JP5110337B2 - Electrode structure for solid oxide fuel cell and method for producing the same - Google Patents

Electrode structure for solid oxide fuel cell and method for producing the same Download PDF

Info

Publication number
JP5110337B2
JP5110337B2 JP2001183237A JP2001183237A JP5110337B2 JP 5110337 B2 JP5110337 B2 JP 5110337B2 JP 2001183237 A JP2001183237 A JP 2001183237A JP 2001183237 A JP2001183237 A JP 2001183237A JP 5110337 B2 JP5110337 B2 JP 5110337B2
Authority
JP
Japan
Prior art keywords
film
porous electrode
solid electrolyte
pair
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001183237A
Other languages
Japanese (ja)
Other versions
JP2002373675A (en
Inventor
勝則 山田
尚史 高尾
凡子 魚島
信雄 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2001183237A priority Critical patent/JP5110337B2/en
Publication of JP2002373675A publication Critical patent/JP2002373675A/en
Application granted granted Critical
Publication of JP5110337B2 publication Critical patent/JP5110337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、固体電解質型燃料電池に用いられる電極構造体およびその製造方法に関する。
【0002】
【従来の技術】
ガスの電気化学的反応を利用して、化学エネルギを直接電気エネルギに変換する燃料電池は、カルノー効率の制約を受けないため発電効率が高く、排出されるガスがクリーンで環境に対する影響が極めて少ないことから、近年、発電用、低公害の自動車用電源等、種々の用途が期待されている。燃料電池は、その電解質により分類することができ、例えば、リン酸型燃料電池、溶融炭酸塩型燃料電池、固体電解質型燃料電池、固体高分子型燃料電池等が知られている。
【0003】
なかでも、固体電解質型燃料電池(SOFC)は、発電効率が高く、また、作動温度が約1000℃と高温であるため、燃料の内部改質が可能であり、燃料の多様化が図れることから、それらの利点を生かした利用が期待されている。
【0004】
固体電解質型燃料電池は、通常、固体電解質の両側に一対の電極を設けたセルを発電単位とし、一方の電極(空気極)に酸素ガスあるいは空気を供給し、他方の電極(燃料極)に水素やメタンガス等を供給して、ガスと固体電解質と電極との3相界面において電気化学的な反応を進行させることにより電気を取り出すものである。
【0005】
固体電解質型燃料電池における電極には、ガス透過性の良好な多孔質材料が用いられ、例えば、燃料極にはニッケルジルコニアサーメット等が、空気極にはLa1-xSrxMnO3やLa1-xSrxCoO3等が用いられている。また、固体電解質には、イオン導電体として、例えば、イットリアをジルコニアに固溶したイットリア安定化ジルコニア(YSZ)が用いられている。そして、例えば、電極となる上記多孔質材料の表面に、固体電解質となるYSZを膜状に形成して電極構造体が構成される。
【0006】
一般に、電極となる多孔質材料の表面に固体電解質を膜状に形成して電極構造体を作製する方法として、ドクターブレード法、スクリーン印刷法、テープ成形法等のスラリーコート法が採用されている。この方法は、固体電解質の原料スラリーを直接多孔質電極基材の表面に塗布、乾燥して固体電解質膜を形成し、電極構造体とするものである。
【0007】
【発明が解決しようとする課題】
多孔質電極基材の表面に形成される固体電解質膜は、イオン導電体であり、イオン導電性をより向上すべく、その膜厚はできるだけ小さいことが望まれる。一方、多孔質電極基材は表面および内部に無数の細孔を有し、その表面は凹凸を有するものである。このような多孔質電極基材の表面に、膜厚が30μm以下となる薄膜を形成することは、上記スラリーコート法では極めて困難である。一般に、薄膜を形成するためには、膜の原料スラリーをできるだけ低粘度化して流動性を良くする必要がある。しかしながら、低粘度化した原料スラリーを上記多孔質電極基材の表面に塗布すると、原料スラリーが基材内部の細孔に吸い込まれてしまい、薄膜を形成することはできない。一方、原料スラリーの粘度を高くすると、ある一定の厚さ以上の膜しか形成することができず、目的とする厚さの薄膜を得ることは困難となる。
【0008】
本発明は上記問題を解決するためになされたものであり、多孔質電極基材の表面に固体電解質膜が形成された固体電解質型燃料電池用電極構造体であって、イオン導電性が大きく、ガスと固体電解質と電極との3相界面長が大きい電極構造体を提供することを課題とする。また、そのような電極構造体を簡便に製造することができる方法を提供することを課題とする。
【0009】
【課題を解決するための手段】
本発明の固体電解質型燃料電池用電極構造体は、無数の細孔を有する多孔質材料からなる一対の多孔質電極基材と、該一対の多孔質電極基材の間に挟まれた固体電解質膜とを含んでなる固体電解質型燃料電池用電極構造体であって、前記固体電解質膜は、前記一対の多孔質電極基材の間に挟まれた部分の膜厚が6μm以上10μm以下であり、その一部が前記一対の多孔質電極基材のうち少なくとも一方のものの表面から厚さ方向に該膜厚以上の深さまで該多孔質電極基材の前記細孔に入り込んでいることを特徴とする。
【0010】
すなわち、本発明の電極構造体は、一対の多孔質電極基材の間に膜厚が6μm以上10μm以下である薄い固体電解質膜が挟まれており、かつ、その固体電解質膜の一部が一対の多孔質電極基材のうち少なくとも一方のものの細孔に膜厚以上の深さまで入り込んでいるものである。
【0011】
本発明の電極構造体は、固体電解質膜の膜厚が6μm以上10μm以下と極めて薄いため、イオン導電性の大きな電極構造体となる。また、固体電解質膜の一部が多孔質電極基材の細孔に入り込んでいるため、ガスと固体電解質と電極との3相界面長が大きくなり、反応面積が大きいため、電池反応がより活性化した電極構造体となる。したがって、本発明の電極構造体は、固体電解質と電極との界面における抵抗が小さいため、出力の大きな燃料電池を構成することができる。
【0012】
また、本発明の固体電解質型燃料電池用電極構造体の製造方法は、無数の細孔を有する多孔質材料からなる一対の多孔質電極基材と、該一対の多孔質電極基材の間に挟まれた固体電解質膜とを含んでなる固体電解質型燃料電池用電極構造体の製造方法であって、前記固体電解質膜の原料となる酸化物粉末を用い原料ペーストを調製する原料ペースト調製工程と、前記原料ペーストを成膜基板の表面に塗布して成膜し、その膜を該成膜基板から剥離して前駆体膜を得る成膜工程と、前記前駆体膜の表面を前記一対の多孔質電極基材のうち少なくとも一方のものの表面に接触させた状態で該前駆体膜を焼成し、前記一対の多孔質電極基材の間に挟まれた部分の膜厚が6μm以上10μm以下であり、その一部が前記一対の多孔質電極基材のうち少なくとも一方のものの表面から厚さ方向に該膜厚以上の深さまで該多孔質電極基材の前記細孔に入り込んだ前記固体電解質膜を得る焼成工程とを含んで構成される。
【0013】
すなわち、本発明の電極構造体の製造方法は、一旦、固体電解質膜の前駆体膜を成膜しておき、その前駆体膜の表面を多孔質電極基材の表面に接触させた状態で焼成することにより電極構造体を得るものである。緻密で表面が平滑な成膜基板を使用することで薄膜状の前駆体膜を成膜することができ、その前駆体膜を多孔質電極基材に重ね合わせることで、細孔を有する多孔質電極基材の表面に膜厚の極めて薄い固体電解質膜を形成することができる。
【0014】
また、前駆体膜の表面を多孔質電極基材の表面に接触させた状態で、前駆体膜を焼成することにより、膜の一部を多孔質電極基材の細孔に入り込ませることができる。つまり、焼成の際の昇温過程において、前駆体膜が軟化し粘度が低下するため、多孔質電極基材の細孔にその一部が流入し、そのまま焼成される。
【0015】
したがって、本発明の固体電解質型燃料電池用電極構造体の製造方法によれば、予め成膜した前駆体膜の表面を多孔質電極基材の表面に接触させた状態で焼成するという単純な工程により、上記イオン導電性が大きく、かつ、ガスと固体電解質と電極との3相界面長が大きな本発明の電極構造体を簡便に製造することができる。
【0016】
【発明の実施の形態】
