JP5113434B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5113434B2
JP5113434B2 JP2007157080A JP2007157080A JP5113434B2 JP 5113434 B2 JP5113434 B2 JP 5113434B2 JP 2007157080 A JP2007157080 A JP 2007157080A JP 2007157080 A JP2007157080 A JP 2007157080A JP 5113434 B2 JP5113434 B2 JP 5113434B2
Authority
JP
Japan
Prior art keywords
electrode
reinforcing member
positive electrode
secondary battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007157080A
Other languages
Japanese (ja)
Other versions
JP2008021644A (en
Inventor
秀明 藤田
雅敏 永山
きよみ 神月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007157080A priority Critical patent/JP5113434B2/en
Publication of JP2008021644A publication Critical patent/JP2008021644A/en
Application granted granted Critical
Publication of JP5113434B2 publication Critical patent/JP5113434B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、タブレス集電構造を有する非水電解質二次電池に関し、具体的には、タブレス集電構造を安定に構成可能な非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery having a tabless current collecting structure, and specifically to a non-aqueous electrolyte secondary battery capable of stably configuring a tabless current collecting structure.

非水電解質二次電池(具体的には、リチウムイオン二次電池)は、発電要素である電極群と、非水電解質と、集電部品とを備えており、携帯電話またはノート型パソコンなどの電源として用いられている。電極群は正極と負極とがセパレータを介して捲回または積層されており、非水電解質は電極群のセパレータおよび極板の空孔内(例えば合剤層における空孔)に保持されている。   A non-aqueous electrolyte secondary battery (specifically, a lithium ion secondary battery) includes an electrode group that is a power generation element, a non-aqueous electrolyte, and a current collecting component, such as a mobile phone or a notebook computer. Used as a power source. In the electrode group, a positive electrode and a negative electrode are wound or laminated via a separator, and the nonaqueous electrolyte is held in the separator of the electrode group and the pores of the electrode plate (for example, the pores in the mixture layer).

図9を用いて、このような非水電解質二次電池における集電構造を示す。   A current collecting structure in such a non-aqueous electrolyte secondary battery will be described with reference to FIG.

正極および負極は、図9に示すように、集電体の表面に合剤層1が設けられた部分と、合剤層が設けられることなく集電体が露出している部分(露出部)2とを有している。この露出部2は、正極および負極の長手方向における端部あるいは中央部に存在しており、この露出部2には、集電リード3(多くの場合、正極にはアルミニウム製のリードが用いられ、負極にはニッケル製のリードが用いられる)が接合されている。このような電極を用いて電極群を形成すると、電極の長手方向(図9における横方向)に沿って集電される。   As shown in FIG. 9, the positive electrode and the negative electrode have a portion where the mixture layer 1 is provided on the surface of the current collector, and a portion where the current collector is exposed without the mixture layer (exposed portion). 2. The exposed portion 2 is present at the end or central portion of the positive electrode and the negative electrode in the longitudinal direction. The exposed portion 2 is a current collecting lead 3 (in many cases, an aluminum lead is used for the positive electrode). The lead made of nickel is used for the negative electrode). When an electrode group is formed using such an electrode, current is collected along the longitudinal direction of the electrode (lateral direction in FIG. 9).

図9に示す電極を用いて非水電解質二次電池を作製する場合には、セパレータを介して正極と負極とを捲回し、例えば正極の集電リードを上に負極の集電リードを下にして電極群をケース内に収容し、負極の集電リードをケースに接合させ正極の集電リードを封口板に接合させる。   When producing a nonaqueous electrolyte secondary battery using the electrode shown in FIG. 9, the positive electrode and the negative electrode are wound through a separator, for example, with the current collector lead of the positive electrode facing up and the current collector lead of the negative electrode facing down. The electrode group is housed in the case, the negative current collecting lead is joined to the case, and the positive current collecting lead is joined to the sealing plate.

ここで、リチウムイオン二次電池では、一般的に正極よりも負極の方が幅広であるため、振動または衝撃に伴う極板のずれによって電極群の端面において短絡が生じる危険がある。そこで、特許文献1では、正極と負極とを積層または捲回した電極群を持つリチウムイオン二次電池において、負極の表面に絶縁性粒子および結着剤からなる多孔質層を形成し、さらに電極群の端面を絶縁体によって保護している。これにより、振動または衝撃に伴う極板のずれを抑制し、短絡を防止することができる。   Here, in a lithium ion secondary battery, since the negative electrode is generally wider than the positive electrode, there is a risk that a short circuit may occur at the end face of the electrode group due to displacement of the electrode plate due to vibration or impact. Therefore, in Patent Document 1, in a lithium ion secondary battery having an electrode group in which a positive electrode and a negative electrode are laminated or wound, a porous layer made of insulating particles and a binder is formed on the surface of the negative electrode, The end face of the group is protected by an insulator. Thereby, the shift | offset | difference of the electrode plate accompanying a vibration or an impact can be suppressed, and a short circuit can be prevented.

ところで、図9に示す電極を用いた場合には、集電リードを起点として極板の長手方向に集電されるので、集電抵抗が大きくなり、大きな出力を得ることが難しい場合がある。集電抵抗を低減させる方法として、いわゆる「タブレス構造」が提案されている。タブレス構造では、正極および負極には、集電体の幅方向の一端に露出部が形成されており、集電体のうち露出部以外の部分に合剤層が形成されている。正極の露出部および負極の露出部が互いに反対方向に突出するように正極および負極が配置され、セパレータを介して正極および負極を捲回することにより電極群が形成され、電極群の両端面に集電板が溶接されている。このようなタブレス構造では、図9に示す電極を用いた場合に比べて電極群と集電板との接合ポイントが多くなり、また、図9に示す電極を用いた場合とは異なり極板の幅方向に沿って集電される。よって、タブレス構造では、図9に示す電極を用いる場合に比べて、集電抵抗を大幅に減少させることができる。   By the way, when the electrode shown in FIG. 9 is used, current collection is performed in the longitudinal direction of the electrode plate starting from the current collection lead, so that the current collection resistance increases and it may be difficult to obtain a large output. A so-called “tabless structure” has been proposed as a method of reducing the current collecting resistance. In the tabless structure, in the positive electrode and the negative electrode, an exposed portion is formed at one end in the width direction of the current collector, and a mixture layer is formed in a portion of the current collector other than the exposed portion. The positive electrode and the negative electrode are arranged so that the exposed portion of the positive electrode and the exposed portion of the negative electrode protrude in opposite directions, and an electrode group is formed by winding the positive electrode and the negative electrode through a separator. The current collector plate is welded. In such a tabless structure, there are more junction points between the electrode group and the current collector plate than in the case of using the electrode shown in FIG. 9, and unlike the case of using the electrode shown in FIG. Current is collected along the width direction. Therefore, in the tabless structure, the current collecting resistance can be greatly reduced as compared with the case where the electrode shown in FIG. 9 is used.

しかし、タブレス構造では、集電板を電極群に接合させる際、集電板を電極群の端面に押圧させることなく溶接させてしまうと、集電板と電極群との溶接強度を十分大きくすることができず、溶接不良が生じる虞がある。そこで、特許文献2では、集電板に突出部を形成し、その突出部を電極群の端面に押圧させることにより露出部を折り曲げて露出部の一部に平坦部を形成し、集電板の突出部を露出部の平坦部に接触させながら溶接させている。これにより、集電板と電極群とを接触した状態で溶接させることができる。   However, in the tabless structure, when the current collector plate is joined to the electrode group, if the current collector plate is welded without pressing against the end face of the electrode group, the welding strength between the current collector plate and the electrode group is sufficiently increased. Cannot be performed, and there is a risk of poor welding. Therefore, in Patent Document 2, a protruding portion is formed on the current collector plate, the exposed portion is bent by pressing the protruding portion against the end face of the electrode group, and a flat portion is formed on a part of the exposed portion. The protruding portion is welded while being in contact with the flat portion of the exposed portion. Thereby, it can weld in the state which contacted the current collecting plate and the electrode group.

また、特許文献3では、電極群の露出部に平坦部を形成する方法が記載されており、具体的には、電極群を捲回軸芯を中心に回転させながら露出部の端面に所定の治具を押し当てるという方法が記載されている。
特開2005−190912号公報 特開2000−294222号公報 特開2003−162995号公報
Further, Patent Document 3 describes a method of forming a flat portion on the exposed portion of the electrode group. Specifically, while rotating the electrode group around the winding axis, a predetermined surface is formed on the end surface of the exposed portion. A method of pressing a jig is described.
JP 2005-190912 A JP 2000-294222 A JP 2003-162995 A

しかしながら、特許文献1では、同文献の第1図に示すように電極群の端面では正極および負極の端面が絶縁体で覆われているので、集電リードを介して集電されていると考えられる。上述のように集電リードを介して集電されると電極の長手方向に沿って集電されるため、集電抵抗が大きくなってしまい、非水電解質二次電池の高出力化を図ることが難しい。そのため、特許文献1に開示された非水電解質二次電池を、高出力が要求される電気機器(例えば、電動工具またはハイブリッド自動車)の電源として用いることは難しい,と考えられる。   However, in Patent Document 1, as shown in FIG. 1 of the same document, since the end faces of the positive electrode and the negative electrode are covered with an insulator on the end face of the electrode group, it is considered that the current is collected through the current collecting lead. It is done. When current is collected through the current collecting lead as described above, current is collected along the longitudinal direction of the electrode, resulting in an increase in current collection resistance, thereby increasing the output of the nonaqueous electrolyte secondary battery. Is difficult. For this reason, it is considered difficult to use the nonaqueous electrolyte secondary battery disclosed in Patent Document 1 as a power source for electric devices (for example, electric tools or hybrid vehicles) that require high output.

また、特許文献1では、浸漬方法を用いて絶縁体を形成しているが、同文献の電極群には絶縁体の溶液の流出を堰き止めるための手段が設けられていないので、絶縁体の溶液が固化する前に電極群を動かすと絶縁体の溶液が電極群の端面から流出する虞がある。よって、絶縁体の溶液が固化するまで次の工程に進めないので、非水電解質二次電池の製造時間が長くなってしまう。   Further, in Patent Document 1, the insulator is formed by using the dipping method. However, since the electrode group of the document is not provided with means for blocking outflow of the solution of the insulator, If the electrode group is moved before the solution is solidified, the insulator solution may flow out from the end face of the electrode group. Therefore, since the next process cannot be performed until the insulator solution is solidified, the manufacturing time of the nonaqueous electrolyte secondary battery becomes long.

さらに、リチウムイオン二次電池の集電体には、厚くても数十μm程度の薄い箔を用いている。そのため、特許文献2に記載の技術では、集電板を露出部に押し付ける際に露出部の根元付近が座屈する場合がある。露出部が座屈すると、セパレータが損傷する虞があり、その結果、内部短絡が発生しやすくなってしまう。また、露出部が座屈すると、集電板との溶接部位が合剤層に近づくので溶接時に発生するスパッタが電極群の内部に侵入しやすくなり、その結果、内部短絡が発生しやすくなってしまう。特許文献3に記載の技術を用いて平坦部を形成した場合であっても、内部短絡が発生しやすくなってしまう。   Furthermore, a thin foil having a thickness of about several tens of μm is used for the current collector of the lithium ion secondary battery. Therefore, in the technique described in Patent Document 2, when the current collector plate is pressed against the exposed portion, the vicinity of the root of the exposed portion may be buckled. If the exposed portion buckles, the separator may be damaged, and as a result, an internal short circuit is likely to occur. In addition, when the exposed part buckles, the welded part with the current collector plate approaches the mixture layer, so that spatter generated during welding easily enters the electrode group, and as a result, internal short circuit is likely to occur. End up. Even when the flat portion is formed using the technique described in Patent Document 3, an internal short circuit is likely to occur.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、高出力化を図ることができ、内部短絡の発生原因が製造中に発生してしまうことを抑制でき、さらには、電池の製造時間の長期化を防止できる非水電解質二次電池を提供する。   The present invention has been made in view of the above points, and the object of the present invention is to be able to increase the output, to suppress the occurrence of an internal short circuit during production, Provides a non-aqueous electrolyte secondary battery capable of preventing the battery production time from being prolonged.

本発明の非水電解質二次電池は、正極と負極とがセパレータを介して捲回もしくは積層された電極群と、セパレータに保持された非水電解質と、電極群に接合された集電板とを備えている。正極および負極の一方の電極の幅方向の一端には、集電体が合剤層から露出している露出部が存在している。電極群では、露出部はセパレータの端面および他方の電極の端面よりも電極の幅方向に突出しており、露出部の端面には、集電板が接合されている。隣り合う露出部の間には、露出部の強度を補強するための補強部材が設けられている。前記補強部材は、前記一方の電極の前記合剤層の端面、前記セパレータの前記端面および前記他方の電極の前記端面を、各々、接触して覆っている。
The non-aqueous electrolyte secondary battery of the present invention includes an electrode group in which a positive electrode and a negative electrode are wound or laminated via a separator, a non-aqueous electrolyte held in the separator, and a current collector plate joined to the electrode group. It has. At one end in the width direction of one of the positive electrode and the negative electrode, there is an exposed portion where the current collector is exposed from the mixture layer. In the electrode group, the exposed part protrudes in the width direction of the electrode from the end face of the separator and the end face of the other electrode, and a current collector plate is joined to the end face of the exposed part. A reinforcing member for reinforcing the strength of the exposed portion is provided between the adjacent exposed portions. The reinforcing member contacts and covers the end surface of the mixture layer of the one electrode, the end surface of the separator, and the end surface of the other electrode, respectively.

上記構成では、電極の幅方向に沿って集電されるので、集電抵抗を小さくすることができる。   In the above configuration, since current is collected along the width direction of the electrode, current collection resistance can be reduced.

また、上記構成では、露出部の強度を補強することができるので、製造中に露出部が折曲することを抑制できる。   Moreover, in the said structure, since the intensity | strength of an exposed part can be reinforced, it can suppress that an exposed part bends during manufacture.

