JP5110006B2 - 流量センサ、流量測定器及び流量制御器 - Google Patents

流量センサ、流量測定器及び流量制御器 Download PDF

Info

Publication number
JP5110006B2
JP5110006B2 JP2009048714A JP2009048714A JP5110006B2 JP 5110006 B2 JP5110006 B2 JP 5110006B2 JP 2009048714 A JP2009048714 A JP 2009048714A JP 2009048714 A JP2009048714 A JP 2009048714A JP 5110006 B2 JP5110006 B2 JP 5110006B2
Authority
JP
Japan
Prior art keywords
flow rate
resistor
dummy
sensor
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009048714A
Other languages
English (en)
Other versions
JP2009115829A (ja
Inventor
泰一 徳久
田中  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009048714A priority Critical patent/JP5110006B2/ja
Publication of JP2009115829A publication Critical patent/JP2009115829A/ja
Application granted granted Critical
Publication of JP5110006B2 publication Critical patent/JP5110006B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、ガス等の比較的小流量の流体の流量を計測する流量センサ、流量測定器及び流量制御器に関する。
一般に、半導体集積回路等の半導体製品等を製造するためには、半導体ウエハ等に対して例えばCVD成膜やエッチング操作等が種々の半導体製造装置において繰り返し行われるが、この場合に微量の処理ガスの供給量を精度良く制御する必要から例えばマスフローコントローラのような流量制御器が用いられている。
この種の流量制御器は、ガス等の流体の微細な流量(質量流量)を精度良く制御できるのに対して、その精度良く制御できる流量の領域は、広範囲に渡っているのではなく、設計によって製造時に決まってしまう一定の比較的狭い範囲である。例えば0〜5sccm程度の小流量の領域で精度良く流量制御できるように設計された流量制御器は、例えば100sccm程度の大流量の領域では流すことができない。逆に100sccm程度の大流量の領域で精度良く流量制御ができるように設計された流量制御器は、5sccm程度の小流量の領域での制御精度が劣化してしまう。
このため、半導体製造装置におけるガス配管に上記流量制御器を介設する場合には、半導体ウエハを処理する時にその配管に流すべきガス流量に対応した流量域で制御特性が良好となるように設計された流量制御器が用いられることになる(例えば特開平1−227016号公報、特開平4−366725号公報、特開平4−366726号公報等)。
ここで一般的な流量制御器の構成について、図17及び図18を参照して説明する。図17はガス配管に介設された流量制御器の概略構成図を示し、図18は流量制御器の流量センサを示す回路図である。
図示するように、この流量制御器2は、液体や気体等の流体を流す管、例えばガス管4の途中に介設されて、この流量を制御するようになっている。この流量制御器2は、例えばステンレススチール等により成形された流体通路6を有しており、この両端が上記ガス管4に接続される。この流量制御器2は流体通路6の前段側に位置する流量センサ5と後段側に位置する流量制御系7とよりなる。
まず、上記流量センサ5は、上記流体通路6のガス流体の流れ方向の上流側に設けられて大部分の流量を流すためのバイパス8を有している。上記バイパス8の両端側には、これを迂回するようにセンサ管14が接続されており、これにバイパス8と比較して小量のガス流体を一定の比率で流し得るようになっている。このセンサ管14には直列に接続された制御用の一対の抵抗体R1、R4が巻回されており、これに接続されたセンサ回路16により検出値(電位差)Vsを得るようになっている。
この検出値Vsは、例えばマイクロコンピュータ等よりなる流量制御部18へ導入されて、上記検出値Vsに基づいて現在流れているガスの流量が求められると共に、その流量が外部より入力される指令値S1に一致するように、上記流体制御系7を制御することになる。
この流体制御系7は、上記流体通路6の下流側に設けられた流量制御弁12を有しており、この流量制御弁12はガス流体の流量を直接的に制御するための弁体として例えばダイヤフラム10を有している。そして、このダイヤフラム10は、例えば積層圧電素子よりなるアクチュエータ20により、その弁開度が調整できるようになっている。このアクチュエータ20は、上記流量制御部18からの信号を受けて駆動部22が出力する駆動信号により動作する。
上記抵抗体R1、R4とセンサ回路16との関係は、図18に示されている。すなわち、上記抵抗体R1、R4の直列接続に対して、2つの基準抵抗R5、R6の直列接続回路が並列に接続されて、いわゆるブリッジ回路を形成している。そして、このブリッジ回路に、一定の電流を流すための定電流源24が接続されている。また、上記抵抗体R1、R4同士の接続点と上記基準抵抗R5、R6同士の接続点とを入力側に接続して差動回路26が設けられており、上記両接続点の電位差を求めて、この電位差を検出値Vsとして出力するようになっている。
ここで、上記抵抗体R1、R4は、温度に応じてその抵抗値が変化し、且つ電流に応じて発熱量が変わる素材よりなっており、ガスの流れ方向の上流側に抵抗体R1が巻回され、下流側に抵抗体R4が巻回されている。また、基準抵抗R5、R6は略一定の温度に維持されているものとする。
このように構成された流量制御器2において、センサ管14にガス流体が流れていない場合には、両抵抗体R1、R4の温度は同じになっていることから、ブリッジ回路は平衡して差動回路26の検出値である電位差は、例えばゼロである。
ここで、センサ管14にガス流体が流量Qで流れると仮定すると、このガス流体は上流側に位置する抵抗体R1の発熱によって温められてその状態で下流側の抵抗体R4が巻回されている位置まで流れることになり、この結果、熱の移動が生じて抵抗体R1、R4間に温度差、すなわち両抵抗体R1、R4間の抵抗値に差が生じて、この時発生する電位差はガスの流量に略比例することになる。従って、この検出値Vsに所定のゲインをかけることによってその時のガス流量を求めることができる。また、この検出されたガス流量が、指令値S1(実際は電圧値)で表されるガス流量と一致するように、上記流量制御弁12の弁開度が制御されることになる。
また、ガス流量と検出値である電位差との関係は、最初は比例的に直線性に優れているので流量制御に使用できる領域であるが、電位差が大きくなるに従って、飽和して流量制御に使用できない領域となってしまうので、検出値Vsにかけるゲインの値や使用する抵抗体R1、R4の抵抗値等を種々変更した流量制御器を多種類作成することにより、適正にガス流量を測定できる領域や範囲が異なった流量制御器を多種類用意している。
次に、上述のように構成された流量制御器を設けた半導体製造装置の一例について、図19を参照して説明する。ここでは、同一ガス種を異なる流量で供給する場合を例にとって説明する。
図示するように、この半導体製造装置は、例えば真空引き可能になされた処理チャンバ30を有しており、これにはガス管4を介して1つのガス源32が接続されている。そして、このガス管4は、途中で2つの別ルートのガス管4A、4Bへと並列に分かれており、各ガス管4A、4Bに、それぞれ流量制御器2A、2B及び開閉弁34、36を介設している。そして、例えばマイクロコンピュータ等よりなる装置制御部38からの指令により、上記流量制御器2A、2Bを選択的に動作させるようになっている。例えば上記一方の流量制御器2Aは、大流量用に設定されており、また、他方の流量制御器2Bは小流量用に設定されていることから、図12に示すように、処理の最初に大流量のガスを流し、その後、小流量のガスを流すような制御を必要とする場合には、最初に大流量用の流量制御器2Aを動作させ、その後、小流量用の流量制御器2Bを動作させるように制御が行われる。
ところで、上述のような構成の流量制御器にあっては、図19及び図20において説明したように、同一ガス種を流量が大きく異なる領域で供給しなければならない時には、各ガス流量の使用領域に対応させて作成された複数の流量制御器2A、2Bを用いなければならず、その分、設備コストが増大してしまうのみならず、また、異なる流量域の流量制御器を増設しようとした場合には、それなりの空間が必要となるために増設が難しい、といった問題があった。
また、図19に示すガス管4の配設構造では、ガス流量を切り替える時には、開閉弁34、36の開閉切り替え動作を行うが、この際、ガスの急激な流れの停止や急激な流れの開始等が生ずることを防止するために、弁の開閉切り替え操作にある程度の時間を要してしまい、この結果、ウエハの処理時間が長くなってスループットを低下させる原因にもなっていた。
本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。
本発明の目的は、流体の流量を精度良く検出できる領域を拡大することができる流量センサ及び流量測定器を提供することにある。
また、本発明の他の目的は、流体の流量を精度良く制御できる領域を拡大することができる流量制御器を提供することにある。
また、本発明の更に他の目的は、流体の流量制御範囲(フルスケール)内において最大流量域近傍の流量を精度良く検出することができる流量センサ及び流量制御器を提供することにある。
本発明の関連技術は、流体通路のバイパスを並列に設けたセンサ管と、温度に応じて抵抗値が変化する偶数個の抵抗体を前記センサ管の長さ方向に沿って直列接続して取り付けられて螺旋状に巻いた抵抗体群と、複数の基準抵抗を直列接続してなり、且つ前記抵抗体群と並列に接続された基準抵抗群と、前記抵抗体群と前記基準抵抗群とに一定の電流を流す定電流源と、前記基準抵抗同士の接続点と前記抵抗体同士の接続点との間の電位差を求める第1の差動回路と、前記第1の差動回路から出力される電位差に基づいて前記流体通路に流れる流体の流量を求める流量決定部と、を有する流量センサにおいて、前記偶数個の抵抗体の一部を選択的に短絡させてバイパスするスイッチ手段を有する少なくとも1つのバイパス回路と、前記バイパス回路と前記基準抵抗同士の接続点との間の電位差を求める少なくとも1つの流量域拡大用差動回路と、前記流量域拡大用差動回路から出力される電位差に基づいて前記流体通路に流れる流体の流量を求める第2の流量決定部と、を備えたことを特徴とする流量センサである。
この場合、例えば前記抵抗体は4つ設けられ、前記基準抵抗は2つ設けられると共に、前記バイパス回路は中央に直列接続される2つの抵抗体をバイパスする。
本発明の関連技術は、流体通路のバイパスを迂回するように設けたセンサ管と、温度に応じて抵抗値が変化する偶数個の抵抗体を前記センサ管の長さ方向に沿って直列接続して取り付けられた抵抗体群と、複数の基準抵抗を直列接続してなり、且つ前記抵抗体群と並列に接続された基準抵抗群と、前記抵抗体群と前記基準抵抗群とに一定の電流を流す定電流源と、前記基準抵抗同士の接続点と前記抵抗体同士の接続点との間の電位差を求める第1の差動回路と、前記第1の差動回路から出力される電位差に基づいて前記流体通路に流れる流体の流量を求める流量決定部と、を有する流量センサにおいて、流量域拡大用の流量域拡大測定手段を有し、前記流量域拡大測定手段は、流体を流さないダミーセンサ管と、温度に応じて抵抗値が変化する1つ或いは複数のダミー抵抗体を前記ダミーセンサ管の長さ方向に沿って取り付けたダミー抵抗体群と、前記ダミー抵抗体群の下流側と前記抵抗体群の上流側との間に接続され、且つ複数のダミー基準抵抗を直列に接続してなるダミー基準抵抗群と、前記ダミー基準抵抗群の両端に接続されて一定の電流を流すダミー用定電流源と、前記抵抗体群と前記ダミー抵抗体群とを選択的に直列に接続するスイッチ手段と、前記ダミー抵抗体群の入力側と前記ダミー基準抵抗同士の接続点との間の電位差を求める流量域拡大用差動回路と、前記流量域拡大用差動回路から出力される電位差に基づいて前記流体通路に流れる流体の流量を求める第3の流量決定部と、を備えたことを特徴とする流量センサである。
本発明の関連技術は、上記流量センサと上記流量域拡大測定手段とを備えたことを特徴とする流量センサである。
この場合、例えば前記抵抗体同士の接続点を選択する第1のスイッチと、前記ダミー基準抵抗同士の接続点を選択する第2のスイッチと、を有する。
請求項1に係る発明は、流体通路のバイパスに並列に設けたセンサ管と、前記センサ管に巻回され、且つ温度に応じて抵抗値が変化すると共に電流に応じて発熱量が変わる主抵抗体と、前記主抵抗体に一定の電流を流す定電流源と、周囲温度に応じた基準値を求めることができる基準値検出手段と、前記主抵抗体の両端に印加される電圧と前記基準値検出手段で求めた基準値とに基づいて前記流体通路に流れる流体の流量を求める第1の流量検出手段と、複数の基準抵抗を直列接続してなり、且つ前記主抵抗体と並列に接続された基準抵抗群と、前記主抵抗体の任意の位置の電圧を取り出す途中端子と、前記基準抵抗同士の接続点と前記途中端子との間の電位差を求める第2の流量検出手段と、前記主抵抗体の上流側端部と前記途中端子との間の任意の点に設けた上流側端子と、前記主抵抗体の下流側端部と前記途中端子との間の任意の点に設けた下流側端子と、前記上流側端部と前記上流側端子との間の電圧と、前記下流側端部と前記下流側端子との間の電圧との差を求めることによって前記流体通路に流れる流体の流量を求める第3の流量検出手段と、前記第1、第2及び第3の流量検出手段の各出力を選択的に切り替えるスイッチ手段と、を備えたことを特徴とする流量センサである。
この場合、例えば請求項2に規定するように、前記基準値検出手段は、流体を流さないダミーセンサ管と、前記ダミーセンサ管に巻回され、且つ温度に応じて抵抗値が変化すると共に流れる電流に応じて発熱量が変わるダミー用抵抗体と、前記ダミー用抵抗体に一定の電流を流すダミー用定電流源と、前記ダミー用抵抗体の両端の電圧を検出して前記基準値とするダミー用電圧検出部とよりなる。
また例えば請求項3に規定するように、前記基準値検出手段は、前記主抵抗体と前記ダミー用抵抗体との抵抗温度係数を一致させるための係数合わせ部を有する。
また例えば前記基準値検出手段は、周囲温度を電圧値として検出するためのサーミスタ、熱電対及び測温抵抗体の内のいずれか1つを含む。
また例えば前記基準値検出手段は、前記周囲温度に応じて検出される電圧値の周囲温度特性と、前記センサ管に流体を流さない時の前記主抵抗体の両端の電圧の周囲温度特性とを一致させるための係数合わせ部を有する。
また例えば前記基準値検出手段は、前記センサ管に前記流体が流れ始める前の前記主抵抗体の両端の電圧値を記憶し、該記憶値を前記基準値とする。
請求項4に係る発明は、流体通路のバイパスに並列に設けたセンサ管と、前記センサ管に巻回され、且つ温度に応じて抵抗値が変化すると共に電流に応じて発熱量が変わる主抵抗体と、前記主抵抗体に一定の電流を流す定電流源と、周囲温度に応じた基準値を求めることができる基準値検出手段と、前記主抵抗体の両端に印加される電圧と前記基準値検出手段で求めた基準値とに基づいて前記流体通路に流れる流体の流量を求める第1の流量検出手段と、複数の基準抵抗を直列接続してなり、且つ前記主抵抗体と並列に接続された基準抵抗群と、前記主抵抗体の任意の位置の電圧を取り出す途中端子と、前記基準抵抗同士の接続点と前記途中端子との間の電位差を求める第2の流量検出手段と、前記主抵抗体の上流側端部と前記途中端子との間の任意の点に設けた上流側端子と、前記主抵抗体の下流側端部と前記途中端子との間の任意の点に設けた下流側端子と、前記上流側端部と前記上流側端子との間の電圧と、前記下流側端部と前記下流側端子との間の電圧との差を求めることによって前記流体通路に流れる流体の流量を求める第3の流量検出手段と、前記第1、第2及び第3の流量検出手段の各出力を選択的に切り替えるスイッチ手段とを備え、前記基準値検出手段は、流体を流さないダミーセンサ管と、前記ダミーセンサ管に巻回され、且つ温度に応じて抵抗値が変化すると共に流れる電流に応じて発熱量が変わるダミー用抵抗体と、前記ダミー用抵抗体に一定の電流を流すダミー用定電流源と、前記ダミー用抵抗体の両端の電圧を検出するダミー用電圧検出部と、前記主抵抗体と前記ダミー用抵抗体との抵抗温度係数を一致させるための補償係数が予め記憶されていて該補償された抵抗温度係数と前記ダミー用電圧検出部で検出した電圧とに基づいて求めた電圧値を基準値として出力する係数合わせ部とを有することを特徴とする流量センサである。
また例えば前記各流量検出手段は、それぞれゲインを調整するための流量計算部を有する。
請求項5に係る発明は、流体通路のバイパスに並列に設けたセンサ管と、前記センサ管に巻回され、且つ温度に応じて抵抗値が変化すると共に電流に応じて発熱量が変わる主抵抗体と、複数の基準抵抗を直列接続してなり、且つ前記主抵抗体と並列に接続された基準抵抗群と、前記主抵抗体と前記基準抵抗群とに一定の電流を流す定電流源と、前記主抵抗体の任意の位置の電圧を取り出す途中端子と、前記基準抵抗同士の接続点と前記途中端子との間の電位差を求める第2の流量検出手段と、前記主抵抗体の上流側端部と前記途中端子との間の任意の点に設けた上流側端子と、前記主抵抗体の下流側端部と前記途中端子との間の任意の点に設けた下流側端子と、前記上流側端部と前記上流側端子との間の電圧と、前記下流側端部と前記下流側端子との間の電圧との差を求めることによって前記流体通路に流れる流体の流量を求める第3の流量検出手段と、前記第2及び第3の流量検出手段の各出力を選択的に切り替えるスイッチ手段と、を備えたことを特徴とする流量センサである。
請求項6に係る発明は、流体通路のバイパスに並列に設けたセンサ管と、前記センサ管に巻回され、且つ温度に応じて抵抗値が変化すると共に電流に応じて発熱量が変わる主抵抗体と、前記主抵抗体の温度、または該温度と周囲温度との差を一定に保つための定温度制御回路と、前記主抵抗体の任意の位置の電圧を取り出す途中端子と、前記主抵抗体の前記途中端子よりも上流側に投入された上流側電力と、前記主抵抗体の前記途中端子よりも下流側に投入された下流側電力との差に基づいて前記流体通路に流れる流体の流量を求める第4の流量検出手段と、周囲温度に応じた基準値を求めることができる基準値検出手段と、前記主抵抗体に投入される全電力と、前記基準値検出手段で求めた基準値とに基づいて前記流体通路に流れる流体の流量を求める第5の流量検出手段と、前記第4及び第5の流量検出手段の各出力を選択的に切り替えるスイッチ手段と、を備えたことを特徴とする流量センサである。
この場合、例えば前記基準値検出手段は、流体を流さないダミーセンサ管と、前記ダミーセンサ管に巻回され、且つ温度に応じて抵抗値が変化すると共に流れる電流に応じて発熱量が変わるダミー用抵抗体と、前記ダミー用抵抗体の温度を一定に保つ、または該温度と周囲温度との差を一定に保つダミー用定温度制御回路と、前記ダミー用抵抗体に投入される電力を検出して前記基準値とするダミー用電力検出部と、よりなる。
また例えば前記基準値検出手段は、前記センサ管に前記流体が流れ始める前の前記主抵抗体に投入される全電力を記憶し、該記憶値を前記基準値とする。
また例えば前記第4及び第5の各流量検出手段は、それぞれゲインを調整するための流量計算部を有する。
また例えば前記各流量計算部は、前記スイッチ手段の切り替えに応じて流量制御特性が不連続点、或いは変曲点を有するようにそれぞれ異なるゲインを有している。
また例えば前記流量計算部は、前記流量制御特性がLOG特性を示すようなゲインを有している。
請求項7に係る発明は、上記流量センサを用いた流量測定器であり、すなわち請求項1乃至6のいずれか一項に記載の流量センサと、前記流量センサで得られた流量を表示する表示部とを有することを特徴とする流量測定器である。
請求項8に係る発明は、上記流量センサを用いた流量制御器であり、すなわち請求項1乃至6のいずれか一項に記載の流量センサと、流体通路に介設した流量制御弁と、前記流量センサの出力値に基づいて前記流量制御弁の弁開度を制御するアクチュエータと、を備えたことを特徴とする流量制御器である。
本発明によれば、流体の流量を精度良く検出できる領域を拡大することができる流量センサ及び流量測定器を提供することができる。
また、流体の流量を精度良く制御できる領域を拡大することができる流量制御器を提供することができる。
また、流体の流量制御範囲(フルスケール)内において最大流量域近傍の流量を精度良く検出することができる。
以下に、本発明の関連技術の流量センサ、流量測定器及び流量制御器の一実施例を添付図面に基づいて詳述する。
図1は本発明の関連技術の流量センサの第1実施例の要部を示す回路構成図である。尚、図17及び図18に示す構成部分と同一部分については同一符号を付して説明する。また本明細書中で用いる”小流量”、”中流量”、”大流量”の用語はそれぞれ絶対値の流量を示すものでなく、単に流量の相対的な大小を表すために用いる。
この流量センサ40は、図17に示す流量制御器2に設けた流量センサ5の部分に対応する構成部分であり、この図1では流体通路6とこれに介設されているバイパス8の記載は省略している。
図示するように、ここでは例えばステンレススチール製の細いパイプよりなるセンサ管14には、温度に応じ抵抗値が変化し、且つ電流に応じて発熱量が変わる偶数個、図示例では4個の抵抗体R1、R2、R3、R4をこの順序で直列接続してなる抵抗体群42がセンサ管14の長さ方向に沿って巻き付けられている。この場合、抵抗体R1が最も上流側に位置されている。
また、上記抵抗体群42には、複数、図示例では2個の基準抵抗R5、R6を直列接続してなる基準抵抗群44が並列に接続されている。尚、ここでは発明の理解を容易にするために、室温における抵抗体R1〜R4及び基準抵抗R5、R6の各抵抗値は同一であるとする。
そして、上記抵抗体群42と基準抵抗群44には、一定の電流を流すための定電流源24が接続されている。また、上記中央の2つの抵抗体R2、R3同士の接続点と、上記基準抵抗R5、R6同士の接続点とからそれぞれ電圧を取って両電圧を比較する第1の差動回路46が設けられており、両接続点の電位差Vs を得るようになっている。
また、上記上流側の2つの抵抗体R1、R2同士の接続点と、下流側の2つの抵抗体R3、R4同士の接続点とを連絡して短絡できるようにバイパス回路48が設けられる。具体的には、このバイパス回路48は、途中に開閉できるスイッチ手段50を介設してなる配線ライン52よりなり、必要に応じて上記スイッチ手段50を開閉することにより、短絡させて上記最上流の抵抗体R1と最下流の抵抗体R4とを直接的に接続した状態を実現できるようになっている。尚、この短絡時の抵抗体の接続は図17に示す場合と同じになる。
そして、上記バイパス回路48と上記基準抵抗R5、R6同士の接続点とからそれぞれ電圧を取って両電圧を比較する流量域拡大用差動回路54が設けられており、両電圧の電位差Vs を得るようになっている。
そして、上記両差動回路46、54の出力である電位差Vs 、Vs は、出力切替スイッチ56により切り替えて選択的に出力可能になっている。尚、ここまでの構成は、図17中のセンサ回路16に対応するものである。
次に、上記出力切替スイッチ56の出力は、上記出力切替スイッチ56と同期して切り替わるゲイン選択スイッチ58に入力され、測定すべき流量域に対応したゲインを入力信号にかけるゲイン器(第1の流量決定部)60Aとゲイン器(第2の流量決定部)60Bとを選択し得るようになっている。そして、上記入力される電位差に各ゲイン器60A、60Bのゲインをかけることにより、ガス流体の流量値を求めるようになっている。
このように、出力されてくる電位差にかけるゲインを異ならせることにより、異なる流量域で精度の良いガス流量の測定を可能にしている。
そして、上記スイッチ手段50及び各スイッチ56、58の制御は、このセンサ全体の動作を制御する例えばマイクロコンピュータ等よりなるセンサ制御部62により行われる。
次に、図2に示すグラフも参照して、上記センサの動作について説明する。図2は第1実施例のガス流量とセンサ出力電圧(電位差)との関係を示すグラフである。尚、後述する各実施例も含み、各スイッチに付されている▲1▼〜▲4▼は、それぞれ同じ数字同士の側に同期して切り替わることを意味する。
<小流量域>
まず、ガス流量の小流量域(例えば0〜5sccm程度の範囲内)について流量の検出を行う場合について説明する。
この場合には、バイパス回路48のスイッチ手段50を閉じ、出力切替スイッチ56及びゲイン選択スイッチ58を共に▲1▼側に切り替える。従って、上記スイッチ手段50を閉じることによって、抵抗体R2、R3には電流が流れず、抵抗体R1、R4に定電流が流れる。尚、基準抵抗R5、R6には定電流が流れているのは勿論である。
従って、この時の回路状態は、図18にて説明したと同じ回路構成になっており、抵抗体R1、R4同士の接続点と基準抵抗R5、R6同士の接続点との電圧が流量域拡大用差動回路54にて比較され、その電位差が検出値Vs として出力される。そして、この検出値Vs にゲイン器60Aにて所定のゲインをかけることによりその時のガス流体の流量値が求められることになる。この時のガス流量とセンサ出力(電位差)との関係は図2中において曲線Aにて示されている。この曲線Aはガス流量がゼロから増加する時はセンサ出力に対して直線性が良好に略比例的に増加しており、途中からセンサ出力は飽和状態へ移行している。この場合、特性の直線性が特に良好な範囲は、曲線Aの前半側であり、ガス流量の一例としては例えば0〜5sccm程度の範囲内である。従って、ガス流量が0〜5sccmの範囲をフルスケールとしてガス流量を計測することにより、この流量域にてガス流量を精度良く計測することが可能となる。
<中流量域>
次に、ガス流量の中流量域(例えば5〜10sccm)について流量の検出を行う場合について説明する。
この場合には、バイパス回路48のスイッチ手段50を開き、出力切替スイッチ56及びゲイン選択スイッチ58を共に▲2▼側に切り替える。従って、上記スイッチ手段50を開くことによって、全ての抵抗体R1、R2、R3、R4に定電流が流れる。尚、基準抵抗R5、R6には定電流が流れているのは勿論である。
従って、この時の各スイッチの状態は、図1中において実線で示された状態になっており、抵抗体R2、R3間の接続点と基準抵抗R5、R6間の接続点の電圧が第1の差動回路46にて比較され、その電位差が検出値Vs として出力される。そして、この検出値Vs にゲイン器60Bにて所定のゲインをかけることによりその時のガス流体の流量値が求められることになる。この時のガス流量とセンサ出力(電位差)との関係は図2中において曲線Bにて示されている。この曲線Bは、先の曲線Aの場合よりも全体的に出力が大きくなって、ガス流量がゼロから増加する時はセンサ出力に対して直線性が良好に略比例的に増加しており、途中からセンサ出力は飽和状態へ移行している。この場合、特性の直線性が特に良好な範囲は、曲線Bの前半側から中央部程度まであり、ガス流量の一例としては例えば0〜10sccm程度の範囲内である。従って、ガス流量が0〜10sccmの範囲をフルスケールとしてガス流量を計測することにより、この流量域にてガス流量を精度良く計測することが可能となる。
ただし、この場合、0〜5sccmの範囲内は、上記曲線Aに基づくガス流量の計測を行った方がより精度の高いガス流量の検出を行うことができる。
このように、4つの抵抗体R1〜R4の全てに定電流を流すことにより、この部分での発熱量が抵抗体が2つの場合よりも全体としての発熱量が大きくなり、このためにガス流量が拡大された領域についてもガス流量を精度良く検出乃至測定することが可能となる。従って、ガス流量が大幅に異なるような複数の処理を行う場合にも、ガス流量を迅速に異ならせることができ、処理の迅速化を図ることができる。
また、必要に応じて複数の抵抗体R1〜R4の内の一部の抵抗体を検出用の抵抗体として使用しないことにより、少ない流領域においてもガス流量を精度良く検出乃至測定することが可能となる。
尚、ここでは4つの抵抗体R1〜R4を設けた場合を例にとって説明したが、これに限定されず、更に多くの偶数個の抵抗体を直列に接続して、上述したと同様な切り替え操作を行うことにより、更に広い流量域に亘ってガス流量を精度良く検出できるようにしてもよい。
<第2実施例>
次に、本発明の関連技術の第2実施例について説明する。
図3は本発明の関連技術の流量センサの第2実施例の要部を示す回路構成図である。尚、図1、図17、図18に示す構成部分と同一部分については同一符号を付して説明を省略する。
ここでは、図18に示す従来の流量センサに加えて流量域拡大測定手段62を設けている。なすわち、図中左側に示す従来の流量センサは、センサ管14に巻回される抵抗体R1、R4の直列接続よりなる抵抗体群64と、基準抵抗R5、R6よりなる基準抵抗群44(図1参照)と、定電流源24、差動回路26を有している。
これに対して、上記流量域拡大測定手段62は、例えばセンサ管14と同じ構造のダミーセンサ管66を有しており、このダミーセンサ管66には全く流体を流通させないようにしている。
そして、このダミーセンサ管66には、温度に応じて抵抗値が変化すると共に電流に応じて発熱量が変わるダミー抵抗体群68が上記ダミーセンサ管66の長さ方向に沿って取り付けられている。ここではダミー抵抗体群68は、温度に応じて抵抗値が変化し、且つ電流に応じて発熱量が変わる1つ、或いは複数の、図示例では2つのダミー抵抗体R1’、R4’をこの順序で直列接続して構成されている。尚、このダミー抵抗体R1’、R4’を全体として抵抗値が同じ1つのダミー抵抗体でおきかえてもよい。
そして、上記抵抗体群64の上流側と上記ダミー抵抗体群68の下流側との間を、複数、図示例では2つのダミー基準抵抗R7、R8をこの順序で直列接続してなるダミー基準抵抗群70により接続している。ここで、発明の理解を容易にするために上記各抵抗体R1、R4、R1’、R4’は室温で全て同一抵抗値のものを用い、抵抗R7、R8も同一抵抗値のものを用いるものとする。上記ダミー基準抵抗群70の両端には、一定の電流を流すためのダミー用定電流源72が接続されている。また、上記ダミー抵抗体群68の入力側と上記ダミー基準抵抗R7、R8同士の接続点の電圧を取って両者の比較を行う流量域拡大差動回路74が接続されており、ここで上記両電圧の電位差Vs を得るようになっている。
また、上記抵抗体群64と上記ダミー抵抗体群68との間には、両者を選択的に直列に接続するスイッチ手段76が接続されている。具体的には、このスイッチ手段76は、上記抵抗体群64の出力側に設けられ、このラインを開閉する第1の切替スイッチ76Aと、上記ダミー抵抗体群68の入力側に接続されて、上記第1の切替スイッチ76Aの出力側と、一端が上記ダミー基準抵抗群70の入力側に接続された緩衝抵抗Raとの間で切り替えを行う第2の切替スイッチ76Bとにより構成されている。これにより、両スイッチ76A、76Bを共に▲3▼側に切り替えて上記抵抗体群64と上記ダミー抵抗体群68とを直列接続した時には、上記各抵抗体群64、68と、両ダミー基準抵抗R7、R8とでブリッジ回路を形成し得るようになっている。そして、上記両差動回路26、74の出力側には、図1にて説明したと同様に、出力切替スイッチ56、ゲイン選択スイッチ58が設けられると共に、ゲイン器60A及び第3の流量決定部としてのゲイン器60Cから選択できるようになっている。
ここで上記各スイッチ56、58、76A、76Bの動作には、このセンサ全体を制御するセンサ制御部62により行われる。
次に、図4に示すグラフも参照して上記センサの動作について説明する。
図4は第2実施例のガス流量とセンサ出力電圧(電位差)との関係を示すグラフであり、図4(A)は小流量域のグラフを示し、図4(B)は中流量域から大流量域のグラフを示す。
<小流量域>
まず、ガス流量の小流量域(例えば0〜5sccm程度の範囲内)について流量の検出を行う場合について説明する。
この場合には、スイッチ手段76の第1の切替スイッチ76A、第2の切替スイッチ76B及び出力切替スイッチ56、ゲイン選択スイッチ58は、共に▲1▼側に切り替えておく。これにより、抵抗体群64の各抵抗体R1、R4及び基準抵抗群44の各基準抵抗R5、R6には定電流源24によってそれぞれ一定の電流が流れている。この時の回路構成は、図18に示す従来のセンサと同じである。
また、この時、ダミー抵抗体群68の両ダミー抵抗体R1’、R4’及びダミー抵抗群70のダミー基準抵抗R7、R8にもダミー用定電流源72によって一定の定電流が流されて測定準備のために加温されてはいるが、ここでは流量測定には用いられない。
この時のガス流量とセンサ出力との関係は、図4(A)に示す曲線Aのように表され、これは図2中の曲線Aと同じ特性曲線となる。従って、これにより、例えば0〜5sccm程度の小流量域においてガス流量を精度良く測定することが可能となる。
<中流量域〜大流量域>
次に、ガス流量の中流量域〜大流量域(例えば10〜50sccm程度の範囲内)について流量の検出を行う場合について説明する。
この場合には、スイッチ手段76の第1の切替スイッチ76A、第2の切替スイッチ76B及び出力切替スイッチ56、ゲイン選択スイッチ58は、共に▲3▼側に切り替えておく。これにより、抵抗体群64とダミー抵抗体群68とは直列接続され、従って、各抵抗体R1、R4及びダミー抵抗体R1’、R4’にはダミー用定電流源72によって一定の定電流が流されることになる。
そして、抵抗体R4とダミー抵抗体R1’との接続点と、両ダミー基準抵抗R7、R8同士の接続点との電位差Vs が流量域拡大差動回路74にて得られ、これにゲイン器60Cのゲインをかけることによって流量値が求められる。尚、センサ管14にガス流体が流れてもダミーセンサ管66にはガス流体が流れないのは前述した通りである。この時のガス流量とセンサ出力(電位差)との関係は図4(B)に曲線Cとして示されている。
このグラフから明らかなように、ガス流量が大きくなるに従って、センサ出力は一方向へ次第に大きくなっている。この場合、曲線Cに示すようにガス流量が流れ始めた当初は特性曲線の直線性はそれ程良好ではないが、その後、特性曲線の直線性がかなり良好な状態が続いており、そして、更にガス流量が増加するとセンサ出力は略飽和してしまう。従って、特に特性曲線の直線性が良好な範囲は、図示例の場合は10〜50sccm程度の中流量域から大流量域にかけての範囲内であり、この領域においてガス流量を高い精度で測定できることが可能となる。
尚、上記第2実施例の変形例として図5に示すように構成してもよい。図5中において、図3中に示す部分と同一構成部分については同一参照符号を付してその説明を省略する。また、差動回路26及び流量拡大用差動回路74以降の回路構成の記載は省略している。
ここでは、第1の切替スイッチ76Aで定電流源24側と流量拡大用差動回路74側との間を直接的に切り替えるようにしている。そして、開閉スイッチ76Cを上記緩衝抵抗Raに対して直列接続して、これを更に流量拡大用差動回路74側中に直接的に接続している。一方、センサ管14の最上流側の抵抗体R1と電流入力側に第2の切替スイッチ76Bを設けて、ここで基準抵抗R5及び定電流源24側と、緩衝抵抗Ra、ダミー基準抵抗R7及びダミー用定電流源72側とを切替えるようになっている。また、定電流源24に、保護抵抗Rdと開閉スイッチ76Dとよりなる直列回路を並列に接続している。
上記開閉スイッチ76Cは、図中の▲1▼印で閉じられ、▲3▼印で開かれる。逆に、上記開閉スイッチ76Dは、図中の▲1▼印で開かれ、▲3▼印で閉じられる。ここで、第1及び第2の切替スイッチ76A、76Bが▲3▼印側に接触している時、この開閉スイッチ76Dを▲3▼印側にしてスイッチONとする。これにより、保護抵抗Rdに電流を流して基準抵抗R5、R6に過大な電流が流れるのを防止してこの抵抗を保護するようになっている。
他の第1及び第2の切替スイッチ76A、76Bの切り替えは、▲1▼印及び▲3▼印で示され、図3において説明したと同様の操作で切り替えが行われる。この変形例の場合にも、図3において説明した場合と同様に動作することになる。
<第3実施例>
次に、本発明の関連技術の第3実施例ついて説明する。
図6は本発明の関連技術の流量センサの第3実施例の要部を示す回路構成図である。尚、図1及び図2に示す構成部分と同一部分については同一符号を付してその説明を省略する。
この第3実施例では、前記第1実施例と第2実施例とを結合して組み合わせたものであり、そして、抵抗体として4つの抵抗体R1〜R4を用いていることから、これに対応させて、それぞれ同じ抵抗値の4つのダミー抵抗体R1’、R2’、R3’、R4’を直列接続してダミー抵抗体群68として用いている。尚、経時変化等を同様に生ぜしめて検出誤差を極力抑制するためには、上述のように4つの抵抗体R1〜R4に対して同様な構造の4つのダミー抵抗体R1’〜R4’を用いるのがよいが、これに限定されず、例えばこの4つのダミー抵抗体R1’〜R4’と全体としての抵抗が同じ1つのダミー抵抗体を上記4つのダミー抵抗体R1’〜R4’に代えて用いるようにしてもよい。
また、ここでは3つの流量域に対して切り替えが可能なことから、出力切替スイッチ56、ゲイン選択スイッチ58としては、3点の選択可能な3点スイッチが用いられている。尚、この3点スイッチはセンサ制御部62により切り替え可能になされているのは勿論であり、実際にはコンピュータにてソフトウエア的に切り替え操作が行われる。
次に、図7に示すグラフも参照して上記センサの動作について説明する。
図7は第3実施例のガス流量とセンサ出力電圧(電位差)との関係を示すグラフであり、図7(A)は小流量域及び中流量域のグラフを示し、図7(B)は大流量域のグラフを示す。
<小流量域>
まず、ガス流量の小流量域(例えば0〜5sccm程度の範囲内)について流量の検出を行う場合について説明する。
この場合には、スイッチ手段50を閉状態とし、スイッチ手段76の第1の切替スイッチ76A、第2の切替スイッチ76B及び出力切替スイッチ56、ゲイン選択スイッチ58は、共に▲1▼側に切り替えておく。これにより、抵抗体R1、R4を用いた流量測定を行うことができ、この時のガス流量とセンサ出力との関係は、図7(A)に示す曲線Aのように表され、これは図2中の曲線Aと同じ特性曲線となる。従って、これにより、例えば0〜5sccm程度の小流量域においてガス流量を精度良く測定することが可能となる。
<中流量域>
中流量域の測定の場合には、スイッチ手段50を開状態に切り替えると共に、出力切替スイッチ56及びゲイン選択スイッチ58を共に▲2▼側へ切り替え、これに対して、第1の切替スイッチ76A、第2の切替スイッチ76Bは共に▲1▼側にしておく。
これにより、抵抗体R1、R2、R3、R4を用いた流量測定を行うことができ、この時のガス流量とセンサ出力との関係は、図7(A)に示す曲線Bのように表され、これは図2中の曲線Bと同じ特性曲線となる。従って、これにより、例えば5〜10sccm程度の中流量域においてガス流量を精度良く測定することが可能となる。
<大流量域>
大流量域の測定の場合には、スイッチ手段50を開状態に維持すると共に、第1の切替スイッチ76A、第2の切替スイッチ76B、出力切替スイッチ56及びゲイン選択スイッチ58を共に▲3▼側へ切り替える。
これにより、抵抗体R1、R2、R3、R4及びダミー抵抗体R1’〜R4’を用いた流量測定を行うことができ、この時のガス流量とセンサ出力との関係は、図7(B)に示す曲線Cのように表され、これは図4(B)中の曲線Cと略同じ特性曲線となるが、この場合には、抵抗体及びダミー抵抗体が2つから4つに増加した分だけ図4(B)の場合よりも、より大流量域までの測定が可能となる。従って、これにより、例えば10〜100sccm程度の大流量域においてガス流量を精度良く測定することが可能となる。
<第4実施例>
次に、本発明の関連技術の第4実施例について説明する。
図8は本発明の関連技術の流量センサの第4実施例の要部を示す回路構成図である。この第4実施例は、図6に示した上記第3実施例の変形例であり、ダミーセンサ管66側のダミー抵抗体群68を流量測定に用いる場合の回路構成の態様を広げたものである。
すなわち、上記各抵抗体R1〜R4の内の隣接する抵抗体同士の各接続点を選択するために、各接続点から引き出されたラインを選択する第1のスイッチ80を、図6中の第2の切替スイッチ76Bに代えて設ける。尚、この選択枝には、最下流に位置する抵抗体R4の出力ラインも含む。
また、各ダミー抵抗体R1’〜R4’の内の隣接する抵抗体同士の各接続点を選択するために、各接続点から引き出されたラインを選択する第2のスイッチ82を、最下流のダミー抵抗体R4’の出力ラインに設ける。尚、この選択枝には、このダミー抵抗体R4’の出力ラインも含む。
さて、このように構成された装置において、小流量域及び中流量域の流量測定を行う場合には、図6にて説明したように実行すればよい。この時、第1及び第2のスイッチ80、82は共に▲1▼側に接続しておけばよい。
これに対して、例えば大流量域の流量測定を行う場合には、まず、先の第3実施例と同様にスイッチ手段50を開状態とし、第1の切替スイッチ76Aを▲3▼側へ切り替える。そして、第1及び第2のスイッチ80、82を同期させて▲1▼〜▲4▼側へ適宜切り替えて接続点を選択することにより様々な流量域にて測定を行うことができる。例えばスイッチ80、82を共に▲1▼側へ接続した時は抵抗体R1とR1’が使用され、▲2▼側へ接続した時は抵抗体R1、R2とR1’、R2’が使用され、▲3▼側へ接続した時は抵抗体R1〜R3とR1’〜R3’が使用され、▲4▼側へ接続した時は抵抗体R1〜R4とR1’〜R4’が使用されることになる。尚、上記▲4▼側の場合は図6にて説明した大流量域を測定する場合に対応する。
<第5実施例>
次に第5実施例について説明する。
図9は本発明の流量センサの第5実施例の要部を示す回路構成図である。この第5実施例は主として大流量域の流量制御を対象とした流量センサである。尚、先に説明した実施例と同様な構成部分については同一符号を付して説明する。
ここではセンサ管14には、温度に応じて抵抗値が変化すると共に流される電流に応じて発熱量が変わる主抵抗体90がその長さ方向に沿って巻回させて設けられている。この主抵抗体90は、先の抵抗体R1〜R4等と同様な素材である。そして、この主抵抗体90には、これに一定の電流を流すための定電流源24が接続されている。そして、上記主抵抗体90の両端部には、これに印加される電圧を求めるための差動回路92が接続されている。また、この第5実施例では、この流量センサが設置される周囲温度に応じた基準値を求めることができる基準値検出手段94が設けられる。この基準値検出手段94は、図10(後述する)で示すダミーセンサ管を用いたり、サーミスタ、熱電対、測温抵抗体等よりなる検出部96を有しており、周囲温度(雰囲気温度)に応じた信号を電圧として出力し得るようになっている。
また、この基準値検出手段94は、上記検出部96で検出される周囲温度に応じた電圧値の周囲温度特性と、上記センサ管に流体を流していない時の主抵抗体90の両端の電圧の周囲温度特性とを一致させるための係数合わせ部98を有している。このような係数を合わせるための補償特性は、予め測定してこの係数合わせ部98に記憶させておく。
そして、上記差動回路92の出力側と上記基準値検出手段94の出力側とに接続されて、これらの出力に基づいて上記流体通路6(図17参照)に流れる流体の流量を求める第1の流量検出手段100が設けられている。この第1の流量検出手段100は、差動回路102とこの差動回路102の出力値に対してゲインをかけるなどして実際の流量に応じた電圧(流量値)へ変換(計算)する流量計算部104とよりなり、これより流量値に対応する電圧値を出力するようになっている。
ここでの流量センサの動作は、図3及び図5において説明した、いわゆる大流量域の動作と類似している。すなわち、センサ管14にガス流体が流れると、このガスに熱が奪われて定電流の主抵抗体90の温度が低下してこの抵抗値が下がるので主抵抗体90の両端の電圧が次第に低下する。この主抵抗体90の全体に印加されている電圧が、基準値検出手段94の出力値(基準値)Vst1と、第1の流量検出手段100の差動回路102にて比較される。そして、この差動回路102の出力値に所定のゲイン等がかけられて流れる流体の流量値を示す値が電圧として出力されることになる。この時、上述したように基準値検出手段94からは、この時の周囲温度に応じた電圧値が出力される。
この時のガス流量とセンサ出力電圧との特性曲線は図4(B)や図7(B)に示すように、いわゆる大流量域で示すような特性曲線を示すことになる。図4(B)や図7(B)ではセンサ出力電圧は負方向に増加しているが、単に極性が逆になっているだけである。具体的には、図12中の特性曲線Cで示すようにガス流量の増加に従ってセンサ出力電圧が緩い曲線を描いて次第に増加して行く。この増加は、主抵抗体90の温度がガス温度に一致するまで続くことになる。従って、この流量センサか制御できる流量制御範囲(フルスケール)内において、最大流量域近傍における流量を精度良く検出することが可能となる。
尚、ここでは基準値検出手段94としてサーミスタ等を用いた場合を説明したが、これに替えて、上記センサ管14に流体が流れ始める前の(直前の)上記主抵抗体90の電圧値をメモリに記憶し、実際の流量制御時にはこのメモリに記憶した記憶値を基準値として用いるようにしてもよい。
<第6実施例>
次に第6実施例について説明する。
図10は本発明の流量センサの第6実施例の要部を示す回路図である。この第6実施例は、先の第5実施例における基準値検出手段94としてダミーセンサ管66を用いたものである。尚、先に説明した各実施例と同一構成部分については同一符号を付して説明する。また、図9に示す部分と同一構成部分については同一符号を付してその説明を省略する。
図10に示すように、この流量センサにあっては基準値検出手段94として流体を流さないダミーセンサ管66を有しており、このダミーセンサ管66に、温度に応じて抵抗値が変化すると共に流れる電流に応じて発熱量が変わるダミー用抵抗体10が巻回して設けられている。
そして、このダミー用抵抗体110の両端部には、これに一定の電流を流すためのダミー用定電流源72が接続されると共に、このダミー用定電流源72には並列に緩衝抵抗Raが接続されている。更に、上記ダミー用抵抗体110の両端部にはこの両端の電圧を基準値として検出するために、例えば差動回路よりなるダミー用電圧検出部112が接続されており、上記ダミー用抵抗体110に印加される電圧を検出するようになっている。そして、このダミー用電圧検出部112に接続される係数合わせ部98には、上記主抵抗体90とダミー用抵抗体110との抵抗温度係数を一致させるための補償係数が予め記憶されており、補償された抵抗温度係数に基づいて求められた電圧値が基準値Vst1として出力されることになる。
上記抵抗温度係数の補償について説明すると、電圧値を式”a・Ed+b”より上記係数合わせ部98で求める。ここで”Ed”はダミー用抵抗体110の両端の電圧であり、”a”及び”b”は上記主抵抗体90と上記ダミー用抵抗体110の抵抗温度係数を一致させるための定数であり、予め測定等することによって定められている。従って、このダミーセンサ管66を用いた基準値検出手段94からは、周囲温度に依存して求められる基準値Vst1が常時出力されることになる。
この場合にも図9に示す流量センサにおいて説明したと同様な動作特性を示すことになり、従って、この流量センサか制御できる流量制御範囲(フルスケール)内において、最大流量域近傍における流量を精度良く検出することが可能となる。
<第7実施例>
次に第7実施例について説明する。
図11は本発明の流量センサの第7実施例の要部を示す回路図である。この第7実施例は、先の第6の実施例に対して中流量用の流量検出手段を組み合わせたものであり、この点において先の図3及び図5の発明に類似した発明である。尚、先に説明した各実施例と同一構成部分については同一符号を付して説明する。また、図9に示す部分と同一構成部分については同一符号を付してその説明を省略する。
図11に示すように、この流量センサにあっては、図10にて説明した流量センサ構成に、いわゆる中流量用の流量検出手段として第2の流量検出手段116を設けた構成となっている。すなわち、まず上記主抵抗体90の長さ方向における任意の位置の電圧を取り出す途中端子118を設ける。この途中端子118は、上記主抵抗体90の長さ方向のどこでもよく、その中央に限定されない。これにより、主抵抗体90の上流側端部と途中端子118との間が例えば図3中の抵抗体R1に対応し、途中端子118と主抵抗体90の下流側端部との間が図3中の抵抗体R4に対応することになる。そして、上記主抵抗体90の両端に2つの基準抵抗R5、R6の直列回路を並列となるように接続し、ブリッジ回路を形成する。また、上記途中端子118よりも上流側の主抵抗体90に印加される電圧と、上記途中端子118よりも下流側の主抵抗体90に印加される電圧との差を求めることにより流体通路6(図17参照)に流れる流体の流量を求める第2の流量検出手段116が設けられる。具体的には、この第2の流量検出手段116は、上記途中端子118の電位と上記基準抵抗R5、R6の接続点の電位とを比較してその差(電位差)を得る差動回路120と、この差動回路120の出力側に接続されて、上記差動回路120の出力値に対してゲインをかけるなどして実際の流量に応じた電圧値(流量値)へ変換(計算)する流量計算部122とよりなり、これより流量値に対応する電圧値を出力するようになっている。
更に、この第2の流量検出手段116の上記流量計算部122の出力側と上記第1の流量検出手段100の流量計算部104の出力側とには、これらの2つの出力を切り替えて選択的に取り出すためのスイッチ手段124が接続されている。
このように、構成された流量センサにあっては、図2、図4及び図7に示すような特性曲線と同様な特性を示し、具体的には図12に示すような特性を示す。図12は第7実施例のガス流量とセンサ出力電圧(電位差)との関係を示すグラフである。ここで特性曲線Bは第2の流量検出手段(中流量用)116より出力される特性曲線を示し、特性曲線Cは第1の流量検出手段(大流量用)100より出力される特性曲線を示す。尚、特性曲線Aは後述する実施例8の特性曲線である。また、特性曲線Cは、ここでは図4及び図7に示す場合とはその極性を逆にして(正にして)表している。
図12に示すグラフにおいてはフルスケールで100sccmの流量を示すように設定されている。特性曲線Bは、ガス流量が増加するに従って、センサ出力電圧は、ゼロから次第に増加し、途中でピークを通過した後に次第に低下するように上方に緩やかな突形状になっている。これに対して、特性曲線Cは、ガス流量が増加するに従ってセンサ出力電圧は緩い曲線を描きながら上昇している。
このような特性では、特性曲線Bはガス流量が少ない領域、すなわち0〜20sccm程度の領域では流量の測定精度がかなり高い反面、20sccm以上の領域では流量の測定精度が大幅に低下してしまう。
これに対して、特性曲線Cでは、ガス流量が少ない領域(例えば0〜20sccm)では、特性曲線Bほどには流量の測定精度は高くはないが、20sccm以上の領域では特性曲線Bよりもその流量精度は高くなる。従って、例えばガス流量が20sccm程度のポイントをスイッチ手段124の切り替え点とし、20sccmよりガス流量が少ない場合は特性曲線Bを用いるようにし、20sccmよりガス流量が多い場合は特性曲線Cを用いるようにすればよい。これにより、流体の流量を精度良く検出できる領域を拡大することができる。
<第8実施例>
次に、第8実施例について説明する。
図13は本発明の流量センサの第8実施例の要部を示す回路図である。この第8実施例は、先の第7実施例に対して小流量用の流量検出手段を組み合わせたものであり、この点において先の図6及び図8の発明に類似した発明である。尚、先に説明した各実施例と同一構成部分については同一符号を付して説明する。また、図11に示す部分と同一構成部分については同一符号を付してその説明を省略する。
図13に示すように、この流量センサにあっては、図11にて説明した流量センサに、いわゆる小流量用の流量検出手段として第3の流量検出手段130を設けた構成となっている。すなわち、まず上記主抵抗体90の上流側端部と上記途中端子118との間の任意の点にこの電圧を取り出す上流側端子132を設け、更に、この主抵抗体90の下流側端部と上記途中端子118との間の任意の点にこの電圧を取り出す下流側端子134を設ける。これにより、上記主抵抗体90が、その長さ方向で4つに分割された状態となり、例えば4つの各区分は左側から右側に向けて、例えば図6中の各抵抗体R1、R2、R3、R4にそれぞれ対応することになる。
そして、上記主抵抗体90の上流側端部と上記上流側端子132との間に印加されている電圧を求めるために差動回路136を設け、更に、上記主抵抗体90の下流側端部と上記下流側端子134との間に印加されている電圧を求めるために差動回路138を設ける。すなわちこれにより抵抗体部分R1、R4の両端の電圧がそれぞれ求められることになる。そして、上記抵抗体部分R1、R4に印加される両電圧の差を求めることにより流体通路6(図17参照)に流れる流体の流量を求める第3の流量検出手段130が設けられる。具体的には、この第3の流量検出手段130、上記一方の差動回路136の出力と他方の差動回路138の出力とを比較してその差(電位差)を得る差動回路140と、この差動回路140の出力側に接続されて、上記差動回路140の出力値に対して所定のゲインをかけるなどして実際の流量に応じた電圧値(流量値)へ変換(計算)する流量計算部142とよりなり、これにより流量値に対応する電圧値を出力するようになっている。
更にこの第3の流量検出手段130の流量計算部142の出力側と、前記第1及び第2の流量検出手段100、116の各出力側とには、これらの3つの出力を切り替えて選択的に取り出すためのスイッチ手段144が接続されている。
このように構成された流量センサにあっては、第1及び第2の流量検出手段100、116の各出力は、それぞれ図12中の特性曲線C及び特性曲線Bのようになるのは前述した通りであり、そして、上記第3の流量検出手段130の出力は、図12中の特性曲線Aのようになる。すなわち、第3の流量検出手段130で用いる主抵抗体90の長さは、上記第2の流量検出手段116で用いる主抵抗体90の長さの例えば略半分程度なので、この特性曲線Aも、先の特性曲線Bよりも半分程度に小さい相似状の特性、すなわち緩やかに上方に突状に曲線を描くような特性となる。この場合、特性曲線Cは特に、その前半側で非常に流量の測定精度が高くなり(特性曲線Bよりも流量の測定精度がよい)、例えば流量が10sccm程度の位置でスイッチ手段144を切り替えるようにすればよい。
従って、この第8実施例では、例えば0〜10sccm(小流量)の流量制御では特性曲線Aを用い、10〜20sccm(中流量)の流量制御では特性曲線Bを用い、20〜100sccm(大流量)では特性曲線Cを用いるようにすればよい。尚、前述したように、上記小、中、大の各流量は単に一例を示したに過ぎず、この流量に限定されない。
<第9実施例>
次に第9実施例について説明する。
図14は本発明の流量センサの第9実施例の要部を示す回路図である。この第9実施例は、先の図13に示す第8実施例の中から、ダミーセンサ管66、ダミー用抵抗体110及び第1の流量検出手段(大流量用)100等を設けないで、大流量用に関する流量測定部分を省略した実施例である。従って、第2及び第3の流量検出手段116、130を設けて、中流量域及び小流量域の流量の制御を精度良く行うことができる。
<第10実施例>
次に第10実施例について説明する。
図15は本発明の流量センサの第10実施例の要部を示す回路図である。この第10実施例は、例えば特開平1−227016号公報で開示されているような、定温度式の流量センサを用いており、この定温度式の流量センサでは電位差に替えて電力差を利用して流量を測定している。ここでは図11に示す第7実施例に対して定温度式の流量センサを適用した場合を例にとって説明する。尚、図11に示す構成部品と同一構成部品については同一符号を付してその説明を省略する。
図15に示すように、主抵抗体90の両端には、この主抵抗体90の温度、またはこの温度と周囲温度との差を一定に保つための定温度制御回路150が接続されており、上述のように主抵抗体90の温度を保っている。この定温度制御回路150としては例えば上記特開平1−227016号公報に示されるような回路が用いられる。
また、主抵抗体90の上流側端部と主抵抗体90の長さ方向の途中に設けた途中端子118との間には、この主抵抗体90の上流側の部分に投入される電力を検出するための上流側電力検出部152が設けられ、他方、主抵抗体90の下流側端部と上記途中端子118との間には、この主抵抗体90の下流側の部分に投入される電力を検出するための下流側電力検出部154が設けられる。
そして、上記上流側及び下流側の電力検出部152、154の各電力の差に基づいて前記流体通路6(図17参照)に流れる流体の流量を求める、いわゆる中流量用の第4の流体検出手段156が設けられる。具体的には、この第4の流体検出手段156は、上記上流側電力検出部152で検出した上流側電力と上記下流側電力検出部154で検出した下流側電力とを比較してこの差(電力)を得る差動回路158と、この差動回路158の出力側に接続されて上記差動回路158の出力値に対して所定のゲインをかけるなどして実際の流量に応じた電圧値(流量値)へ変換(計算)する流量計算部160とよりなり、これより流量値に対応する電圧値を出力するようになっている。
また、上記主抵抗体90の両端には、この主抵抗体90の全体に投入される電力を検出するための全電力検出部162が設けられる。尚、この全電力検出部162に替えて、上記上流側電力検出部152の出力と上記下流側電力検出部154の出力とを加算(総和)するようにしてもよい。
更に、本実施例では、周囲温度に応じた基準値を求めるための基準値検出手段166が設けられる。この基準値検出手段166としては、図9の第5実施例で説明したように、サーミスタや熱電対や測温抵抗体等を用いることができるが、ここではダミーセンサ管66とダミー用抵抗体110(図11参照)等を用いた場合を例にとって説明する。
上記ダミーセンサ管66に巻回されたダミー用抵抗体110の両端には、このダミー用抵抗体110の温度を一定に保つ、またはこの温度と周囲温度との差を一定に保つダミー用定温度制御回路170が接続されており、このダミー用抵抗体110の温度を上記のように制御するようになっている。また、このダミー用抵抗体110の両端には、この全体に投入される電力を検出して上記基準値とするためのダミー用電力検出部172が接続されている。そして、このダミー用電力検出部172の出力側に接続される係数合わせ部98には、上記主抵抗体90とダミー用抵抗体110との抵抗温度係数を一致させるための補償係数が予め記憶されており、補償された抵抗温度係数に基づいて求められた電圧値が基準値Vst1として出力されることになる。
そして、上記全電力検出部162の出力と上記係数合わせ部98の出力の差(電力差)に基づいて前記流体通路6(図17参照)に流れる流体の流量を求める、いわゆる大流量用の第5の流体検出手段174が設けられる。具体的には、この第5の流体検出手段174は、上記全電力検出部162で検出した電力と上記ダミー用電力検出部172で検出されて係数合わせ部98で補償された後に基準値Vst1として出力された電力とを比較してこの差(電力)を得る差動回路176と、この差動回路176の出力側に接続されて上記差動回路176の出力値に対して所定のゲインをかけるなどして実際の流量に応じた電圧値(流量値)へ変換(計算)する流量計算部178とよりなり、これより流量値に対応する電圧値を出力するようになっている。そして、この第5の流量検出手段174の上記流量計算部178の出力側と上記第4の流量検出手段156の流量計算部160の出力側とには、これらの2つの出力を切り替えて選択的に取り出すためのスイッチ手段124が接続されている。
このように、構成された流量センサにあっては、前述した図11に示す第7実施例の場合と同様な作用効果を発揮することができる。
このように、主抵抗体90やダミー抵抗体110の全部、或いは一部に加わる各電圧に替えて、これらで消費される(投入される)電力に基づいて流量を求める上述のような発明は、図13に示す第8実施例及び図14に示す第9実施例においても適用することができる。
<第11実施例>
ところで、前述したように、装置制御部からのガス流量に関する指令値S1(図17参照)は0〜5Vの範囲で送られてきて、この電圧値が流量に対応している。例えば図16(A)に示すように、最大のガス流量(フルスケール)を2000sccmに設定した場合、制御流量と指令値(電圧)S1との関係は一直線状になっている。従って、100sccm程度の流量域で制御する時は指令値S1の電圧は0.25ボルト程度を中心として変化することになり、そして、制御流量域が変わって2000sccm程度の流量域で制御する時は指令値S1は5ボルト程度の近傍で変化することになる。ここで、100sccm程度の流量域で制御を行うために指令値S1を0.25ボルト程度に制御する場合には、この指令値S1に僅かなノイズが入っただけでこの指令値S1が変化し、これが制御流量値を大きく変動させてしまう、という恐れがある。しかも、実際の半導体製造装置にあっては、1つの流量制御器に対して0〜2000sccmの全範囲に亘って流量制御を行うように使用する場合は少なく、例えば50〜100sccmの範囲と1900〜2000sccmの範囲のように、部分的な範囲で流量制御を行うようにしか使用しないような場合もある。
このような場合には、例えば図16(B)に示すように、指令値S1の電圧値が0〜4ボルトの範囲を、0〜100sccmの流量の範囲に対応させ、指令値S1の電圧値が4〜5ボルトまでの範囲を、1600〜2000sccmの流量の範囲に対応させるようにし、流量制御特性に不連続点を持たせるようにしてもよい。この場合には、装置制御部からは図16(B)に示すような特性に沿った指令値S1が出力されるようにし、また、上記各実施例における各流量計算部104、122、142等の各ゲイン等を、図16(B)に示す特性に沿った出力値となるように予め調整しておく。
これによれば、前述のように複数の流量域に対して切り替えて流量制御を行う場合、小流量域、或いは中流量域における制御の分解能を高めることができ、従って流量の制御精度を一層高めることができる。
このような特性の切り替えは、図16(B)に示すような特性に限らず、例えば図16(C)に示すように、指令値S1の電圧値が0〜4ボルトまでの範囲を0〜100sccmの流量の範囲に対応させ、指令値S1の電圧値が4〜5ボルトまでの範囲を400〜2000sccmの流量の範囲に対応させるようにし、流量制御特性に変曲点を持たせるようにしてもよい。
更には、図16(D)に示すように、縦軸の流量が複数目盛で表されているように、流量制御特性がLOG特性を示すような特性としてもよい。
尚、以上説明した各実施例では流量センサについて説明したが、これを流量測定器として用いる場合には、各センサにおいて得られた流量値を表示するための、例えばディスプレイ等の表示手段を追加的に加えて用いればよい。また、上記各流量センサを流量制御器(質量流量制御器)に用いる場合には、図17に示した流量制御器2の流量センサ5として、上記各流量センサを用いればよい。
また、上記各実施例において用いた流量域は、単に一例を示したに過ぎず、用いる各抵抗体や抵抗の抵抗値を適宜選択することにより、種々の流量域における精度の高い流量測定、或いは流量制御が可能となるのは勿論である。
また、各実施例における各スイッチ類、差動回路及び抵抗類等は半導体集積回路して形成できるのは勿論である。
本発明の関連技術の流量センサの第1実施例の要部を示す回路構成図である。 第1実施例のガス流量とセンサ出力電圧(電位差)との関係を示すグラフである。 本発明の関連技術の流量センサの第2実施例の要部を示す回路構成図である。 第2実施例のガス流量とセンサ出力電圧(電位差)との関係を示すグラフである。 本発明の関連技術の第2実施例の変形例を示す回路構成図である。 本発明の関連技術の流量センサの第3実施例の要部を示す回路構成図である。 第3実施例のガス流量とセンサ出力電圧(電位差)との関係を示すグラフである。 本発明の関連技術の流量センサの第4実施例の要部を示す回路構成図である。 図9は本発明の流量センサの第5実施例の要部を示す回路構成図である。 本発明の流量センサの第6実施例の要部を示す回路図である。 本発明の流量センサの第7実施例の要部を示す回路図である。 第7実施例のガス流量とセンサ出力電圧(電位差)との関係を示すグラフである。 本発明の流量センサの第8実施例の要部を示す回路図である。 本発明の流量センサの第9実施例の要部を示す回路図である。 本発明の流量センサの第10実施例の要部を示す回路図である。 指令値(電圧)と流量との関係を示すグラフである。 ガス配管に介設された流量制御器を示す概略構成図である。 流量制御器の流量センサを示す回路図である。 半導体製造装置のガス管の配設構造を示す図である。 ガス流量の変化を示すグラフである。
4 ガス管
6 流体通路
8 バイパス
12 流量制御弁
14 センサ管
16 センサ回路
20 アクチュエータ
24 定電流源
40 流量センサ
42 抵抗体群
44 基準抵抗群
46 第1の差動回路
48 バイパス回路
50 スイッチ手段
54 流量域拡大用差動回路
60A ゲイン器(第1の流量決定部)
60B ゲイン器(第2の流量決定部)
60C ゲイン器(第3の流量決定部)
62 流量域拡大測定手段
64 抵抗体群
66 ダミーセンサ管
68 ダミー抵抗体群
70 ダミー基準抵抗群
72 ダミー用定電流源
74 流量域拡大差動回路
80 第1のスイッチ
82 第2のスイッチ
90 主抵抗体
94 基準値検出手段
98 係数合わせ部
100 第1の流量検出手段(大流量用)
104 流量計算部
110 ダミー用抵抗体
112 ダミー用電圧検出部
116 第2の流量検出手段(中流量用)
118 途中端子
124 スイッチ手段
130 第3の流量検出手段(小流量用)
132 上流側端子
134 下流側端子
142 流量計算部
144 スイッチ手段
150 定温度制御回路
156 第4の流量検出手段
170 ダミー用定温度制御回路
172 ダミー用電力検出部
174 第5の流量検出手段
R1〜R4 抵抗体
R5、R6 基準抵抗
R1’〜R4’ ダミー抵抗体
R7、R8 ダミー基準抵抗

Claims (8)

  1. 流体通路のバイパスに並列に設けたセンサ管と、
    前記センサ管に巻回され、且つ温度に応じて抵抗値が変化すると共に電流に応じて発熱量が変わる主抵抗体と、
    前記主抵抗体に一定の電流を流す定電流源と、
    周囲温度に応じた基準値を求めることができる基準値検出手段と、
    前記主抵抗体の両端に印加される電圧と前記基準値検出手段で求めた基準値とに基づいて前記流体通路に流れる流体の流量を求める第1の流量検出手段と、
    複数の基準抵抗を直列接続してなり、且つ前記主抵抗体と並列に接続された基準抵抗群と、
    前記主抵抗体の任意の位置の電圧を取り出す途中端子と、
    前記基準抵抗同士の接続点と前記途中端子との間の電位差を求める第2の流量検出手段と、
    前記主抵抗体の上流側端部と前記途中端子との間の任意の点に設けた上流側端子と、
    前記主抵抗体の下流側端部と前記途中端子との間の任意の点に設けた下流側端子と、
    前記上流側端部と前記上流側端子との間の電圧と、前記下流側端部と前記下流側端子との間の電圧との差を求めることによって前記流体通路に流れる流体の流量を求める第3の流量検出手段と、
    前記第1、第2及び第3の流量検出手段の各出力を選択的に切り替えるスイッチ手段と、
    を備えたことを特徴とする流量センサ。
  2. 前記基準値検出手段は、流体を流さないダミーセンサ管と、
    前記ダミーセンサ管に巻回され、且つ温度に応じて抵抗値が変化すると共に流れる電流に応じて発熱量が変わるダミー用抵抗体と、
    前記ダミー用抵抗体に一定の電流を流すダミー用定電流源と、
    前記ダミー用抵抗体の両端の電圧を検出して前記基準値とするダミー用電圧検出部と、
    よりなることを特徴とする請求項1記載の流量センサ。
  3. 前記基準値検出手段は、前記主抵抗体と前記ダミー用抵抗体との抵抗温度係数を一致させるための係数合わせ部を有することを特徴とする請求項2記載の流量センサ。
  4. 流体通路のバイパスに並列に設けたセンサ管と、
    前記センサ管に巻回され、且つ温度に応じて抵抗値が変化すると共に電流に応じて発熱量が変わる主抵抗体と、
    前記主抵抗体に一定の電流を流す定電流源と、
    周囲温度に応じた基準値を求めることができる基準値検出手段と、
    前記主抵抗体の両端に印加される電圧と前記基準値検出手段で求めた基準値とに基づいて前記流体通路に流れる流体の流量を求める第1の流量検出手段と、
    複数の基準抵抗を直列接続してなり、且つ前記主抵抗体と並列に接続された基準抵抗群と、
    前記主抵抗体の任意の位置の電圧を取り出す途中端子と、
    前記基準抵抗同士の接続点と前記途中端子との間の電位差を求める第2の流量検出手段と、
    前記主抵抗体の上流側端部と前記途中端子との間の任意の点に設けた上流側端子と、
    前記主抵抗体の下流側端部と前記途中端子との間の任意の点に設けた下流側端子と、
    前記上流側端部と前記上流側端子との間の電圧と、前記下流側端部と前記下流側端子との間の電圧との差を求めることによって前記流体通路に流れる流体の流量を求める第3の流量検出手段と、
    前記第1、第2及び第3の流量検出手段の各出力を選択的に切り替えるスイッチ手段とを備え、
    前記基準値検出手段は、
    流体を流さないダミーセンサ管と、
    前記ダミーセンサ管に巻回され、且つ温度に応じて抵抗値が変化すると共に流れる電流に応じて発熱量が変わるダミー用抵抗体と、
    前記ダミー用抵抗体に一定の電流を流すダミー用定電流源と、
    前記ダミー用抵抗体の両端の電圧を検出するダミー用電圧検出部と、
    前記主抵抗体と前記ダミー用抵抗体との抵抗温度係数を一致させるための補償係数が予め記憶されていて該補償された抵抗温度係数と前記ダミー用電圧検出部で検出した電圧とに基づいて求めた電圧値を基準値として出力する係数合わせ部とを有することを特徴とする流量センサ。
  5. 流体通路のバイパスに並列に設けたセンサ管と、
    前記センサ管に巻回され、且つ温度に応じて抵抗値が変化すると共に電流に応じて発熱量が変わる主抵抗体と、
    複数の基準抵抗を直列接続してなり、且つ前記主抵抗体と並列に接続された基準抵抗群と、
    前記主抵抗体と前記基準抵抗群とに一定の電流を流す定電流源と、
    前記主抵抗体の任意の位置の電圧を取り出す途中端子と、
    前記基準抵抗同士の接続点と前記途中端子との間の電位差を求める第2の流量検出手段と、
    前記主抵抗体の上流側端部と前記途中端子との間の任意の点に設けた上流側端子と、
    前記主抵抗体の下流側端部と前記途中端子との間の任意の点に設けた下流側端子と、
    前記上流側端部と前記上流側端子との間の電圧と、前記下流側端部と前記下流側端子との間の電圧との差を求めることによって前記流体通路に流れる流体の流量を求める第3の流量検出手段と、
    前記第2及び第3の流量検出手段の各出力を選択的に切り替えるスイッチ手段と、
    を備えたことを特徴とする流量センサ。
  6. 流体通路のバイパスに並列に設けたセンサ管と、
    前記センサ管に巻回され、且つ温度に応じて抵抗値が変化すると共に電流に応じて発熱量が変わる主抵抗体と、
    前記主抵抗体の温度、または該温度と周囲温度との差を一定に保つための定温度制御回路と、
    前記主抵抗体の任意の位置の電圧を取り出す途中端子と、
    前記主抵抗体の前記途中端子よりも上流側に投入された上流側電力と、前記主抵抗体の前記途中端子よりも下流側に投入された下流側電力との差に基づいて前記流体通路に流れる流体の流量を求める第4の流量検出手段と、
    周囲温度に応じた基準値を求めることができる基準値検出手段と、
    前記主抵抗体に投入される全電力と、前記基準値検出手段で求めた基準値とに基づいて前記流体通路に流れる流体の流量を求める第5の流量検出手段と、
    前記第4及び第5の流量検出手段の各出力を選択的に切り替えるスイッチ手段と、
    を備えたことを特徴とする流量センサ。
  7. 請求項1乃至6のいずれか一項に記載の流量センサと、
    前記流量センサで得られた流量を表示する表示部とを有することを特徴とする流量測定器。
  8. 請求項1乃至6のいずれか一項に記載の流量センサと、
    流体通路に介設した流量制御弁と、
    前記流量センサの出力値に基づいて前記流量制御弁の弁開度を制御するアクチュエータと、
    を備えたことを特徴とする流量制御器。
JP2009048714A 2002-07-23 2009-03-03 流量センサ、流量測定器及び流量制御器 Expired - Lifetime JP5110006B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009048714A JP5110006B2 (ja) 2002-07-23 2009-03-03 流量センサ、流量測定器及び流量制御器

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002214416 2002-07-23
JP2002214416 2002-07-23
JP2009048714A JP5110006B2 (ja) 2002-07-23 2009-03-03 流量センサ、流量測定器及び流量制御器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003096468A Division JP4300846B2 (ja) 2002-07-23 2003-03-31 流量センサ、流量測定器及び流量制御器

Publications (2)

Publication Number Publication Date
JP2009115829A JP2009115829A (ja) 2009-05-28
JP5110006B2 true JP5110006B2 (ja) 2012-12-26

Family

ID=40783080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009048714A Expired - Lifetime JP5110006B2 (ja) 2002-07-23 2009-03-03 流量センサ、流量測定器及び流量制御器

Country Status (1)

Country Link
JP (1) JP5110006B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111765931B (zh) * 2020-07-03 2022-04-22 合肥工业大学 一种基于微分补偿pfm调制的电磁流量计励磁控制系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013219A (ja) * 1983-07-04 1985-01-23 Ohkura Electric Co Ltd 熱式質量流量計センサ−
JPH0668452B2 (ja) * 1988-03-07 1994-08-31 日立金属株式会社 質量流量計
JP2670882B2 (ja) * 1990-04-13 1997-10-29 日立金属 株式会社 熱式質量流量計センサー
JPH07198437A (ja) * 1993-12-29 1995-08-01 Hitachi Metals Ltd 質量流量計
JPH0989620A (ja) * 1995-09-19 1997-04-04 Tokyo Gas Co Ltd 熱式流量センサ
JP4300846B2 (ja) * 2002-07-23 2009-07-22 日立金属株式会社 流量センサ、流量測定器及び流量制御器

Also Published As

Publication number Publication date
JP2009115829A (ja) 2009-05-28

Similar Documents

Publication Publication Date Title
CN101652591B (zh) 用于测量质量流控制器中的气体的温度的方法和装置
US8499786B2 (en) Mass flow controller with enhanced operating range
JP3022931B2 (ja) 気体マス・フロー測定システム
JP5002602B2 (ja) 流量制御装置の検定方法
US8504311B2 (en) Method and mass flow controller for enhanced operating range
KR100326479B1 (ko) 차동전류열질량유동변환기
US4984460A (en) Mass flowmeter
JP4300846B2 (ja) 流量センサ、流量測定器及び流量制御器
WO2003029759A1 (fr) Instrument de mesure de debit
JP5110006B2 (ja) 流量センサ、流量測定器及び流量制御器
JP2004138425A (ja) 圧力式流量制御装置の温度測定装置
US11644354B2 (en) Flow rate sensor correction device, flow rate sensor, flow rate control device, program recording medium on which is recorded a program for a correction device, and correction method
JP4092684B2 (ja) マスフローコントローラの校正方法及びその装置
JP2003106886A (ja) 熱式流量計
JPH05289751A (ja) マスフローコントローラのゼロ点シフト及びスパンシフトを自動補正する方法及びその自動補正機能付きマスフローコントローラ
JPH064139A (ja) 流量コントローラー
JP4752086B2 (ja) 質量流量制御装置
JPH0934556A (ja) マスフローコントローラ
KR20020080137A (ko) 유량 계측용 센서 및 이를 이용한 질량유량제어장치 및 방법
US20230236051A1 (en) Thermal flow meter, flow rate control device, thermal flow rate measurement method, and program for thermal flow meter
JP2009116904A (ja) 圧力式流量制御装置
JPH109920A (ja) 質量流量計
JPH11351936A (ja) 熱式流量センサ及び熱式流量検出回路
JPH07198437A (ja) 質量流量計
JPH05107092A (ja) 熱式流量計

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5110006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term