JP5109028B2 - Method for purifying a large amount of exhaust gas containing lean volatile hydrocarbons - Google Patents

Method for purifying a large amount of exhaust gas containing lean volatile hydrocarbons Download PDF

Info

Publication number
JP5109028B2
JP5109028B2 JP2008097503A JP2008097503A JP5109028B2 JP 5109028 B2 JP5109028 B2 JP 5109028B2 JP 2008097503 A JP2008097503 A JP 2008097503A JP 2008097503 A JP2008097503 A JP 2008097503A JP 5109028 B2 JP5109028 B2 JP 5109028B2
Authority
JP
Japan
Prior art keywords
exhaust gas
adsorption
volatile hydrocarbons
voc
adsorbent layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008097503A
Other languages
Japanese (ja)
Other versions
JP2009247962A (en
Inventor
弘 田原
博史 能智
Original Assignee
システム エンジ サービス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by システム エンジ サービス株式会社 filed Critical システム エンジ サービス株式会社
Priority to JP2008097503A priority Critical patent/JP5109028B2/en
Publication of JP2009247962A publication Critical patent/JP2009247962A/en
Application granted granted Critical
Publication of JP5109028B2 publication Critical patent/JP5109028B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、希薄な揮発性炭化水素(以下、「VOC」と略記する。)を含む排ガスの浄化方法に関し、特に、大気中に放散される極く希薄なVOCを含む大量の排ガス中のVOCを燃焼させずにそのまま回収する方法に関する。更に詳しくは、本発明は、従来のように、VOCを含む排ガスを徒らに燃焼させて温暖化ガスとして問題視されている炭酸ガス(CO)を大気中に放散させるのではなく、地球温暖化防止の観点及び公害防止上の観点から、上記排ガスをゼロエミッションにまで浄化すると共に、該排ガスからVOCを効率よく分離して再利用するための、吸着方式に係るVOCを含む大量の排ガス浄化方法に関する。 The present invention relates to a method for purifying exhaust gas containing dilute volatile hydrocarbons (hereinafter abbreviated as “VOC”), and in particular, VOC in a large amount of exhaust gas containing very dilute VOC that is diffused into the atmosphere. It is related with the method of collect | recovering as it is, without burning. More specifically, the present invention does not diffuse carbon dioxide (CO 2 ), which has been regarded as a problem as a warming gas, by burning the exhaust gas containing VOCs into the atmosphere as in the prior art. From the viewpoint of prevention of global warming and pollution prevention, a large amount of exhaust gas containing the VOC related to the adsorption system for purifying the exhaust gas to zero emission and efficiently separating and reusing VOC from the exhaust gas It relates to a purification method.

従来から、VOCを含む排ガスを処理する方法は、多数提案されてきている。即ち、公害防止上、法的に義務付けられたVOC排出濃度の規制値を満足すべく排ガス中のVOCを除去する方法として、従来から燃焼法、吸着法、吸収法、加圧膜分離法などが知られている。   Conventionally, many methods for treating exhaust gas containing VOC have been proposed. In other words, as a method for removing VOC in exhaust gas so as to satisfy the legally required VOC emission concentration regulation value for pollution prevention, a combustion method, an adsorption method, an absorption method, a pressurized membrane separation method, etc. have been conventionally used. Are known.

しかしながら、上記の方法は、処理する排ガスの量が毎時数百ないし数千mで、かつ、含まれているVOCの濃度が%オーダーの比較的濃い場合に限られていた。このうち、ppmオーダーの希薄なVOCを含む大量の排ガスの処理方法として、吸着剤としてハイシリカゼオライトを用い、吸着及び脱着を交互に繰り返して回転するハニカム式ローターによって、希薄なVOCを数千ppmの濃度にまで濃縮して触媒燃焼させるか、直接燃焼させるかは別として、燃焼法が多く採用されてきた。しかしながら、このような燃焼法は、昨今の温暖化ガス(炭酸ガス)の排出規制の強化によって、適用が著しく困難な状況になってきている。 However, the above method is limited to the case where the amount of exhaust gas to be processed is several hundred to several thousand m 3 per hour and the concentration of VOC contained is relatively high on the order of%. Among them, as a method for treating a large amount of exhaust gas containing dilute VOC in the order of ppm, a high-silica zeolite is used as an adsorbent, and a dilute VOC is turned into several thousand ppm by a honeycomb rotor rotating by alternately repeating adsorption and desorption. Many combustion methods have been adopted, apart from whether the catalyst is burned after being concentrated to the above concentration or directly burned. However, such a combustion method has become extremely difficult to apply due to the recent tightening of greenhouse gas (carbon dioxide) emission regulations.

このような状況を踏まえて、VOCを燃焼させずに回収できる方法として、吸着法、吸収法、加圧膜分離法、繊維状活性炭法が注目を集めてきているが、これらの方法のほとんどは公知である。特に、吸着したVOCを脱着する際に、スチームを使用せずに乾式のままで効率良く回収できる吸着法について言えば、例えば下記特許文献1〜5にも開示されている。しかも、前述したように、これらの特許文献に開示されている吸着法の適用対象は、濃厚なVOCを含む毎時数百mないし多くても数千m程度の排ガス処理に限られている。その理由は、吸着剤層を通過する排ガスの上昇速度が速すぎると(秒速約30cmが限度)、小さな粒径の吸着剤が浮き上がってフラッディング現象を起こすために、その限度の秒速で処理するとなると、装置の大きさが極めて大きくなり、経済的に成立しないからである。 In light of these circumstances, adsorption methods, absorption methods, pressurized membrane separation methods, and fibrous activated carbon methods have attracted attention as methods that can recover VOCs without burning them, but most of these methods are It is known. In particular, the adsorption methods that can be efficiently recovered in a dry state without using steam when desorbing the adsorbed VOC are also disclosed, for example, in Patent Documents 1 to 5 below. Moreover, as described above, the application method of the adsorption method disclosed in these patent documents is limited to exhaust gas treatment of several hundred m 3 to several thousand m 3 at most including rich VOC. . The reason is that if the rising speed of the exhaust gas passing through the adsorbent layer is too fast (the limit is about 30 cm per second), the adsorbent with a small particle size rises and causes flooding phenomenon, so that the processing is performed at the limit per second. This is because the size of the apparatus becomes extremely large and does not hold economically.

そこで、本発明者等は、既に上記のようなフラッディング現象を起こさない吸着剤として、粒状の吸着剤ではなく、ハニカム状のメソポア活性炭を使用する方法を前段濃縮に適用し、後段は濃縮されたVOCを本発明者等が開発した公知の技術で回収する方法の発明を提案している(下記特許文献6参照)。すなわち、前段濃縮、後段回収という方法であって、数百ないし数千ppmの希薄なVOCを含み、かつ、毎時一万mを越す大量の排ガスを処理する場合の好適な方法として提案したものである。
特開平09−047635号公報 特開平09−057060号公報 特開平09−215908号公報 特開平11−071584号公報 特開平11−077496号公報 特開2007−038201号公報
Therefore, the present inventors applied a method of using honeycomb mesopore activated carbon instead of a granular adsorbent as an adsorbent that does not cause the flooding phenomenon as described above, and the latter stage was concentrated. The invention of the method of collect | recovering VOC with the well-known technique which the present inventors developed is proposed (refer the following patent document 6). That is, a method of pre-concentration and post-recovery, which is proposed as a preferable method for treating a large amount of exhaust gas containing dilute VOC of several hundred to several thousand ppm and exceeding 10,000 m 3 per hour. It is.
JP 09-047635 A JP 09-057060 A JP 09-215908 A Japanese Patent Laid-Open No. 11-071584 Japanese Patent Application Laid-Open No. 11-077496 JP 2007-038201 A

上記特許文献6に開示されている発明は、昨今、話題になっている温暖化ガス(炭酸ガス)の排出規制に対応でき、VOCを燃焼させないために炭酸ガスを発生させることがなく、しかも、VOCをそのまま回収できる方法として優れた効果を奏するものである。一方、経済的な観点からして、市場性のある装置として通用させるには、これらの方法で使用される個々の機器構成や配置、操作方法の簡便化に改良を加え、簡潔な装置に仕上げる必要がある。   The invention disclosed in the above-mentioned Patent Document 6 can cope with the greenhouse gas (carbon dioxide) emission regulation that has become a hot topic recently, and does not generate carbon dioxide in order not to burn VOC, As a method for recovering VOC as it is, it has an excellent effect. On the other hand, from an economic point of view, in order to be able to be used as a marketable device, improvements are made to the simplification of the individual equipment configuration and arrangement used in these methods, and the operation method, and a simple device is finished. There is a need.