さらには、上記構成では、補強部材の溶液を所定箇所に塗布した後にその補強部材を乾燥または冷却させることにより補強部材を設ける場合であっても、隣り合う露出部の間に補強部材の溶液を保持させることができる。   Further, in the above configuration, even when the reinforcing member is provided by drying or cooling the reinforcing member after applying the reinforcing member solution to a predetermined location, the reinforcing member solution is placed between adjacent exposed portions. Can be retained.

ここで、「隣り合う」とは、正極および負極が捲回されている場合には、捲回されたことにより露出部のうちのn周回目の一部分と(n+1)周回目の一部分とが互いに隣り合うことを意味しており、正極および負極が積層されている場合には、n枚目の正極の露出部と(n+1)枚目の正極の露出部とが互いに隣り合うことを意味している。   Here, “adjacent” means that when the positive electrode and the negative electrode are wound, a part of the n-th turn and a part of the (n + 1) -th turn of the exposed part are mutually wound. When the positive electrode and the negative electrode are laminated, it means that the exposed portion of the nth positive electrode and the exposed portion of the (n + 1) th positive electrode are adjacent to each other. Yes.

強部材のうち他方の電極の端面を覆っている部分の厚みが補強部材のうち一方の電極の合剤層の端面を覆っている部分の厚みよりも薄くなるように補強部材を設けても良く、面一となるように補強部材を設けても良い
It is provided with a reinforcing member such that the thickness of the portion covering the end surface of the other electrode becomes thinner than the thickness of the portion covering the end surface of the mixture layer of one electrode of the reinforcing member of the reinforcement member A reinforcing member may be provided so as to be flush with each other .

上記のように、補強部材を設ける場所は、特に限定されない。なお、電極群の端面において補強部材が設けられた範囲が広ければ、または、補強部材が分厚ければ、製造中に不要物などが電極群の内部に侵入することを抑制でき、その結果セパレータの破損を抑制できるので内部短絡の発生確率を抑えることができる。一方、電極群の端面において補強部材が設けられた範囲が狭ければ、または、補強部材が薄ければ、非水電解質として溶質と非水溶媒とを含む非水電解液を用いた場合には電極群の内部への非水電解液の浸液性を向上させることができる。   As described above, the place where the reinforcing member is provided is not particularly limited. In addition, if the range in which the reinforcing member is provided on the end face of the electrode group is wide, or if the reinforcing member is thick, it is possible to suppress the intrusion of unnecessary materials into the electrode group during manufacturing, and as a result, the separator Since breakage can be suppressed, the probability of occurrence of an internal short circuit can be suppressed. On the other hand, if the range where the reinforcing member is provided on the end face of the electrode group is narrow, or if the reinforcing member is thin, a nonaqueous electrolyte containing a solute and a nonaqueous solvent is used as the nonaqueous electrolyte. It is possible to improve the immersion property of the nonaqueous electrolytic solution into the electrode group.

本発明では、高出力化を図ることができ、内部短絡の発生原因が製造中に発生してしまうことを抑制でき、さらには、電池の製造時間の長期化を防止できる。   In the present invention, high output can be achieved, the cause of internal short-circuit can be prevented from occurring during manufacture, and further, the battery manufacturing time can be prevented from being prolonged.

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態では、非水電解質二次電池として、溶質(例えばリチウム塩)と非水溶媒とを含む非水電解液が少なくともセパレータに保持されたリチウムイオン二次電池を例に挙げて説明する。また、以下の実施形態では、実質的に同一の部材には同一の符号を付し、その説明を省略する場合がある。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following embodiments, as a non-aqueous electrolyte secondary battery, a lithium ion secondary battery in which a non-aqueous electrolyte solution containing a solute (for example, a lithium salt) and a non-aqueous solvent is held at least in a separator is taken as an example. explain. Moreover, in the following embodiment, the substantially same member is attached | subjected with the same code | symbol and the description may be abbreviate | omitted.

《発明の実施形態1》
図1(a)および(b)には実施形態1における電極群の構成を示し、図1(a)はその斜視図であり、図1(b)は図1(a)に示す領域IBにおける縦断面図である。図2は正極および負極の構成を示す平面図である。図3(a)および(b)には集電板の構成を示し、図3(a)はその平面図であり、図3(b)はその断面図である。図4(a)および(b)には別の集電板を示し、図4(a)はその平面図であり、図4(b)はその断面図である。図5は、本実施形態にかかる集電構造の一部分の構成を示す縦断面図である。
Embodiment 1 of the Invention
1 (a) and 1 (b) show the configuration of the electrode group in Embodiment 1, FIG. 1 (a) is a perspective view thereof, and FIG. 1 (b) is a region IB shown in FIG. 1 (a). It is a longitudinal cross-sectional view. FIG. 2 is a plan view showing the configuration of the positive electrode and the negative electrode. 3 (a) and 3 (b) show the configuration of the current collector plate, FIG. 3 (a) is a plan view thereof, and FIG. 3 (b) is a sectional view thereof. 4 (a) and 4 (b) show another current collector plate, FIG. 4 (a) is a plan view thereof, and FIG. 4 (b) is a sectional view thereof. FIG. 5 is a longitudinal sectional view showing a configuration of a part of the current collecting structure according to the present embodiment.

本実施形態にかかるリチウムイオン二次電池は、電極群14と非水電解液(不図示)と集電板19とを備えたタブレス集電構造の二次電池である。タブレス集電構造の二次電池の電極群では、露出部7が正極8の幅方向(図2における縦方向)の一端に設けられ露出部11が負極12の幅方向の一端に設けられているので、電極の幅方向に沿って集電される。よって、本実施形態にかかるリチウムイオン二次電池では、図9に示す場合に比べて集電抵抗を低減させることができ、リチウムイオン二次電池の高出力化を図ることができる。   The lithium ion secondary battery according to this embodiment is a secondary battery having a tabless current collecting structure including an electrode group 14, a non-aqueous electrolyte (not shown), and a current collecting plate 19. In the electrode group of the secondary battery having a tabless current collecting structure, the exposed portion 7 is provided at one end in the width direction (vertical direction in FIG. 2) of the positive electrode 8 and the exposed portion 11 is provided at one end in the width direction of the negative electrode 12. Therefore, current is collected along the width direction of the electrode. Therefore, in the lithium ion secondary battery according to the present embodiment, the current collection resistance can be reduced as compared with the case shown in FIG. 9, and the output of the lithium ion secondary battery can be increased.

なお、正極8では、合剤層6が設けられることなく集電体5が露出することにより露出部7が形成されており、集電体5のうち露出部7以外の部分71には合剤層6が設けられている。同様に、負極12では、合剤層10が設けられることなく集電体9が露出することにより露出部11が形成されており、集電体9のうち露出部11以外の部分111には合剤層10が設けられている。   In the positive electrode 8, an exposed portion 7 is formed by exposing the current collector 5 without providing the mixture layer 6, and the mixture 71 is formed in the portion 71 of the current collector 5 other than the exposed portion 7. Layer 6 is provided. Similarly, in the negative electrode 12, an exposed portion 11 is formed by exposing the current collector 9 without providing the mixture layer 10, and a portion 111 of the current collector 9 other than the exposed portion 11 is combined. An agent layer 10 is provided.

本実施形態における電極群14では、正極8と負極12とがセパレータ13を介して捲回されており、正極8の露出部7および負極12の露出部11が互いに逆向きにセパレータの端面から突出している。正極8の露出部7の端面には正極の集電板19が接合されており、負極12の露出部11の端面には負極の集電板19が接合されている。また、電極群14(特にセパレータ13)には非水電解液が保持されている。   In the electrode group 14 in this embodiment, the positive electrode 8 and the negative electrode 12 are wound through the separator 13, and the exposed portion 7 of the positive electrode 8 and the exposed portion 11 of the negative electrode 12 protrude from the end face of the separator in opposite directions. ing. A positive collector plate 19 is joined to the end face of the exposed portion 7 of the positive electrode 8, and a negative collector plate 19 is joined to the end face of the exposed portion 11 of the negative electrode 12. Further, the electrode group 14 (particularly the separator 13) holds a non-aqueous electrolyte.

集電板19について簡単に示すと、集電板19は、図3(a)および(b)に示すように、円形部17とタブ部18とを備えており、タブ部18は円形部17に接続されており、円形部17には露出部の端面が接合される。また、図4(a)および(b)に示す集電板29を用いても良く、集電板29は集電板19と同じく円形部27とタブ部28とを備えているが、円形部27には突出部27aが放射状に設けられており、突出部27aには露出部の端面が接合される。   Briefly describing the current collector plate 19, the current collector plate 19 includes a circular portion 17 and a tab portion 18 as shown in FIGS. 3A and 3B, and the tab portion 18 is a circular portion 17. The end surface of the exposed portion is joined to the circular portion 17. 4 (a) and 4 (b) may be used, and the current collecting plate 29 includes a circular portion 27 and a tab portion 28 as in the current collecting plate 19, but the circular portion The protrusions 27a are radially provided on the protrusions 27, and the end surfaces of the exposed parts are joined to the protrusions 27a.

集電板19,29を正極8の露出部7に接合させる場合にはアルミニウム製の集電板を用いることが好ましく、集電板19,29を負極12の露出部11に接合させる場合にはニッケル製または銅製の集電板を用いることが好ましい。   When the current collector plates 19 and 29 are joined to the exposed portion 7 of the positive electrode 8, it is preferable to use an aluminum current collector plate, and when the current collector plates 19 and 29 are joined to the exposed portion 11 of the negative electrode 12. It is preferable to use a nickel or copper current collector.

以下では、電極群14について詳述する。   Hereinafter, the electrode group 14 will be described in detail.

電極群14の一端14a(図1(b)における上端)では、正極8の露出部7が負極12の端面12aよりも電極の幅方向に突出している。電極群14では正極8は捲き回されているので、電極群14の縦断面では正極8の露出部7のうちn周回目の部分と(n+1)周回目の部分とが互いに隣り合っており、正極8の露出部7のうちn周回目の部分と(n+1)周回目の部分との間には補強部材15が設けられている。   At one end 14 a (the upper end in FIG. 1B) of the electrode group 14, the exposed portion 7 of the positive electrode 8 protrudes from the end surface 12 a of the negative electrode 12 in the width direction of the electrode. Since the positive electrode 8 is wound around in the electrode group 14, the n-th turn portion and the (n + 1) -th turn portion of the exposed portion 7 of the positive electrode 8 are adjacent to each other in the longitudinal section of the electrode group 14. A reinforcing member 15 is provided between the n-th turn portion and the (n + 1) -th turn portion of the exposed portion 7 of the positive electrode 8.

電極群14の一端14aでは、補強部材15は、正極8の露出部7の端面と面一となるように設けられており、正極8の露出部7の端面が露出するように正極8の合剤層6の端面6a、セパレータ13の端面13aおよび負極12の端面12aを覆っている。そのため、電極群14の一端14aを上から見ると、正極8の露出部7の端面が渦を巻いており、補強部材15が渦内の空間を充填している。   At one end 14 a of the electrode group 14, the reinforcing member 15 is provided so as to be flush with the end face of the exposed portion 7 of the positive electrode 8, so that the end face of the exposed portion 7 of the positive electrode 8 is exposed. The end surface 6a of the agent layer 6, the end surface 13a of the separator 13, and the end surface 12a of the negative electrode 12 are covered. Therefore, when the one end 14a of the electrode group 14 is viewed from above, the end surface of the exposed portion 7 of the positive electrode 8 is swirled, and the reinforcing member 15 fills the space in the swirl.

同様に、電極群14の他端14b(図1(b)における下端)では、負極12の露出部11が正極8の端面8aよりも電極の幅方向に突出している。電極群14では負極12は捲き回されているので、電極群14の縦断面では負極12の露出部11のうちn周回目の部分と(n+1)周回目の部分とが互いに隣り合っており、負極12の露出部11のうちn周回目の部分と(n+1)周回目の部分との間には補強部材15が設けられている。   Similarly, at the other end 14b of the electrode group 14 (lower end in FIG. 1B), the exposed portion 11 of the negative electrode 12 protrudes from the end surface 8a of the positive electrode 8 in the width direction of the electrode. Since the negative electrode 12 is wound around in the electrode group 14, the n-th turn portion and the (n + 1) -th turn portion of the exposed portion 11 of the negative electrode 12 are adjacent to each other in the longitudinal section of the electrode group 14. A reinforcing member 15 is provided between the n-th turn portion and the (n + 1) -th turn portion of the exposed portion 11 of the negative electrode 12.

電極群14の他端14bでは、補強部材15は、負極12の露出部11の端面と面一となるように設けられており、負極12の露出部11の端面が露出するように負極12の合剤層10の端面10a、セパレータ13の端面13aおよび正極6の端面6aを覆っている。そのため、電極群14の一端を上から見ると、負極12の露出部11の端面が渦を巻いており、補強部材15が渦内の空間を充填している。   In the other end 14b of the electrode group 14, the reinforcing member 15 is provided so as to be flush with the end face of the exposed portion 11 of the negative electrode 12, and the end face of the exposed portion 11 of the negative electrode 12 is exposed. The end surface 10a of the mixture layer 10, the end surface 13a of the separator 13, and the end surface 6a of the positive electrode 6 are covered. For this reason, when one end of the electrode group 14 is viewed from above, the end surface of the exposed portion 11 of the negative electrode 12 is swirled, and the reinforcing member 15 fills the space in the swirl.

補強部材15の材質としては、特に限定されないが、絶縁性且つ浸液性に優れた材質を選択することが好ましい。その理由を以下に示す。   The material of the reinforcing member 15 is not particularly limited, but it is preferable to select a material that is excellent in insulation and immersion. The reason is as follows.

補強部材の材質として導電性に優れた材質を選択すると、正極と負極との間で短絡が発生する虞がある。しかし、補強部材15の材質として絶縁性に優れた材質を選択すると、上記短絡の発生を抑制できる。   If a material excellent in conductivity is selected as the material of the reinforcing member, there is a possibility that a short circuit occurs between the positive electrode and the negative electrode. However, if a material excellent in insulation is selected as the material of the reinforcing member 15, the occurrence of the short circuit can be suppressed.