以下に、本発明の固体電解質型燃料電池用電極構造体とその製造方法について、それぞれ順に説明し、その後に、製造された電極構造体の利用形態である固体電解質型燃料電池について言及する。
【0017】
〈電極構造体〉
本発明の固体電解質型燃料電池用電極構造体は、無数の細孔を有する多孔質材料からなる一対の多孔質電極基材と、該一対の多孔質電極基材の間に挟まれた固体電解質膜とを含んでなる固体電解質型燃料電池用電極構造体であって、前記固体電解質膜は、前記一対の多孔質電極基材の間に挟まれた部分の膜厚が6μm以上10μm以下であり、その一部が前記一対の多孔質電極基材のうち少なくとも一方のものの表面から厚さ方向に該膜厚以上の深さまで該多孔質電極基材の前記細孔に入り込んでいるものである。
【0018】
多孔質電極基材となる多孔質材料は、無数の細孔を有しガス透過性が大きいものであれば、特に限定されるものではなく、一般に、固体電解質型燃料電池の電極として用いられる材料であればよい。例えば、燃料極の材料としては、電子導電性が良好で、高温かつ酸化性雰囲気で安定であることから、ニッケルジルコニアサーメット、コバルト−ジルコニア、白金−ジルコニア等が挙げられる。なかでも、例えば、電解質としてイットリア安定化ジルコニア(YSZ)を用いた場合には、耐酸化性が大きく、YSZとの熱膨張率の差が小さいという理由から、ニッケルジルコニアサーメットを用いることが望ましい。また、空気極の材料としては、電子導電性が良好で、高温かつ還元性雰囲気で安定であることから、La1-xSrxMnO3、Sm0.5Sr0.5CoO3、La1-xSrxCoO3、La1-xCaxMnO3、LaCrO3、La0.8Sr0.2Ga0.8Mg0.15Co0.053等の結晶構造がペロブスカイト型の酸化物や、Ce0.8Sm0.219/La1-xSrxMnO3(SDC/LSMO)等が挙げられる。特に、電子導電性が高い、長期安定性が良好である、電解質であるYSZとの熱膨張率の差が小さい等の理由から、La1-xSrxMnO3を用いることが望ましい。そして、上記多孔質材料から燃料極および空気極を構成し、一対の多孔質電極基材とすればよい。
【0019】
固体電解質膜は、固体電解質を膜状に形成したものであり、その固体電解質は、特に限定されるものではなく、一般に、固体電解質型燃料電池の固体電解質として用いられる材料を使用すればよい。例えば、イオン導電性が大きく緻密な材料として、ジルコニア、イットリア安定化ジルコニア(YSZ)、スカンジウムをジルコニアに固溶したスカンジウム安定化ジルコニア(ScSZ)、イットリアをセリアに固溶したイットリア安定化セリア、(LaSr)GaMgO、(LaSr)GaMgCoO3、(LaSr)GaMgFeO3、(LaSr)GaMgNiO3等のペロブスカイト、CeO2−GdO3系等の酸化物が挙げられる。特に、イオン導電性が高く、機械的特性や安定性が良好である等の理由から、スカンジウム安定化ジルコニアを用いることが望ましい。
【0020】
また、固体電解質膜は、一対の多孔質電極基材の間に挟まれた部分の膜厚が、イオン導電性をより大きくするという観点から、6μm以上10μm以下とする。
【0021】
さらに、固体電解質膜の一部は、後に写真で示すように、一対の多孔質電極基材の少なくとも一方のものの表面から厚さ方向に膜厚以上の深さまで多孔質電極基材の細孔に入り込んでいる。つまり、固体電解質膜の一部は、固体電解質膜と接している多孔質電極基材の表面から厚さ方向に細孔に入り込んでいる。したがって、電極の内部においてもガスと電解質と電極との反応場が存在することとなり、より電池反応が活性化することとなる。なお、固体電解質膜の一部は、一対の多孔質電極基材のうち一方の基材の細孔に入り込んだ態様であってもよく、また、両方の基材の細孔に入り込んだ態様であってもよい。
【0022】
また、細孔に入り込んでいる部分の深さは、固体電解質膜の膜厚の1倍以上3倍以下であることが望ましい。1倍未満である場合には、その適正範囲のものと比較して、ガスと固体電解質と電極との3相界面、すなわち反応面積が充分ではなく、3倍を超えると、その適正範囲のものと比較して、ガス透過性が低下し、電池反応の活性度が不充分な状態となるからである。
【0023】
〈電極構造体の製造方法〉
本発明の電極構造体の製造方法は、原料ペースト調製工程、成膜工程、焼成工程を含んで構成される。以下、各工程について詳しく説明する。
【0024】
(1)原料ペースト調製工程
本工程は、固体電解質膜の原料となる酸化物粉末を用い原料ペーストを調製する工程である。固体電解質膜の原料となる酸化物としては、上述した、ジルコニア、イットリア安定化ジルコニア(YSZ)、スカンジウム安定ジルコニア(ScSZ)等の酸化物を用いればよい。そして、それらの酸化物を粉末状にして、原料ペーストを調製する。
【0025】
原料ペーストを調製する方法は、特に制限するものではない。例えば、酸化物粉末を湿潤させた後、有機バインダを混合して原料ペーストを調製することができる。この場合には、原料ペースト調製工程は、酸化物粉末を湿潤させる湿潤工程を含み、湿潤させた該酸化物粉末を用いて原料ペーストを調製する工程とすればよい。酸化物粉末を湿潤させるとは、粉末を構成する粒子間に液体を介在させることであり、予めこのような状態にしておくことにより、調製するペースト中での酸化物粉末の凝集を抑制することができる。酸化物粉末を湿潤させるには、例えば、酸化物粉末に溶媒を加えればよく、この場合、溶媒には、例えば、アセトン、エタノール等の有機溶媒や、水等を用いればよい。
【0026】
また、酸化物粉末を構成する粒子の粒子径は、製造される固体電解質膜の膜厚に影響を与える。よって、例えば、膜厚が30μm以下の固体電解質膜を得るためには、酸化物粉末を構成する粒子の粒子径は、15μm以下とすることが望ましい。酸化物粉末の粒子径の調整は、粉砕や、化学的な合成方法等、一般的に粒子径の調整に用いられる方法を用いて行えばよい。例えば、比較的大きな粒子径の粉末を粉砕して酸化物粉末を得る場合には、酸化物粉末を上記溶媒に分散して湿式粉砕することができる。この場合には、粉砕後に溶媒をある程度まで除去することで、簡便に酸化物粉末を湿潤させることができる。
【0027】
有機バインダは、ペーストの粘度を調整し、前駆体膜を形成するために添加するものであり、後の成膜工程における成膜方法に応じて適宜選択すればよい。例えば、メタアクリル系樹脂、アクリル系樹脂、プリラール、ポリビニルアルコール、メチルセルロース、エチルセルロース、ポリアセテート、エチルシリケート、ポリエチレングリコール等を用いることができる。なお、原料ペーストの粘度は、成膜する膜の厚さや成膜方法等を考慮して適宜決定すればよく、通常、0.01〜1Pa・s程度とすればよい。
【0028】
(2)成膜工程
本工程は、前記原料ペースト調製工程において調製した原料ペーストを成膜基板の表面に塗布して成膜し、その膜を該成膜基板から剥離して前駆体膜を得る工程である。成膜基板は、特に制限されるものではなく、薄膜を成膜することができる緻密で表面が平滑な基板を用いればよい。また、原料ペーストから成膜する方法は、原料ペーストを成膜基板の表面に塗布して成膜する方法であれば、特に制限するものではない。例えば、原料ペーストをスクリーン印刷、ドクターブレード、テープキャスティング、グラビアコート、スプレーコート、ディップコート等の方法で成膜基板の表面に塗布して成膜することができる。なかでも、均一な薄膜を形成できるという観点から、スクリーン印刷、ドクターブレード、グラビアコートのいずれかの方法により成膜することが望ましい。
【0029】
成膜条件は、目的とする固体電解質膜の膜厚等を考慮して適宜決定すればよい。得られる固体電解質膜は、その一部が多孔質電極基材に入り込んでいるため、成膜時に得られた膜の膜厚より薄く形成される。したがって、多孔質電極基材に入り込む厚さをも考慮して、例えば、成膜時の膜厚は、固体電解質膜の膜厚の1〜4倍程度とすることが望ましい。
【0030】
成膜した後にその膜を成膜基板から剥離する方法は、特に制限するものではない。例えば、予め水溶性の樹脂をコートした成膜基板の表面に成膜し、その後、成膜基板ごと水中に浸漬することにより、膜を成膜基板から剥離して前駆体膜を得る態様を採用することができる。この態様を採用する場合には、膜を保形するという理由から、成膜後、水中に浸漬させる前に、その膜の表出している面をアクリル樹脂等の非水溶性の樹脂で覆っておくことが望ましい。なお、この保護膜となる非水溶性の樹脂は、後の焼成工程で燃焼し、消滅する。
【0031】
(3)焼成工程
本工程は、前記成膜工程において得られた前駆体膜の表面を一対の多孔質電極基材のうち少なくとも一方のものの表面に接触させた状態で該前駆体膜を焼成し、その一部が該多孔質電極基材の細孔に入り込んだ前記固体電解質膜を得る工程である。多孔質電極基材は、上述した、ニッケルジルコニアサーメット、La1-xSrxMnO3系のペロブスカイト型酸化物等を用いればよい。
【0032】
前駆体膜の表面を多孔質電極基材の表面に接触させた状態で前駆体膜を焼成する方法は、特に限定されるものではない。例えば、前駆体膜の両表面のうち一方の表面と一方の多孔質電極基材の表面とを合わせた状態、言い換えれば、前駆体膜を一方の多孔質電極基材に重ね合わせた状態で焼成すればよい。また、多孔質電極基材を前駆体膜を重ね合わせた面を下にして焼成台上に置き焼成してもよい。さらに、多孔質電極基材を前駆体膜を重ね合わせた面を下にして焼成台に置き、その多孔質電極基材に荷重をかけながら焼成してもよい。特に、多孔質電極基材の細孔により深い厚さまで入り込んだ固体電解質膜を得るという観点から、前駆体膜を重ね合わせた面を下にして焼成台上に置き、多孔質電極基材に荷重をかけながら焼成することが望ましい。なお、上記態様を採用する場合には、焼成後に得られた固体電解質膜の多孔質電極基材と接合していない表面に、他方の多孔質電極基材をコーティングして、さらに焼成することで電極構造体とすることができる。
【0033】
また、例えば、前駆体膜の両面を、一対の多孔質電極基材の表面にそれぞれ接触させた状態で焼成する態様を採用することができる。本態様の場合には、前駆体膜を一対の多孔質電極基材の間に挟んだ状態で焼成すればよい。なお、本態様の場合にも、上記同様、多孔質電極基材に荷重をかけながら焼成することが望ましい。
【0034】
焼成温度は、通常、固体電解質膜を焼結する温度とすればよく、1000〜1450℃程度の温度で焼成すればよい。焼成は、一般に用いられる電気炉等を使用すればよく、焼成時間は0.5〜6時間程度とすればよい。なお、焼成する際の昇温速度や、かける荷重等を調整して、多孔質電極基材の細孔に入り込む固体電解質膜の深さを調整することができる。
【0035】
〈固体電解質型燃料電池〉
本発明の電極構造体の利用形態である固体電解質型燃料電池は、一般に、一対の電極と固体電解質とを含んでなる電極構造体から構成されるセルを発電単位とし、円筒方式、平板方式、一体積層方式等、種々の構造を採用することができる。本実施形態の固体電解質型燃料電池も、電極構造体に本発明の電極構造体を用いる他は、その一般的な構成に従えばよい。
【0036】
〈他の実施形態の許容〉
以上、本発明の固体電解質型燃料電池用電極構造体およびその製造方法の実施形態について説明したが、上述した実施形態は一実施形態にすぎず、本発明の固体電解質型燃料電池用電極構造体およびその製造方法は、上記実施形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した種々の形態で実施することができる。
【0037】
【実施例】
上記実施の形態に基づいて、本発明の固体電解質型燃料電池用電極構造体を製造した。以下、電極構造体の製造方法および製造した電極構造体について説明する。
【0038】
〈電極構造体の製造〉
アノードとなる多孔質電極基材にニッケルジルコニアサーメットを、カソードとなる多孔質電極基材にLa0.8Sr0.2MnO3を用い、固体電解質膜をスカンジウム安定ジルコニア(ScSZ)とした電極構造体を製造した。まず、固体電解質膜の原料となるSc23(11mol%)/ZrO2(89mol%)にAl23を1wt%加えた酸化物粉末をエタノール中に分散させ、ボールミルを用いて、120時間湿式粉砕し、湿潤状態の酸化物粉末を得た。この湿潤状態の酸化物粉末に、有機バインダとしてメタアクリル系樹脂を、重量比で酸化物粉末:有機バインダが8:5となるように混合し、残存するエタノールを蒸発させて粘度が約0.06Pa・sである原料ペーストを調製した。
【0039】
調整した原料ペーストを、水溶性樹脂であるデキストリンをコートした成膜基板の表面にスクリーン印刷して成膜し、さらに、その膜表面全体を非水溶性樹脂であるアクリル系樹脂でコートした。なお、成膜した膜の厚さは、約20μmであった。このように成膜、コートした成膜基板を水中に浸漬し、成膜した膜を成膜基板から剥離して、アクリル系樹脂でコートされた前駆体膜を得た。
【0040】
この前駆体膜を一方の多孔質電極基材であるニッケルジルコニアサーメットの表面に重ね合わせ、その前駆体膜を重ね合わせた面を下にして焼成台上に設置し、約50Paの荷重をかけて焼成した。焼成温度は、約1400℃とし、昇温速度は、2℃/min、焼成時間は約4時間とした。
【0041】
焼成後に得られた固体電解質膜のニッケルジルコニアサーメットと接合していない表面に、他方の多孔質電極基材となるLa0.8Sr0.2MnO3粉末をスクリーン印刷によりコーティングして、さらに約1100℃で焼成して電極構造体を得た。なお、得られた固体電解質膜は、一対の多孔質電極基材の間に挟まれた部分の膜厚が約6μmであった。
【0042】
〈製造した電極構造体〉
製造した電極構造体の厚さ方向の断面を走査型電子顕微鏡(SEM)により観察した写真を図1に示す。図1の写真の中央部分は、固体電解質膜であるスカンジウム安定ジルコニア膜であり、その上下は多孔質電極基材である。多孔質電極基材には無数の細孔が存在し、固体電解質膜の一部が下方の多孔質電極基材の表面から厚さ方向に膜厚以上の深さまで細孔に入り込んでいることがわかる。そして、その細孔に入り込んでいる深さは、固体電解質膜の膜厚の約2倍であった。
【0043】
したがって、本発明の固体電解質型燃料電池用電極構造体の製造方法によれば、一対の多孔質電極基材の間に挟まれた部分の膜厚が6μm以上10μm以下であり、その一部が一対の多孔質電極基材のうち少なくとも一方のものの表面から厚さ方向に該膜厚以上の深さまで該多孔質電極基材の細孔に入り込んでいる本発明の電極構造体を製造することができることが確認できた。
【0044】
【発明の効果】
本発明の固体電解質型燃料電池用電極構造体は、イオン導電性が大きく、ガスと電解質と電極との3相界面、つまり電極反応面積が大きいため、電解質と電極との界面抵抗が小さく、発電効率の高い電極構造体となる。また、本発明の固体電解質型燃料電池用電極構造体の製造方法によれば、前駆体膜の厚さ等の成膜条件や焼成条件等により、固体電解質膜の膜厚や、多孔質電極基材の細孔へ入り込ませる程度等を調整することが容易であり、上記本発明の電極構造体を簡便に製造することができる。
【図面の簡単な説明】
【図1】 本発明の電極構造体の厚さ方向の断面を走査型電子顕微鏡(SEM)により観察した写真を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode structure used for a solid oxide fuel cell and a method for producing the same.
[0002]
[Prior art]
Fuel cells that directly convert chemical energy into electrical energy using the electrochemical reaction of gas have high power generation efficiency because they are not restricted by Carnot efficiency, and the discharged gas is clean and has little impact on the environment. Therefore, in recent years, various uses such as power generation and low-pollution automobile power supplies are expected. Fuel cells can be classified according to their electrolytes. For example, phosphoric acid fuel cells, molten carbonate fuel cells, solid electrolyte fuel cells, solid polymer fuel cells, and the like are known.
[0003]
Among them, the solid oxide fuel cell (SOFC) has high power generation efficiency, and since the operating temperature is as high as about 1000 ° C., the internal reforming of the fuel is possible and the diversification of the fuel can be achieved. Therefore, it is expected to make use of these advantages.
[0004]
A solid oxide fuel cell usually uses a cell having a pair of electrodes on both sides of a solid electrolyte as a power generation unit, supplies oxygen gas or air to one electrode (air electrode), and supplies the other electrode (fuel electrode) to the other electrode (fuel electrode). Hydrogen or methane gas or the like is supplied to extract electricity by causing an electrochemical reaction to proceed at the three-phase interface between the gas, the solid electrolyte, and the electrode.