すなわち、発明者等の実験によると、上記特許文献6に開示されているVOCを含む大量の排ガス浄化方法のように、ハニカム状のメソポア活性炭を使用したローターにより吸脱着を相互にスイングさせることにより完結させた前段濃縮工程を経ることによってある程度濃縮した排ガスを得、このある程度濃縮した排ガスを後段の処理装置に移動させてゼロエミッションを達成する工程を備えることは、必ずしも最良の装置構成とはならないことが見出された。すなわち、上記特許文献6に開示されているVOCを含む大量の排ガス浄化方法では、前段の濃縮工程においても脱着手段として真空ポンプが必要となり、かつ、吸着時に大気中に排出されるVOC濃度から換算したVOC回収率は80%を超えないからである。   That is, according to experiments by the inventors, as in a large amount of exhaust gas purification method including VOC disclosed in Patent Document 6, the adsorption / desorption is caused to swing by a rotor using honeycomb-shaped mesopore activated carbon. Obtaining exhaust gas that has been concentrated to some extent by passing through a pre-concentration process that has been completed, and moving the exhaust gas that has been concentrated to some extent to a subsequent processing device to achieve zero emissions is not necessarily the best equipment configuration. It was found. That is, in the method for purifying a large amount of exhaust gas containing VOC disclosed in Patent Document 6, a vacuum pump is required as a desorption means in the previous concentration step, and converted from the VOC concentration discharged into the atmosphere during adsorption. This is because the VOC recovery rate does not exceed 80%.

その理由として、ハニカム状の吸着剤層を採用する最大のメリットが、秒速1mを越えるスピードで吸着剤層を通過せしめ、かつ、吸着剤との接触時間が1〜2秒で吸着完了する利点とは裏腹に、吸着剤(スケスケの状態のハニカムで嵩比重が0.1程度)の破過が速いということにある。因みに、従来使用されている粒状活性炭の嵩比重は0.4前後であって、ハニカム状の吸着剤層に比べて4〜5倍の吸着容量を有する。但し、ハニカム状の吸着剤層の濃縮割合は、使用するハニカム状の吸着剤層の組成にも依るが、メソポア活性炭を主材とする場合は5倍ないしは10倍程度(排ガス中のVOCが2,000ppmの場合は10,000PPmないしは20,000ppm)、即ち、得られるVOC濃度は1vol%〜2vol%程度である。この程度の濃度であれば、上記特許文献6に記載のVOCを含む大量の排ガス浄化方法よる後段回収装置でほぼ100%、VOCの回収は可能であるが、排ガス中に含まれるVOCが数百ppmと更に希薄になり、かつ、毎時数千ないし数万mのガスを処理する場合を考えると、前段で濃縮を完了させたのち、後段で回収する装置構成の是非が問われる。 The reason is that the greatest merit of adopting the honeycomb-shaped adsorbent layer is that the adsorbent layer is passed at a speed exceeding 1 m / sec and the adsorption is completed in 1 to 2 seconds with the adsorbent. Contrary to this, the breakthrough of the adsorbent (a honey-comb honeycomb having a bulk specific gravity of about 0.1) is fast. Incidentally, the bulk specific gravity of conventionally used granular activated carbon is around 0.4, and has an adsorption capacity 4 to 5 times that of the honeycomb-like adsorbent layer. However, the concentration ratio of the honeycomb-shaped adsorbent layer depends on the composition of the honeycomb-shaped adsorbent layer to be used, but when the main material is mesopore activated carbon, it is about 5 to 10 times (VOC in the exhaust gas is 2). In the case of 1,000 ppm, 10,000 PPm or 20,000 ppm), that is, the obtained VOC concentration is about 1 vol% to 2 vol%. With this level of concentration, VOC can be recovered almost 100% by the post-stage recovery apparatus using a large amount of exhaust gas purification method containing VOC described in Patent Document 6 above, but several hundreds of VOCs are contained in the exhaust gas. Considering the case where the gas is further diluted to ppm and is processed at several thousand to several tens of thousands of m 3 per hour, whether or not the apparatus is configured to recover at the subsequent stage after the concentration is completed at the previous stage is questioned.

その理由の1つとして、従来から公知なように、ハニカム状の吸着剤層からなる塔を二つ設けて、交互に吸脱着操作を行い、脱着の際に用いる真空ポンプで吸引して得たパージ排ガスを冷却した後、未凝縮ガスを片方のハニカム状の吸着剤層に繰り返し戻す方法は、ハニカム状の吸着剤層の吸着容量が少ないがために装置の容量が非常に大きくなることが挙げられる。要するに、破過が早いために操作後に大気中に放散される空気中のVOCの回収率が80%にも満たないことは前述したとおりである。   As one of the reasons, as conventionally known, two towers made of a honeycomb-like adsorbent layer were provided, and adsorption / desorption operations were alternately performed, and suction was performed using a vacuum pump used for desorption. After cooling the purge exhaust gas, the method of repeatedly returning the uncondensed gas to the one honeycomb-shaped adsorbent layer is that the capacity of the apparatus becomes very large because the adsorption capacity of the honeycomb-shaped adsorbent layer is small. It is done. In short, as described above, the recovery rate of VOC in the air diffused into the atmosphere after the operation because the breakthrough is early is less than 80%.

前記課題を解決するため、本発明の希薄なVOCを含む大量の排ガスの浄化方法は、請求項1に記載されているように、吸着剤として揮発性炭化水素でプレコー卜したメソポア活性炭を充填した層を備え、吸着と脱着を交互に行う吸着装置を用い、一方の吸着装置にVOCを含む排ガスを通過せしめ、該吸着装置内の吸着剤層にVOCを吸着させ、VOCを含まない排ガスを吸着装置の出口から放出し、その間に、他方の吸着装置を脱着に切り替えて、先に吸着されたVOCを系外に取り出して冷却し、液体として回収することからなる、VOC含有排ガスの処理方法において、前記吸着装置の上部に揮発性炭化水素でプレコートしたメソポア活性炭からなるハニカム又はコルゲート状の吸着剤層を、下部には粒状の揮発性炭化水素でプレコートしたメソポア活性炭及び揮発性炭化水素でプレコートした粒状の疎水性シリカゲルの少なくとも一方を充填した吸着剤層を備えた吸着装置を用い、かつ、原料排ガスの供給位置が、上下に連通した層の中間に位置することを特徴とする。 To solve the above problems, method for purifying large quantities of exhaust gas containing dilute VOC of the present invention, as described in claim 1, filling the mesopores activated carbon was Pureko Bok volatile hydrocarbon as adsorbent Using an adsorption device that alternately adsorbs and desorbs , allows exhaust gas containing VOC to pass through one of the adsorption devices, adsorbs VOC to the adsorbent layer in the adsorption device, and removes exhaust gas that does not contain VOC. A method for treating VOC-containing exhaust gas, which comprises discharging from the outlet of the adsorption device and switching the other adsorption device to desorption during that time, taking out the VOC previously adsorbed out of the system, cooling it, and collecting it as a liquid in the honeycomb or corrugated adsorbent layer consisting of mesopores activated carbon pre-coated with volatile hydrocarbons at the top of the suction device, in granular volatile hydrocarbons to lower plecos Using an adsorption apparatus equipped with an adsorbent layer filled with at least one of the bets the mesopore activated carbon and volatile particulate hydrophobic silica gel pre-coated with hydrocarbons, and the supply position of raw exhaust gas, middle layer in communication with the upper and lower It is located in.

また、本発明に係る希薄なVOCを含む大量の排ガス浄化方法は、請求項2に記載されているように、脱着時に上部と下部が一体化した前記の吸着装置の下部から真空ポンプを用いて吸引すること及び頂部から少量の空気ないし窒素をパージガスとして用いることの少なくとも一方を行い、吸脱着の切り替え時間を1〜30分とし、かつ、得られたパージ排ガスを冷却し系外に液体として取り出し、この際の未凝縮ガスを前記吸着装置の底部に戻すことを特徴とする。

Further, according to the method for purifying a large amount of exhaust gas containing the diluted VOC according to the present invention, as described in claim 2, a vacuum pump is used from the lower part of the adsorption device in which the upper part and the lower part are integrated at the time of desorption. At least one of suctioning and using a small amount of air or nitrogen as the purge gas from the top, the adsorption / desorption switching time is set to 1 to 30 minutes, and the obtained purge exhaust gas is cooled and taken out as a liquid outside the system The uncondensed gas at this time is returned to the bottom of the adsorption device.

本発明に係る希薄なVOCを含む大量の排ガス浄化方法によれば、上部をハニカムによる精製部、下部を粒状活性炭及び/又は疎水性シリカゲルによる濃縮部とする一体化した装置にすることによって、上部ハニカム状の吸着剤層を通過する処理ガス速度を秒速1〜2mにまで高めて、ここで5〜10倍程度に濃縮させる一方、脱着時に、真空ポンプによってこの濃縮ガスが、下部の粒状吸着剤層を通過する際にここで改めて吸着されていたVOCを脱着することによって更に濃厚なガスになり、吸脱着の際のこの繰り返しによって、上部と連通した下部の粒径吸着剤に平衡吸着量に相当するVOCを溜め込む、いわゆる、カスケード式アダプター(脱着毎に未凝縮のVOCを原料にリターンさせずにこの塔に集めて濃縮し溜め込む吸着塔)の役割を果たすことが可能になる。かかる装置構成と操作方法によって、パージ排ガス中に含まれるVOCを容易に常温程度でも液化させて液体として回収することが可能になる。よって、大気に排出するガス中のVOC濃度をほぼゼロppmにすることができるようになる。なお、カスケード式アダプターについては本発明者等による上記特許文献2に詳細に開示されている。   According to the method for purifying a large amount of exhaust gas containing a dilute VOC according to the present invention, an upper unit is obtained by making an upper part a purification part by a honeycomb and a lower part by a granular activated carbon and / or a concentration part by hydrophobic silica gel. The processing gas passing through the honeycomb-shaped adsorbent layer is increased to a speed of 1 to 2 m per second and is concentrated about 5 to 10 times here. At the time of desorption, the concentrated gas is absorbed by the lower granular adsorbent by a vacuum pump. By desorbing the VOC that has been adsorbed again as it passes through the layer, it becomes a richer gas. By repeating this adsorption and desorption, the lower particle size adsorbent communicating with the upper part has an equilibrium adsorption amount. A so-called cascade adapter that accumulates the corresponding VOCs (an adsorption tower that collects and concentrates uncondensed VOCs in this column without returning them to the raw material for each desorption) It becomes possible to play a role. With such an apparatus configuration and operation method, VOC contained in the purge exhaust gas can be easily liquefied even at about room temperature and recovered as a liquid. Therefore, the VOC concentration in the gas discharged to the atmosphere can be reduced to almost zero ppm. The cascade adapter is disclosed in detail in the above-mentioned Patent Document 2 by the present inventors.

更に本発明に係る希薄なVOCを含む大量の排ガス浄化方法においては、前記の吸脱着装置の脱着時手段については前述したように、一体化した装置の下部から真空ポンプを用いて吸引及び/又は頂部から少量の空気ないし窒素をパージガスとして併用し、吸脱着の切り替え時間を1〜30分とし、かつ、得られたパージ排ガスを冷却して系外に液体として取り出す。そして、この際の未凝縮ガスを、一体化した装置の底部に戻すことによって、前記の課題、特に、前段濃縮を目的とするハニカム部位と、後段回収を目的とする吸脱着部位を分けてそれぞれに操作する欠点を解消して、経済性のある、然も、原料ガス中に含まれるVOCのほぼ全量を回収して、ゼロエミッションを達成させることによって、炭酸ガスの温暖化の観点と公害防止上の観点を共にクリアすることができるようになる。   Further, in the method for purifying a large amount of exhaust gas containing the diluted VOC according to the present invention, as described above, the means for desorption of the adsorption / desorption device is sucked and / or used from the lower part of the integrated device using a vacuum pump. A small amount of air or nitrogen is used as a purge gas from the top, the adsorption / desorption switching time is set to 1 to 30 minutes, and the obtained purge exhaust gas is cooled and taken out as a liquid outside the system. And by returning the uncondensed gas at this time to the bottom of the integrated apparatus, the above-mentioned problems, in particular, the honeycomb part intended for the pre-stage concentration and the adsorption / desorption part intended for the post-stage recovery are separated. By eliminating almost all of the VOCs contained in the raw material gas and achieving zero emissions, eliminating the disadvantages of operating in a cost-effective manner and preventing pollution The above viewpoints can be cleared together.

なお、原料排ガスを前記の上下に一体化した吸着塔の中間位置に戻す方法は、例えば希薄な炭酸ガスを濃縮する際に用いられた公知例が存在するように、特に目新しい手段ではなく、石油精製の際の蒸留塔の分離操作にも汎用的に使用されている。但し、何れの公知例の場合も、塔の下部に目的成分を濃縮させていることに変わりはなく、石油精製の場合は、沸点差を利用して各段の気液平衡を維持させながら、軽い成分は上に、重い成分は下に落とすが、炭酸ガス濃縮の場合は、原料ガスが非常に薄い炭酸ガスを含む空気であるが故に、炭酸ガスだけを吸着する吸着剤、即ち、ユニオン昭和(株)の粒径ゼオライト、13X(商品名)を使用して濃縮している。しかしながら、13Xに濃縮された(吸着された)炭酸ガスは、真空ポンプでは脱着できず、必ずパージガス(空気)を使用する必要がある。しかも、このパージガスの量は、大量であり、原料ガス量に匹敵するため、上部吸着剤層と分離して下部に配置された同じく13Xの層に、真空ポンプとパージガス(還流パージ)を併用して得た炭酸ガスを高圧に圧縮させて該吸着剤層に戻している。そして、一部濃縮したガスは外に取り出している。   The method of returning the raw material exhaust gas to the intermediate position of the adsorption tower integrated above and below is not a novel means, for example, as there is a known example used when concentrating dilute carbon dioxide gas. It is also used universally for the separation operation of the distillation column during purification. However, in any known example, the target component is still concentrated in the lower part of the tower, and in the case of petroleum refining, while maintaining the vapor-liquid equilibrium of each stage using the difference in boiling point, Light components are dropped on the top and heavy components are dropped on the bottom, but in the case of carbon dioxide enrichment, since the raw material gas is air containing very thin carbon dioxide, the adsorbent that adsorbs only carbon dioxide, namely Union Showa Concentrated using a 13X (trade name) particle size zeolite from Co., Ltd. However, carbon dioxide gas concentrated (adsorbed) to 13X cannot be desorbed by a vacuum pump, and it is necessary to always use purge gas (air). Moreover, since the amount of the purge gas is large and comparable to the amount of the raw material gas, a vacuum pump and a purge gas (reflux purge) are used in the same 13X layer separated from the upper adsorbent layer and disposed at the lower portion. The carbon dioxide gas thus obtained is compressed to a high pressure and returned to the adsorbent layer. The partially concentrated gas is taken out.

上記公知例による方法は、本発明者等も当時関与していたが、所期の目的を達成できなかった。このやり方は根本的に今回の本発明者等の希薄なVOCを含む大量の排ガス浄化方法とは異なっている。まず、吸着剤が相違している。上記公知例による方法は、ハニカム状の吸着剤層も使用していないし、回収目的成分自体が大きく本発明とは異なっている。また、上記公知例による方法は、装置構成や操作方法も本発明とは異なっている、すなわち、本発明の希薄なVOCを含む大量の排ガス浄化方法は、VOCの回収に際して上下に連通した吸着塔の底部から真空ポンプの吸引力を利用して上部と下部に濃縮されたVOCを一気に外へ抜き出して冷却し、未凝縮ガスのみを元の吸着塔の底部に戻す方法である。   In the method according to the above known example, the present inventors were also involved at the time, but the intended purpose could not be achieved. This method is fundamentally different from the present inventors' large-scale exhaust gas purification method including a dilute VOC. First, the adsorbent is different. The method according to the above-mentioned known example does not use a honeycomb-like adsorbent layer, and the recovery target component itself is greatly different from the present invention. Further, the method according to the above-mentioned known example is different from the present invention in the apparatus configuration and the operation method. That is, the method for purifying a large amount of exhaust gas containing the diluted VOC according to the present invention is an adsorption tower that communicates vertically with the VOC recovery. This is a method in which the VOC concentrated in the upper part and the lower part is drawn out from the bottom part of the bottom of the slab at once and cooled, and only the uncondensed gas is returned to the bottom part of the original adsorption tower.

以下、本発明を実施するための最良の形態を、実施例及び図面を用いて詳細に説明するが、以下に述べる実施例は、本発明をここに記載したものに限定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。   BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to examples and drawings. However, the examples described below are intended to limit the present invention to those described herein. Rather, the present invention can be equally applied to a variety of modifications without departing from the technical idea shown in the claims.

なお、図1は実施例の排ガス浄化方法で使用し得る装置の概略構成を示す図である。図2は実施例の排ガス浄化方法におけるA系で吸着工程を実施する際のフローシート図である。図3は実施例の排ガス浄化方法におけるB系で吸着工程を実施する際のフローシート図である。図4は実施例の排ガス浄化方法で使用し得る他の装置の概略構成を示す図である。   In addition, FIG. 1 is a figure which shows schematic structure of the apparatus which can be used with the exhaust gas purification method of an Example. FIG. 2 is a flow sheet diagram when the adsorption process is performed in the A system in the exhaust gas purification method of the embodiment. FIG. 3 is a flow sheet diagram when the adsorption process is performed in the B system in the exhaust gas purification method of the embodiment. FIG. 4 is a diagram showing a schematic configuration of another apparatus that can be used in the exhaust gas purification method of the embodiment.

本発明に係る希薄なVOCを含む大量の排ガス浄化方法は、一対の吸着剤層を上下に分けて一体化した吸着装置を使用する。この吸着装置は、上部に排ガス中に含まれている希薄なVOCを5〜10倍程度に濃縮するハニカム状の吸着剤層が設けられている。このハニカム状の吸着剤層は、上記VOCで予めプレコートした、吸着孔径が1nm〜10nmのメソポア活性炭をセラミック担体で保持した定置型のハニカム又はコルゲート状メソポア活性炭であって、場合によっては、疎水性シリカゲルのコルゲートも併用して使用できる。   The method for purifying a large amount of exhaust gas containing a diluted VOC according to the present invention uses an adsorbing device in which a pair of adsorbent layers are integrated separately. This adsorber is provided with a honeycomb-like adsorbent layer that concentrates the diluted VOC contained in the exhaust gas about 5 to 10 times on the upper part. This honeycomb-shaped adsorbent layer is a stationary honeycomb or corrugated mesopore activated carbon pre-coated with the above-mentioned VOC and having a mesopore activated carbon having an adsorption pore diameter of 1 nm to 10 nm held by a ceramic carrier. A silica gel corrugate can also be used in combination.

そして、上部のハニカム状の吸着剤層に5〜l0倍程度に濃縮されたVOCは、脱着時に下部の吸着剤層に溜まったVOCと一諸に真空ポンプで系外に取り出されるが、この下部の吸着剤層は、同じく吸着孔径が1〜10nmのプレコートした粒状のメソポア活性炭を充填した吸着剤層、及び/又は、平均の吸着孔径が4〜6nmに特化した粒状の疎水性シリカゲルをVOCによってプレコー卜して用いている。この粒状の吸着剤層はハニカム状の吸着剤層に比べて数倍の吸着容量を持つために、下部の吸着剤層の底部に溜まったVOC、即ち、その前の操作によって未凝縮ガスのリターンによって下部の吸着剤層にはさらに濃縮されたVOCが存在するが、この濃縮されたVOCとハニカム状の吸着剤層に吸着されたVOCが合流してパージ排ガスとして共に真空ポンプによって外部に取り出される。   The VOC concentrated about 5 to 10 times in the upper honeycomb adsorbent layer is taken out of the system by a vacuum pump together with the VOC accumulated in the lower adsorbent layer at the time of desorption. Similarly, the adsorbent layer of VOC is composed of an adsorbent layer filled with pre-coated granular mesopore activated carbon having an adsorption pore diameter of 1 to 10 nm and / or granular hydrophobic silica gel specializing in an average adsorption pore diameter of 4 to 6 nm. It is used by pre-coating. Since this granular adsorbent layer has an adsorption capacity several times that of the honeycomb adsorbent layer, VOC accumulated at the bottom of the lower adsorbent layer, that is, return of uncondensed gas by the previous operation. As a result, the concentrated VOC is present in the lower adsorbent layer, but this concentrated VOC and the VOC adsorbed on the honeycomb-shaped adsorbent layer join together and are taken out together by a vacuum pump as purge exhaust gas. .

このような操作を一対の吸着装置を切り替えて繰り返し操作すると、パージ排ガス中のVOC濃度が著しく濃くなるので、冷却温度をそれ程下げずに多量のVOCを液体として回収できるメリットがある。このように上部と下部を上下に連通した吸着塔を用いて処理するが故に、リタンーガスは塔底に、原料ガスは中間位置にという発想が生まれ、パージ排ガス中に含まれる希薄なVOCを超低温までに下げる必要もなく、簡便に液化することができるようになる。   If such an operation is repeated by switching between a pair of adsorption devices, the VOC concentration in the purge exhaust gas becomes extremely high, and there is an advantage that a large amount of VOC can be recovered as a liquid without lowering the cooling temperature so much. Since the upper and lower adsorbing towers are connected to each other up and down in this way, the idea that the retan gas is at the bottom of the tower and the raw material gas is at an intermediate position is created, and the dilute VOC contained in the purge exhaust gas is reduced to ultra-low temperatures. Therefore, it can be easily liquefied.

本発明に係る希薄なVOCを含む大量の排ガス浄化方法においては、一対の吸着装置の吸脱着操作の切り替え時間は1〜30分であって、望ましくは5分程度とし、パージ操作には真空ポンプ及び/又は常温の空気ないし窒素をパージガスとして併用する。このパージ操作の際に得られたパージ排ガスは冷却して系外に取り出し、含まれているVOCを液体として回収すると共に、未凝縮ガスは前記一対の吸着装置のうちの吸着処理を行っている側の吸着装置の底部にリターンさせる。用いる其空ポンプの型式は問わないが、液封式の回転ポンプが望ましく、到達真空度は3.5〜5Kpaあれば充分である。   In the method for purifying a large amount of exhaust gas containing the diluted VOC according to the present invention, the switching time of the adsorption / desorption operation of the pair of adsorption devices is 1 to 30 minutes, preferably about 5 minutes, and a vacuum pump is used for the purge operation. And / or normal temperature air or nitrogen is used together as a purge gas. The purge exhaust gas obtained at the time of the purge operation is cooled and taken out of the system, and the contained VOC is recovered as a liquid, and the uncondensed gas is subjected to an adsorption treatment of the pair of adsorption devices. Return to the bottom of the side adsorber. The type of the empty pump to be used is not limited, but a liquid ring rotary pump is desirable, and the ultimate vacuum is sufficient if it is 3.5 to 5 Kpa.

[本発明で対象とする排ガス]
本発明で対象とするガスは、塗装工場や半導体工場、化学製品を取り扱う製造工程などから排出される毎時数千〜数万m以上の大量の排ガスであって、かつ、希薄なVOC(例えばエチレンやプロピレンのようなオレフィン類炭化水素、メタノールのようなアルコール類、ベンゼンやトルエンのような芳香族炭化水素類、ブタジエンやヘキセン、スチレンのようなジエン類重合物質、トリクレン、塩化メチレンや酢酸エチルのように公害防止条例で規制されている有害物質)を含むものである。しかも、好ましくは含有濃度が%オーダーを超えない毎時数千m以上の排ガスを対象とするが、これに限る訳ではない。
[Exhaust gas targeted by the present invention]
The target gas in the present invention is a large amount of exhaust gas of several thousand to several tens of thousands m 3 / h discharged from a painting factory, a semiconductor factory, a manufacturing process for handling chemical products, and the like, and a lean VOC (for example, Olefin hydrocarbons such as ethylene and propylene, alcohols such as methanol, aromatic hydrocarbons such as benzene and toluene, diene polymer materials such as butadiene, hexene and styrene, trichlene, methylene chloride and ethyl acetate As well as hazardous substances regulated by the Pollution Control Ordinance. Moreover, preferably, the exhaust gas having a concentration of several thousand m 3 or more per hour whose concentration does not exceed the% order is targeted, but the present invention is not limited to this.

本実施例に係る希薄なVOCを含む大量の排ガス(空気)の浄化方法において使用し得る装置の一例を図1により説明する。この装置は、送風機による原料排ガス供給ライン1、及び異なる吸着剤層を上下に充填した一対の吸着塔1A、1B、下部ライン2A、2B、パージ排ガスライン3、真空ポンプ4、冷却器5a、ドレンタンク5b、未凝縮ガス戻しライン7、回収液取り出しライン6、大気に放散するガスライン9、パージガス供給ライン9Aを備えている。なお、10A、10B、11A、l1B、12A、12B、13A、13B、14A、14Bは、いずれも電磁弁である。なお、以下においては、吸着塔1Aを含む構成部分をA系といい、吸着塔1Bを含む構成部分をB系と称する。   An example of an apparatus that can be used in a method for purifying a large amount of exhaust gas (air) containing a lean VOC according to the present embodiment will be described with reference to FIG. This apparatus includes a raw material exhaust gas supply line 1 using a blower, and a pair of adsorption towers 1A, 1B, lower lines 2A, 2B, purge exhaust gas lines 3, vacuum pumps 4, coolers 5a, drains filled with different adsorbent layers. A tank 5b, an uncondensed gas return line 7, a recovered liquid take-out line 6, a gas line 9 that diffuses to the atmosphere, and a purge gas supply line 9A are provided. Note that 10A, 10B, 11A, 11B, 12A, 12B, 13A, 13B, 14A, and 14B are all electromagnetic valves. In the following, the constituent part including the adsorption tower 1A is referred to as A system, and the constituent part including the adsorption tower 1B is referred to as B system.

本実施例においては、吸着塔1A及び1Bの上部に充填する吸着剤層1Aa及び1Baとしてメソポア活性炭からなるハニカム及び/又は疎水性シリカゲルからなるコルゲートを使用し、下部に充填する吸着剤層1Ab及び1Bbとして粒状のメソポア活性炭及び/または疎水性シリカゲルをプレコートした状態にしたもの、或いは、吸着塔1A及び1Bを稼働する前にプレコート操作を終えたものを使用する。具体的には、上部に充填する吸着剤層1Aa及び1Baとしては日本ノリット杜のメソポア活性炭(商品名:GF−45)からなるハニカム状の吸着層を使用することができ、下部に充填する吸着剤層1Ab及び1Bbとしてキヤタラ社の粒状活性炭(商品名:GH−1)及び/又は富士シリシア化学社の粒状疎水性シリカゲル(商品名:S−3、S−6)からなる吸着剤層を使用し得る。   In this embodiment, a honeycomb made of mesopore activated carbon and / or a corrugated made of hydrophobic silica gel is used as the adsorbent layers 1Aa and 1Ba filled in the upper parts of the adsorption towers 1A and 1B, and the adsorbent layers 1Ab filled in the lower part are used. As the 1Bb, a pre-coated granular mesopore activated carbon and / or hydrophobic silica gel, or a pre-coated operation before operating the adsorption towers 1A and 1B is used. Specifically, as the adsorbent layers 1Aa and 1Ba filled in the upper part, a honeycomb-like adsorbent layer made of Nippon Noritto's mesopore activated carbon (trade name: GF-45) can be used. Adsorbent layer made of granular activated carbon (trade name: GH-1) of Kiyara and / or granular hydrophobic silica gel (trade name: S-3, S-6) of Fuji Silysia Chemical Co., Ltd. is used as the agent layers 1Ab and 1Bb. Can do.

本実施例のVOCを含む大量の排ガス浄化方法において、A系で吸着処理、B系で脱着処理を行う場合のガスないし液体のフローを図2により説明する。なお、図2における電磁弁のうち、黒く塗りつぶされているものは「閉」状態とされている電磁弁を示し、白抜きで示されているものは「開」状態とされているものを示す(なお、係る点は、図3においても同様である)。   FIG. 2 illustrates the flow of gas or liquid when an adsorption process is performed in the A system and a desorption process is performed in the B system in a large amount of exhaust gas purification method including VOC of the present embodiment. Note that among the solenoid valves in FIG. 2, those that are blacked out indicate solenoid valves that are in the “closed” state, and those that are outlined are those that are in the “open” state (Note that this also applies to FIG. 3).

A系では、送風機により送風された原料排ガス供給ライン1からの原料排ガスは、電磁弁12Aを経て吸着塔1Aの中間部に導入され、ハニカム状の吸着剤層1Aaを通る間にVOCが吸着され、清浄化された原料排ガスは上部ライン8A、電磁弁10A、大気に放散するガスライン9を経て大気中に放出される。一方、B系では、パージガスライン9Aより供給されたパージガス(例えば空気)は、電磁弁11B、上部ライン8Bを経て吸着塔1B内に導入され、ハニカム状の吸着剤層1Baを通る間に予め吸着されていたVOCを脱着し、更にパージガスと共に下部の粒状吸着剤層1Bbに入り、この粒状吸着剤層1Bbに吸着されていたVOCと共に下部ライン2B、電磁弁13B、パージ排ガスライン3及び真空ポンプ4を経て冷却器5aに導入される。   In the A system, the raw material exhaust gas from the raw material exhaust gas supply line 1 blown by the blower is introduced into the intermediate portion of the adsorption tower 1A through the electromagnetic valve 12A, and VOC is adsorbed while passing through the honeycomb-shaped adsorbent layer 1Aa. The purified raw material exhaust gas is discharged into the atmosphere through the upper line 8A, the electromagnetic valve 10A, and the gas line 9 that diffuses into the atmosphere. On the other hand, in the B system, the purge gas (for example, air) supplied from the purge gas line 9A is introduced into the adsorption tower 1B via the electromagnetic valve 11B and the upper line 8B, and adsorbed in advance while passing through the honeycomb adsorbent layer 1Ba. The VOC that has been removed is further desorbed and enters the lower granular adsorbent layer 1Bb together with the purge gas, and the lower line 2B, solenoid valve 13B, purge exhaust gas line 3 and vacuum pump 4 together with the VOC adsorbed on the granular adsorbent layer 1Bb. Then, it is introduced into the cooler 5a.

そして、冷却器5aで一部液化したVOCはドレンタンク5bで気液分離され、液体成分は回収液取り出しライン6を経て外部へ取り出され、VOCの未凝縮成分を含むパージガスは未凝縮ガス戻しライン7、電磁弁14A及び下部ライン2Aを経てA系の吸着塔1Aの下部に導入される。A系の吸着塔1Aの下部に導入されたVOCの未凝縮成分を含むパージガスは、粒状の吸着剤層1Abを通過する間にVOCが吸着除去され、残余のパージガスは原料排ガス供給ライン1から導入された原料排ガスと共にハニカム状の吸着剤層1Aaに導入される。このようにして、A系で吸着処理及びB系で脱着処理が行われる。   The VOC partially liquefied by the cooler 5a is gas-liquid separated by the drain tank 5b, the liquid component is taken out through the recovered liquid take-out line 6, and the purge gas containing the non-condensed component of the VOC is taken out by the uncondensed gas return line. 7. It is introduced into the lower part of the A-system adsorption tower 1A through the electromagnetic valve 14A and the lower line 2A. The purge gas containing uncondensed components of VOC introduced into the lower part of the A-type adsorption tower 1A is adsorbed and removed while passing through the granular adsorbent layer 1Ab, and the remaining purge gas is introduced from the raw material exhaust gas supply line 1 The raw material exhaust gas is introduced into the honeycomb-like adsorbent layer 1Aa. In this way, the adsorption process is performed in the A system and the desorption process is performed in the B system.

そして、本実施例のVOCを含む大量の排ガス浄化方法においては、吸着塔1Aのハニカム状の吸着剤層1Aaが破過する前に、電磁弁が切り替えられ、A系で脱着処理及びB系で吸着処理が行われる。このA系で脱着処理、B系で吸着処理を行う場合のガスないし液体のフローを図3により説明する。   In the exhaust gas purification method including a large amount of VOC according to the present embodiment, before the honeycomb adsorbent layer 1Aa of the adsorption tower 1A breaks through, the electromagnetic valve is switched, and the desorption process in the A system and the desorption process in the B system. An adsorption process is performed. The flow of gas or liquid when performing the desorption process in the A system and the adsorption process in the B system will be described with reference to FIG.

B系では、送風機により送風された原料排ガス供給ライン1からの原料排ガスは、電磁弁12Bを経て吸着塔1Bの中間部に導入され、ハニカム状の吸着剤層1Baを通る間にVOCが吸着され、清浄化された原料排ガスは上部ライン8B、電磁弁10B、大気に放散するガスライン9を経て大気中に放出される。一方、A系では、パージガスライン9Aより供給されたパージガス(例えば空気)は、電磁弁11A、上部ライン8Aを経て吸着塔1A内に導入され、ハニカム状の吸着剤層1Aaを通る間に予め吸着されていたVOCを脱着し、更にパージガスと共に下部の粒状吸着剤層1Abに入り、この粒状吸着剤層1Abに吸着されていたVOCと共に下部ライン2A、電磁弁13A、パージ排ガスライン3及び真空ポンプ4を経て冷却器5aに導入される。   In the B system, the raw material exhaust gas from the raw material exhaust gas supply line 1 blown by the blower is introduced into the intermediate portion of the adsorption tower 1B through the electromagnetic valve 12B, and VOC is adsorbed while passing through the honeycomb-shaped adsorbent layer 1Ba. The purified raw material exhaust gas is discharged into the atmosphere through the upper line 8B, the electromagnetic valve 10B, and the gas line 9 that diffuses into the atmosphere. On the other hand, in the A system, the purge gas (for example, air) supplied from the purge gas line 9A is introduced into the adsorption tower 1A through the electromagnetic valve 11A and the upper line 8A and adsorbed in advance while passing through the honeycomb adsorbent layer 1Aa. The VOC that has been removed is further desorbed and enters the lower granular adsorbent layer 1Ab together with the purge gas, and the lower line 2A, solenoid valve 13A, purge exhaust gas line 3 and vacuum pump 4 together with the VOC adsorbed on the granular adsorbent layer 1Ab. Then, it is introduced into the cooler 5a.

そして、冷却器5aで一部液化したVOCはドレンタンク5bで気液分離され、液体成分は回収液取り出しライン6を経て外部へ取り出され、VOCの未凝縮成分を含むパージガスは未凝縮ガス戻しライン7、電磁弁14B及び下部ライン2Bを経てB系の吸着塔1Bの下部に導入される。B系の吸着塔1Bの下部に導入されたVOCの未凝縮成分を含むパージガスは、粒状の吸着剤層1Bbを通過する間にVOCが吸着除去され、残余のパージガスは原料排ガス供給ライン1から導入された原料排ガスと共にハニカム状の吸着剤層1Baに導入される。このようにして、B系で吸着処理及びA系で脱着処理が行われる。   The VOC partially liquefied by the cooler 5a is gas-liquid separated by the drain tank 5b, the liquid component is taken out through the recovered liquid take-out line 6, and the purge gas containing the non-condensed component of the VOC is taken out by the uncondensed gas return line. 7. It is introduced into the lower part of the B-type adsorption tower 1B via the electromagnetic valve 14B and the lower line 2B. The purge gas containing uncondensed components of VOC introduced into the lower part of the B-type adsorption tower 1B is adsorbed and removed while passing through the granular adsorbent layer 1Bb, and the remaining purge gas is introduced from the raw material exhaust gas supply line 1 The raw material exhaust gas is introduced into the honeycomb adsorbent layer 1Ba. In this way, the adsorption process is performed in the B system and the desorption process is performed in the A system.

本実施例では、原料ガス供給ライン1から2,000ppmの酢酸エチルを含む空気を、毎時8mの割合で、吸着塔1Aないし1Bの中段に送気するが、その前に吸着剤層を予め該ガスでプレコートする。また、原料ガスライン1を通過する空気の送気速度は、毎秒約1.5mであって、切り替え時間は約10分であつた。 In this embodiment, air containing 2,000 ppm of ethyl acetate is fed from the source gas supply line 1 to the middle stage of the adsorption towers 1A to 1B at a rate of 8 m 3 per hour. Precoat with the gas. Further, the air feeding speed of the air passing through the raw material gas line 1 was about 1.5 m per second, and the switching time was about 10 minutes.

検証された成果として、上記の条件で試験した結果は、例えばA系で吸着処理を行う場合、吸着塔1Aの上部のハニカム状の吸着剤層1Aaに濃縮された酢酸エチル濃度は約15,000ppmで約7〜8倍に濃縮されていることが判った。この吸着塔1Aは、10分後に吸着処理を別の吸着塔1Bで行われるように切り帯えて、脱着処理に移行するが、その際は、真空ポンプ4を稼働させ、併せてパージガスとして空気を用いる。パージガス供給ライン9Aから供給する空気の量は毎分8Lであって、パージ係数(α)としては約2に相当する。真空度は3KPaである。その際、上部の吸着剤層1Aに濃縮された約15,000ppmの酢酸エチルは、下部に充填されている粒状の吸着剤層1Abを通過するために、稼働当初はこの粒状の吸着剤層1Abに吸着され、真空ポンプ4から排気されるパージ排ガス中に含まれている酢酸エチル含有量は少量ではあるが、吸着塔1Aの底部に戻す操作を続けているうちに(吸着塔の底部にリターンさせる回数が増える)に従って、パージ排ガス中の酢酸エチルの濃度が次第に増加し初め、定常状態では、冷却器5aにおけるパージ排ガスの冷却温度がほぼ常温であっても、酢酸エチルを液体状態で全量回収できるようになる。また、定常状態において、大気に放散するガスライン9から大気中に放散される排ガス中の酢酸エチルの濃度はほぼゼロppmであることが確認された。   As a verified result, the result of testing under the above conditions is that, for example, when the adsorption treatment is performed in the A system, the concentration of ethyl acetate concentrated in the honeycomb adsorbent layer 1Aa at the top of the adsorption tower 1A is about 15,000 ppm. It was found to be concentrated about 7 to 8 times. In this adsorption tower 1A, after 10 minutes, the adsorption process is cut so that it is performed in another adsorption tower 1B, and the process proceeds to the desorption process. In this case, the vacuum pump 4 is operated and air is used as a purge gas. Use. The amount of air supplied from the purge gas supply line 9A is 8 L / min, and the purge coefficient (α) corresponds to about 2. The degree of vacuum is 3 KPa. At that time, about 15,000 ppm of ethyl acetate concentrated in the upper adsorbent layer 1A passes through the granular adsorbent layer 1Ab filled in the lower portion. Although the amount of ethyl acetate contained in the purge exhaust gas that is adsorbed by the vacuum pump 4 is small, the operation returns to the bottom of the adsorption tower 1A (returns to the bottom of the adsorption tower). The concentration of ethyl acetate in the purge exhaust gas begins to gradually increase, and in a steady state, even when the cooling temperature of the purge exhaust gas in the cooler 5a is almost normal temperature, the entire amount of ethyl acetate is recovered in the liquid state become able to. In a steady state, it was confirmed that the concentration of ethyl acetate in the exhaust gas diffused into the atmosphere from the gas line 9 diffused into the atmosphere was almost zero ppm.

なお、上記実施例においては、吸着塔1A及び1Bとして上部にハニカム状の吸着剤層1Aa、1Baを備え、下部に粒状の吸着剤層1Ab及び1Bbを備えたものを使用したが、ハニカム状の吸着剤層及び粒状の吸着剤層は別個の吸着塔に配置しても良い。このようなハニカム状の吸着剤層及び粒状の吸着剤層を別個の吸着塔に配置した変形例を図4により説明する。なお、図4においては図1〜図3に記載されているものと同一の構成要件には同一の参照符号を付与してその詳細な説明は省略する。   In the above embodiment, as the adsorption towers 1A and 1B, those having the honeycomb adsorbent layers 1Aa and 1Ba in the upper portion and the granular adsorbent layers 1Ab and 1Bb in the lower portion are used. The adsorbent layer and the granular adsorbent layer may be disposed in separate adsorption towers. A modification in which such a honeycomb adsorbent layer and a granular adsorbent layer are arranged in separate adsorption towers will be described with reference to FIG. In FIG. 4, the same constituent elements as those shown in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted.

図4に示した変形例の装置が図1〜図3に示したものと構成が相違する点は、ハニカム状の吸着剤層1Aa、1Baがそれぞれ第1の吸着塔1A'及び1B'に配置され、粒状の吸着剤層1Ab、1Bbがそれぞれ第2の吸着塔1A"、1B"に配置され、A系の第1の吸着塔1A'及び第2の吸着塔1A"は接続配管15Aにより連通され、B系の第1の吸着塔1B'及び第2の吸着塔1B"は接続配管15Bにより連通され、電磁弁12Aは接続配管15Aに、電磁弁12Bは接続配管15Bにそれぞれ連通されている点のみである。そして、この図4に示した変形例の装置の操作方及び効果は、図1〜図3に示したものと同様であるので、その詳細な説明は省略する。   4 differs from that shown in FIGS. 1 to 3 in that the honeycomb adsorbent layers 1Aa and 1Ba are disposed in the first adsorption towers 1A ′ and 1B ′, respectively. The granular adsorbent layers 1Ab and 1Bb are respectively arranged in the second adsorption towers 1A "and 1B", and the first A adsorption tower 1A 'and the second adsorption tower 1A "of the A system are communicated with each other by a connection pipe 15A. The B-type first adsorption tower 1B ′ and the second adsorption tower 1B ″ are communicated with each other by a connection pipe 15B, the electromagnetic valve 12A is communicated with the connection pipe 15A, and the electromagnetic valve 12B is communicated with the connection pipe 15B. It is only a point. The operation method and effect of the apparatus of the modification shown in FIG. 4 are the same as those shown in FIGS. 1 to 3, and detailed description thereof will be omitted.

このように、希薄なVOCを含む大量の排ガスを上記の手段で、しかも、経済的にすぐれた新規な方法で処理することにより、上記ガスをゼロエミッションにまで浄化できることは、希薄なVOCが酢酸エチルの場合に限らず、その他の有機化合物全般に適用できるため、地球温暖化ガスの防止技術としては画期的な発明でもあり、社会的ニーズに充分応えることができる。   In this way, by treating a large amount of exhaust gas containing lean VOC by the above-mentioned means and by a new method that is economically excellent, the above-mentioned gas can be purified to zero emission. Since it can be applied not only to the case of ethyl but also to other organic compounds in general, it is also an epoch-making invention as a technique for preventing global warming gas, and can fully meet social needs.

実施例の排ガス浄化方法で使用し得る装置の概略構成を示す図である。It is a figure which shows schematic structure of the apparatus which can be used with the exhaust gas purification method of an Example. 実施例の排ガス浄化方法におけるA系で吸着工程を実施する際のフローシート図である。It is a flow sheet figure at the time of implementing an adsorption process by A system in an exhaust gas purification method of an example. 実施例の排ガス浄化方法におけるB系で吸着工程を実施する際のフローシート図である。It is a flow sheet figure at the time of implementing an adsorption process by B system in an exhaust gas purification method of an example. 実施例の排ガス浄化方法で使用し得る他の装置の概略構成を示す図である。It is a figure which shows schematic structure of the other apparatus which can be used with the exhaust gas purification method of an Example.

符号の説明Explanation of symbols

1:原料排ガス供給ライン 1A、1B:吸着塔 1A'、1B':第1の吸着塔 1A"、1B":第2の吸着塔 1Aa、1Ba:(ハニカム状)吸着剤層 1Ab、1Bb:(粒状)吸着剤層 2A、2B:下部ライン 3:パージ排ガスライン 4:真空ポンプ 5a:冷却器 5b:ドレンタンク 6:回収液取り出しライン 7:未凝縮ガス戻しライン 8A、8B:上部ライン 9:大気に放散するガスライン 9A:パージガス供給ライン 10A〜14A、10B〜14B:電磁弁 15A、15B:接続配管   1: Raw material exhaust gas supply line 1A, 1B: Adsorption tower 1A ', 1B': First adsorption tower 1A ", 1B": Second adsorption tower 1Aa, 1Ba: (Honeycomb) Adsorbent layer 1Ab, 1Bb :( Granular) Adsorbent layer 2A, 2B: Lower line 3: Purge exhaust gas line 4: Vacuum pump 5a: Cooler 5b: Drain tank 6: Recovery liquid take-out line 7: Uncondensed gas return line 8A, 8B: Upper line 9: Air Gas line 9A: Purge gas supply line 10A-14A, 10B-14B: Solenoid valve 15A, 15B: Connection piping

Claims (3)

吸着剤としてプレコートしたメソポア活性炭を充填した層からなる吸着剤層を備え、吸着と脱着を交互に行う吸着装置を用い、一方の吸着装置に揮発性炭化水素を含む排ガスを通過せしめ、該吸着装置内の吸着剤層に揮発性炭化水素を吸着させ、揮発性炭化水素を含まない排ガスを吸着装置の出口から放出し、その間に、他方の吸着装置を脱着に切り替えて、先に吸着された揮発性炭化水素を系外に取り出して冷却し、液体として回収することからなる、希薄な揮発性炭化水素を含む大量の排ガス浄化方法において、
前記吸着装置として、上部にプレコートしたメソポア活性炭からなるハニカム又はコルゲート状の吸着剤層を、下部にはプレコートした粒状のメソポア活性炭及びプレコートした粒状の疎水性シリカゲルの少なくとも一方を充填した吸着剤層を備えた上下連通した吸着装置を用い、かつ、原料排ガスの供給位置が、前記吸着装置の上部と下部の中間に位置することを特徴とする希薄な揮発性炭化水素を含む大量の排ガス浄化方法。
Comprising an adsorbent layer ing of a layer filled with pre-coated mesopore activated carbon as an adsorbent, using a suction device which performs alternating adsorption and desorption, passed through an exhaust gas containing volatile hydrocarbons in one adsorber, the Volatile hydrocarbons are adsorbed on the adsorbent layer in the adsorber, and exhaust gas that does not contain volatile hydrocarbons is released from the outlet of the adsorber, while the other adsorber is switched to desorption and adsorbed first. In a method for purifying a large amount of exhaust gas containing dilute volatile hydrocarbons, the volatile hydrocarbons are taken out of the system, cooled, and recovered as a liquid.
As the suction device, a honeycomb or corrugated adsorbent layer consisting of mesopores activated carbon pre-coated on the top, an adsorbent layer filled with at least one hydrophobic silica particulate was mesopore activated charcoal and precoat precoated beads for lower A method for purifying a large amount of exhaust gas containing dilute volatile hydrocarbons, characterized by using an adsorbing apparatus connected in the vertical direction and having a feed gas supply position located between the upper part and the lower part of the adsorbing apparatus.
前記吸着装置は、脱着時に該吸着装置の下部から真空ポンプを用いて吸引すること及び頂部から少量の空気ないし窒素をパージガスとして用いることの少なくとも一方を行い、吸着及び脱着の切り替え時間を1〜30分とし、かつ、得られたパージ排ガスを冷却して含まれている揮発性炭化水素を系外に取り出して回収し、この際の未凝縮ガスを吸着工程にある前記吸着装置の底部に戻すことを特徴とする請求項1に記載の揮発性炭化水素を含む大量の排ガス浄化方法。 The suction device, a small amount of air or nitrogen since and top sucking with a vacuum pump from the bottom of the adsorber is performed at least one of be used as purge gas during desorption, the switching time of the adsorption and desorption 1-30 The purged exhaust gas obtained is cooled and the volatile hydrocarbons contained in the system are taken out of the system and recovered, and the uncondensed gas at this time is returned to the bottom of the adsorption device in the adsorption process. A method for purifying a large amount of exhaust gas containing volatile hydrocarbons according to claim 1. 前記吸着装置の出口から放出される排ガス中の揮発性炭化水素濃度はほぼゼロppmであることを特徴とする請求項1又は2に記載の揮発性炭化水素を含む大量の排ガス浄化方法。   The method for purifying a large amount of exhaust gas containing volatile hydrocarbons according to claim 1 or 2, wherein the concentration of volatile hydrocarbons in the exhaust gas discharged from the outlet of the adsorption device is substantially zero ppm.
JP2008097503A 2008-04-03 2008-04-03 Method for purifying a large amount of exhaust gas containing lean volatile hydrocarbons Active JP5109028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008097503A JP5109028B2 (en) 2008-04-03 2008-04-03 Method for purifying a large amount of exhaust gas containing lean volatile hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008097503A JP5109028B2 (en) 2008-04-03 2008-04-03 Method for purifying a large amount of exhaust gas containing lean volatile hydrocarbons

Publications (2)

Publication Number Publication Date
JP2009247962A JP2009247962A (en) 2009-10-29
JP5109028B2 true JP5109028B2 (en) 2012-12-26

Family

ID=41309148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008097503A Active JP5109028B2 (en) 2008-04-03 2008-04-03 Method for purifying a large amount of exhaust gas containing lean volatile hydrocarbons

Country Status (1)

Country Link
JP (1) JP5109028B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108246252A (en) * 2018-01-04 2018-07-06 浙江工业大学 A kind of carbon silicon compound adsorbent and application

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5256252B2 (en) * 2010-07-09 2013-08-07 月島環境エンジニアリング株式会社 Gas processing method and gas processing equipment
CN110940752B (en) * 2019-12-17 2022-08-05 陕西延长石油(集团)有限责任公司 Multi-element low-carbon hydrocarbon adsorption and desorption evaluation device and method
CN112588078B (en) * 2020-12-04 2023-03-21 宁波弘景环保科技有限公司 High-efficient organic waste gas recovery processing system
CN113731109A (en) * 2021-10-11 2021-12-03 浙江省环境工程有限公司 Method and device for synchronously treating carbon fiber desorption steam and organic waste gas carried by carbon fiber desorption steam through internal circulation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353581A (en) * 1976-10-26 1978-05-16 Japan Steel Works Ltd Method of removing and recovering dilute solvent gas
JP4189344B2 (en) * 2004-03-16 2008-12-03 東芝プラントシステム株式会社 Carbon dioxide separation and recovery system
JP2005342603A (en) * 2004-06-02 2005-12-15 Nichias Corp Corrugated laminated body filter
JP4847118B2 (en) * 2005-06-27 2011-12-28 システム エンジ サービス株式会社 Method for purifying a large amount of exhaust gas containing lean volatile hydrocarbons
JP2008068205A (en) * 2006-09-14 2008-03-27 Syst Enji Service Kk Method for cleaning large quantity of exhaust gas containing lean volatile hydrocarbon
JP4611355B2 (en) * 2007-09-27 2011-01-12 月島環境エンジニアリング株式会社 Gas processing method and gas processing equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108246252A (en) * 2018-01-04 2018-07-06 浙江工业大学 A kind of carbon silicon compound adsorbent and application
CN108246252B (en) * 2018-01-04 2020-11-13 浙江工业大学 Carbon-silicon composite adsorbent and application thereof

Also Published As

Publication number Publication date
JP2009247962A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
CN103237586B (en) The round-robin method of dynamics fractionator and fractionation admixture of gas
TWI480089B (en) Purification of air
AU2008336265B2 (en) A plant and process for recovering carbon dioxide
JP3974013B2 (en) Method for treating exhaust gas containing volatile hydrocarbons and apparatus for carrying out the method
JP2008504954A (en) Gas flow adsorption separation method
JP5109028B2 (en) Method for purifying a large amount of exhaust gas containing lean volatile hydrocarbons
JP2004515349A (en) Pressure swing adsorption using contaminant-sensitive adsorbents
GB2393923A (en) A device for purifying air by alternating pressure adsorption in molecular sieve beds.
JP2010029855A (en) Process and apparatus for nitrous oxide removal
KR101196932B1 (en) Method of purifying large quantity of exhaust gas containing dilute volatile hydrocarbon
JP2011526571A (en) Treatment of wet gas containing dust
JP2011025219A (en) Exhaust gas cleaning method containing water-soluble volatile hydrocarbon of large amount and high humidity
CN103402605A (en) Vertical baffle in horizontal absorber vessels
JP2010142728A (en) System for treating exhaust
JP3133988B2 (en) Equipment for treating lean gaseous hydrocarbons contained in waste gas
WO2008072215A2 (en) Separation column and pressure swing adsorption process for gas purification
JP4575673B2 (en) Gasoline vapor recovery method and recovery device
KR20040094726A (en) Method of recycling waste gas in polymer production plant
JP2002137909A (en) Helium gas refining method
KR100266479B1 (en) Adsorptive collection and recovery of volatile petroleum compounds
WO2019180241A1 (en) Process for separating a heavy gas component from a gaseous mixture
CN110935281A (en) Adsorption and regeneration device and method for solid adsorbent for adsorbing volatile organic compounds
KR102056604B1 (en) Apparatus and systems for related high speed circulating swing adsorption processes
JP2002200410A (en) Method for isolating and recovering inert gas, and device for performing the method
CN1315563C (en) Adsorption stripping method for removing ethene and carbon dioxide from mixed gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5109028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250