また、リチウムイオン二次電池では、非水電解液は、正極8の端面8a、セパレータ13の端面13aおよび負極12の端面12aから電極群14の内部に浸透するように構成されている。そのため、補強部材の材質として浸液性に劣る材質を選択すると、補強部材が電極群の内部への非水電解液の浸透を阻害する虞があり、その結果、電極反応が抑制されてしまう。しかし、補強部材15の材質として浸液性に優れた材質を選択すると、補強部材15が正極8の端面8a、セパレータ13の端面13aおよび負極12の端面12aを覆っていても非水電解液は電極群14の内部に浸透するので、電極反応を進行させることができる。   Further, in the lithium ion secondary battery, the non-aqueous electrolyte is configured to penetrate into the electrode group 14 from the end face 8 a of the positive electrode 8, the end face 13 a of the separator 13, and the end face 12 a of the negative electrode 12. For this reason, if a material having poor immersion properties is selected as the material of the reinforcing member, the reinforcing member may inhibit the penetration of the nonaqueous electrolyte into the electrode group, and as a result, the electrode reaction is suppressed. However, if a material excellent in immersion is selected as the material of the reinforcing member 15, the non-aqueous electrolyte is not affected even if the reinforcing member 15 covers the end surface 8 a of the positive electrode 8, the end surface 13 a of the separator 13, and the end surface 12 a of the negative electrode 12. Since it penetrates into the electrode group 14, the electrode reaction can proceed.

具体的には、補強部材15として、多孔質な絶縁材料を用いることが好ましい。なぜならば、多孔質な材料を補強部材15として用いると、非水電解液は補強部材15の孔の中を通って電極群14の内部に供給されるからである。具体的には、補強部材15は、正極用の結着剤または負極用の結着剤であってもよく、絶縁性粒子と結着剤とを含む多孔質膜であってもよい。   Specifically, a porous insulating material is preferably used as the reinforcing member 15. This is because when a porous material is used as the reinforcing member 15, the non-aqueous electrolyte is supplied into the electrode group 14 through the holes of the reinforcing member 15. Specifically, the reinforcing member 15 may be a positive electrode binder or a negative electrode binder, or may be a porous film containing insulating particles and a binder.

正極用の結着剤としてはPTFE(polytetrafluoroethylene)またはPVDF(polyVinylidine difluoride)などのフッ素系樹脂を挙げることができ、負極用の結着剤としてはSBR(styrene-butadiene rubber)またはスチレン−ブタジエン共重合体からなるゴム粒子(SBR)を挙げることができる。   Examples of the binder for the positive electrode include a fluorine-based resin such as PTFE (polytetrafluoroethylene) or PVDF (polyvinylidine difluoride). Examples of the binder for the negative electrode include SBR (styrene-butadiene rubber) or styrene-butadiene copolymer. Mention may be made of rubber particles (SBR) made of coalescence.

多孔質膜の絶縁性粒子としては、耐熱性に優れ且つ電気化学的に安定な材質を選択することが好ましく、アルミナなどの無機酸化物などを選択することができる。また、結着剤は多孔質膜において絶縁性粒子を固定させるために設けられ、非結晶性であり耐熱性に優れた材質を選択することが好ましく、ポリアクリロニトリル基を含むゴム状高分子などを用いることができる。   As the insulating particles of the porous film, a material having excellent heat resistance and electrochemical stability is preferably selected, and an inorganic oxide such as alumina can be selected. In addition, the binder is provided to fix the insulating particles in the porous membrane, and it is preferable to select a material that is non-crystalline and excellent in heat resistance, such as a rubbery polymer containing a polyacrylonitrile group. Can be used.

また、補強部材15として、非水溶媒が固化されたものを含んでいても良い。なぜならば、使用などによりリチウムイオン二次電池内の温度が上昇すると、非水溶媒が補強部材15から流れ出て電極群14の内部に供給されるからである。そのため、リチウムイオン二次電池の使用時間が長くなるにつれ、補強部材15が減っていく。非水溶媒としてはエチレンカーボネート(EC;ethylene carbonate)を用いる場合が多いので、補強部材15としてはECからなる部材を用いることが好ましい。   Further, the reinforcing member 15 may include a solidified non-aqueous solvent. This is because when the temperature in the lithium ion secondary battery rises due to use or the like, the nonaqueous solvent flows out of the reinforcing member 15 and is supplied to the inside of the electrode group 14. Therefore, the reinforcing member 15 decreases as the use time of the lithium ion secondary battery becomes longer. Since ethylene carbonate (EC) is often used as the non-aqueous solvent, it is preferable to use a member made of EC as the reinforcing member 15.

このような補強部材15を電極群14に設ける方法としては、まず補強部材15を適当な溶媒に溶解させて補強部材の溶液を調製し、次に補強部材の溶液を電極群14の端面にそれぞれ塗布し、その後補強部材の溶液を乾燥または固化させる方法を用いることが好ましい。補強部材の溶液を電極群14の端面にそれぞれ塗布する方法としては、浸漬方法または注入方法を挙げることができる。   As a method of providing such a reinforcing member 15 on the electrode group 14, first, the reinforcing member 15 is dissolved in an appropriate solvent to prepare a solution of the reinforcing member, and then the solution of the reinforcing member is respectively applied to the end surface of the electrode group 14. It is preferable to use a method of applying and then drying or solidifying the solution of the reinforcing member. Examples of a method for applying the solution of the reinforcing member to the end face of the electrode group 14 include an immersion method and an injection method.

以下では、特許文献1に開示されたリチウムイオン二次電池と、特許文献2または3に開示されたリチウムイオン二次電池とを比較しながら、本実施形態にかかるリチウムイオン二次電池を説明する。   Hereinafter, the lithium ion secondary battery disclosed in Patent Document 1 and the lithium ion secondary battery disclosed in Patent Document 2 or 3 will be compared, and the lithium ion secondary battery according to the present embodiment will be described. .

ここで、特許文献1では、同文献の第1図に示すように正極および負極の端面が絶縁体で覆われているのでこれらの端面に集電板を接合させても集電できないと考えられ、集電リードを介して集電されると考えられる。   Here, in Patent Document 1, since the end surfaces of the positive electrode and the negative electrode are covered with an insulator as shown in FIG. 1 of the same document, it is considered that current cannot be collected even if a current collector plate is joined to these end surfaces. It is considered that current is collected through the current collecting lead.

また、特許文献2または3に開示されたリチウムイオン二次電池は、タブレス集電構造を備えているが補強部材を備えていない。   Moreover, although the lithium ion secondary battery disclosed by patent document 2 or 3 is provided with the tabless current collection structure, it is not provided with the reinforcement member.

まず、特許文献1に開示されたリチウムイオン二次電池について示す。   First, a lithium ion secondary battery disclosed in Patent Document 1 will be described.

特許文献1に開示されたリチウムイオン二次電池は、上述のように、タブレス集電構造を有していないと推測される。そのため、図10(a)および(b)に示すように、1本の集電リード3(他方の集電リードは電極群94の下面から延びている)が電極群94の端面から延びているに過ぎない。このような電極群94の端面に絶縁体を設けるときに電極群94の端面を絶縁体の溶液に浸漬させると、図10(a)に示すように集電リードの先端と電極群の端面上の一点とを結ぶように絶縁体の溶液の膜4が形成される。そのため、図10(a)に示すように、集電リード3の周囲には十分な量の絶縁体の溶液を塗布することができるが、集電リード3から遠ざかるにつれて絶縁体の溶液の塗布量は減少する。場合によっては、絶縁体の溶液は、電極群94の端面の周縁部分(図10(a)に示す領域X)には塗布されない。さらに、電極群94を動かすと絶縁体の溶液が電極群94の端面から流出する虞があり、絶縁体の溶液が固化するまで電極群94を静置しなければならない。   The lithium ion secondary battery disclosed in Patent Document 1 is presumed not to have a tabless current collecting structure as described above. Therefore, as shown in FIGS. 10A and 10B, one current collecting lead 3 (the other current collecting lead extends from the lower surface of the electrode group 94) extends from the end surface of the electrode group 94. Only. When the end face of the electrode group 94 is immersed in an insulator solution when an insulator is provided on the end face of such an electrode group 94, the tip of the current collecting lead and the end face of the electrode group are shown in FIG. An insulating solution film 4 is formed so as to connect the two points. Therefore, as shown in FIG. 10A, a sufficient amount of the insulator solution can be applied around the current collecting lead 3, but the amount of the insulator solution applied as the distance from the current collecting lead 3 increases. Decrease. In some cases, the insulator solution is not applied to the peripheral portion of the end face of the electrode group 94 (region X shown in FIG. 10A). Further, when the electrode group 94 is moved, the insulator solution may flow out from the end face of the electrode group 94, and the electrode group 94 must be left until the insulator solution is solidified.

一方、電極群94の端面に絶縁体を設けるときに絶縁体の溶液を電極群94の端面に注入すると、絶縁体の溶液を電極群94の端面において均一に設けることができる。しかし、注入方法を用いた場合でも、電極群を動かすと絶縁体の溶液が電極群94の端面(図10(b)に示す領域Y1およびY2)から流出して電極群94の側面をつたう場合があり、絶縁体の溶液が固化するまで電極群94を静置しなければならない。   On the other hand, when an insulator solution is injected into the end face of the electrode group 94 when the insulator is provided on the end face of the electrode group 94, the insulator solution can be uniformly provided on the end face of the electrode group 94. However, even when the injection method is used, when the electrode group is moved, the insulator solution flows out from the end face of the electrode group 94 (regions Y1 and Y2 shown in FIG. 10B) and covers the side surface of the electrode group 94. The electrode group 94 must be allowed to stand until the insulator solution is solidified.

次に、特許文献2または3に開示されたリチウムイオン二次電池について示す。   Next, a lithium ion secondary battery disclosed in Patent Document 2 or 3 will be described.

特許文献2または3に開示されたリチウムイオン二次電池では、上記補強部材が設けられていない。この場合、露出部の厚みは集電体の厚みと同じであるので(具体的には、数十μm以下)、露出部に外力が加わると(例えば、集電板を電極群の端面に接合させる際に集電板を電極群に押圧させると)、露出部が折曲する虞があり、リチウムイオン二次電池の製造歩留まりが低下する。さらに、露出部が折曲して反対極の極板に接触すると、または、露出部が折曲してセパレータを破損すると、内部短絡が発生しやすくなる。   In the lithium ion secondary battery disclosed in Patent Document 2 or 3, the reinforcing member is not provided. In this case, since the thickness of the exposed portion is the same as the thickness of the current collector (specifically, several tens of μm or less), when an external force is applied to the exposed portion (for example, the current collector plate is joined to the end face of the electrode group). When the current collecting plate is pressed against the electrode group during the process, the exposed portion may be bent, and the production yield of the lithium ion secondary battery is lowered. Furthermore, when the exposed portion is bent and comes into contact with the opposite electrode plate, or when the exposed portion is bent and the separator is damaged, an internal short circuit is likely to occur.

また、特許文献2または3に開示されたリチウムイオン二次電池では、その製造工程中、正極、セパレータおよび負極の端面は露出している。たとえ露出部の端面に集電板を接合させた後であっても、集電板とセパレータなどとの間には空間が存在している。そのため、リチウムイオン二次電池の製造工程中に、不要物(具体的には、溶接時に発生するスパッタなど)が正極、セパレータおよび負極の端面から電極群の内部に侵入する場合がある。侵入した不要物はセパレータを破る虞があり、セパレータが破損すると内部短絡が発生しやすくなる。   In the lithium ion secondary battery disclosed in Patent Document 2 or 3, the end surfaces of the positive electrode, the separator, and the negative electrode are exposed during the manufacturing process. Even after the current collector plate is joined to the end face of the exposed portion, a space exists between the current collector plate and the separator. Therefore, during the manufacturing process of the lithium ion secondary battery, unnecessary materials (specifically, spatter generated during welding) may enter the electrode group from the end faces of the positive electrode, the separator, and the negative electrode. The invading unnecessary object may break the separator, and if the separator is broken, an internal short circuit is likely to occur.

以上より、特許文献1に開示されたリチウムイオン二次電池では、タブレス集電構造を有していないと考えられるので、浸漬方法を用いれば電極群94の端面において絶縁体の溶液を均一に塗布することができず、また、浸漬方法および注入方法のどちらの方法を用いた場合でも絶縁体の溶液が乾燥または固化するまで電極群94を静置しなければならない。   From the above, it is considered that the lithium ion secondary battery disclosed in Patent Document 1 does not have a tabless current collecting structure. Therefore, if an immersion method is used, an insulator solution is uniformly applied to the end face of the electrode group 94. In addition, the electrode group 94 must be allowed to stand until the solution of the insulator is dried or solidified using either the dipping method or the injection method.

また、特許文献2または3に開示されたリチウムイオン二次電池では、製造中に、露出部が折曲する虞があり、また、不要物が電極群の内部に侵入してセパレータを破損する虞がある。   In addition, in the lithium ion secondary battery disclosed in Patent Document 2 or 3, there is a risk that the exposed portion may be bent during manufacture, and there is a risk that unwanted materials may enter the electrode group and damage the separator. There is.

しかし、本実施形態における電極群14の端面に補強部材の溶液を設けると、補強部材の溶液は、正極8の隣り合う露出部7,7の間、または、負極12の隣り合う露出部11,11の間に保持される。言い換えると、正極8の露出部7および負極12の露出部11は、電極群14の端面から補強部材の溶液が流出することを抑制する。そのため、補強部材の溶液が固化するまで電極群14を静置しなくてもよい。   However, when the reinforcing member solution is provided on the end face of the electrode group 14 in the present embodiment, the reinforcing member solution is between the adjacent exposed portions 7 and 7 of the positive electrode 8 or the adjacent exposed portions 11 and 7 of the negative electrode 12. 11 is held. In other words, the exposed portion 7 of the positive electrode 8 and the exposed portion 11 of the negative electrode 12 prevent the solution of the reinforcing member from flowing out from the end face of the electrode group 14. Therefore, it is not necessary to leave the electrode group 14 until the solution of the reinforcing member is solidified.

また、浸漬方法を用いて電極群14の端面に補強部材の溶液を設けた場合には、正極8の露出部7ではn周回目の部分の先端と(n+1)周回目の部分の先端とを結ぶように補強部材の溶液の膜が形成され、負極12の露出部11ではn周回目の部分の先端と(n+1)周回目の部分の先端とをそれぞれ結ぶように補強部材の溶液の膜が形成される。そのため、本実施形態における電極群14の構成では、補強部材の溶液を電極群14の端面に均一に塗布することができる。   Further, when a solution of a reinforcing member is provided on the end face of the electrode group 14 using the dipping method, the exposed portion 7 of the positive electrode 8 has a tip of the n-th turn portion and a tip of the (n + 1) turn portion. A film of the reinforcing member solution is formed so as to tie, and a film of the reinforcing member solution is formed so as to tie the tip of the n-th turn portion and the tip of the (n + 1) -th turn portion in the exposed portion 11 of the negative electrode 12. It is formed. Therefore, in the configuration of the electrode group 14 in the present embodiment, the solution of the reinforcing member can be uniformly applied to the end surface of the electrode group 14.

さらに、本実施形態にかかるリチウムイオン二次電池では、補強部材15を設けることにより正極8の露出部7および負極12の露出部11の強度をそれぞれ補強することができるので、正極8の露出部7に外力が加わっても正極8の露出部7の折曲を抑制でき、負極12の露出部11に外力が加わっても負極12の露出部11の折曲を抑制できる。そのため、例えば正極8の露出部7が製造中に負極12に接触することを防止でき、また、製造中にセパレータ13が破損することを防止できるので、内部短絡の発生確率を抑えることができる。   Furthermore, in the lithium ion secondary battery according to the present embodiment, the strength of the exposed portion 7 of the positive electrode 8 and the exposed portion 11 of the negative electrode 12 can be reinforced by providing the reinforcing member 15. 7, bending of the exposed portion 7 of the positive electrode 8 can be suppressed, and bending of the exposed portion 11 of the negative electrode 12 can be suppressed even when an external force is applied to the exposed portion 11 of the negative electrode 12. Therefore, for example, it is possible to prevent the exposed portion 7 of the positive electrode 8 from coming into contact with the negative electrode 12 during manufacturing, and it is possible to prevent the separator 13 from being damaged during manufacturing, so that the probability of occurrence of an internal short circuit can be suppressed.

その上、本実施形態にかかるリチウムイオン二次電池では、補強部材15が正極8の端面8a、セパレータ13の端面13aおよび負極12の端面12aを覆っているので、製造工程中に不要物などが電極群14の内部に侵入することを防止できる。よって、製造工程中にセパレータ13が破損することを防止でき、品質に優れたリチウムイオン二次電池を製造することができる。   In addition, in the lithium ion secondary battery according to the present embodiment, the reinforcing member 15 covers the end face 8a of the positive electrode 8, the end face 13a of the separator 13, and the end face 12a of the negative electrode 12. Intrusion into the electrode group 14 can be prevented. Therefore, the separator 13 can be prevented from being damaged during the manufacturing process, and a lithium ion secondary battery having excellent quality can be manufactured.

さらには、補強部材15の材質として絶縁性且つ浸液性に優れた材質を選択すれば、電極群14の内部への非水電解液の浸液性の低下を抑制することができる
なお、補強部材15として非水電解液の溶媒が固化されたものを用いた場合であっても、正極8の露出部7および負極12の露出部11の強度を補強することができるので集電板19を電極群14へ押圧させる際に正極8の露出部7および負極12の露出部11の折曲を防止でき、さらには、製造中に不要物が電極群14の内部に侵入することを防止できる。そのため、上述のように、リチウムイオン二次電池を使用するにつれて補強部材15の非水電解液の溶媒が電極群14の内部に浸透した結果、補強部材15の量が減少する、あるいは、補強部材15が完全に消失しても、上記効果を得ることは可能である。
Furthermore, if a material having excellent insulation and liquid immersion properties is selected as the material of the reinforcing member 15, it is possible to suppress a decrease in the liquid immersion property of the non-aqueous electrolyte into the electrode group 14. Even when the non-aqueous electrolyte solvent is solidified as the member 15, the strength of the exposed portion 7 of the positive electrode 8 and the exposed portion 11 of the negative electrode 12 can be reinforced. When the electrode group 14 is pressed, the exposed portion 7 of the positive electrode 8 and the exposed portion 11 of the negative electrode 12 can be prevented from being bent, and further, unwanted substances can be prevented from entering the electrode group 14 during manufacturing. Therefore, as described above, as the lithium ion secondary battery is used, the amount of the reinforcing member 15 decreases as a result of the solvent of the nonaqueous electrolytic solution of the reinforcing member 15 penetrating into the electrode group 14, or the reinforcing member Even if 15 disappears completely, the above effect can be obtained.

言い換えると、補強部材15は、正極8の露出部7または負極12の露出部11の強度を補強するだけでなく、リチウムイオン二次電池を製造するさいには電極群14の内部に不要物が侵入することを抑制する遮蔽部材としても機能する。その一方で、補強部材15は、非水電解液を電極群14の内部に浸透させるように構成されていることが好ましい。   In other words, the reinforcing member 15 not only reinforces the strength of the exposed portion 7 of the positive electrode 8 or the exposed portion 11 of the negative electrode 12, but when manufacturing a lithium ion secondary battery, there is no unnecessary material inside the electrode group 14. It also functions as a shielding member that suppresses intrusion. On the other hand, it is preferable that the reinforcing member 15 is configured to allow the nonaqueous electrolytic solution to penetrate into the electrode group 14.

次に、本実施形態にかかるリチウムイオン二次電池の製造方法を具体的に示す。   Next, a method for manufacturing a lithium ion secondary battery according to this embodiment will be specifically described.

本実施形態にかかるリチウムイオン二次電池を製造するためには、まず、正極8および負極12をそれぞれ作製する。   In order to manufacture the lithium ion secondary battery according to the present embodiment, first, the positive electrode 8 and the negative electrode 12 are respectively prepared.

正極8を作製するためには、まず、混練装置を用いて水または有機溶媒とともに活物質と導電剤と結着剤とを混練し、スラリー状の正極合剤を作製する。   In order to produce the positive electrode 8, first, an active material, a conductive agent, and a binder are kneaded together with water or an organic solvent using a kneading apparatus to produce a slurry-like positive electrode mixture.

このとき、活物質としては、コバルト酸リチウム、コバルト酸リチウムの変性体(アルミニウムまたはマグネシウムを共晶させることにより製造されたものなど)、ニッケル酸リチウム、ニッケル酸リチウムの変性体(ニッケルの一部をコバルトまたはアルミニウムなどで置換したもの)、マンガン酸リチウムまたはマンガン酸リチウムの変性体などの複合酸化物を用いることが好ましい。導電剤としては、アセチレンブラック、ケッチェンブラックおよび各種グラファイトのうちの何れか一種または2種以上を組み合わせたものを用いることが好ましい。結着剤としては、ポリテトラフルオロエチレン(PTFE)またはポリフッ化ビニリデン(PVDF)などを用いることが好ましい。また、必要に応じて、増粘剤を混練装置に投入してもよい。   At this time, as the active material, lithium cobaltate, lithium cobaltate modified (such as those produced by eutectic aluminum or magnesium), lithium nickelate, lithium nickelate modified (part of nickel) Are preferably substituted with cobalt or aluminum), lithium manganate, or a complex oxide such as a modified lithium manganate. As the conductive agent, it is preferable to use one or a combination of two or more of acetylene black, ketjen black and various graphites. As the binder, polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF) is preferably used. Moreover, you may throw a thickener into a kneading apparatus as needed.

次に、ダイ塗工装置などを用いて正極8の集電体5(例えばアルミニウム製)の上にスラリー状の正極合剤を塗布し乾燥させ、正極8の集電体5の上に正極8の合剤層6を形成する。このとき、正極8の集電体5の幅方向における一端には、スラリー状の正極合剤を塗布しない。これにより、正極8の露出部7が形成される。   Next, a slurry-like positive electrode mixture is applied on the current collector 5 (for example, made of aluminum) of the positive electrode 8 by using a die coating apparatus or the like, and dried, and the positive electrode 8 is formed on the current collector 5 of the positive electrode 8. The mixture layer 6 is formed. At this time, the slurry-like positive electrode mixture is not applied to one end of the positive electrode 8 in the width direction of the current collector 5. Thereby, the exposed portion 7 of the positive electrode 8 is formed.

その後、必要に応じて、正極8の集電体5に正極8の合剤層6が形成されたものをプレスし、必要な寸法に切断する。これにより、正極8を作製することができる。   Thereafter, if necessary, the current collector 5 of the positive electrode 8 on which the mixture layer 6 of the positive electrode 8 is formed is pressed and cut into necessary dimensions. Thereby, the positive electrode 8 can be produced.

負極12を作製するためには、まず、混練装置を用いて水または有機溶媒とともに活物質と結着剤とを混練し、スラリー状の負極合剤を作製する。   In order to produce the negative electrode 12, first, an active material and a binder are kneaded together with water or an organic solvent using a kneading apparatus to produce a slurry-like negative electrode mixture.

このとき、活物質としては、各種天然黒鉛、人造黒鉛または合金組成材料などを用いることが好ましい。結着剤としては、スチレンブタジエンゴム(SBR)またはPVDFなどを用いることが好ましい。また、必要に応じて、増粘剤を混練装置に投入してもよい。   At this time, it is preferable to use various natural graphites, artificial graphites or alloy composition materials as the active material. As the binder, styrene butadiene rubber (SBR) or PVDF is preferably used. Moreover, you may throw a thickener into a kneading apparatus as needed.

次に、ダイ塗工装置などを用いて負極12の集電体9(例えば銅製)の上にスラリー状の負極合剤を塗布し乾燥させ、負極12の集電体9の上に負極12の合剤層10を形成する。このとき、負極12の集電体9の幅方向における一端には、スラリー状の負極合剤を塗布しない。これにより、露出部11が形成される。   Next, a slurry-like negative electrode mixture is applied on the current collector 9 (for example, made of copper) of the negative electrode 12 by using a die coating apparatus or the like, and dried, and the negative electrode 12 is coated on the current collector 9 of the negative electrode 12. The mixture layer 10 is formed. At this time, the slurry-like negative electrode mixture is not applied to one end of the negative electrode 12 in the width direction of the current collector 9. Thereby, the exposed portion 11 is formed.

その後、必要に応じて、負極12の集電体9に負極12の合剤層10が形成されたものをプレスし、必要な寸法に切断する。これにより、負極12を作製することができる。   Thereafter, if necessary, the current collector 9 of the negative electrode 12 on which the mixture layer 10 of the negative electrode 12 is formed is pressed and cut into necessary dimensions. Thereby, the negative electrode 12 can be produced.

正極8および負極12を作製した後には、電極群14を作製する。具体的には、正極8の露出部7と負極12の露出部11とが互いに反対側に突出するように正極8および負極12を配置する。その後、正極8と負極12との間にセパレータ13を設けて、円筒形または角型形となるように捲き回す。   After producing the positive electrode 8 and the negative electrode 12, the electrode group 14 is produced. Specifically, the positive electrode 8 and the negative electrode 12 are arranged so that the exposed portion 7 of the positive electrode 8 and the exposed portion 11 of the negative electrode 12 protrude on opposite sides. Then, the separator 13 is provided between the positive electrode 8 and the negative electrode 12, and it is rolled up so that it may become a cylindrical shape or a square shape.

このとき、セパレータ13としては、非水電解液の保持力が高い微多孔性フィルムであって正極6および負極8のいずれの電位下においても安定な微多孔性フィルムを用いることが好ましい。このようなセパレータ13としては、例えば、ポリプロピレンからなるもの、ポリエチレンからなるもの、ポリイミドからなるもの、または、ポリアミドからなるものなどを用いることができる。   At this time, as the separator 13, it is preferable to use a microporous film that has a high nonaqueous electrolyte retention and is stable under any potential of the positive electrode 6 and the negative electrode 8. As such a separator 13, for example, one made of polypropylene, one made of polyethylene, one made of polyimide, or one made of polyamide can be used.

捲き回した後には、浸漬方法を用いて補強部材15を設ける。具体的には、補強部材を適当な溶媒に溶解または分散させて補強部材の溶液を調製し、補強部材の溶液を容器に入れる。その後、正極8の露出部7を補強部材の溶液に浸漬させて、一定時間経過後、正極8の露出部7を補強部材の溶液から引き上げる。このとき、正極8の露出部7の端面に付着した補強部材の溶液を拭き取り、正極8の露出部7の端面が露出している一方隣り合う露出部7,7の間には補強部材の溶液が満たされた状態にする。その後、熱などを加えて補強部材の溶液から不要な溶媒を除去する、または、冷却して補強部材の溶液を固化する。   After the whirling, the reinforcing member 15 is provided using the dipping method. Specifically, a reinforcing member solution is prepared by dissolving or dispersing the reinforcing member in an appropriate solvent, and the reinforcing member solution is placed in a container. Thereafter, the exposed portion 7 of the positive electrode 8 is immersed in the reinforcing member solution, and after a predetermined time has elapsed, the exposed portion 7 of the positive electrode 8 is pulled up from the reinforcing member solution. At this time, the solution of the reinforcing member adhering to the end face of the exposed portion 7 of the positive electrode 8 is wiped off, and the end face of the exposed portion 7 of the positive electrode 8 is exposed while the solution of the reinforcing member is between the adjacent exposed portions 7 and 7. Make sure that is satisfied. Thereafter, an unnecessary solvent is removed from the solution of the reinforcing member by applying heat or the like, or the solution of the reinforcing member is solidified by cooling.

一例として補強部材15の材質としてECを選択した場合には、まずEC(融点が39℃)を加熱して溶融させ、次に正極8の露出部7を液状のECに浸漬させ、続いて正極8の露出部7の端面に付着したECをふき取りその後冷却させる。   For example, when EC is selected as the material of the reinforcing member 15, first, EC (melting point: 39 ° C.) is heated and melted, then the exposed portion 7 of the positive electrode 8 is immersed in liquid EC, and then the positive electrode The EC adhering to the end face of the exposed portion 7 is wiped off and then cooled.

別の例として補強部材15として多孔質な結着剤を選択した場合には、まず結着剤を水または有機溶媒に分散または溶解させて溶液を調製し、次にその溶液に正極8の露出部7を浸漬させた後、不要な溶媒を除去する。   As another example, when a porous binder is selected as the reinforcing member 15, first, a solution is prepared by dispersing or dissolving the binder in water or an organic solvent, and then exposing the positive electrode 8 to the solution. After the part 7 is immersed, unnecessary solvent is removed.

更に別の例として補強部材15として絶縁性粒子および結着剤を含む多孔質膜を選択した場合には、まず絶縁性粒子および結着剤を混練装置に投入して適当な溶媒とともに混練して、スラリーを作製する。次に、このスラリーに正極8の露出部7を浸漬させた後、不要な溶媒を除去する。   As yet another example, when a porous membrane containing insulating particles and a binder is selected as the reinforcing member 15, the insulating particles and the binder are first put into a kneading apparatus and kneaded with an appropriate solvent. A slurry is prepared. Next, after the exposed portion 7 of the positive electrode 8 is immersed in this slurry, unnecessary solvent is removed.

同様の方法を用いて、負極12の露出部11にも補強部材15を設ける。   A reinforcing member 15 is provided on the exposed portion 11 of the negative electrode 12 using the same method.

その後、抵抗溶接法またはレーザー溶接法などの公知の溶接方法を用いて、正極8の露出部7および負極12の露出部11の端面にそれぞれ集電板19,19を接合させる。これにより、図5に示す集電構造が作製される。   Thereafter, current collecting plates 19 and 19 are joined to the end surfaces of the exposed portion 7 of the positive electrode 8 and the exposed portion 11 of the negative electrode 12 using a known welding method such as resistance welding or laser welding. Thereby, the current collection structure shown in FIG. 5 is produced.

そして、図5に示す電極群をケースに収容し、非水電解液をケースに注入する。その後、必要個所を封止することにより、リチウムイオン二次電池を製造することができる。   And the electrode group shown in FIG. 5 is accommodated in a case, and nonaqueous electrolyte solution is inject | poured into a case. Then, a lithium ion secondary battery can be manufactured by sealing a required part.

《発明の実施形態2》
図6は、実施形態2における集電構造の構成を示す縦断面図である。
<< Embodiment 2 of the Invention >>
FIG. 6 is a longitudinal sectional view showing the configuration of the current collecting structure in the second embodiment.

本実施形態における電極群24の一端24aでは正極8の露出部7が補強部材15の表面から電極の幅方向に突出しており、電極群24の他端24bでは負極12の露出部11が補強部材15の表面から電極の幅方向に突出している。このような構成であっても、上記実施形態1と略同一の効果を得ることができる。   The exposed portion 7 of the positive electrode 8 protrudes from the surface of the reinforcing member 15 in the width direction of the electrode at one end 24a of the electrode group 24 in the present embodiment, and the exposed portion 11 of the negative electrode 12 extends from the surface of the reinforcing member 15 to the reinforcing member. It protrudes from the surface of 15 in the width direction of the electrode. Even with such a configuration, substantially the same effect as in the first embodiment can be obtained.

なお、図6に示す形状の補強部材を作製する方法には特に限定されないが、補強部材15の材料が熱収縮性を有していれば同図に示す構成となる場合がある。   The method for producing the reinforcing member having the shape shown in FIG. 6 is not particularly limited. However, if the material of the reinforcing member 15 has heat shrinkability, the structure shown in FIG.

《発明の実施形態3》
図7は、実施形態3における集電構造の構成を示す縦断面図である。
<< Embodiment 3 of the Invention >>
FIG. 7 is a longitudinal sectional view showing the configuration of the current collecting structure in the third embodiment.

本実施形態では、補強部材15は、上記実施形態1と同じく正極8の端面8a、セパレータ13の端面13aおよび負極12の端面12aを覆っている。しかし、図7に示すように、電極群34の一端34aでは、補強部材15のうち負極12の端面12aを覆う部分の厚みは、補強部材15のうち正極8の合剤層6の端面6aを覆う部分の厚みよりも薄い。また、電極群34の他端34bでは、補強部材15のうち正極8の端面8aを覆う部分の厚みは、補強部材15のうち負極12の合剤層10の端面10aを覆う部分の厚みよりも薄い。   In the present embodiment, the reinforcing member 15 covers the end surface 8a of the positive electrode 8, the end surface 13a of the separator 13, and the end surface 12a of the negative electrode 12 as in the first embodiment. However, as shown in FIG. 7, at one end 34 a of the electrode group 34, the thickness of the portion of the reinforcing member 15 that covers the end surface 12 a of the negative electrode 12 is the same as the end surface 6 a of the positive electrode 8 of the reinforcing member 15. It is thinner than the thickness of the covered part. In the other end 34 b of the electrode group 34, the thickness of the portion of the reinforcing member 15 that covers the end surface 8 a of the positive electrode 8 is greater than the thickness of the portion of the reinforcing member 15 that covers the end surface 10 a of the mixture layer 10 of the negative electrode 12. thin.

このような構成であっても、上記実施形態1と略同一の効果を得ることができる。さらに、図7に示す構成では、上記実施形態1の場合に比べて補強部材15が薄い部分があるので、上記実施形態1の場合に比べて浸液性に優れている。   Even with such a configuration, substantially the same effect as in the first embodiment can be obtained. Further, in the configuration shown in FIG. 7, since the reinforcing member 15 is thinner than in the case of the first embodiment, the liquid immersion is superior to the case of the first embodiment.

《発明の参考形態
図8は、参考形態における集電構造の構成を示す縦断面図である。
<< Reference Form of Invention >>
FIG. 8 is a longitudinal sectional view showing the configuration of the current collecting structure in the reference embodiment .

参考形態では、補強部材15は、図8に示すように、電極群44の一端44aでは正極8の合剤層6の端面6aのみを覆っており、電極群44の他端44bでは負極12の合剤層10の端面10aのみを覆っている。
In the reference form , as shown in FIG. 8, the reinforcing member 15 covers only the end surface 6 a of the mixture layer 6 of the positive electrode 8 at one end 44 a of the electrode group 44, and the negative electrode 12 at the other end 44 b of the electrode group 44. Only the end surface 10a of the mixture layer 10 is covered.

このような構成では、電極群44の一端44aおよび他端44bにおいて補強部材15が設けられていない部分があるので、製造工程中に不要物が電極群44の内部に侵入する確率が高くなるという危険を伴うが、非水電解液の浸液性を向上させることができる。すなわち、補強部材15を設ける範囲が狭ければ狭いほど、または、補強部材15が薄ければ薄いほど、電極群44の内部への非水電解液の浸液性を高めることができる。一方、補強部材15を設ける範囲が広ければ広いほど、または、補強部材15が厚ければ厚いほど、不要物の侵入を阻止でき、正極8の露出部7および負極12の露出部11の強度を補強できる。   In such a configuration, there is a portion where the reinforcing member 15 is not provided at the one end 44a and the other end 44b of the electrode group 44, so that there is a high probability that an unnecessary object enters the electrode group 44 during the manufacturing process. Although it involves danger, the immersion property of the non-aqueous electrolyte can be improved. That is, the smaller the range in which the reinforcing member 15 is provided, or the thinner the reinforcing member 15 is, the higher the immersion property of the nonaqueous electrolyte solution in the electrode group 44 can be. On the other hand, the wider the range in which the reinforcing member 15 is provided, or the thicker the reinforcing member 15, the more the unnecessary material can be prevented from entering, and the strength of the exposed portion 7 of the positive electrode 8 and the exposed portion 11 of the negative electrode 12 is increased. Can be reinforced.

図8に示す形状の補強部材を作製する方法としては、上記実施形態1等に記載した浸漬方法を用いても良いが、正極8および負極12を捲回する前に補強部材15を形成してもよい。   As a method for producing the reinforcing member having the shape shown in FIG. 8, the dipping method described in the first embodiment or the like may be used, but the reinforcing member 15 is formed before winding the positive electrode 8 and the negative electrode 12. Also good.

具体的には、上記実施形態1に記載の方法に従って正極8を作製した後、ダイ塗工装置またはグラビア装置などを用いて補強部材の溶液を正極8の露出部7に塗布し、冷却または乾燥させる。同様に、上記実施形態1に記載の方法に従って負極12を作製した後、ダイ塗工装置またはグラビア装置などを用いて補強部材の溶液を負極12の露出部11に塗布し、冷却または乾燥させる。   Specifically, after producing the positive electrode 8 according to the method described in the first embodiment, the solution of the reinforcing member is applied to the exposed portion 7 of the positive electrode 8 using a die coating apparatus or a gravure apparatus, and cooled or dried. Let Similarly, after producing the negative electrode 12 according to the method described in the first embodiment, the reinforcing member solution is applied to the exposed portion 11 of the negative electrode 12 using a die coating apparatus, a gravure apparatus, or the like, and cooled or dried.

その後は、上記実施形態1に記載の方法を行うことにより、リチウムイオン二次電池を製造することができる。   Thereafter, a lithium ion secondary battery can be manufactured by performing the method described in the first embodiment.

《その他の実施形態》
本発明は、上記実施形態について、以下のような構成としてもよい。
<< Other Embodiments >>
The present invention may be configured as follows with respect to the above embodiment.

上記実施形態1〜では、正極と負極とがセパレータを介して捲回されている,としたが、正極と負極とがセパレータを介して積層されていてもよい。正極と負極とが積層されている場合には、補強部材は、電極群の一端ではn枚目の正極8の露出部と(n+1)枚目の正極の露出部との間に設けられ、電極群の他端ではn枚目の負極の露出部と(n+1)枚目の負極の露出部との間に設けられる。
In the first to third embodiments, the positive electrode and the negative electrode are wound via the separator, but the positive electrode and the negative electrode may be stacked via the separator. When the positive electrode and the negative electrode are laminated, the reinforcing member is provided between the exposed portion of the nth positive electrode 8 and the exposed portion of the (n + 1) th positive electrode at one end of the electrode group. The other end of the group is provided between the exposed portion of the nth negative electrode and the exposed portion of the (n + 1) th negative electrode.

また、正極と負極とが捲回されている場合、電極群は、円筒型または角筒型などに形成されていればよい。   In addition, when the positive electrode and the negative electrode are wound, the electrode group may be formed in a cylindrical shape or a rectangular tube shape.

また、上記実施形態では、非水電解液が少なくともセパレータに保持されているとしたが、例えばゲル状の非水電解質が少なくともセパレータに保持されていても良い。ゲル状の非水電解質が少なくともセパレータに保持されている場合であっても、補強部材を設けることにより、露出部の強度を補強することができるとともに不要物が電極群の内部に侵入することを抑制することができる。   Moreover, in the said embodiment, although the non-aqueous electrolyte was hold | maintained at least by the separator, for example, the gel-like non-aqueous electrolyte may be hold | maintained at least by the separator. Even when the gel-like nonaqueous electrolyte is held at least by the separator, by providing a reinforcing member, the strength of the exposed portion can be reinforced and unwanted matter can enter the electrode group. Can be suppressed.

実施例では、リチウムイオン二次電池を製造し、短絡検査および直流抵抗の測定を行った。
(実施例1)
まず、正極を作製した。
In the example, a lithium ion secondary battery was manufactured, and a short circuit inspection and a DC resistance measurement were performed.
Example 1
First, a positive electrode was produced.

具体的には、NiSO4 水溶液に所定比率のCoおよびAlの硫酸塩を加え、飽和水溶液を調製した。この飽和水溶液を撹拌しながら、水酸化ナトリウム溶液をこの飽和溶液にゆっくりと滴下した。これにより飽和溶液が中和され、その結果、三元系の水酸化ニッケルNi0.7Co0.2Al0.1(OH)2 の沈殿物を生成することができた(共沈法)。生成された沈殿物をろ過した後に水洗し、80℃で乾燥させた。得られた水酸化ニッケルの平均粒径は、約10μmであった。 Specifically, a saturated aqueous solution was prepared by adding a predetermined ratio of Co and Al sulfate to a NiSO 4 aqueous solution. While stirring the saturated aqueous solution, sodium hydroxide solution was slowly added dropwise to the saturated solution. As a result, the saturated solution was neutralized, and as a result, a precipitate of ternary nickel hydroxide Ni 0.7 Co 0.2 Al 0.1 (OH) 2 could be generated (coprecipitation method). The produced precipitate was filtered, washed with water, and dried at 80 ° C. The average particle diameter of the obtained nickel hydroxide was about 10 μm.

得られたNi0.7Co0.2Al0.1(OH)2 に対して大気中900℃で10時間の熱処理を行い、酸化ニッケルNi0.7Co0.2Al0.1O を得た。このとき、粉末X線回折法を用いて得られた酸化ニッケルNi0.7Co0.2Al0.1O を回折し、酸化ニッケルNi0.7Co0.2Al0.1O が単一相の酸化ニッケルであることを確認した。そして、Niの原子数とCoの原子数とAlの原子数との和がLiの原子数と等量になるように、酸化ニッケルNi0.7Co0.2Al0.1O に水酸化リチウム1水和物を加え、乾燥空気中800℃で10時間の熱処理を行うことにより、リチウムニッケル複合酸化物LiNi0.7Co0.2Al0.12 を得た。 The obtained Ni 0.7 Co 0.2 Al 0.1 (OH) 2 was heat-treated at 900 ° C. for 10 hours in the atmosphere to obtain nickel oxide Ni 0.7 Co 0.2 Al 0.1 O 2. At this time, the nickel oxide Ni 0.7 Co 0.2 Al 0.1 O obtained using the powder X-ray diffraction method was diffracted to confirm that the nickel oxide Ni 0.7 Co 0.2 Al 0.1 O was a single phase nickel oxide. Then, lithium hydroxide monohydrate is added to nickel oxide Ni 0.7 Co 0.2 Al 0.1 O so that the sum of the number of Ni atoms, the number of Co atoms, and the number of Al atoms is equal to the number of Li atoms. In addition, a lithium nickel composite oxide LiNi 0.7 Co 0.2 Al 0.1 O 2 was obtained by performing a heat treatment at 800 ° C. for 10 hours in dry air.

粉末X線回折法を用いて得られたリチウムニッケル複合酸化物LiNi0.7Co0.2Al0.12 を回折すると、そのリチウムニッケル複合酸化物LiNi0.7Co0.2Al0.12 が単一相の六方晶層状構造であることを確認し、また、そのリチウムニッケル複合酸化物ではCoおよびAlが固溶していることを確認した。そして、リチウムニッケル複合酸化物を粉砕した後分級し、粉末状とした。この粉末の平均粒径は9.5μmであり、BET法に従ってこの粉末の比表面積を求めるとその比表面積は0.4m2/gであった。 When the lithium nickel composite oxide LiNi 0.7 Co 0.2 Al 0.1 O 2 obtained by the powder X-ray diffraction method is diffracted, the lithium nickel composite oxide LiNi 0.7 Co 0.2 Al 0.1 O 2 is a single-phase hexagonal layered layer. The structure was confirmed, and it was confirmed that Co and Al were dissolved in the lithium nickel composite oxide. Then, the lithium nickel composite oxide was pulverized and classified into powder. The average particle diameter of this powder was 9.5 μm. When the specific surface area of this powder was determined according to the BET method, the specific surface area was 0.4 m 2 / g.

得られたリチウムニッケル複合酸化物を3kgとアセチレンブラックを90gとPVDF溶液を1kgとを、適量のNメチル2ピロリドン(NMP,N-methylpyrrolidone)とともにプラネタリーミキサーにおいて混練し、スラリー状の正極合剤を作製した。この正極合剤を、厚みが20μmであり幅が150mmであるアルミ箔上に塗布した。このとき、アルミ箔の幅方向における一端には、幅が5mmである未塗工部を形成した。その後、正極合剤を乾燥させ、アルミ箔の上に正極合剤層を形成した。そして、正極合剤層の厚みとアルミ箔の厚みとの合計厚が100μmとなるようにプレスした後、極板の幅が105mmであり合剤塗布部の幅が100mmとなるように切断し、図2に示すタブレス集電構造の正極を作製した。   3 kg of the obtained lithium nickel composite oxide, 90 g of acetylene black, and 1 kg of PVDF solution were kneaded together with an appropriate amount of N-methyl-2-pyrrolidone (NMP) in a planetary mixer to form a slurry-like positive electrode mixture Was made. This positive electrode mixture was applied onto an aluminum foil having a thickness of 20 μm and a width of 150 mm. At this time, an uncoated part having a width of 5 mm was formed at one end in the width direction of the aluminum foil. Thereafter, the positive electrode mixture was dried to form a positive electrode mixture layer on the aluminum foil. And after pressing so that the total thickness of the thickness of the positive electrode mixture layer and the thickness of the aluminum foil is 100 μm, the electrode plate is cut so that the width of the electrode plate is 105 mm and the width of the mixture application portion is 100 mm, A positive electrode having a tabless current collecting structure shown in FIG. 2 was produced.

次に、負極を作製した。   Next, a negative electrode was produced.

具体的には、人造黒鉛を3kgと、スチレン−ブタジエン共重合体からなるゴム粒子(結着剤)の水溶液(固形分の重量は40重量%)を75gと、カルボキシメチルセルロース(CMC;carboxymethylcellulose)を30gとを、適量の水とともにプラネタリーミキサーにおいて混練し、スラリー状の負極合剤を作製した。この負極合剤を、厚みが10μmであり幅が150mmである銅箔上に塗布した。このとき、銅箔の幅方向における一端には、幅が5mmである未塗工部(露出部)を形成した。その後、負極合剤を乾燥させ、銅箔の上に負極合剤層を形成した。そして、負極合剤層の厚みと銅箔の厚みの合計厚が110μmとなるようにプレスした後、極板の幅が110mmであり合剤塗布部の幅が105mmになるように切断し、図2に示すタブレス集電構造の負極を作製した。   Specifically, 3 kg of artificial graphite, 75 g of an aqueous solution (weight of solid content: 40% by weight) of rubber particles (binder) made of styrene-butadiene copolymer, and carboxymethylcellulose (CMC). 30 g was kneaded with an appropriate amount of water in a planetary mixer to prepare a slurry-like negative electrode mixture. This negative electrode mixture was applied onto a copper foil having a thickness of 10 μm and a width of 150 mm. At this time, an uncoated part (exposed part) having a width of 5 mm was formed at one end in the width direction of the copper foil. Thereafter, the negative electrode mixture was dried to form a negative electrode mixture layer on the copper foil. Then, after pressing so that the total thickness of the negative electrode mixture layer and the copper foil becomes 110 μm, the electrode plate is cut so that the width of the electrode plate is 110 mm and the width of the mixture application portion is 105 mm. A negative electrode having a tabless current collecting structure shown in FIG.

作製した正極と負極との間にポリエチレン製のセパレータを挟み、セパレータの端面から正極の露出部と負極の露出部とを互いに逆向きに突出させた。その後、正極、負極およびセパレータを捲回して円筒形とした。   A polyethylene separator was sandwiched between the produced positive electrode and negative electrode, and the exposed portion of the positive electrode and the exposed portion of the negative electrode were protruded in opposite directions from the end face of the separator. Thereafter, the positive electrode, the negative electrode, and the separator were wound into a cylindrical shape.

続いて、露出部に補強部材を形成した。   Subsequently, a reinforcing member was formed on the exposed portion.

具体的には、非水電解液の溶媒であるECを50℃に加熱して溶融させ、液状のECを得た。液状のECに、正極の露出部の端面から10mmの部分を浸漬させた。その後、室温に自然放置し、液状のECを固化させた。同様に、液状のECに、負極の露出部の端面から10mmの部分を浸漬させた。その後、室温に自然放置し、液状のECを固化させた。これにより、正極の露出部および負極の露出部には補強部材が設けられ、電極群を形成することができた。   Specifically, EC, which is a solvent for the nonaqueous electrolytic solution, was heated to 50 ° C. and melted to obtain liquid EC. A 10 mm portion from the end face of the exposed portion of the positive electrode was immersed in liquid EC. Thereafter, the liquid EC was solidified by allowing to stand at room temperature. Similarly, a 10 mm portion from the end face of the exposed portion of the negative electrode was immersed in liquid EC. Thereafter, the liquid EC was solidified by allowing to stand at room temperature. Thereby, the reinforcing member was provided in the exposed part of the positive electrode and the exposed part of the negative electrode, and an electrode group could be formed.

その後、集電構造を形成した。   Thereafter, a current collecting structure was formed.

具体的には、まず、図3(a)および(b)に示す形状のアルミニウム製の集電板の円形部を正極の露出部の端面に押し当て、中央の穴部を除くようにして縦横十文字にレーザーを照射した。これにより、アルミニウム製の集電板を正極の露出部の端面に接合することができた。   Specifically, first, the circular portion of the aluminum current collector having the shape shown in FIGS. 3A and 3B is pressed against the end surface of the exposed portion of the positive electrode, and the vertical hole is removed so as to remove the central hole. The cross was irradiated with a laser. Thereby, the current collector plate made of aluminum could be joined to the end face of the exposed portion of the positive electrode.

また、図3(a)および(b)に示す形状のニッケル製の集電板の円形部を負極の露出部の端面に押し当て、中央の穴部を除くようにして縦横十文字にレーザーを照射した。これにより、ニッケル製の集電板を負極の露出部の端面に接合することができ、集電構造が形成された。   Also, press the circular part of the nickel current collector plate with the shape shown in Figs. 3 (a) and 3 (b) against the end face of the exposed part of the negative electrode, and irradiate the laser beam on the vertical and horizontal characters so as to remove the central hole. did. Thereby, the nickel current collector plate could be joined to the end face of the exposed portion of the negative electrode, and a current collector structure was formed.

形成された集電構造を、ニッケルめっきされた鉄製の円筒状のケースに挿入した。その後、ニッケル製の集電板のタブ部を折り曲げて、ケースの底部に抵抗溶接させた。また、アルミニウム製の集電板のタブ部を封口板にレーザー溶接させ、ケース内に非水電解液を注入した。このとき、非水電解液は、ECとエチルメチルカーボネイト(EMC;ethyl methyl carbonate)とを体積比が1:3である配合比で混合された混合溶媒に、溶質として六フッ化リン酸リチウム(LiPF6)を1mol/dm3の濃度で溶解させることにより、調製された。その後、封口板をケースにかしめて封止した。これにより、公称容量5Ahのリチウムイオン二次電池を作製した。この電池を電池Aとする。
参考例1
負極の製法を変更したこと以外は実施例1と同様にしてリチウムイオン二次電池を作製した。
The formed current collecting structure was inserted into a nickel-plated iron cylindrical case. Thereafter, the tab portion of the nickel current collector plate was bent and resistance welded to the bottom of the case. Further, the tab portion of the aluminum current collector plate was laser welded to the sealing plate, and a non-aqueous electrolyte was injected into the case. At this time, the non-aqueous electrolyte is composed of lithium hexafluorophosphate (solute) as a solute in a mixed solvent in which EC and ethyl methyl carbonate (EMC) are mixed at a mixing ratio of 1: 3 by volume. It was prepared by dissolving LiPF6) at a concentration of 1 mol / dm3. Thereafter, the sealing plate was crimped on the case and sealed. Thus, a lithium ion secondary battery having a nominal capacity of 5 Ah was produced. This battery is referred to as battery A.
( Reference Example 1 )
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the production method of the negative electrode was changed.

具体的には、銅箔の表面全体に負極合剤を塗布し、幅が105mmとなるように切断した。その後、銅箔の長手方向における一端において合剤層を剥離させ、幅が7mmである露出部を形成した。その露出部には、幅が5mmであるニッケル製のリードを抵抗溶接させた。これにより、図9に示す負極を作製した。そして、正極および負極を捲き回した後に負極側には補強部材を設けなかったこと以外は実施例1と同様にしてリチウムイオン二次電池を作製した。この電池を電池Bとする。
参考例2
正極の製法を変更したこと以外は実施例1と同様にしてリチウムイオン二次電池を作製した。
Specifically, the negative electrode mixture was applied to the entire surface of the copper foil and cut so as to have a width of 105 mm. Thereafter, the mixture layer was peeled off at one end in the longitudinal direction of the copper foil to form an exposed portion having a width of 7 mm. A nickel lead having a width of 5 mm was resistance-welded to the exposed portion. This produced the negative electrode shown in FIG. And the lithium ion secondary battery was produced like Example 1 except not having provided the reinforcement member in the negative electrode side after rolling a positive electrode and a negative electrode. This battery is referred to as a battery B.
( Reference Example 2 )
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the manufacturing method of the positive electrode was changed.

具体的には、アルミ箔の表面全体に正極合剤を塗布し、幅が100mmとなるように切断した。その後、アルミ箔の長手方向における一端において合剤層を剥離させ、幅が7mmである露出部を形成した。その露出部には、幅が5mmであるアルミニウム製のリードを抵抗溶接させた。これにより、図9に示す正極を作製した。そして、正極および負極を捲き回した後に正極側には補強部材を設けなかったこと以外は実施例1と同様にしてリチウムイオン二次電池を作製した。この電池を電池Cとする。
(実施例
補強部材の材質を変更したこと以外は実施例1と同様にしてリチウムイオン二次電池を作製した。
Specifically, the positive electrode material mixture was applied to the entire surface of the aluminum foil and cut so as to have a width of 100 mm. Thereafter, the mixture layer was peeled off at one end in the longitudinal direction of the aluminum foil to form an exposed portion having a width of 7 mm. An aluminum lead having a width of 5 mm was resistance-welded to the exposed portion. This produced the positive electrode shown in FIG. And the lithium ion secondary battery was produced like Example 1 except not having provided the reinforcement member in the positive electrode side after winding a positive electrode and a negative electrode. This battery is referred to as a battery C.
(Example 2 )
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the material of the reinforcing member was changed.

具体的には、NMPに溶かしたPVDF溶液を調製した。そのPVDF溶液に、正極の露出部の端面から10mmまでの部分を浸漬し、その後、80℃に加温してNMPを除去した。同様に、そのPVDF溶液に、負極の露出部の端面から10mmまでの部分を浸漬し、その後、80℃に加温してNMPを除去した。この電池を電池Dとする。
参考例3
補強部材の材質を変更したこと以外は参考例1と同様にしてリチウムイオン二次電池を作製した。
Specifically, a PVDF solution dissolved in NMP was prepared. In the PVDF solution, a portion from the end face of the exposed portion of the positive electrode to 10 mm was immersed, and then heated to 80 ° C. to remove NMP. Similarly, a portion from the end face of the exposed portion of the negative electrode to 10 mm was immersed in the PVDF solution, and then heated to 80 ° C. to remove NMP. This battery is referred to as a battery D.
( Reference Example 3 )
A lithium ion secondary battery was produced in the same manner as in Reference Example 1 except that the material of the reinforcing member was changed.

具体的には、PTFEを水に分散させて、溶液を調製した。その溶液に、正極の露出部の端面から10mmまでの部分を浸漬し、その後、80℃に加温して水を除去した。この電池を電池Eとする。
参考例4
補強部材の材質を変更したこと以外は参考例2と同様にしてリチウムイオン二次電池を作製した。
Specifically, PTFE was dispersed in water to prepare a solution. The portion from the end face of the exposed portion of the positive electrode to 10 mm was immersed in the solution, and then heated to 80 ° C. to remove water. This battery is referred to as a battery E.
( Reference Example 4 )
A lithium ion secondary battery was produced in the same manner as in Reference Example 2 except that the material of the reinforcing member was changed.

具体的には、スチレン−ブタジエン共重合体からなるゴム粒子(SBR,結着剤)の水溶液を調製した。その溶液に、負極の露出部の端面から10mmまでの部分を浸漬し、その後、80℃に加温して水を除去した。この電池を電池Fとする。
(実施例
補強部材の材質を変更したこと以外は実施例1と同様にしてリチウムイオン二次電池を作製した。
Specifically, an aqueous solution of rubber particles (SBR, binder) made of a styrene-butadiene copolymer was prepared. The part from the end surface of the exposed part of the negative electrode to 10 mm was immersed in the solution, and then heated to 80 ° C. to remove water. This battery is referred to as a battery F.
(Example 3 )
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the material of the reinforcing member was changed.

具体的には、平均粒径が0.3μmであるアルミナを1000gと、ポリアクリロニトリル変性ゴム(結着剤)(固形分が8重量%である)を375gとを、適量のNMP溶媒とともにプラネタリーミキサーにおいて混練し、スラリー状の多孔質材料を作製した。   Specifically, 1000 g of alumina having an average particle size of 0.3 μm and 375 g of polyacrylonitrile-modified rubber (binder) (solid content is 8% by weight) together with an appropriate amount of NMP solvent and planetary A slurry-like porous material was produced by kneading in a mixer.

そのスラリー状の多孔質材料に、正極の露出部の端面から10mmまでの部分を浸漬し、その後、80℃に加温してNMP溶媒を除去した。また、そのスラリー状の多孔質材料に、負極の露出部の端面から10mmまでの部分を浸漬し、その後、80℃に加温してNMP溶媒を除去した。この電池を電池Gとする。
参考例5
参考例1に記載のリードタイプの負極および実施例に記載の多孔膜スラリーを用い、正極および負極を捲き回した後に負極側には補強部材を設けなかったこと以外は実施例と同様にしてリチウムイオン二次電池を作製した。この電池を電池Hとする。
参考例6
参考例2に記載のリードタイプの正極板および実施例に記載の多孔膜スラリーを用い、正極および負極を捲き回した後に正極側には補強部材を設けなかったこと以外は実施例と同様にしてリチウムイオン二次電池を作製した。この電池を電池Iとする。
(実施例
正極および負極の製法以外は実施例1に記載の方法に従ってリチウムイオン二次電池を作製した。
A portion from the end face of the exposed portion of the positive electrode to 10 mm was immersed in the slurry-like porous material, and then heated to 80 ° C. to remove the NMP solvent. Moreover, the part from the end surface of the exposed part of a negative electrode to 10 mm was immersed in the slurry-like porous material, Then, it heated at 80 degreeC and the NMP solvent was removed. This battery is referred to as a battery G.
( Reference Example 5 )
Except that the lead type negative electrode described in Reference Example 1 and the porous membrane slurry described in Example 3 were used, and the reinforcing member was not provided on the negative electrode side after the positive electrode and the negative electrode were wound around, the same as in Example 3. Thus, a lithium ion secondary battery was produced. This battery is referred to as a battery H.
( Reference Example 6 )
Similar to Example 3 except that the lead-type positive electrode plate described in Reference Example 2 and the porous membrane slurry described in Example 3 were used, and the positive electrode and the negative electrode were wound and no reinforcing member was provided on the positive electrode side. Thus, a lithium ion secondary battery was produced. This battery is referred to as a battery I.
(Example 4 )
A lithium ion secondary battery was produced according to the method described in Example 1 except for the production method of the positive electrode and the negative electrode.

具体的には、50℃に加熱した液状のECを、正極の両面の露出部および負極の両面の露出部に塗布した。このとき、正極の露出部および負極の露出部のうち端部から1mmの範囲には、液状のECを塗布しなかった。その後、冷却させた。その後、正極では、補強部材の厚みを正極合剤層の厚みと略同一の40μmとし、負極では、補強部材の厚みを負極合剤層の厚みと略同一の50μmとした。そして、正極および負極を捲き回した後に補強部材を設けなかったこと以外は実施例1と同様にしてリチウムイオン二次電池を作製した。この電池を電池Jとした。
(実施例
正極および負極の製法以外は実施例に記載の方法に従ってリチウムイオン二次電池を作製した。
Specifically, liquid EC heated to 50 ° C. was applied to the exposed portions on both sides of the positive electrode and the exposed portions on both sides of the negative electrode. At this time, liquid EC was not applied to the range of 1 mm from the end of the exposed portion of the positive electrode and the exposed portion of the negative electrode. Then, it was cooled. Thereafter, in the positive electrode, the thickness of the reinforcing member was set to 40 μm, which was substantially the same as the thickness of the positive electrode mixture layer, and in the negative electrode, the thickness of the reinforcing member was set to 50 μm, which was substantially the same as the thickness of the negative electrode mixture layer. And the lithium ion secondary battery was produced like Example 1 except not having provided the reinforcement member after winding a positive electrode and a negative electrode. This battery was designated as battery J.
(Example 5 )
A lithium ion secondary battery was produced according to the method described in Example 2 except for the production method of the positive electrode and the negative electrode.

具体的には、NMPに溶かしたPVDF溶液を、正極の両面の露出部および負極の両面の露出部に塗布した。このとき、正極の露出部および負極の露出部のうち端部から1mmの範囲には、PVDF溶液を塗布しなかった。その後、乾燥させてNMPを除去した。その後、正極では、補強部材の厚みを正極合剤層の厚みと略同一の40μmとし、負極では、補強部材の厚みを負極合剤層の厚みと略同一の50μmとした。そして、正極および負極を捲き回した後に補強部材を設けなかったこと以外は実施例と同様にしてリチウムイオン二次電池を作製した。この電池を電池Kとした。
(実施例
正極および負極の製法以外は実施例に記載の方法に従ってリチウムイオン二次電池を作製した。
Specifically, a PVDF solution dissolved in NMP was applied to the exposed portions on both sides of the positive electrode and the exposed portions on both sides of the negative electrode. At this time, the PVDF solution was not applied to a range of 1 mm from the end of the exposed portion of the positive electrode and the exposed portion of the negative electrode. Then, it was made to dry and NMP was removed. Thereafter, in the positive electrode, the thickness of the reinforcing member was set to 40 μm, which was substantially the same as the thickness of the positive electrode mixture layer, and in the negative electrode, the thickness of the reinforcing member was set to 50 μm, which was substantially the same as the thickness of the negative electrode mixture layer. And the lithium ion secondary battery was produced like Example 2 except not having provided the reinforcement member after rolling a positive electrode and a negative electrode. This battery was designated as battery K.
(Example 6 )
A lithium ion secondary battery was produced according to the method described in Example 3 except for the production method of the positive electrode and the negative electrode.

具体的には、NMPを溶媒とするスラリー状の多孔質材料を、正極の両面の露出部および負極の両面の露出部に塗布した。このとき、正極の露出部および負極の露出部のうち端部から1mmの範囲には、スラリー状の多孔質材料を塗布しなかった。その後、乾燥させてNMPを除去させた。その後、正極では、補強部材の厚みを正極合剤層の厚みと略同一の40μmとし、負極では、補強部材の厚みを負極合剤層の厚みと略同一の50μmとした。そして、正極および負極を捲き回した後に補強部材を設けなかったこと以外は実施例と同様にしてリチウムイオン二次電池を作製した。この電池を電池Lとした。
(比較例1)
参考例1に記載の負極および参考例2に記載の正極を使用し、正極および負極を捲き回した後に捕強部材を設けなかったこと以外は実施例1と同様にしてリチウムイオン二次電池を作製した。この電池を電池Mとする。
(比較例2)
補強部材を設けることなく、また、図4(a)および(b)に示す集電板を正極の集電板として使用しこの集電板を正極の露出部の端面に押し付けて接合させた。これ以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。この電池を電池Nとする。
Specifically, a slurry-like porous material using NMP as a solvent was applied to the exposed portions on both sides of the positive electrode and the exposed portions on both sides of the negative electrode. At this time, the slurry-like porous material was not applied to a range of 1 mm from the end of the exposed portion of the positive electrode and the exposed portion of the negative electrode. Then, it was made to dry and NMP was removed. Thereafter, in the positive electrode, the thickness of the reinforcing member was set to 40 μm, which was substantially the same as the thickness of the positive electrode mixture layer, and in the negative electrode, the thickness of the reinforcing member was set to 50 μm, which was substantially the same as the thickness of the negative electrode mixture layer. And the lithium ion secondary battery was produced like Example 2 except not having provided the reinforcement member after rolling a positive electrode and a negative electrode. This battery was designated as a battery L.
(Comparative Example 1)
A lithium ion secondary battery was prepared in the same manner as in Example 1 except that the negative electrode described in Reference Example 1 and the positive electrode described in Reference Example 2 were used, and the reinforcing member was not provided after the positive electrode and the negative electrode were rolled. Produced. This battery is referred to as a battery M.
(Comparative Example 2)
Without providing the reinforcing member, the current collecting plate shown in FIGS. 4A and 4B was used as a current collecting plate for the positive electrode, and this current collecting plate was pressed against the end face of the exposed portion of the positive electrode to be joined. Except for this, a lithium ion secondary battery was fabricated in the same manner as in Example 1. This battery is referred to as a battery N.

以上の各電池を20個ずつ作製した。得られた各電池に対して、以下の評価を行った。   Twenty pieces of each of the above batteries were produced. The following evaluation was performed on each obtained battery.

(短絡検査)
電極群に集電板を溶接した後、正極端子と負極端子との間に250Vの電圧を印加し、その時の漏れ電流の有無を確認した。これにより、電極群の短絡の有無を確認した。比較例1の電極群については、極板を捲回した後、本検査を実施した。
(Short-circuit inspection)
After the current collector plate was welded to the electrode group, a voltage of 250 V was applied between the positive electrode terminal and the negative electrode terminal, and the presence or absence of leakage current at that time was confirmed. Thereby, the presence or absence of the short circuit of an electrode group was confirmed. About the electrode group of the comparative example 1, this test | inspection was implemented after winding an electrode plate.

(直流内部抵抗の測定試験)
上述した短絡検査で異常が見られなかった電極群を電池に組み立てた。その後、25℃の環境下において1Aの電流値で3〜4.2Vの電圧範囲で3サイクル充放電を実施し、電池容量を確認した。その後、25℃の環境下でそれぞれの電池を60%の充電状態まで定電流充電を行い、5〜50Aの範囲で種々の定電流で10秒間充電および放電パルスを電池に印加し、各パルス印加後の10秒目の電圧を測定し、電流値に対してプロットした。また、放電パルス側の各電圧プロットを最小二乗法による直線近似を実施し、その傾きの値を直流内部抵抗(DCIR;Direct Current Internal Resistance)とした。このDCIRが小さいほど一定時間に大きな出力を得ることができる。
(DC internal resistance measurement test)
An electrode group in which no abnormality was found in the short-circuit inspection described above was assembled into a battery. Then, 3 cycles charge / discharge was implemented in the voltage range of 3-4.2V by the electric current value of 1A in 25 degreeC environment, and the battery capacity was confirmed. Thereafter, each battery is charged at a constant current up to 60% in a 25 ° C. environment, charged and discharged for 10 seconds at various constant currents in a range of 5 to 50 A, and each pulse is applied. The voltage at the later 10 seconds was measured and plotted against the current value. Further, each voltage plot on the discharge pulse side was linearly approximated by the least square method, and the value of the slope was defined as direct current internal resistance (DCIR). As the DCIR is smaller, a larger output can be obtained in a certain time.

各例の電池の構成とその評価結果とを表1に示す。表1において「DCIR」には、各実施例での平均値を示す。なお、電池容量については何れの電池においても、公称容量が5Ah前後であることを確認した。また、集電板は、いずれも、電極群に対して十分な溶接強度を有していることを確認した。   Table 1 shows the configuration of the battery in each example and the evaluation results. In Table 1, “DCIR” indicates an average value in each example. Regarding the battery capacity, it was confirmed that the nominal capacity was around 5 Ah in any battery. Further, it was confirmed that each of the current collector plates had sufficient welding strength for the electrode group.

Figure 0005113434
Figure 0005113434

表1の結果を考察する。   Consider the results in Table 1.

まず、電極群の短絡数について考察する。   First, the number of short circuits in the electrode group will be considered.

タブレス集電構造であり且つ補強部材が設けられていない電池Nでは、検査数20個中のうち5個のリチウムイオン二次電池において電極群が短絡していた。短絡が発生していた電極群を解体して観察したところ、セパレータには穴が開いていることが確認された。この穴は、集電板を電極群の端面にレーザ溶接させた際にスパッタがセパレータの内部に進入した結果形成されたものである,と推測された。また、集電体のうち集電板に溶接された部分の周囲を観察すると、露出部の折れ曲がりまたは露出部の座屈が確認された。この露出部の折れ曲がり、または、露出部の座屈は、集電板を電極群に押圧させることにより形成された,と推測される。これらの要因により短絡が多数発生した,と考えられる。   In the battery N having a tabless current collecting structure and not provided with the reinforcing member, the electrode group was short-circuited in five lithium ion secondary batteries out of 20 inspections. When the electrode group in which the short circuit occurred was disassembled and observed, it was confirmed that the separator had a hole. This hole was presumed to be formed as a result of spatter entering the inside of the separator when the current collector plate was laser welded to the end face of the electrode group. Moreover, when the circumference | surroundings of the part welded to the current collector plate among current collectors were observed, the bending of the exposed part or the buckling of the exposed part was confirmed. It is estimated that the bending of the exposed portion or the buckling of the exposed portion was formed by pressing the current collector plate against the electrode group. It is thought that many short circuits occurred due to these factors.

一方、電池A〜Iおよび電池Mでは、短絡数は電池Nに比べて減少した。電池A〜Iおよび電池Mの中で短絡した電池の電極群を解体して観察したところ、露出部の座屈およびセパレータの穴開きを確認できなかった。これらの結果より、補強部材を設けることにより露出部の強度を補強することができたとともにスパッタなどが電極群の内部に飛散することを抑制できた,と考えられる。なお、短絡が確認された理由としては、電極群の内部のセパレータの表面に黒点が確認されているので、電極群の内部に異物が混入したなどの物理的な理由ではないか,と推測している。   On the other hand, in the batteries A to I and the battery M, the number of short circuits was reduced compared to the battery N. When the battery electrode group short-circuited among the batteries A to I and the battery M was disassembled and observed, the buckling of the exposed portion and the opening of the separator could not be confirmed. From these results, it is considered that by providing the reinforcing member, it was possible to reinforce the strength of the exposed portion and to suppress spatter and the like from being scattered inside the electrode group. The reason for the confirmation of the short circuit is that there is a black spot on the surface of the separator inside the electrode group, so it is assumed that this is a physical reason such as foreign matter entering the electrode group. ing.

また、電池J〜Lにおいても、短絡数は電池Nに比べて減少した。電池J〜Lの中で短絡した電池の電極群を解体して確認したところ、電池Nに比べて露出部の折れ曲がり具合は小さかった。この理由としては、露出部の周囲に補強部材を形成したので、補強部材を設けていない場合に比べて露出部の強度を補強することができたためである,と考えられる。また、セパレータには、集電板をレーザ溶接させた際に発生したスパッタに起因する部分的な穴開きが確認された。セパレータのうち正極と負極とで挟まれた部分に穴が開くと短絡が発生したと推測されたが、セパレータのうち補強部材に接する部分に穴が開くと短絡の発生を防止できたと推測された。   Also, in the batteries J to L, the number of short circuits was reduced as compared with the battery N. When the battery electrode group short-circuited among the batteries J to L was disassembled and confirmed, the degree of bending of the exposed portion was smaller than that of the battery N. The reason for this is considered that the reinforcing member was formed around the exposed portion, so that the strength of the exposed portion could be reinforced compared to the case where the reinforcing member was not provided. Moreover, the partial hole resulting from the sputter | spatter which generate | occur | produced when the current collector plate was laser-welded was confirmed by the separator. It was speculated that a short circuit occurred when a hole was opened in the part between the positive electrode and the negative electrode of the separator, but it was speculated that a short circuit could be prevented if a hole was opened in the part of the separator that was in contact with the reinforcing member. .

以上の結果から、補強部材を設けることにより露出部の強度を補強できるので、露出部の座屈を低減できた、と推測している。また、セパレータのうち正極と負極とで挟まれた部分に穴が開いた場合には短絡の発生を防止することは難しかったが、セパレータのうち補強部材に接する部分に穴が開いた場合には短絡の発生を抑制することができたので、補強部材を設けることにより短絡の発生を抑制できた、と推測している。   From the above results, it is estimated that the buckling of the exposed portion can be reduced because the strength of the exposed portion can be reinforced by providing the reinforcing member. In addition, it was difficult to prevent the occurrence of a short circuit when a hole was opened in the part sandwiched between the positive electrode and the negative electrode in the separator. Since generation | occurrence | production of a short circuit could be suppressed, it is estimated that generation | occurrence | production of a short circuit could be suppressed by providing a reinforcement member.

次に、DCIRの結果について考察する。   Next, the results of DCIR will be considered.

集電リードを介して集電する電池Mでは、DCIRは、10.9mΩであり、他の電池のDCIRよりも大きかった。それに対し、タブレス集電構造である電池A、D、G、J〜LおよびNでは、DCIRは、6.2〜6.6mΩであり、電池MのDCIRに比べて約40%低下させることができた。この理由としては、タブレス集電構造にすることにより集電抵抗を低下させることができたためである。また、正極および負極のいずれか一方の極がタブレス集電構造である電池B、C、E、F、HおよびIにおいても、DCIRは、電池MのDCIRに比べて約20%低下させることができた。   In the battery M that collects current through the current collecting lead, the DCIR was 10.9 mΩ, which was larger than the DCIR of other batteries. On the other hand, in the batteries A, D, G, J to L and N having the tabless current collecting structure, the DCIR is 6.2 to 6.6 mΩ, which is about 40% lower than the DCIR of the battery M. did it. This is because the current collection resistance can be reduced by adopting the tabless current collection structure. Also, in the batteries B, C, E, F, H, and I in which one of the positive electrode and the negative electrode has a tabless current collecting structure, the DCIR can be reduced by about 20% compared to the DCIR of the battery M. did it.

以上の結果から、電池A〜Lでは、電池Nと比較して溶接時での内部短絡の発生を抑制でき、かつ、電池Mと比較してDCIRを低下させることができた。このことから、電池A〜Lでは、電池を製造する際に発生する内部短絡を抑制することができ、且つ、抵抗が低く高出力を得ることができた。   From the above results, the batteries A to L were able to suppress the occurrence of an internal short circuit during welding compared to the battery N, and the DCIR could be reduced compared to the battery M. Therefore, in the batteries A to L, an internal short circuit generated when the battery was manufactured could be suppressed, and the resistance was low and a high output could be obtained.

本発明は、例えば、ハイレート特性が要求されるリチウムイオン二次電池の分野において極めて有用である。本発明のリチウムイオン二次電池は、ノートパソコン、携帯電話、デジタルスチールカメラ、電動工具または電動自動車等の駆動電源として有用である。   The present invention is extremely useful, for example, in the field of lithium ion secondary batteries that require high rate characteristics. The lithium ion secondary battery of the present invention is useful as a drive power source for notebook computers, mobile phones, digital still cameras, electric tools, electric vehicles, and the like.

本発明の実施形態1における電極群の構成を示す図であり、(a)はその斜視図であり、(b)は(a)に示すIB領域における縦断面図である。It is a figure which shows the structure of the electrode group in Embodiment 1 of this invention, (a) is the perspective view, (b) is a longitudinal cross-sectional view in IB area | region shown to (a). 本発明の正極および負極の平面図である。It is a top view of the positive electrode and negative electrode of this invention. 集電板の構成を示す図であり、(a)はその平面図であり、(b)はその断面図である。It is a figure which shows the structure of a current collecting plate, (a) is the top view, (b) is the sectional drawing. 集電板の別の構成を示す図であり、(a)はその平面図であり、(b)はその断面図である。It is a figure which shows another structure of a current collecting plate, (a) is the top view, (b) is the sectional drawing. 本発明の実施形態1における集電構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the current collection structure in Embodiment 1 of this invention. 本発明の実施形態2における集電構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the current collection structure in Embodiment 2 of this invention. 本発明の実施形態3における集電構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the current collection structure in Embodiment 3 of this invention. 参考形態における集電構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the current collection structure in a reference form . 従来の正極および負極の平面図である。It is a top view of the conventional positive electrode and negative electrode. (a)および(b)はそれぞれ従来のリチウムイオン二次電池に補強部材を設けたときの構成を示す縦断面図である。(A) And (b) is a longitudinal cross-sectional view which shows a structure when the reinforcement member is provided in the conventional lithium ion secondary battery, respectively.

符号の説明Explanation of symbols

5 集電体
6 合剤層
6a 端面
7 露出部
8 正極
8a 端面
9 集電体
10 合剤層
10a 端面
11 露出部
12 負極
12a 端面
13 セパレータ
14,24,34,44 電極群
15 補強部材
19,29 集電板
5 Current collector 6 Mixture layer 6a End face 7 Exposed portion 8 Positive electrode 8a End face 9 Current collector 10 Mixture layer 10a End face 11 Exposed portion 12 Negative electrode 12a End face 13 Separator 14, 24, 34, 44 Electrode group 15 Reinforcing member 19, 29 Current collector

Claims (6)

正極と負極とがセパレータを介して捲回もしくは積層された電極群と、前記セパレータに保持された非水電解質と、前記電極群に接合された集電板とを備え、
前記正極および前記負極の一方の電極の幅方向の一端には、集電体が合剤層から露出している露出部が存在しており、
前記電極群では、前記露出部は前記セパレータの端面および他方の電極の端面よりも前記電極の幅方向に突出しており、前記露出部の端面には、前記集電板が接合されており、
隣り合う前記露出部の間には、前記露出部の強度を補強するための補強部材が設けられ、
前記補強部材は、前記一方の電極の前記合剤層の端面、前記セパレータの前記端面および前記他方の電極の前記端面を、各々、接触して覆っている、非水電解質二次電池。
An electrode group in which a positive electrode and a negative electrode are wound or laminated with a separator interposed therebetween, a non-aqueous electrolyte held in the separator, and a current collector plate joined to the electrode group,
At one end in the width direction of one of the positive electrode and the negative electrode, there is an exposed portion where the current collector is exposed from the mixture layer,
In the electrode group, the exposed part protrudes in the width direction of the electrode from the end face of the separator and the end face of the other electrode, and the current collector plate is joined to the end face of the exposed part,
Between the exposed portion adjacent reinforcing member for reinforcing the strength of the exposed portion is provided et al is,
The non-aqueous electrolyte secondary battery , wherein the reinforcing member covers the end surface of the mixture layer of the one electrode, the end surface of the separator, and the end surface of the other electrode in contact with each other .
請求項に記載の非水電解質二次電池において、
前記補強部材のうち前記他方の電極の前記端面を接触して覆っている部分の厚みは、前記補強部材のうち前記一方の電極の前記合剤層の前記端面を接触して覆っている部分の厚みよりも薄い、非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 1 ,
The thickness of the portion of the reinforcing member that covers and covers the end surface of the other electrode is the thickness of the portion of the reinforcing member that covers and contacts the end surface of the mixture layer of the one electrode. A non-aqueous electrolyte secondary battery that is thinner than the thickness.
請求項1又は2に記載の非水電解質二次電池において、
前記補強部材は、多孔質である、非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 1 or 2 ,
The reinforcing member is a porous nonaqueous electrolyte secondary battery.
請求項に記載の非水電解質二次電池において、
前記補強部材は、結着剤である、非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 3 ,
The non-aqueous electrolyte secondary battery, wherein the reinforcing member is a binder.
請求項1又は2に記載の非水電解質二次電池において、
前記非水電解質は、非水溶媒と、溶質とを含んでおり、
前記補強部材は、前記非水溶媒が固化されたものを含んでいる、非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 1 or 2 ,
The non-aqueous electrolyte contains a non-aqueous solvent and a solute,
The reinforcing member includes a non-aqueous electrolyte secondary battery including the solidified non-aqueous solvent.
請求項に記載の非水電解質二次電池において、
前記補強部材は、エチレンカーボネートからなる、非水電解質二次電池
The nonaqueous electrolyte secondary battery according to claim 5 ,
The reinforcing member is made of ethylene carbonate, a nonaqueous electrolyte secondary battery
JP2007157080A 2006-06-16 2007-06-14 Nonaqueous electrolyte secondary battery Expired - Fee Related JP5113434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007157080A JP5113434B2 (en) 2006-06-16 2007-06-14 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006167203 2006-06-16
JP2006167203 2006-06-16
JP2007157080A JP5113434B2 (en) 2006-06-16 2007-06-14 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2008021644A JP2008021644A (en) 2008-01-31
JP5113434B2 true JP5113434B2 (en) 2013-01-09

Family

ID=39077442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007157080A Expired - Fee Related JP5113434B2 (en) 2006-06-16 2007-06-14 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5113434B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4990714B2 (en) * 2007-08-01 2012-08-01 日立ビークルエナジー株式会社 Lithium ion secondary battery
JP5561507B2 (en) * 2008-04-02 2014-07-30 トヨタ自動車株式会社 Winding type battery and manufacturing method thereof
JP2010010117A (en) * 2008-05-30 2010-01-14 Hitachi Vehicle Energy Ltd Lithium secondary battery and its manufacturing method
JP5198940B2 (en) * 2008-06-02 2013-05-15 日立ビークルエナジー株式会社 Lithium secondary battery
KR20110111482A (en) * 2009-02-12 2011-10-11 다이킨 고교 가부시키가이샤 Positive electrode mixture slurry for lithium secondary batteries, and positive electrode and lithium secondary battery that use said slurry
CN102227845A (en) * 2009-08-07 2011-10-26 松下电器产业株式会社 Non-aqueous electrolyte secondary battery
JP5512303B2 (en) * 2010-01-28 2014-06-04 日立ビークルエナジー株式会社 Cylindrical secondary battery
JP5346831B2 (en) * 2010-02-03 2013-11-20 日立ビークルエナジー株式会社 Secondary battery and manufacturing method thereof
JP2011228400A (en) * 2010-04-16 2011-11-10 Tdk Corp Electrochemical device and manufacturing method for the same
KR101252914B1 (en) * 2010-08-25 2013-04-09 삼성에스디아이 주식회사 Electrode assembly, secondary battery including the same and manufacturing method of the same
JP5447349B2 (en) * 2010-11-17 2014-03-19 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP6037171B2 (en) 2013-06-24 2016-11-30 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP6307594B2 (en) * 2014-04-09 2018-04-04 株式会社日立ハイテクノロジーズ Lithium ion secondary battery and method and apparatus for manufacturing the same
JP6451506B2 (en) * 2015-05-28 2019-01-16 トヨタ自動車株式会社 Electrode manufacturing method
WO2019193869A1 (en) * 2018-04-06 2019-10-10 パナソニックIpマネジメント株式会社 Electrode plate, electrode body, and battery
JP6787379B2 (en) * 2018-10-15 2020-11-18 トヨタ自動車株式会社 electrode
WO2021024734A1 (en) * 2019-08-08 2021-02-11 株式会社村田製作所 Secondary battery, battery pack, electronic device, electric tool and electric vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102030A (en) * 1999-09-30 2001-04-13 Sanyo Electric Co Ltd Electric energy accumulation device
JP4297711B2 (en) * 2002-12-27 2009-07-15 パナソニック株式会社 Electrochemical element
JP2005190912A (en) * 2003-12-26 2005-07-14 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
JP2006032112A (en) * 2004-07-15 2006-02-02 Matsushita Electric Ind Co Ltd Electrochemical element

Also Published As

Publication number Publication date
JP2008021644A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP5113434B2 (en) Nonaqueous electrolyte secondary battery
WO2007145275A1 (en) Nonaqueous electrolyte secondary battery
JP5783425B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2009038016A (en) Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2008103310A (en) Manufacturing method of electrode for secondary battery and secondary battery
WO2008035499A1 (en) Method of producing electrode for secondary battery, and secondary battery
KR20100089092A (en) Secondary battery
JP5849234B2 (en) Nonaqueous electrolyte secondary battery
US9048490B2 (en) Lithium ion secondary battery
JP2013254561A (en) Cylindrical nonaqueous electrolyte secondary battery
WO2013038677A1 (en) Nonaqueous electrolyte secondary cell
JP2009129553A (en) Battery
KR20100114515A (en) Battery
JP2009099558A (en) Secondary battery
JP2008210617A (en) Electrode structure, its manufacturing method, battery, and its manufacturing method
WO2015121731A1 (en) Nonaqueous electrolyte secondary battery
JP2007005158A (en) Lithium ion secondary battery
JP2010250970A (en) Cylindrical battery
KR101833609B1 (en) Method of manufacturing electric power storage device, and electric power storage device
JP4639883B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5639400B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2013073788A (en) Nonaqueous electrolyte secondary battery
JP6872725B2 (en) Non-aqueous electrolyte secondary battery
WO2017188235A1 (en) Power storage element and method for producing same
JP2014165050A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100527

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees