JP5110840B2 - Coreless substrate and semiconductor device mounting structure using the same - Google Patents

Coreless substrate and semiconductor device mounting structure using the same Download PDF

Info

Publication number
JP5110840B2
JP5110840B2 JP2006264015A JP2006264015A JP5110840B2 JP 5110840 B2 JP5110840 B2 JP 5110840B2 JP 2006264015 A JP2006264015 A JP 2006264015A JP 2006264015 A JP2006264015 A JP 2006264015A JP 5110840 B2 JP5110840 B2 JP 5110840B2
Authority
JP
Japan
Prior art keywords
insulator
fiber
coreless substrate
fiber layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006264015A
Other languages
Japanese (ja)
Other versions
JP2008085107A (en
Inventor
桂 林
裕 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006264015A priority Critical patent/JP5110840B2/en
Publication of JP2008085107A publication Critical patent/JP2008085107A/en
Application granted granted Critical
Publication of JP5110840B2 publication Critical patent/JP5110840B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、ガラス布に樹脂を含浸乾燥させたプリプレグや、金属板等の剛性機能の優れた所謂コア基板を有さないコアレス基板およびそれを用いた半導体素子の実装構造体に関する。   The present invention relates to a prepreg obtained by impregnating and drying a resin in a glass cloth, a coreless substrate having a so-called core substrate excellent in rigidity function such as a metal plate, and a semiconductor element mounting structure using the same.

従来より、IC(Integrated Circuit)、LSI(Large Scale Integration)などの半導体素子などを上面に実装する配線基板として、樹脂製の配線基板が知られている。   Conventionally, resin wiring boards are known as wiring boards for mounting semiconductor elements such as IC (Integrated Circuit) and LSI (Large Scale Integration) on the upper surface.

かかる配線基板として、補強材としてのコア基板上に絶縁層及び導体を積層したものが提案されており、近年では電子機器の小型化の要求にともない薄型の配線基板が求められている。   As such a wiring board, one in which an insulating layer and a conductor are laminated on a core board as a reinforcing material has been proposed. In recent years, a thin wiring board has been demanded in response to a demand for downsizing of electronic devices.

なお、薄型の配線基板として、コア基板を有さないコアレス基板が提案されている(下記特許文献1参照)。
特開2004−281999号公報
As a thin wiring board, a coreless board without a core board has been proposed (see Patent Document 1 below).
JP 2004-281999 A

ところが、上述した従来のコアレス基板の場合、コア基板を有する配線基板よりも剛性が弱いため、コアレス基板に対して力が印加されると、裂け易く破壊されてしまうという問題があった。   However, in the case of the above-described conventional coreless substrate, since the rigidity is weaker than that of the wiring substrate having the core substrate, there is a problem that when a force is applied to the coreless substrate, the coreless substrate is easily broken and destroyed.

本発明は、上述した課題に鑑みなされたものであって、コアレス基板の破壊を効果的に抑制することができ、信頼性の優れたコアレス基板およびそれを用いた半導体素子の実装構造体を提供することを目的とする。   The present invention has been made in view of the above-described problems, and can provide a coreless substrate having excellent reliability and a mounting structure for a semiconductor element using the coreless substrate that can effectively suppress the destruction of the coreless substrate. The purpose is to do.

上記課題を解決するため、本発明のコアレス基板は、平面視して第1方向に沿って配列される複数の第1繊維束からなる第1繊維層を有する第1絶縁体と、前記第1絶縁体上に配置され、平面視して前記第1方向と直交する第2方向に沿って配列される複数の第2繊
維束からなる第2繊維層を有する第2絶縁体と、前記第2絶縁体上に配置され、前記第1方向に沿って配列される複数の第3繊維束と、前記第2方向に沿って配列される複数の第4繊維束とを編み込んでなる第3繊維層を有する第3絶縁体と、前記第1絶縁体と前記第2絶縁体の間に介在されてなる導体と、を備えたことを特徴とする。
In order to solve the above problems, a coreless substrate of the present invention includes a first insulator having a first fiber layer composed of a plurality of first fiber bundles arranged in a first direction in plan view, and the first insulator A second insulator having a second fiber layer disposed on the insulator and having a plurality of second fiber bundles arranged in a second direction orthogonal to the first direction in plan view; A third fiber layer formed by weaving a plurality of third fiber bundles arranged on the insulator and arranged along the first direction and a plurality of fourth fiber bundles arranged along the second direction a third insulator having a, characterized by comprising a conductor made is interposed between the second insulator and the first insulator.

本発明によれば、剛性の優れた繊維層を絶縁体の内部に設け絶縁体の剛性を向上させることによって、コアレス基板の破壊を効果的に防止することができる。   According to the present invention, the coreless substrate can be effectively prevented from being destroyed by providing the fiber layer having excellent rigidity inside the insulator and improving the rigidity of the insulator.

以下に、本発明にかかるコアレス基板およびそれを用いた半導体素子の実装構造体の実施の形態を図面に基づいて詳細に説明する。   Embodiments of a coreless substrate and a semiconductor element mounting structure using the same according to the present invention will be described below in detail with reference to the drawings.

本発明の半導体素子の実装構造体の第1の実施形態について、図1(a)に断面図を、図1(b)に後述する繊維層の平面図を示す。   FIG. 1A is a cross-sectional view of a first embodiment of a semiconductor element mounting structure of the present invention, and FIG. 1B is a plan view of a fiber layer described later.