[0005]
For the electrode in the solid oxide fuel cell, a porous material having good gas permeability is used. For example, nickel zirconia cermet or the like is used for the fuel electrode, and La 1-x Sr x MnO 3 or La 1 is used for the air electrode. -x Sr x CoO 3 or the like is used. For the solid electrolyte, for example, yttria stabilized zirconia (YSZ) in which yttria is dissolved in zirconia is used as an ionic conductor. For example, an electrode structure is configured by forming YSZ as a solid electrolyte in a film shape on the surface of the porous material as an electrode.
[0006]
Generally, a slurry coating method such as a doctor blade method, a screen printing method, or a tape forming method is employed as a method for producing an electrode structure by forming a solid electrolyte on the surface of a porous material to be an electrode. . In this method, a solid electrolyte raw material slurry is directly applied to the surface of a porous electrode substrate and dried to form a solid electrolyte membrane, thereby forming an electrode structure.
[0007]
[Problems to be solved by the invention]
The solid electrolyte membrane formed on the surface of the porous electrode substrate is an ionic conductor, and it is desired that the film thickness be as small as possible in order to further improve the ionic conductivity. On the other hand, the porous electrode substrate has innumerable pores on the surface and inside, and the surface has irregularities. It is extremely difficult to form a thin film having a film thickness of 30 μm or less on the surface of such a porous electrode substrate by the slurry coating method. In general, in order to form a thin film, it is necessary to reduce the viscosity of the raw material slurry of the film as much as possible to improve fluidity. However, when the low-viscosity raw material slurry is applied to the surface of the porous electrode base material, the raw material slurry is sucked into the pores inside the base material, and a thin film cannot be formed. On the other hand, when the viscosity of the raw slurry is increased, only a film having a certain thickness or more can be formed, and it is difficult to obtain a thin film having a target thickness.
[0008]
The present invention has been made to solve the above problems, and is an electrode structure for a solid oxide fuel cell in which a solid electrolyte membrane is formed on the surface of a porous electrode substrate, and has a high ionic conductivity, It is an object to provide an electrode structure having a large three-phase interface length between a gas, a solid electrolyte, and an electrode. It is another object of the present invention to provide a method by which such an electrode structure can be easily produced.
[0009]
[Means for Solving the Problems]
An electrode structure for a solid oxide fuel cell of the present invention includes a pair of porous electrode base materials made of a porous material having innumerable pores, and a solid electrolyte sandwiched between the pair of porous electrode base materials An electrode structure for a solid oxide fuel cell comprising a membrane, wherein the solid electrolyte membrane has a thickness between 6 μm and 10 μm at a portion sandwiched between the pair of porous electrode base materials A part of the porous electrode base material enters the pores of the porous electrode base material from the surface of at least one of the pair of porous electrode base materials to a depth equal to or greater than the thickness in the thickness direction. To do.
[0010]
That is, in the electrode structure of the present invention, a thin solid electrolyte membrane having a thickness of 6 μm or more and 10 μm or less is sandwiched between a pair of porous electrode base materials, and a part of the solid electrolyte membrane is a pair. Of these porous electrode base materials, at least one of the porous electrode base materials penetrates into the pores to a depth equal to or greater than the film thickness.
[0011]
The electrode structure of the present invention is an electrode structure having a large ionic conductivity because the thickness of the solid electrolyte membrane is as thin as 6 μm or more and 10 μm or less. In addition, since a part of the solid electrolyte membrane enters the pores of the porous electrode substrate, the three-phase interface length between the gas, the solid electrolyte, and the electrode is increased, and the reaction area is large, so that the battery reaction is more active. An electrode structure is obtained. Therefore, since the electrode structure of the present invention has a low resistance at the interface between the solid electrolyte and the electrode, a fuel cell having a large output can be configured.
[0012]
The method for producing an electrode structure for a solid oxide fuel cell according to the present invention includes a pair of porous electrode base materials made of a porous material having innumerable pores, and the pair of porous electrode base materials between the pair of porous electrode base materials. A solid electrolyte fuel cell electrode structure comprising a sandwiched solid electrolyte membrane, a raw material paste preparation step of preparing a raw material paste using an oxide powder as a raw material of the solid electrolyte membrane; A film forming step in which the raw material paste is applied to the surface of the film formation substrate to form a film, and the film is peeled off from the film formation substrate to obtain a precursor film; The precursor film is fired in contact with the surface of at least one of the porous electrode substrates, and the film thickness of the portion sandwiched between the pair of porous electrode substrates is 6 μm or more and 10 μm or less A part of the pair of porous electrode base materials And a firing step for obtaining the solid electrolyte membrane that has entered the pores of the porous electrode base material from the surface of at least one of the porous electrodes to a depth greater than or equal to the thickness in the thickness direction.
[0013]
That is, in the method for producing an electrode structure of the present invention, a precursor film of a solid electrolyte membrane is once formed, and the precursor film surface is fired in a state where the surface is in contact with the surface of the porous electrode substrate. By doing so, an electrode structure is obtained. By using a dense substrate with a smooth surface, a thin film precursor film can be formed. By superposing the precursor film on a porous electrode substrate, the porous film has pores. A very thin solid electrolyte membrane can be formed on the surface of the electrode substrate.
[0014]
In addition, by firing the precursor film in a state where the surface of the precursor film is in contact with the surface of the porous electrode base material, a part of the film can enter the pores of the porous electrode base material. . That is, in the temperature rising process during firing, the precursor film softens and the viscosity decreases, so that part of the precursor film flows into the pores of the porous electrode substrate and is fired as it is.
[0015]
Therefore, according to the method for producing an electrode structure for a solid oxide fuel cell of the present invention, a simple process of firing in a state where the surface of the precursor film formed in advance is in contact with the surface of the porous electrode substrate. Thus, the electrode structure of the present invention having a large ionic conductivity and a large three-phase interface length between the gas, the solid electrolyte, and the electrode can be easily produced.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the electrode structure for a solid oxide fuel cell according to the present invention and the manufacturing method thereof will be described in order, and then a solid oxide fuel cell that is a form of use of the manufactured electrode structure will be referred to.
[0017]
<Electrode structure>
An electrode structure for a solid oxide fuel cell of the present invention includes a pair of porous electrode base materials made of a porous material having innumerable pores, and a solid electrolyte sandwiched between the pair of porous electrode base materials An electrode structure for a solid oxide fuel cell comprising a membrane, wherein the solid electrolyte membrane has a thickness between 6 μm and 10 μm at a portion sandwiched between the pair of porous electrode base materials A part of the porous electrode base material penetrates into the pores of the porous electrode base material from the surface of at least one of the pair of porous electrode base materials to a depth equal to or greater than the thickness in the thickness direction.
[0018]
The porous material used as the porous electrode base material is not particularly limited as long as it has innumerable pores and has high gas permeability, and is generally a material used as an electrode of a solid oxide fuel cell. If it is. For example, as the material for the fuel electrode, nickel zirconia cermet, cobalt-zirconia, platinum-zirconia, and the like can be cited because they have good electronic conductivity, are stable at high temperatures and in an oxidizing atmosphere. Among these, for example, when yttria-stabilized zirconia (YSZ) is used as the electrolyte, it is desirable to use nickel zirconia cermet because it has high oxidation resistance and a small difference in thermal expansion coefficient from YSZ. As the material of the air electrode, La 1-x Sr x MnO 3 , Sm 0.5 Sr 0.5 CoO 3 , La 1-x Sr x is preferable because it has good electronic conductivity, is stable at high temperature and in a reducing atmosphere. Oxides such as CoO 3 , La 1-x Ca x MnO 3 , LaCrO 3 , La 0.8 Sr 0.2 Ga 0.8 Mg 0.15 Co 0.05 O 3 having a perovskite type crystal structure or Ce 0.8 Sm 0.2 O 19 / La 1-x sr x MnO 3 (SDC / LSMO ) , and the like. In particular, it is desirable to use La 1-x Sr x MnO 3 for reasons such as high electronic conductivity, good long-term stability, and a small difference in thermal expansion coefficient from YSZ that is an electrolyte. And a fuel electrode and an air electrode are comprised from the said porous material, and what is necessary is just to make it a pair of porous electrode base material.
[0019]
The solid electrolyte membrane is formed by forming a solid electrolyte into a film shape, and the solid electrolyte is not particularly limited. In general, a material used as a solid electrolyte of a solid electrolyte fuel cell may be used. For example, as dense materials having large ion conductivity, zirconia, yttria stabilized zirconia (YSZ), scandium stabilized zirconia (ScSZ) in which scandium is dissolved in zirconia, yttria stabilized ceria in which yttria is dissolved in ceria, ( Examples thereof include perovskites such as LaSr) GaMgO, (LaSr) GaMgCoO 3 , (LaSr) GaMgFeO 3 , and (LaSr) GaMgNiO 3 , and oxides such as CeO 2 —GdO 3 . In particular, it is desirable to use scandium-stabilized zirconia for reasons such as high ionic conductivity and good mechanical properties and stability.
[0020]
In addition, the solid electrolyte membrane has a thickness of 6 μm or more and 10 μm or less from the viewpoint that the thickness of the portion sandwiched between the pair of porous electrode base materials increases the ionic conductivity.
[0021]
Further, as shown later in the photograph, a part of the solid electrolyte membrane is formed into pores of the porous electrode substrate from the surface of at least one of the pair of porous electrode substrates to a depth greater than the film thickness in the thickness direction. It has entered. That is, a part of the solid electrolyte membrane enters the pores in the thickness direction from the surface of the porous electrode substrate in contact with the solid electrolyte membrane. Therefore, a reaction field between the gas, the electrolyte, and the electrode exists also inside the electrode, and the battery reaction is further activated. In addition, a part of the solid electrolyte membrane may be in a mode of entering into the pores of one of the pair of porous electrode substrates, or a mode of entering into the pores of both substrates. There may be.
[0022]
Moreover, it is desirable that the depth of the portion entering the pores is 1 to 3 times the thickness of the solid electrolyte membrane. If it is less than 1 time, the three-phase interface between the gas, the solid electrolyte, and the electrode, that is, the reaction area is not sufficient as compared with the appropriate range. This is because the gas permeability is lowered and the activity of the battery reaction is insufficient.
[0023]
<Method for manufacturing electrode structure>
The method for manufacturing an electrode structure of the present invention includes a raw material paste preparation step, a film formation step, and a firing step. Hereinafter, each step will be described in detail.
[0024]
(1) Raw material paste preparation step This step is a step of preparing a raw material paste using an oxide powder as a raw material of the solid electrolyte membrane. As the oxide used as a raw material for the solid electrolyte membrane, the above-described oxides such as zirconia, yttria stabilized zirconia (YSZ), and scandium stabilized zirconia (ScSZ) may be used. Then, these oxides are powdered to prepare a raw material paste.
[0025]
The method for preparing the raw material paste is not particularly limited. For example, after the oxide powder is wetted, an organic binder can be mixed to prepare a raw material paste. In this case, the raw material paste preparation step may be a step of preparing a raw material paste using the wet oxide powder, including a wetting step of wetting the oxide powder. Wetting the oxide powder means interposing a liquid between the particles constituting the powder, and suppressing the aggregation of the oxide powder in the paste to be prepared by setting it in such a state in advance. Can do. In order to wet the oxide powder, for example, a solvent may be added to the oxide powder. In this case, for example, an organic solvent such as acetone or ethanol, water, or the like may be used.
[0026]
Moreover, the particle diameter of the particles constituting the oxide powder affects the film thickness of the manufactured solid electrolyte membrane. Therefore, for example, in order to obtain a solid electrolyte membrane having a film thickness of 30 μm or less, it is desirable that the particle diameter of the particles constituting the oxide powder is 15 μm or less. Adjustment of the particle diameter of the oxide powder may be performed using a method generally used for adjusting the particle diameter, such as pulverization or a chemical synthesis method. For example, when an oxide powder is obtained by pulverizing a powder having a relatively large particle size, the oxide powder can be dispersed in the solvent and wet pulverized. In this case, the oxide powder can be easily wetted by removing the solvent to some extent after pulverization.
[0027]
The organic binder is added to adjust the viscosity of the paste and form a precursor film, and may be appropriately selected according to the film forming method in the subsequent film forming process. For example, methacrylic resin, acrylic resin, prill, polyvinyl alcohol, methyl cellulose, ethyl cellulose, polyacetate, ethyl silicate, polyethylene glycol, and the like can be used. Note that the viscosity of the raw material paste may be appropriately determined in consideration of the thickness of the film to be formed, the film forming method, and the like, and is usually about 0.01 to 1 Pa · s.
[0028]
(2) Film formation process In this process, the raw material paste prepared in the raw material paste preparation process is applied to the surface of the film formation substrate to form a film, and the film is peeled off from the film formation substrate to obtain a precursor film. It is a process. The film formation substrate is not particularly limited, and a dense substrate with a smooth surface that can form a thin film may be used. The method for forming a film from the raw material paste is not particularly limited as long as it is a method for forming a film by applying the raw material paste to the surface of the film formation substrate. For example, the raw material paste can be applied to the surface of the film formation substrate by screen printing, doctor blade, tape casting, gravure coating, spray coating, dip coating, or the like. Among these, it is desirable to form the film by any one of screen printing, doctor blade, and gravure coating from the viewpoint that a uniform thin film can be formed.
[0029]
The film forming conditions may be appropriately determined in consideration of the film thickness of the target solid electrolyte film. Since the obtained solid electrolyte membrane partially enters the porous electrode substrate, it is formed thinner than the thickness of the membrane obtained at the time of film formation. Therefore, in consideration of the thickness entering the porous electrode substrate, for example, the film thickness during film formation is desirably about 1 to 4 times the film thickness of the solid electrolyte film.
[0030]
The method for peeling the film from the film formation substrate after film formation is not particularly limited. For example, a film is formed on the surface of a film-forming substrate that has been previously coated with a water-soluble resin, and then the film is peeled off from the film-forming substrate by immersing the film-forming substrate together in water, thereby obtaining a precursor film. can do. When this mode is adopted, the surface of the film is covered with a water-insoluble resin such as an acrylic resin before being immersed in water after film formation because the film is retained. It is desirable to keep it. Note that the water-insoluble resin that becomes the protective film burns and disappears in a later baking step.
[0031]
(3) Firing step In this step, the precursor film is fired in a state where the surface of the precursor film obtained in the film forming step is in contact with the surface of at least one of the pair of porous electrode base materials. , A step of obtaining the solid electrolyte membrane, part of which has entered the pores of the porous electrode substrate. As the porous electrode base material, the above-described nickel zirconia cermet, La 1-x Sr x MnO 3 -based perovskite oxide, or the like may be used.
[0032]
The method of firing the precursor film in a state where the surface of the precursor film is in contact with the surface of the porous electrode substrate is not particularly limited. For example, in a state where one surface of both surfaces of the precursor film is combined with the surface of one porous electrode substrate, in other words, the precursor film is fired in a state where the precursor film is superimposed on one porous electrode substrate. do it. Alternatively, the porous electrode base material may be fired by placing it on a firing table with the surface on which the precursor film is superimposed facing down. Furthermore, the porous electrode base material may be placed on a firing table with the surface on which the precursor film is superimposed facing down, and fired while applying a load to the porous electrode base material. In particular, from the standpoint of obtaining a solid electrolyte membrane that has entered deeper into the pores of the porous electrode substrate, the precursor film is placed on the firing table with the superimposed surface facing down, and the porous electrode substrate is loaded. It is desirable to fire while applying. In addition, when employ | adopting the said aspect, by coating the other porous electrode base material on the surface which is not joined with the porous electrode base material of the solid electrolyte membrane obtained after baking, it is further baking. It can be set as an electrode structure.
[0033]
In addition, for example, it is possible to employ a mode in which both sides of the precursor film are fired in a state where they are in contact with the surfaces of the pair of porous electrode base materials. In the case of this embodiment, the precursor film may be fired in a state of being sandwiched between a pair of porous electrode base materials. In the case of this embodiment as well, as described above, it is desirable to perform firing while applying a load to the porous electrode substrate.
[0034]
The firing temperature may usually be a temperature at which the solid electrolyte membrane is sintered, and may be fired at a temperature of about 1000 to 1450 ° C. For firing, a generally used electric furnace or the like may be used, and the firing time may be about 0.5 to 6 hours. The depth of the solid electrolyte membrane that enters the pores of the porous electrode substrate can be adjusted by adjusting the rate of temperature rise during firing, the load applied, and the like.
[0035]
<Solid electrolyte fuel cell>
A solid oxide fuel cell that is an application form of the electrode structure of the present invention generally has a cell composed of an electrode structure including a pair of electrodes and a solid electrolyte as a power generation unit, a cylindrical method, a flat plate method, Various structures such as an integral lamination method can be employed. The solid oxide fuel cell of the present embodiment may also follow its general configuration except that the electrode structure of the present invention is used for the electrode structure.
[0036]
<Acceptance of other embodiments>
The embodiment of the electrode structure for a solid oxide fuel cell and the method for manufacturing the same according to the present invention has been described above. However, the embodiment described above is only one embodiment, and the electrode structure for a solid oxide fuel cell of the present invention. The manufacturing method thereof can be implemented in various forms including various modifications and improvements based on the knowledge of those skilled in the art including the above-described embodiment.
[0037]
【Example】
Based on the said embodiment, the electrode structure for solid oxide fuel cells of this invention was manufactured. Hereinafter, the manufacturing method of the electrode structure and the manufactured electrode structure will be described.
[0038]
<Manufacture of electrode structure>
An electrode structure was manufactured using nickel zirconia cermet as the anode porous electrode substrate and La 0.8 Sr 0.2 MnO 3 as the cathode porous electrode substrate, and the solid electrolyte membrane being scandium stable zirconia (ScSZ). . First, an oxide powder obtained by adding 1 wt% of Al 2 O 3 to Sc 2 O 3 (11 mol%) / ZrO 2 (89 mol%), which is a raw material of the solid electrolyte membrane, is dispersed in ethanol, and is then used in a ball mill. Wet pulverization was performed for a time to obtain wet oxide powder. A methacrylic resin as an organic binder is mixed with the wet oxide powder so that the weight ratio of the oxide powder to the organic binder is 8: 5, and the remaining ethanol is evaporated to obtain a viscosity of about 0. A raw material paste of 06 Pa · s was prepared.
[0039]
The prepared raw material paste was screen-printed on the surface of a film-forming substrate coated with dextrin, which is a water-soluble resin, and the entire film surface was coated with an acrylic resin, which is a water-insoluble resin. The thickness of the film formed was about 20 μm. The film formation substrate thus coated and coated was immersed in water, and the formed film was peeled off from the film formation substrate to obtain a precursor film coated with an acrylic resin.
[0040]
This precursor film was placed on the surface of one porous electrode base material, nickel zirconia cermet, and the precursor film was placed on the firing table with the face on which the precursor film was placed facing down, and a load of about 50 Pa was applied. Baked. The firing temperature was about 1400 ° C., the heating rate was 2 ° C./min, and the firing time was about 4 hours.
[0041]
The surface of the solid electrolyte membrane obtained after firing, which is not joined with nickel zirconia cermet, is coated with La 0.8 Sr 0.2 MnO 3 powder, which is the other porous electrode base material, by screen printing, and further fired at about 1100 ° C. As a result, an electrode structure was obtained. The obtained solid electrolyte membrane had a thickness of about 6 μm at the portion sandwiched between the pair of porous electrode substrates.
[0042]
<Manufactured electrode structure>
The photograph which observed the cross section of the thickness direction of the manufactured electrode structure with the scanning electron microscope (SEM) is shown in FIG. The center part of the photograph of FIG. 1 is a scandium stable zirconia film which is a solid electrolyte film, and the upper and lower sides thereof are porous electrode substrates. There are innumerable pores in the porous electrode substrate, and a part of the solid electrolyte membrane has entered the pores from the surface of the porous electrode substrate below to a depth greater than the film thickness in the thickness direction. Recognize. And the depth which penetrates into the pore was about twice the film thickness of the solid electrolyte membrane.
[0043]
Therefore, according to the method for producing an electrode structure for a solid oxide fuel cell of the present invention, the thickness of the portion sandwiched between the pair of porous electrode base materials is 6 μm or more and 10 μm or less, and a part thereof It is possible to produce the electrode structure of the present invention that enters the pores of the porous electrode substrate from the surface of at least one of the pair of porous electrode substrates to a depth equal to or greater than the film thickness in the thickness direction. I was able to confirm that it was possible.
[0044]
【Effect of the invention】
The electrode structure for a solid oxide fuel cell of the present invention has high ionic conductivity and a three-phase interface between gas, electrolyte, and electrode, that is, a large electrode reaction area. A highly efficient electrode structure is obtained. In addition, according to the method for producing an electrode structure for a solid oxide fuel cell of the present invention, the thickness of the solid electrolyte membrane or the porous electrode substrate depends on the film formation conditions such as the thickness of the precursor film and the firing conditions. It is easy to adjust the degree of entry into the pores of the material, and the electrode structure of the present invention can be easily produced.
[Brief description of the drawings]
FIG. 1 shows a photograph of a cross-section in the thickness direction of an electrode structure of the present invention observed with a scanning electron microscope (SEM).

Claims (5)

無数の細孔を有する多孔質材料からなる一対の多孔質電極基材と、該一対の多孔質電極基材の間に挟まれた固体電解質膜とを含んでなる固体電解質型燃料電池用電極構造体であって、
前記固体電解質膜は、前記一対の多孔質電極基材の間に挟まれた部分の膜厚が6μm以上10μm以下であり、その一部が前記一対の多孔質電極基材のうち少なくとも一方のものの表面から厚さ方向に該膜厚以上の深さまで該多孔質電極基材の前記細孔に入り込んでいることを特徴とする固体電解質型燃料電池用電極構造体。
Electrode structure for a solid oxide fuel cell comprising a pair of porous electrode base materials made of a porous material having innumerable pores, and a solid electrolyte membrane sandwiched between the pair of porous electrode base materials Body,
The solid electrolyte membrane has a film thickness of 6 μm or more and 10 μm or less between the pair of porous electrode substrates, and a part of at least one of the pair of porous electrode substrates. An electrode structure for a solid oxide fuel cell, which penetrates into the pores of the porous electrode base material from the surface in a thickness direction to a depth equal to or greater than the film thickness.
前記細孔に入り込んでいる前記一部の深さが前記膜厚の1倍以上3倍以下である請求項1に記載の固体電解質型燃料電池用電極構造体。  2. The electrode structure for a solid oxide fuel cell according to claim 1, wherein the depth of the part entering the pores is 1 to 3 times the film thickness. 前記固体電解質膜は、前記固体電解質膜の原料となる酸化物粉末を用い原料ペーストを調製する原料ペースト調製工程と、前記原料ペーストを成膜基板の表面に塗布して成膜し、その膜を該成膜基板から剥離して前駆体膜を得る成膜工程と、前記前駆体膜の表面を前記一対の多孔質電極基材のうち少なくとも一方のものの表面に接触させた状態で該前駆体膜を焼成する焼成工程とを行うことにより形成されてなる請求項1又は2に記載の固体電解質型燃料電池用電極構造体。  The solid electrolyte membrane includes a raw material paste preparation step of preparing a raw material paste using an oxide powder as a raw material of the solid electrolyte membrane, and the raw material paste is applied to the surface of a film formation substrate to form a film. A film forming step of obtaining a precursor film by peeling from the film forming substrate, and the precursor film in a state where the surface of the precursor film is in contact with the surface of at least one of the pair of porous electrode base materials The electrode structure for a solid oxide fuel cell according to claim 1 or 2, wherein the electrode structure is formed by performing a firing step of firing the material. 無数の細孔を有する多孔質材料からなる一対の多孔質電極基材と、該一対の多孔質電極基材の間に挟まれた固体電解質膜とを含んでなる固体電解質型燃料電池用電極構造体の製造方法であって、
前記固体電解質膜の原料となる酸化物粉末を用い原料ペーストを調製する原料ペースト調製工程と、
前記原料ペーストを成膜基板の表面に塗布して成膜し、その膜を該成膜基板から剥離して前駆体膜を得る成膜工程と、
前記前駆体膜の表面を前記一対の多孔質電極基材のうち少なくとも一方のものの表面に接触させた状態で該前駆体膜を焼成し、前記一対の多孔質電極基材の間に挟まれた部分の膜厚が6μm以上10μm以下であり、その一部が前記一対の多孔質電極基材のうち少なくとも一方のものの表面から厚さ方向に該膜厚以上の深さまで該多孔質電極基材の前記細孔に入り込んだ前記固体電解質膜を得る焼成工程と、
を含んでなる固体電解質型燃料電池用電極構造体の製造方法。
Electrode structure for a solid oxide fuel cell comprising a pair of porous electrode base materials made of a porous material having innumerable pores, and a solid electrolyte membrane sandwiched between the pair of porous electrode base materials A method for manufacturing a body,
A raw material paste preparation step of preparing a raw material paste using an oxide powder as a raw material of the solid electrolyte membrane;
A film forming step of applying the raw material paste onto the surface of the film formation substrate to form a film, and peeling the film from the film formation substrate to obtain a precursor film;
The precursor film was baked in a state where the surface of the precursor film was in contact with the surface of at least one of the pair of porous electrode substrates, and was sandwiched between the pair of porous electrode substrates. The film thickness of the portion is 6 μm or more and 10 μm or less, and a part of the porous electrode substrate is formed from the surface of at least one of the pair of porous electrode substrates to a depth greater than the film thickness in the thickness direction. A firing step for obtaining the solid electrolyte membrane that has entered the pores;
A method for producing an electrode structure for a solid oxide fuel cell comprising:
前記原料ペースト調製工程は、前記酸化物粉末を湿潤させる湿潤工程を含み、湿潤させた該酸化物粉末を用いて原料ペーストを調製する工程である請求項4に記載の固体電解質型燃料電池用電極構造体の製造方法。  5. The electrode for a solid oxide fuel cell according to claim 4, wherein the raw material paste preparation step includes a wetting step of wetting the oxide powder, and the raw material paste is prepared using the wet oxide powder. Manufacturing method of structure.
JP2001183237A 2001-06-18 2001-06-18 Electrode structure for solid oxide fuel cell and method for producing the same Expired - Fee Related JP5110337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001183237A JP5110337B2 (en) 2001-06-18 2001-06-18 Electrode structure for solid oxide fuel cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001183237A JP5110337B2 (en) 2001-06-18 2001-06-18 Electrode structure for solid oxide fuel cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002373675A JP2002373675A (en) 2002-12-26
JP5110337B2 true JP5110337B2 (en) 2012-12-26

Family

ID=19023214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001183237A Expired - Fee Related JP5110337B2 (en) 2001-06-18 2001-06-18 Electrode structure for solid oxide fuel cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP5110337B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485385B2 (en) * 2003-09-10 2009-02-03 Btu International, Inc. Process for solid oxide fuel cell manufacture
JP4560676B2 (en) * 2004-08-09 2010-10-13 大日本印刷株式会社 Adhesive sheet for solid oxide fuel cell and method for producing the same
JP4560677B2 (en) * 2004-08-09 2010-10-13 大日本印刷株式会社 Solid oxide fuel cell thermal transfer sheet and solid oxide fuel cell laminate
JP5231080B2 (en) * 2008-04-30 2013-07-10 行政院原子能委員會核能研究所 A method for producing an electrolyte layer of a high performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA) by sputtering.
JP5294474B2 (en) * 2009-03-30 2013-09-18 三菱マテリアル株式会社 High power power generation cell with laminated solid electrolyte
JP5539835B2 (en) * 2010-09-30 2014-07-02 株式会社日本触媒 Method for producing electrolyte sheet for solid oxide fuel cell
JP5687501B2 (en) * 2011-01-12 2015-03-18 菊水化学工業株式会社 Single cell for direct flame fuel cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134963A (en) * 1989-10-19 1991-06-07 Fuji Electric Co Ltd Solid electrolyte type fuel cell
JPH0652869A (en) * 1992-07-30 1994-02-25 Nippon Telegr & Teleph Corp <Ntt> Solid electrolyte film of fuel cell and manufacture thereof
DE4237519C1 (en) * 1992-11-06 1994-03-31 Dornier Gmbh Solid electrolyte with multi-layer electrode attached to it
JPH083714A (en) * 1994-06-17 1996-01-09 Ngk Insulators Ltd Production of laminante
JPH09259901A (en) * 1996-03-26 1997-10-03 Sekiyu Sangyo Kasseika Center Solid electrolytic plate in flat solid electrolytic fuel battery and flat solid electrolytic fuel battery using the plate
JPH1012247A (en) * 1996-06-18 1998-01-16 Murata Mfg Co Ltd Solid electrolyte fuel cell and manufacture therefor
JP4209962B2 (en) * 1998-03-30 2009-01-14 財団法人電力中央研究所 Single cell of flat-type solid electrolyte fuel cell and cell stack using the same
US6228521B1 (en) * 1998-12-08 2001-05-08 The University Of Utah Research Foundation High power density solid oxide fuel cell having a graded anode

Also Published As

Publication number Publication date
JP2002373675A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
US9252447B2 (en) Composite anode for a solid oxide fuel cell with improved mechanical integrity and increased efficiency
JP3502012B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP5591526B2 (en) Solid oxide cell and solid oxide cell stack
US20100186220A1 (en) Fabrication method of metal supported solid oxide fuel cell
US11283084B2 (en) Fabrication processes for solid state electrochemical devices
Liu et al. Tailoring the pore structure of cathode supports for improving the electrochemical performance of solid oxide fuel cells
CN112687929A (en) Lithium oxide electrode micro-molten salt ceramic fuel cell and preparation method thereof
JP2006351406A (en) Air electrode powder for ceria coated sofc, its manufacturing method, and manufacturing method of air electrode
CN101271981A (en) Low temperature solid-oxide fuel battery three-in-one component MEA and preparation thereof
JP5110337B2 (en) Electrode structure for solid oxide fuel cell and method for producing the same
KR101124859B1 (en) Manufacturing method of lscf powder and cell having the powder for solid oxide fuel cell
CN109360991B (en) Low-temperature solid oxide fuel cell composite cathode and preparation method thereof
JP4795701B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell
JP6664132B2 (en) Porous structure, method of manufacturing the same, and electrochemical cell using the same and method of manufacturing the same
JP2010103122A (en) Solid oxide fuel cell, and method of manufacturing the same
KR101146349B1 (en) Fabrication Method of Metal Supported Solid Oxide Fuel Cell
JPH10172590A (en) Solid electrolyte type fuel cell
CN105474445A (en) Method for manufacturing anode support of solid oxide fuel cell, and anode support of solid oxide fuel cell
JP2003331874A (en) Interconnector for solid oxide fuel cell and its formation method
KR101024593B1 (en) Micro-sofcs and methods for manufacturing the same using porous metal film support
JP2008234927A (en) Manufacturing method of solid oxide fuel cell
KR20200096342A (en) Solid oxide fuel cell and method for producing same
JP2005116260A (en) Electrode for solid oxide fuel cell, and its manufacturing method
JPH11126617A (en) Solid electrolyte-type fuel cell and its manufacture
JP2007200663A (en) Manufacturing method of cerium based solid electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees