relay 92 is operated according to the atmospheric pressure detected by pressure sensor 6, and the reference voltage to be sent to error amplifier 22 is switched. As a result, the voltage drop is controlled to correspond to the amount of change in the discharge voltage that changes in response to changes in atmospheric pressure, and the discharge current is changed. In this example, from the relationship between atmospheric pressure and discharge power in FIG.
(mibars), it is controlled so that a discharge current P (mA>) determined by the formula P - b + 0.018 (1013-x) is obtained. Note that b is the discharge current according to the type of optical fiber to be connected. The current standard value is 16 mA here, but if it can be set using a dip switch, the operator can change it each time depending on the type of optical fiber.With this configuration, the current value can be adjusted according to the atmospheric pressure. When we performed discharge current control and measured the discharge current and discharge power with respect to changes in atmospheric pressure, we obtained the results shown in Figure 2. From this Figure 2, we can see that discharge current control that keeps the discharge power constant It can be seen that the optical fibers can be connected very well with stable discharge power even during connection work at high places. The voltage and the voltage output from the pressure sensor 6 are multiplied by a multiplication circuit 10 and then fed back to the error amplifier 22 of the dropper circuit 2. In this case, if the atmospheric pressure decreases, the output of the pressure sensor 6 is increased accordingly. As the voltage becomes lower, the amount of feedback becomes smaller and the dropper circuit 2
The output voltage becomes higher and the discharge current is increased, resulting in a constant discharge power. This embodiment has the advantage that fewer additional parts are required compared to the embodiment of FIG. [Effects of the Invention] According to the optical fiber fusion splicing device of the present invention, the atmospheric pressure is detected by the pressure sensor, and the discharge current is controlled taking the detected atmospheric pressure into account, so there is no change in the atmospheric pressure. The discharge power can be automatically kept constant. Therefore, optical fibers can always be connected stably, even when the weather changes or when working at heights.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例のブロック図、第2図はこ
の実施例における制御特性の測定結果を表すグラフ、第
3図は他の実施例のブロック図、第4図は従来例のブロ
ック図、第5図は第4図の例における気圧の変化に対す
る放電電力の測定結果を示すグラフである。 1・・・直流電源、2・・・ドロッパ回路、3・・・チ
ョッパ回路、4・・・昇圧回路、5・・・放電電極、6
・・・圧力センサー、7・・・A/D変換器、8・・・
CPU、9・・・基準電圧切換回路、10・・・掛算回
路。
Fig. 1 is a block diagram of one embodiment of the present invention, Fig. 2 is a graph showing the measurement results of control characteristics in this embodiment, Fig. 3 is a block diagram of another embodiment, and Fig. 4 is a graph of the conventional example. The block diagram, FIG. 5, is a graph showing the measurement results of discharge power with respect to changes in atmospheric pressure in the example of FIG. 4. DESCRIPTION OF SYMBOLS 1... DC power supply, 2... Dropper circuit, 3... Chopper circuit, 4... Boost circuit, 5... Discharge electrode, 6
...Pressure sensor, 7...A/D converter, 8...
CPU, 9... reference voltage switching circuit, 10... multiplication circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)放電電極と、該放電電極に高い電圧を与える電源
装置と、放電電流を検出する回路と、気圧を検出する圧
力センサーと、これら検出された放電電流及び気圧に応
じて上記電源装置を制御することにより放電電流を変化
させて放電電力を一定にするフィードバック制御回路と
を有する光ファイバの融着接続装置。
(1) A discharge electrode, a power supply device that applies a high voltage to the discharge electrode, a circuit that detects discharge current, a pressure sensor that detects atmospheric pressure, and the power supply device that operates according to the detected discharge current and atmospheric pressure. An optical fiber fusion splicing device having a feedback control circuit that controls to change the discharge current and keep the discharge power constant.
JP25399186A 1986-10-24 1986-10-24 Fusion splicing device for optical fiber Granted JPS63106706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25399186A JPS63106706A (en) 1986-10-24 1986-10-24 Fusion splicing device for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25399186A JPS63106706A (en) 1986-10-24 1986-10-24 Fusion splicing device for optical fiber

Publications (2)

Publication Number Publication Date
JPS63106706A true JPS63106706A (en) 1988-05-11
JPH0442643B2 JPH0442643B2 (en) 1992-07-14

Family

ID=17258747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25399186A Granted JPS63106706A (en) 1986-10-24 1986-10-24 Fusion splicing device for optical fiber

Country Status (1)

Country Link
JP (1) JPS63106706A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273602U (en) * 1988-11-25 1990-06-05
JPH02230206A (en) * 1989-03-03 1990-09-12 Fujikura Ltd Optical fiber fusion splicing machine
US5296679A (en) * 1992-08-12 1994-03-22 Fujikura Ltd. Method and apparatus for fusion splicing optical fibers
US5572313A (en) * 1993-11-29 1996-11-05 Telefonaktiebolaget Lm Ericsson Determination of angular offset between optical fibers having optical, axial asymmetry and alignment and splicing of such fibers
US5586211A (en) * 1994-04-26 1996-12-17 Telefonaktiebolaget Lm Ericsson Optical fiber organizer and method using same
US5638476A (en) * 1994-03-08 1997-06-10 Telefonaktiebolaget Lm Ericsson Controlled splicing of optical fibers
US6207922B1 (en) 1994-03-08 2001-03-27 Telefonaktiebolaget Lm Ericsson (Publ) Electric control for welding optical fibers

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273602U (en) * 1988-11-25 1990-06-05
JPH02230206A (en) * 1989-03-03 1990-09-12 Fujikura Ltd Optical fiber fusion splicing machine
US5296679A (en) * 1992-08-12 1994-03-22 Fujikura Ltd. Method and apparatus for fusion splicing optical fibers
US5572313A (en) * 1993-11-29 1996-11-05 Telefonaktiebolaget Lm Ericsson Determination of angular offset between optical fibers having optical, axial asymmetry and alignment and splicing of such fibers
US5638476A (en) * 1994-03-08 1997-06-10 Telefonaktiebolaget Lm Ericsson Controlled splicing of optical fibers
US6207922B1 (en) 1994-03-08 2001-03-27 Telefonaktiebolaget Lm Ericsson (Publ) Electric control for welding optical fibers
US5586211A (en) * 1994-04-26 1996-12-17 Telefonaktiebolaget Lm Ericsson Optical fiber organizer and method using same

Also Published As

Publication number Publication date
JPH0442643B2 (en) 1992-07-14

Similar Documents

Publication Publication Date Title
ATE129603T1 (en) DEVICE AND METHOD FOR CONTROLLING THE POWER SUPPLY OF AN INDUCTIVE LOAD, SUCH AS AN INDUCTION FURNACE.
KR960002994B1 (en) Method and appratus for forming a ball for wire-bonding
US3236997A (en) System for controlling length of welding arc
EP0919790B1 (en) Optical sensor apparatus and signal processing circuit used therein
JPS63106706A (en) Fusion splicing device for optical fiber
EP0504519B1 (en) Optical fiber fusion splicer
KR20000016948A (en) Heater control device
JP2009158344A (en) Power supply for deuterium discharge tube, its control method, and decomposer
JPH0382386A (en) Speed controller
US8729831B2 (en) Light source apparatus
US20190045597A1 (en) Power supply device used for led light output device
JP2002108263A (en) Vacuum fluorescent display driving device
KR101427634B1 (en) Self Controllabe Welding Power Apparatus
JPH07266060A (en) Resistance welding electric source
SU1144184A1 (en) Regulator for a.c.voltage source
JPH02230206A (en) Optical fiber fusion splicing machine
JPS61244267A (en) Power source circuit
JPH01118808A (en) Welding and connecting device for optical fibers
SU774852A1 (en) Apparatus for controlling the engagement of resistance welding machine
JP2518733B2 (en) Back bead control method in single-sided welding
KR900002111Y1 (en) Detecting circuit for relative humidity
JPS6398174A (en) High frequency discharge excited laser
WO2008133409A1 (en) Feedback driving system and driving method for maintaining glow discharge of a flat backlight
JPH0324521A (en) Optical modulation circuit
JPS63239887A (en) Semiconductor laser

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term