≪第1の実施形態≫
本実施形態に係る半導体素子の実装構造体は、図1に示すように、コアレス基板1と、コアレス基板1上に搭載されるIC、LSI等の半導体素子2とを含んで構成されている。ここでは、半導体素子2は、半田等の接合材3を介してコアレス基板1に実装されている。以下、コアレス基板1を中心に説明する。
<< First Embodiment >>
As shown in FIG. 1, the semiconductor element mounting structure according to the present embodiment includes a coreless substrate 1 and a semiconductor element 2 such as an IC or LSI mounted on the coreless substrate 1. Here, the semiconductor element 2 is mounted on the coreless substrate 1 via a bonding material 3 such as solder. Hereinafter, the coreless substrate 1 will be mainly described.

<コアレス基板>
コアレス基板1は、例えば各種オーディオビジュアル機器や家電機器、通信機器、コンピュータ装置およびその周辺機器などの電子機器に使用されるものであり、厚み方向に導体4と第1絶縁体5a、第2絶縁体5bとを積層して備えている。なお、導体4は、第1絶縁体5aと第2絶縁体5bの間に介在されている。また、第1絶縁体5a、第2絶縁体5bは、両者を区別しない場合は、絶縁体5と総称する。
<Coreless substrate>
The coreless substrate 1 is used for electronic devices such as various audiovisual devices, home appliances, communication devices, computer devices and peripheral devices, and has a conductor 4 and first insulators 5a and second insulators in the thickness direction. The body 5b is laminated and provided. The conductor 4 is interposed between the first insulator 5a and the second insulator 5b. Moreover, the 1st insulator 5a and the 2nd insulator 5b are named generically the insulator 5, when not distinguishing both.

導体4は、導電性を有し、電気信号を伝達するための伝達路としての機能を備えている。導体4は、例えば銅、銀、金、アルミニウム、ニッケル、クロム等の導電材料からなる。導体4は、平面視において平面上に形成され、配線パターンを形成するために、平面上に部分的に形成され、その導体4の厚みは、3〜10μmである。   The conductor 4 has conductivity and has a function as a transmission path for transmitting an electrical signal. The conductor 4 is made of a conductive material such as copper, silver, gold, aluminum, nickel, or chromium. The conductor 4 is formed on a plane in plan view, and is partially formed on the plane in order to form a wiring pattern. The thickness of the conductor 4 is 3 to 10 μm.

絶縁体5は、平面視において平面上に形成される繊維層6と、繊維層6を厚み方向の両側より被覆してなる樹脂層7とを含んで備えている。なお、図1に示すように、厚み方向の下部に位置する繊維層6を繊維層6a、上部に位置する繊維層6を繊維層6bとする。繊維層6は、繊維層6a、6bの両者を区別しない場合の総称とである。   The insulator 5 includes a fiber layer 6 formed on a plane in plan view and a resin layer 7 that covers the fiber layer 6 from both sides in the thickness direction. In addition, as shown in FIG. 1, the fiber layer 6 located in the lower part in the thickness direction is referred to as a fiber layer 6a, and the fiber layer 6 located in the upper part is referred to as a fiber layer 6b. The fiber layer 6 is a generic name when the fiber layers 6a and 6b are not distinguished from each other.

繊維層6a、6bは、平面視において第1方向Xに沿って配置される第1繊維束6pと、平面視において前記第1方向Xと異なる第2方向Yに沿って配置される第2繊維束6qと、を編み込んで平面状に構成されている。   The fiber layers 6a and 6b include a first fiber bundle 6p arranged along the first direction X in plan view and a second fiber arranged along a second direction Y different from the first direction X in plan view. The bundle 6q is knitted into a planar shape.

第1繊維束6p及び第2繊維束6qは、剛性を有し、例えば、ポリベンゾオキサゾール、全芳香族ポリアミド、全芳香族ポリエステルのいずれかを主成分として構成されている。ここで、本願明細書における主成分とは、層を構成する複数の物質のうち最も多いモル数を有する物質とする。なお、図1に示す繊維層6は、単体の第1繊維束6p、第2繊維束6qを編み込んだ状態であるが、複数の第1繊維束6pと、複数の第2繊維束6qを編み込んで構成したものであっても構わない。   The first fiber bundle 6p and the second fiber bundle 6q have rigidity, and are composed, for example, of polybenzoxazole, wholly aromatic polyamide, or wholly aromatic polyester as a main component. Here, the main component in this specification is a substance having the largest number of moles among a plurality of substances constituting the layer. The fiber layer 6 shown in FIG. 1 is in a state in which a single first fiber bundle 6p and a second fiber bundle 6q are knitted, but a plurality of first fiber bundles 6p and a plurality of second fiber bundles 6q are knitted. It may be configured by.

また、第1繊維束6p及び第2繊維束6qは円柱状であって、その直径は5〜12μmである。そのため、繊維層6の主面又は他主面は、凹凸に形成されている。   Moreover, the 1st fiber bundle 6p and the 2nd fiber bundle 6q are cylindrical shape, The diameter is 5-12 micrometers. Therefore, the main surface or the other main surface of the fiber layer 6 is formed to be uneven.

樹脂層7は、固化する前は接着性を有し、例えば、ポリイミド、アラミド、ポリイミドベンゾオキサゾールのいずれかを主成分として構成されている。樹脂層7は、繊維層6に対して積層した状態で、加熱プレス装置を用いて加熱加圧することによって、繊維層6の主面又は他主面に被着する。また、樹脂層7は、乾燥後の厚みが10〜30μmとなるように形成される。   The resin layer 7 has adhesiveness before being solidified, and is composed of, for example, any one of polyimide, aramid, and polyimide benzoxazole as a main component. The resin layer 7 is attached to the main surface or the other main surface of the fiber layer 6 by being heated and pressed using a heating press device in a state where the resin layer 7 is laminated on the fiber layer 6. Moreover, the resin layer 7 is formed so that the thickness after drying may be 10-30 micrometers.

また、樹脂層7は、繊維層6と同様に有機材料から構成されているため、繊維層6と樹脂層7とは、有機材料同士が強固に密着し、両者の界面における隙間を効果的に抑制している。その結果、繊維層6と樹脂層7との剥離を有効に防止することができる。   Moreover, since the resin layer 7 is comprised from the organic material similarly to the fiber layer 6, the fiber layer 6 and the resin layer 7 adhere | attach the organic materials firmly, and the gap in both interface is effective. Suppressed. As a result, peeling between the fiber layer 6 and the resin layer 7 can be effectively prevented.

さらに、樹脂層7は、繊維層6の凹凸面に密着して形成され、凹凸が繊維層6の主面又は他主面よりも少ない所謂平坦な面に被着するよりも、被着する表面積が大きい。その結果、樹脂層7は、所謂平坦な面に被着するよりも、凹凸面に被着する方がより密着性が高く、繊維層6と樹脂層7との界面の剥離を有効に抑制することができる。   Furthermore, the resin layer 7 is formed in close contact with the concavo-convex surface of the fiber layer 6, and is attached to the surface area of the fiber layer 6 rather than the main surface or the other main surface of the fiber layer 6. Is big. As a result, the resin layer 7 has higher adhesion than the so-called flat surface, and effectively suppresses the peeling of the interface between the fiber layer 6 and the resin layer 7. be able to.

また、絶縁体5には、厚み方向に開口8が形成されており、開口8に導電性を有する開口導体9が埋設されている。コアレス基板1には、所望の配線パターンの層数などに応じて、導体4及び絶縁体5が交互に積層されている。そして、導体4及び絶縁体5が複数積層されている場合、層の異なる導体4同士は、開口導体9によって電気的に接続されている。   The insulator 5 has an opening 8 in the thickness direction, and an opening conductor 9 having conductivity is embedded in the opening 8. On the coreless substrate 1, conductors 4 and insulators 5 are alternately laminated according to the number of layers of a desired wiring pattern. When a plurality of conductors 4 and insulators 5 are stacked, the conductors 4 having different layers are electrically connected by the opening conductor 9.

上記実施の形態によれば、繊維層6の優れた剛性を有する繊維束が、絶縁体5全体の剛性を向上させることによって、コアレス基板1の破壊を効果的に抑制することができる。   According to the embodiment described above, the fiber bundle 6 having excellent rigidity of the fiber layer 6 can effectively suppress the destruction of the coreless substrate 1 by improving the rigidity of the entire insulator 5.

<製造方法>
本実施形態に係るコアレス基板1は、例えば、以下の工程を経て製作される。
<Manufacturing method>
The coreless substrate 1 according to this embodiment is manufactured through the following processes, for example.

まず、絶縁体5を作製する。繊維束は、単繊維を束ねて糸状に形成されている。そして、繊維束を織機で平織りし、平織りしたものをプレス装置等を用いて厚み方向に加熱プレスすることで、繊維層6を形成する。   First, the insulator 5 is produced. The fiber bundle is formed into a thread by bundling single fibers. And the fiber layer 6 is formed by plain-weaving a fiber bundle with a loom, and heat-pressing what was plain-woven in the thickness direction using a press apparatus etc.

次に、樹脂材料(例えばエポキシ樹脂の前駆体)を準備し、これに予めシランカップリング処理を行った球状シリカ粉末と溶剤を混合することでワニスを作製する。そして、作製したワニスを繊維層6に含浸させ、繊維層6を厚み方向の両側より樹脂7で被覆した絶縁体5を作製しておく。   Next, a resin material (for example, a precursor of an epoxy resin) is prepared, and a varnish is prepared by mixing a spherical silica powder subjected to a silane coupling treatment in advance with a solvent. And the produced varnish is impregnated into the fiber layer 6, and the insulator 5 which coat | covered the fiber layer 6 with the resin 7 from the both sides of the thickness direction is produced.

そして、低熱膨張の基板10を準備する。基板10は、例えば、Fe―Ni―Co系コバール、Fe―Ni系インバー、パーマロイ、モリブデン、タングステン、CFRP(炭素繊維強化プラスチック)等から構成されている。また、基板10の厚みは、例えば、0.1〜1.5mmである。   Then, a low thermal expansion substrate 10 is prepared. The substrate 10 is made of, for example, Fe—Ni—Co based Kovar, Fe—Ni based Invar, permalloy, molybdenum, tungsten, CFRP (carbon fiber reinforced plastic), or the like. Moreover, the thickness of the board | substrate 10 is 0.1-1.5 mm, for example.

図2−1(a)に示すように、基板10上に、例えばスピンコート法、印刷法等によって、カバーフィルム11を形成する。カバーフィルム11は、例えば、銅、銀、金等から構成されており、厚みは、例えば0.1μm〜1μmである。   As shown in FIG. 2A, the cover film 11 is formed on the substrate 10 by, for example, a spin coating method, a printing method, or the like. The cover film 11 is made of, for example, copper, silver, gold, etc., and the thickness is, for example, 0.1 μm to 1 μm.

次に、カバーフィルム11を乾燥させて固化した後、カバーフィルム11上に、例えばスピンコート法、ダイコート法、カーテンコート法、印刷法、ラミネート等によって、銅めっき4aを形成する。   Next, after the cover film 11 is dried and solidified, the copper plating 4a is formed on the cover film 11 by, for example, spin coating, die coating, curtain coating, printing, lamination, or the like.

銅めっき4aを乾燥後、図2−1(b)に示すように、銅めっき4a上にレジスト12を塗布し、レジスト12をフォトリソプロセス等によりパターニングする。なお、レジスト12は、銅めっきを残す領域のみに形成し、レジスト12で被覆していない領域をエッチングする。そして、残留しているレジスト12を剥離し、カバーフィルム11上に導体4を形成することができる。さらに、レジスト12を剥離した後、導体4上を洗浄する。なお、導体4は、カバーフィルム11上にめっきレジストをパターニングし、電鋳法によって、銅を析出して形成するものであってもよい。   After the copper plating 4a is dried, as shown in FIG. 2-1 (b), a resist 12 is applied on the copper plating 4a, and the resist 12 is patterned by a photolithography process or the like. The resist 12 is formed only in the region where the copper plating is left, and the region not covered with the resist 12 is etched. Then, the remaining resist 12 is peeled off, and the conductor 4 can be formed on the cover film 11. Further, after removing the resist 12, the conductor 4 is cleaned. The conductor 4 may be formed by patterning a plating resist on the cover film 11 and depositing copper by electroforming.

図2−1(c)に示すように、カバーフィルム11上に形成された導体2上に、用意しておいた絶縁体5を積層する。そして、絶縁体5を、例えばラミネート法等によって、温度を印加しつつ、高圧力でカバーフィルム11に対して固着する。このとき、絶縁体5の樹脂層7は、熱膨張率が繊維層6及び基板10よりも大きいため、加熱により膨張する。その後、絶縁体5を冷却すると、樹脂層7は、上述したように熱膨張率が大きいため、収縮しようとする力も大きいが、繊維層6と基板10は熱膨張率が小さいため収縮しにくい。この結果、樹脂層7は、収縮しにくい繊維層6と基板10に挟まれたまま冷却されるため、樹脂層7中に、収縮しようとする引張り応力が働いている状態で固化し、絶縁体5内には残留応力が備わる。   As shown in FIG. 2C, the prepared insulator 5 is laminated on the conductor 2 formed on the cover film 11. Then, the insulator 5 is fixed to the cover film 11 with a high pressure while applying a temperature by, for example, a laminating method. At this time, since the thermal expansion coefficient of the resin layer 7 of the insulator 5 is larger than that of the fiber layer 6 and the substrate 10, it expands by heating. After that, when the insulator 5 is cooled, the resin layer 7 has a large coefficient of thermal expansion as described above, and therefore has a large force to contract. However, the fiber layer 6 and the substrate 10 are difficult to contract because the coefficient of thermal expansion is small. As a result, since the resin layer 7 is cooled while being sandwiched between the fiber layer 6 and the substrate 10 which are difficult to shrink, the resin layer 7 is solidified in a state where tensile stress to be contracted is acting in the resin layer 7, and the insulator 5 is provided with residual stress.

次に、図2−2(d)に示すように、絶縁体5には、レーザーやドリル等によって、開口8が形成する。ここで、繊維層6及び樹脂層7は、融点が500度程度である。一方、ガラス繊維の場合、融点が1000度以上である。そのため、繊維層6をガラス繊維で構成した場合は、ガラス繊維は融点が樹脂層7よりも非常に大きいために、高温で開口8を形成しようとすると、樹脂が必要以上に溶融し、開口8を所望の大きさに形成することが難しく、低温で開口8を形成しようとすると、ガラス繊維を十分に焼切ることができない。そのため、繊維層6は、熱硬化性樹脂と融点が近く、加工が容易なポリベンゾオキサゾール等から構成することが望ましい。   Next, as shown in FIG. 2D, an opening 8 is formed in the insulator 5 by a laser, a drill, or the like. Here, the fiber layer 6 and the resin layer 7 have a melting point of about 500 degrees. On the other hand, in the case of glass fiber, the melting point is 1000 degrees or more. Therefore, when the fiber layer 6 is made of glass fiber, the melting point of the glass fiber is much larger than that of the resin layer 7. Therefore, when the opening 8 is formed at a high temperature, the resin melts more than necessary, and the opening 8 Is difficult to form in a desired size, and if the opening 8 is formed at a low temperature, the glass fiber cannot be burned out sufficiently. Therefore, it is desirable that the fiber layer 6 is made of polybenzoxazole or the like having a melting point close to that of the thermosetting resin and easy to process.

そして、図2−2(e)に示すように、形成された開口8に対して、無電解めっきや電気めっき等により、開口導体9を設け、絶縁体5上に銅箔4bを形成する。   Then, as shown in FIG. 2E, an opening conductor 9 is provided on the formed opening 8 by electroless plating, electroplating, or the like, and a copper foil 4b is formed on the insulator 5.

さらに、銅箔4bをフォトリソグラフィー及びエッチングにより所定のパターンに加工し、絶縁体5上に新たな導体4’を形成する。そして、図2−2(f)に示すように、基板10とカバーフィルム11との間を分離する。   Further, the copper foil 4 b is processed into a predetermined pattern by photolithography and etching, and a new conductor 4 ′ is formed on the insulator 5. Then, as shown in FIG. 2-2 (f), the substrate 10 and the cover film 11 are separated.

この後、カバーフィルム11をエッチング等によって除去し、コアレス基板1を得ることができる。また、得られたコアレス基板1上にビルドアップ法で更に絶縁体5及び導体4を積層し、多層のコアレス基板を作製することができる。さらに、コアレス基板1上にICやLSI等の半導体素子2を実装し、半導体素子の実装構造体が完成する。このとき、コアレス基板1に半導体素子2を実装する際に、半田等によってコアレス基板1に半導体素子2を固着するため、コアレス基板1に半田等の熱が印加される。通常、基板に熱が印加されると熱膨張率に応じて基板が膨張するが、コアレス基板1の絶縁体5は、熱が印加されると、絶縁体5の縮まろうとする残留応力が緩和されてなくなるまで、絶縁体5の膨張が起きにくく、配線基板1全体の膨張量を低減することができる。   Thereafter, the cover film 11 is removed by etching or the like, and the coreless substrate 1 can be obtained. Moreover, the insulator 5 and the conductor 4 can be further laminated on the obtained coreless substrate 1 by a build-up method, so that a multilayer coreless substrate can be manufactured. Further, a semiconductor element 2 such as an IC or LSI is mounted on the coreless substrate 1 to complete a semiconductor element mounting structure. At this time, when the semiconductor element 2 is mounted on the coreless substrate 1, heat such as solder is applied to the coreless substrate 1 in order to fix the semiconductor element 2 to the coreless substrate 1 with solder or the like. Normally, when heat is applied to the substrate, the substrate expands according to the coefficient of thermal expansion. However, when heat is applied to the insulator 5 of the coreless substrate 1, the residual stress that the insulator 5 tries to shrink is relaxed. Until it disappears, the insulator 5 hardly expands, and the expansion amount of the entire wiring board 1 can be reduced.

≪第2の実施形態≫
以下では、図3を参照して、上記実施形態に係る半導体素子の実装構造体の第2の実施形態ついて説明する。なお、上述の図1に示す構成については、同一の参照符号を付して説明を省略し、異なる箇所について説明する。
<< Second Embodiment >>
Hereinafter, a second embodiment of the semiconductor element mounting structure according to the above embodiment will be described with reference to FIG. In addition, about the structure shown in the above-mentioned FIG. 1, the same referential mark is attached | subjected and description is abbreviate | omitted and a different location is demonstrated.

第2の実施形態に係る繊維層6を構成する繊維束6rは、平面視において平面方向に沿って配列されている。ここで、繊維束6rは、上述した第1繊維束6p、第2繊維束6qと同様の材料からなり、繊維束6rを平面視において平面方向に沿った状態で配列し、その後、上述したように繊維束6rを厚み方向の両側より樹脂層を7で被覆することによって、形成することができる。   The fiber bundle 6r which comprises the fiber layer 6 which concerns on 2nd Embodiment is arranged along the plane direction in planar view. Here, the fiber bundle 6r is made of the same material as the first fiber bundle 6p and the second fiber bundle 6q described above, and the fiber bundle 6r is arranged in a state along the planar direction in plan view, and then as described above. The fiber bundle 6r can be formed by covering the resin layer with 7 from both sides in the thickness direction.

また、厚み方向に積層された一対の絶縁体5の下方に位置する絶縁体の繊維束6rと、上方に位置する絶縁体の繊維束6r’は、平面視において直交するように配列されていてもよい。その場合、樹脂層7は、繊維束6r、6r’の沿った向きに膨張しにくいため、平面視において上下左右の膨張を低減し、コアレス基板全体の膨張を効果的に抑制することができる。   The insulating fiber bundle 6r positioned below the pair of insulators 5 stacked in the thickness direction and the insulating fiber bundle 6r 'positioned above are arranged so as to be orthogonal to each other in plan view. Also good. In that case, since the resin layer 7 is unlikely to expand in the direction along the fiber bundles 6r and 6r ', it is possible to reduce the vertical and horizontal expansion in a plan view and to effectively suppress the expansion of the entire coreless substrate.

繊維束6rからなる繊維層6cは、第1繊維束6p、第2繊維束6qを編みこんで形成したものに比べて、厚みを薄くすることができる。繊維束を編み込んだ繊維層6a、6bは、厚み方向に少なくとも2本分の繊維束を形成しなければならないのに対して、繊維束を編み込まずに単に平面方向に沿って配列した繊維層6cは、1本分の繊維束の厚みまで薄くすることができるため、絶縁体5cの厚みをより薄くすることができる。その結果、電子機器の小型化に十分対応したコアレス基板1を実現することができる。   The fiber layer 6c made of the fiber bundle 6r can be made thinner than the one formed by weaving the first fiber bundle 6p and the second fiber bundle 6q. The fiber layers 6a and 6b in which the fiber bundles are knitted must form at least two fiber bundles in the thickness direction, whereas the fiber layers 6c are simply arranged along the plane direction without knitting the fiber bundles. Since the thickness of one fiber bundle can be reduced, the thickness of the insulator 5c can be further reduced. As a result, it is possible to realize the coreless substrate 1 that is sufficiently compatible with downsizing of electronic devices.

また、繊維層6a、6bは、繊維束を湾曲して形成するため、弾性変形可能に形成される。その結果、繊維層6a、6bは、繊維層6cよりも熱膨張による収縮が大きいため、残留応力が小さくなる。このため、繊維層6cの方が、繊維層6a、6bよりも、絶縁体5cの残留応力を大きくすることができる。   Moreover, since the fiber layers 6a and 6b are formed by bending the fiber bundle, they are formed so as to be elastically deformable. As a result, since the fiber layers 6a and 6b are more contracted by thermal expansion than the fiber layer 6c, the residual stress is reduced. For this reason, the fiber layer 6c can make the residual stress of the insulator 5c larger than the fiber layers 6a and 6b.

≪第3の実施形態≫
以下では、図4を参照して、上記実施形態に係る半導体素子の実装構造体の第3の実施形態ついて説明する。なお、上述の図1及び図2に示す構成については、同一の参照符号を付して説明を省略し、異なる箇所について説明する。
<< Third Embodiment >>
Hereinafter, a third embodiment of the semiconductor element mounting structure according to the above-described embodiment will be described with reference to FIG. In addition, about the structure shown in above-mentioned FIG.1 and FIG.2, the same referential mark is attached | subjected and description is abbreviate | omitted and a different location is demonstrated.

第3の実施形態に係る繊維層6dは、平面視において平面方向に沿って配列された繊維層が複数積層された構造である。繊維束は円柱状であって、配列された繊維束のどれもが略同一の大きさであるため、繊維束を配列した場合、配列した繊維層はその主面及び他主面に凹凸が形成される。そして、第1繊維層6lの主面の凹凸と、第1繊維層6l上に形成された第2繊維層6mの他主面の凹凸とを嵌合するように配置する。さらに、第2繊維層6mの主面の凹凸と、第2繊維層6m上に形成された第3繊維層6nの他主面とを嵌合するように配置することが望ましい。   The fiber layer 6d according to the third embodiment has a structure in which a plurality of fiber layers arranged in the planar direction in a plan view are stacked. Since the fiber bundles are cylindrical and all of the arranged fiber bundles have substantially the same size, when the fiber bundles are arranged, the arranged fiber layer has irregularities on its main surface and other main surfaces. Is done. And the unevenness | corrugation of the main surface of the 1st fiber layer 61 is arrange | positioned so that the unevenness | corrugation of the other main surface of the 2nd fiber layer 6m formed on the 1st fiber layer 61 may be fitted. Furthermore, it is desirable to dispose the main surface of the second fiber layer 6m so as to fit the other main surface of the third fiber layer 6n formed on the second fiber layer 6m.

繊維層6dは、その厚み方向における厚みが、3本分の繊維束の厚みではなく、上述したように嵌合した部分の厚みだけ薄くすることができる。そのため、絶縁体5の剛性を向上させるとともに、コアレス基板1が厚くなるのを効果的に抑制することができる。なお、繊維層6dの層数は、上述した3層に限らず、コアレス基板1の剛性と厚みの関係より適宜選択することができる。   The thickness in the thickness direction of the fiber layer 6d can be reduced not by the thickness of the three fiber bundles but by the thickness of the fitted portion as described above. Therefore, it is possible to improve the rigidity of the insulator 5 and effectively suppress the coreless substrate 1 from becoming thick. Note that the number of fiber layers 6d is not limited to the three layers described above, and can be appropriately selected based on the relationship between the rigidity and thickness of the coreless substrate 1.

≪第4の実施形態≫
以下では、図5を参照して、上記実施形態に係る半導体素子の実装構造体の第4の実施形態について説明する。なお、上述の図1、図2、図3に示す構成については、同一の参照符号を付して説明を省略し、異なる箇所について説明する。
<< Fourth Embodiment >>
Below, with reference to FIG. 5, 4th Embodiment of the mounting structure of the semiconductor element which concerns on the said embodiment is described. In addition, about the structure shown in the above-mentioned FIG.1, FIG.2, FIG.3, the same referential mark is attached | subjected and description is abbreviate | omitted and a different location is demonstrated.

図5に示すように、絶縁体5の層を三層としたコアレス基板は、厚み方向の下部に位置し、繊維束を編み込んだ繊維層6xを有する絶縁体5xと、厚み方向の中部に位置し、繊維束を平面視において第1方向Xに沿って配列した繊維層6yを有する絶縁体5yと、厚み方向の上部に位置し、繊維束を平面視において第2方向Yに沿って配列した繊維層6zを有する絶縁体5zとを含んで構成されている。なお、繊維層6xの有する繊維束は、第1方向Xに沿って配置される第1繊維束6pと、第2方向Yに沿って配置される第2繊維束6qを含んでいる。   As shown in FIG. 5, the coreless substrate having three layers of the insulator 5 is located at the lower part in the thickness direction, the insulator 5x having the fiber layer 6x in which the fiber bundle is knitted, and the middle part in the thickness direction. And the insulator 5y having the fiber layer 6y arranged in the first direction X in the plan view and the upper part in the thickness direction, and the fiber bundle arranged in the second direction Y in the plan view. And an insulator 5z having a fiber layer 6z. In addition, the fiber bundle which the fiber layer 6x has includes the 1st fiber bundle 6p arrange | positioned along the 1st direction X, and the 2nd fiber bundle 6q arrange | positioned along the 2nd direction Y.

絶縁体5を積層してなるコアレス基板は、絶縁体5の層が四層以下であって、絶縁体5に繊維束を編み込んだ繊維層が一層もない場合、コアレス基板の厚みが薄く且つ剛性が小さいため、コアレス基板全体を平面状に維持することが困難で、コアレス基板全体が撓むことがある。そのため、絶縁体の層が四層以下の場合は、少なくともどれか一層は繊維束を編み込んだ繊維層6xを有する絶縁体5xを備えることが望ましい。   The coreless substrate formed by laminating the insulator 5 has a thickness of the coreless substrate that is thin and rigid when the number of layers of the insulator 5 is four or less and there is no fiber layer in which a fiber bundle is knitted into the insulator 5. Therefore, it is difficult to keep the entire coreless substrate flat, and the entire coreless substrate may bend. Therefore, when the number of the insulator layers is four or less, it is desirable to provide the insulator 5x having the fiber layer 6x in which at least one of the layers is woven.

さらに、絶縁体5の層を三層とした場合は、図5に示すように厚み方向の下部に位置する絶縁体5xは、繊維束を編み込んだ繊維層6xを有し、絶縁体5xの上部に位置する絶縁体5y、5zは、繊維層6y、6zの有する繊維束を、平面視において直交するように配列されていることが望ましい。コア基板の主面又は他主面に位置するどちらかの絶縁体5は、第1繊維束6p、第2繊維束6qを編み込んだ繊維層6xを有することで、繊維束に沿った方向に剛性が優れているため、平面視において上下左右の収縮を抑制することができる。   Further, when the number of layers of the insulator 5 is three, as shown in FIG. 5, the insulator 5x located at the lower part in the thickness direction has a fiber layer 6x in which a fiber bundle is knitted, and the upper part of the insulator 5x. It is desirable that the insulators 5y and 5z positioned in the are arranged so that the fiber bundles of the fiber layers 6y and 6z are orthogonal to each other in plan view. One of the insulators 5 located on the main surface or the other main surface of the core substrate has a fiber layer 6x in which the first fiber bundle 6p and the second fiber bundle 6q are knitted, so that it is rigid in the direction along the fiber bundle. Since it is excellent, it is possible to suppress vertical and horizontal contractions in a plan view.

また、厚み方向の中部及び上部に位置する絶縁体5y及び5zは、繊維束6y、6zが平面方向に沿って配列されており、上述したように繊維束に沿った向きには熱膨張しにくいが、通常は、平面視において繊維束と直交する向きは、繊維束同士の結合力は小さいため、熱が印加された場合、熱膨張を起こしやすい。ところが、絶縁体5yと絶縁体5zの間には、一部導体4が形成されているが、導体4が形成されている箇所以外は、直接絶縁体5yと絶縁体5zが接触して固着しているため、絶縁体5y及び絶縁体5zが相互に収縮しようとする力をお互いの繊維束の剛性によって、低減することができる。   Further, in the insulators 5y and 5z located in the middle and upper part in the thickness direction, the fiber bundles 6y and 6z are arranged along the plane direction, and as described above, it is difficult to thermally expand in the direction along the fiber bundle. However, since the bonding force between the fiber bundles is usually small in the direction orthogonal to the fiber bundle in plan view, thermal expansion is likely to occur when heat is applied. However, a part of the conductor 4 is formed between the insulator 5y and the insulator 5z, but the insulator 5y and the insulator 5z are in direct contact with each other except where the conductor 4 is formed. Therefore, the force with which the insulator 5y and the insulator 5z try to contract each other can be reduced by the rigidity of the fiber bundles.

なお、図5においては、半導体素子2の実装側とは反対側に繊維束を編み込んだ繊維層6xを形成したが、絶縁体5の積層構造を上下反転させて、半導体素子2の実装側に繊維層6xを形成したものであっても構わない。   In FIG. 5, the fiber layer 6x in which the fiber bundle is knitted is formed on the side opposite to the mounting side of the semiconductor element 2, but the laminated structure of the insulator 5 is turned upside down so as to be mounted on the mounting side of the semiconductor element 2. The fiber layer 6x may be formed.

上述したように第4の実施形態によれば、絶縁体を薄くするとともに、ある程度の剛性を有するコアレス基板を形成することができる。   As described above, according to the fourth embodiment, it is possible to form a coreless substrate having a certain degree of rigidity while reducing the thickness of the insulator.

なお、本発明は、上述の実施形態に限定されるものではなく、本発明の範囲内において、種々の変更・改良が可能であることはいうまでもない。   In addition, this invention is not limited to the above-mentioned embodiment, It cannot be overemphasized that a various change and improvement are possible within the scope of the present invention.

本発明の半導体そしの実装構造体に係る第1の実施形態を示し、(a)は断面図、(b)は繊維層の平面図である。BRIEF DESCRIPTION OF THE DRAWINGS The 1st Embodiment which concerns on the mounting structure body of the semiconductor of this invention is shown, (a) is sectional drawing, (b) is a top view of a fiber layer. 本発明の半導体素子の実装構造体に係る製造方法の一例を示す。An example of the manufacturing method which concerns on the mounting structure of the semiconductor element of this invention is shown. 本発明の半導体素子の実装構造体に係る製造方法の一例を示す。An example of the manufacturing method which concerns on the mounting structure of the semiconductor element of this invention is shown. 本発明の半導体素子の実装構造体に係る第2の実施形態を示し、(a)は断面図、(b)は繊維層の平面図である。The 2nd Embodiment which concerns on the mounting structure of the semiconductor element of this invention is shown, (a) is sectional drawing, (b) is a top view of a fiber layer. 本発明の半導体素子の実装構造体に係る第3の実施形態の断面図を示す。Sectional drawing of 3rd Embodiment which concerns on the mounting structure of the semiconductor element of this invention is shown. 本発明の半導体素子の実装構造体に係る第4の実施形態の断面図を示す。Sectional drawing of 4th Embodiment which concerns on the mounting structure of the semiconductor element of this invention is shown.

符号の説明Explanation of symbols

1 コアレス基板
2 半導体素子
3 接合材
4 導体
5 絶縁体
6 繊維層
7 樹脂層
8 開口
9 開口導体
10 基板
11 カバーフィルム
12 レジスト
1 Coreless Substrate 2 Semiconductor Element 3 Bonding Material 4 Conductor 5 Insulator 6 Fiber Layer 7 Resin Layer 8 Opening 9 Opening Conductor 10 Substrate 11 Cover Film 12 Resist

Claims (4)

平面視して第1方向に沿って配列される複数の第1繊維束からなる第1繊維層を有する第1絶縁体と、
前記第1絶縁体上に配置され、平面視して前記第1方向と直交する第2方向に沿って配列される複数の第2繊維束からなる第2繊維層を有する第2絶縁体と、
前記第2絶縁体上に配置され、前記第1方向に沿って配列される複数の第3繊維束と、前記第2方向に沿って配列される複数の第4繊維束とを編み込んでなる第3繊維層を有する第3絶縁体と、
前記第1絶縁体と前記第2絶縁体の間に介在されてなる導体と、を備えたことを特徴とするコアレス基板。
A first insulator having a first fiber layer composed of a plurality of first fiber bundles arranged in a first direction in plan view;
A second insulator having a second fiber layer that is disposed on the first insulator and is formed of a plurality of second fiber bundles arranged in a second direction orthogonal to the first direction in plan view;
A plurality of third fiber bundles arranged on the second insulator and arranged along the first direction; and a plurality of fourth fiber bundles arranged along the second direction. A third insulator having three fiber layers;
A coreless substrate, comprising: a conductor formed between the first insulator and the second insulator.
請求項1に記載のコアレス基板において、
前記第1繊維層及び前記第2繊維層は、ポリベンゾオキサゾール、全芳香族ポリアミド、全芳香族ポリエステルのいずれかを主成分とすることを特徴とするコアレス基板。
The coreless substrate according to claim 1,
The coreless substrate, wherein the first fiber layer and the second fiber layer are mainly composed of polybenzoxazole, wholly aromatic polyamide, or wholly aromatic polyester.
請求項1に記載のコアレス基板において、
前記第1絶縁体又は前記第2絶縁体は、前記第1繊維層又は前記第2繊維層を厚み方向の両側より被覆してなる樹脂層を備え、
前記樹脂層は、ポリイミド、アラミド、ポリイミドベンゾオキサゾールのいずれかを主成分とすることを特徴とするコアレス基板。
The coreless substrate according to claim 1,
The first insulator or the second insulator includes a resin layer formed by covering the first fiber layer or the second fiber layer from both sides in the thickness direction,
The core layer substrate is characterized in that the resin layer is mainly composed of polyimide, aramid, or polyimide benzoxazole.
請求項1に記載のコアレス基板と、前記コアレス基板に対して実装される半導体素子を備えたことを特徴とする半導体素子の実装構造体。   A semiconductor element mounting structure comprising: the coreless substrate according to claim 1; and a semiconductor element mounted on the coreless substrate.
JP2006264015A 2006-09-28 2006-09-28 Coreless substrate and semiconductor device mounting structure using the same Expired - Fee Related JP5110840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006264015A JP5110840B2 (en) 2006-09-28 2006-09-28 Coreless substrate and semiconductor device mounting structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006264015A JP5110840B2 (en) 2006-09-28 2006-09-28 Coreless substrate and semiconductor device mounting structure using the same

Publications (2)

Publication Number Publication Date
JP2008085107A JP2008085107A (en) 2008-04-10
JP5110840B2 true JP5110840B2 (en) 2012-12-26

Family

ID=39355642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006264015A Expired - Fee Related JP5110840B2 (en) 2006-09-28 2006-09-28 Coreless substrate and semiconductor device mounting structure using the same

Country Status (1)

Country Link
JP (1) JP5110840B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5750896B2 (en) * 2011-01-13 2015-07-22 富士通株式会社 Circuit board, method for manufacturing the same, and electronic device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943334A (en) * 1986-09-15 1990-07-24 Compositech Ltd. Method for making reinforced plastic laminates for use in the production of circuit boards
JPH066629B2 (en) * 1988-11-25 1994-01-26 ニチアス株式会社 Fiber-reinforced resin composite material
JPH0748591B2 (en) * 1989-01-18 1995-05-24 三菱電機株式会社 Multilayer printed wiring board
JP3728059B2 (en) * 1997-05-27 2005-12-21 京セラ株式会社 Multilayer wiring board
JPH10190174A (en) * 1996-12-24 1998-07-21 Matsushita Electric Works Ltd Printed wiring board
JP2001028475A (en) * 1999-07-15 2001-01-30 Mitsubishi Gas Chem Co Inc Manufacture of polybenzazole fabric base-material printed wiring board
JP2002060516A (en) * 2000-08-18 2002-02-26 Toyobo Co Ltd Prepreg, composite material and lamiante
JP2002225029A (en) * 2001-01-30 2002-08-14 Toray Ind Inc Thermoplastic resin-impregnated fiber sheet and circuit board
JP3896846B2 (en) * 2001-12-25 2007-03-22 松下電器産業株式会社 Printed wiring board

Also Published As

Publication number Publication date
JP2008085107A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
CN1921079B (en) Method of manufacturing a wiring board
KR101208379B1 (en) Wiring board and method for manufacturing the same
JP4728708B2 (en) Wiring board and manufacturing method thereof
KR101156751B1 (en) Flex-rigid printed circuit board, and method for manufacturing the flex-rigid printed circuit board
TWI526128B (en) Multilayered substrate and method of manufacturing the same
US20100065318A1 (en) Circuit board and semiconductor element mounted structure using the same
JP2016066711A (en) Flex redid wiring board
JP4147298B2 (en) Flex-rigid printed wiring board and method for manufacturing flex-rigid printed wiring board
JP2015082644A (en) Flex rigid wiring board and method of manufacturing the same
US9480173B2 (en) Flex-rigid wiring board and method for manufacturing flex-rigid wiring board
CN101466208A (en) Wiring substrate and method of manufacturing the same
CN108074907A (en) Semiconductor substrate comprising built-in module and the method for manufacturing the Semiconductor substrate
JP5170253B2 (en) Wiring board and method of manufacturing wiring board
US20140318834A1 (en) Wiring board and method for manufacturing the same
KR101905879B1 (en) The printed circuit board and the method for manufacturing the same
JP5110840B2 (en) Coreless substrate and semiconductor device mounting structure using the same
CN103052263B (en) Method of manufacturing printed circuit board and printed circuit board
JP2011187830A (en) Substrate with built-in electronic component, and method of manufacturing the same
JP2010040934A (en) Rigid flex circuit board
JP5834882B2 (en) Multilayer circuit board and manufacturing method thereof
JP2005268259A (en) Multilayer wiring board
JP5036295B2 (en) Semiconductor device mounting structure
JP2006012921A (en) Multi-layer printed circuit board
US20170256470A1 (en) Wiring substrate and method for manufacturing the same
JP4606181B2 (en) Multilayer wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees