CN110940752B - Multi-element low-carbon hydrocarbon adsorption and desorption evaluation device and method - Google Patents
Multi-element low-carbon hydrocarbon adsorption and desorption evaluation device and method Download PDFInfo
- Publication number
- CN110940752B CN110940752B CN201911299243.9A CN201911299243A CN110940752B CN 110940752 B CN110940752 B CN 110940752B CN 201911299243 A CN201911299243 A CN 201911299243A CN 110940752 B CN110940752 B CN 110940752B
- Authority
- CN
- China
- Prior art keywords
- adsorption
- adsorbent
- gas
- desorption
- control valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001179 sorption measurement Methods 0.000 title claims abstract description 186
- 238000003795 desorption Methods 0.000 title claims abstract description 138
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 91
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 85
- 239000004215 Carbon black (E152) Substances 0.000 title claims abstract description 84
- 238000000034 method Methods 0.000 title claims abstract description 50
- 238000011156 evaluation Methods 0.000 title claims abstract description 18
- 239000003463 adsorbent Substances 0.000 claims abstract description 213
- 238000010926 purge Methods 0.000 claims abstract description 34
- 238000004458 analytical method Methods 0.000 claims abstract description 29
- 238000012360 testing method Methods 0.000 claims description 51
- 238000011068 loading method Methods 0.000 claims description 14
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 9
- 238000012854 evaluation process Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000003860 storage Methods 0.000 claims description 8
- -1 carbon hydrocarbon Chemical class 0.000 claims description 6
- 239000002594 sorbent Substances 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 3
- 238000004088 simulation Methods 0.000 claims description 3
- 230000008929 regeneration Effects 0.000 claims description 2
- 238000011069 regeneration method Methods 0.000 claims description 2
- 238000002441 X-ray diffraction Methods 0.000 claims 3
- 238000002336 sorption--desorption measurement Methods 0.000 claims 2
- 238000001914 filtration Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 221
- 238000004587 chromatography analysis Methods 0.000 abstract description 8
- 239000011261 inert gas Substances 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 238000006073 displacement reaction Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 238000005303 weighing Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 5
- 239000012855 volatile organic compound Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000006378 damage Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000003570 air Substances 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 238000009841 combustion method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000005485 electric heating Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011491 glass wool Substances 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004966 Carbon aerogel Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000012824 chemical production Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/50—Conditioning of the sorbent material or stationary liquid
- G01N30/58—Conditioning of the sorbent material or stationary liquid the sorbent moving as a whole
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
本发明公开一种多元低碳烃吸附解吸评价装置及方法,其装置包括供气系统、双通道切换系统I、吸附解吸系统、双通道切换系统II、色谱分析系统、尾气排放系统、解吸气系统、吸附剂排出及分析系统、吸附剂在线加料系统和吹扫输送气源系统;本发明利用先进的双通道切换系统、供气系统、高温惰性气体解吸附系统和吸附剂分析系统,可进行多种样本气体和吸附剂的加压、长周期、双通道吸附解吸评价,具有操作简便、在线读取结果的特点,具有较好的拓展性和市场前景。
The invention discloses a multi-element low-carbon hydrocarbon adsorption and desorption evaluation device and method. The device comprises an air supply system, a dual-channel switching system I, an adsorption and desorption system, a dual-channel switching system II, a chromatographic analysis system, a tail gas discharge system, and a desorption gas. system, adsorbent discharge and analysis system, adsorbent online feeding system and purging and conveying gas source system; the present invention utilizes advanced dual-channel switching system, gas supply system, high-temperature inert gas desorption system and adsorbent analysis system, which can carry out The pressurized, long-period, dual-channel adsorption and desorption evaluation of various sample gases and adsorbents has the characteristics of easy operation and online reading of results, and has good expansibility and market prospects.
Description
技术领域technical field
本发明涉及能源化工领域的气体吸附解吸评价技术,具体涉及一种多元低碳烃吸附解吸评价装置及方法。The invention relates to a gas adsorption and desorption evaluation technology in the field of energy and chemical industry, in particular to a multi-component low-carbon hydrocarbon adsorption and desorption evaluation device and method.
背景技术Background technique
挥发性有机化合物(VOCs)是指在101.3kPa(20)标准大气压下,沸点<260℃的有机化合物的总称,包括脂肪烃、芳香烃、含卤烃、含氧烃、含氮烃和含硫烃等。在许多化工生产中,含VOC废气排放一直是很突出的问题,其排放不仅会造成严重的大气污染,而且会大大浪费资源,加大生产成本。Volatile organic compounds (VOCs) refer to the general term for organic compounds with a boiling point of less than 260°C under a standard atmospheric pressure of 101.3kPa (20), including aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, oxygen-containing hydrocarbons, nitrogen-containing hydrocarbons and sulfur-containing hydrocarbons. Hydrocarbons etc. In many chemical production, the emission of VOC-containing waste gas has always been a very prominent problem. Its emission will not only cause serious air pollution, but also greatly waste resources and increase production costs.
能源化工行业从原料开采、运输、加工到产品生产、储运、销售等各个环节都存在轻烃类挥发性有机物(VOCs)排放。这些低碳烃,污染环境浪费资源造成火灾隐患以及危害人身安全,给企业和社会带来诸多严重危害。In the energy and chemical industry, there are light hydrocarbon volatile organic compounds (VOCs) emissions in all links from raw material extraction, transportation, processing to product production, storage and transportation, and sales. These low-carbon hydrocarbons pollute the environment, waste resources, cause fire hazards and endanger personal safety, and bring many serious harm to enterprises and society.
低碳烃一般都具有易燃易爆、有毒有害、排放量及浓度不稳定和处理难度大的特点。目前主要的治理方法分为回收法和破坏法。回收法可分为冷凝法、吸收法、吸附法、膜分离法等,破坏法可分为稀释扩散法、直接燃烧法、蓄热催化氧化燃烧法、生物法和低温等离子体法。但是,这些方法的研究和应用均依赖于高效吸附剂的开发和先进的评价手段。Low-carbon hydrocarbons generally have the characteristics of flammable, explosive, toxic and harmful, unstable in emission and concentration, and difficult to handle. At present, the main treatment methods are divided into recycling method and destruction method. The recovery method can be divided into condensation method, absorption method, adsorption method, membrane separation method, etc. The destruction method can be divided into dilution diffusion method, direct combustion method, regenerative catalytic oxidation combustion method, biological method and low temperature plasma method. However, the research and application of these methods all depend on the development of efficient adsorbents and advanced evaluation methods.
因此,这就需要一种准确可靠的吸附剂评价装置和方法来对吸附剂的性能进行测试从而指导选择和研究。现有的技术,仅能在常压下对单一气体成分进行吸附和解吸测定,且仅有唯一的测量通道,方法局限性很大,不具备普适性和灵活性。Therefore, there is a need for an accurate and reliable adsorbent evaluation device and method to test the performance of adsorbents to guide selection and research. The existing technology can only perform adsorption and desorption measurements on a single gas component under normal pressure, and only has a single measurement channel. The method is very limited and does not have universality and flexibility.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的不足,本发明目的在于提供一种具有普适性和灵活性的多元低碳烃吸附解吸评价装置及方法,解决现有技术不能带压吸附和仅能单一通道进行吸附解吸试验的弊端。In view of the deficiencies in the prior art, the purpose of the present invention is to provide a universal and flexible multi-component low-carbon hydrocarbon adsorption and desorption evaluation device and method, so as to solve the problem that the prior art can not carry out pressure adsorption and can only perform adsorption and desorption in a single channel Disadvantages of testing.
为实现上述目的,本发明采用的技术方案是:包括供气系统、双通道切换系统I、吸附解吸系统、双通道切换系统II、色谱分析系统、尾气排放系统、解吸气系统、吸附剂排出及分析系统、吸附剂在线加料系统和吹扫输送气源系统;In order to achieve the above purpose, the technical scheme adopted in the present invention is: including an air supply system, a dual-channel switching system I, an adsorption and desorption system, a dual-channel switching system II, a chromatographic analysis system, a tail gas discharge system, a desorption gas system, and an adsorbent discharge system. And analysis system, adsorbent online feeding system and purging and conveying air source system;
所述双通道切换系统I通过并联的管线M、L与吸附解吸系统相连后再通过并联的管线K、F与双通道切换系统II相连,双通道切换系统II通过并联的管线Z、J与色谱分析系统及尾气排放系统相连;所述的供气系统包括与双通道切换系统I相连并为吸附解吸系统提供试验样本气体的多元低碳烃模拟气系统和多元低碳烃直接进料系统;所述解吸气系统同样与双通道切换系统I相连为吸附解吸系统提供解吸气源;The dual-channel switching system I is connected to the adsorption and desorption system through the parallel pipelines M and L, and then connected to the dual-channel switching system II through the parallel pipelines K and F. The dual-channel switching system II is connected to the chromatograph through the parallel pipelines Z and J. The analysis system is connected with the tail gas emission system; the gas supply system includes a multi-component low-carbon hydrocarbon simulated gas system and a multi-component low-carbon hydrocarbon direct feeding system that is connected to the dual-channel switching system I and provides a test sample gas for the adsorption and desorption system; The desorption gas system is also connected with the dual-channel switching system I to provide a desorption gas source for the adsorption and desorption system;
所述的吸附剂排出及分析系统通过并联的管线R、S与双通道切换系统I相连,吸附剂在线加料系统通过并联的加料管线Q、W与吸附解吸系统的管线K、F在接口处倾斜相连;所述的吹扫输送气源系统与吸附剂在线加料系统的加料管线Q、W相连通。The adsorbent discharge and analysis system is connected with the dual-channel switching system I through the parallel pipelines R and S, and the adsorbent online feeding system is inclined at the interface with the pipelines K and F of the adsorption and desorption system through the parallel feeding pipelines Q and W. Connected; the purging and conveying gas source system is connected with the feeding pipelines Q and W of the adsorbent online feeding system.
所述的多元低碳烃模拟气系统包括V1~Vn个单组分供气系统;所述每个单组分供气系统包括依次相连的供气装置V、压力精控阀、流量精控阀和自动流量控制阀;所述的每两组单组分供气系统并联后与一级混合器相连后再相互并联;The multi-component low-carbon hydrocarbon simulated gas system includes V1 to Vn single-component gas supply systems; each single-component gas supply system includes a gas supply device V, a pressure precision control valve, and a flow precision control valve that are connected in sequence. and automatic flow control valve; each two groups of single-component air supply systems are connected in parallel with the first-stage mixer and then connected in parallel with each other;
所述的多元低碳烃直接进料系统包括依次相连的多元低碳烃混合气采集罐、压力精控阀、流量精控阀和自动流量控制阀和垂直接于多元低碳烃混合气采集罐和压力精控阀之间的待测气直接接口;The multi-component low-carbon hydrocarbon direct feeding system includes a multi-component low-carbon hydrocarbon mixed gas collection tank, a pressure precision control valve, a flow precision control valve and an automatic flow control valve that are connected in sequence, and a multi-component low-carbon hydrocarbon mixture gas collection tank connected vertically. The direct interface of the gas to be measured between it and the pressure precision control valve;
所述的多元低碳烃模拟气系统和多元低碳烃直接进料系统并联后经二级混合器与双通道切换系统I相连。The multi-component low-carbon hydrocarbon simulated gas system and the multi-component low-carbon hydrocarbon direct feeding system are connected in parallel with the dual-channel switching system I through the secondary mixer.
所述的吸附解吸系统包括并联的吸附解吸器I和吸附解吸器II,吸附解吸器I来料方向连接于设置在吸附解吸器I和双通道切换系统I之间的吸附解吸系统进料阀I出料方向连接于管线K,吸附解吸器II来料方向连接于设置在吸附解吸器II和双通道切换系统I吸附解吸系统进料阀II出料方向连接于管线F。Described adsorption and desorption system comprises adsorption and desorption device I and adsorption and desorption device II in parallel, and the incoming direction of adsorption and desorption device I is connected to adsorption and desorption system feed valve I arranged between adsorption and desorption device I and dual-channel switching system I. The discharge direction is connected to the pipeline K, the incoming direction of the adsorption and desorber II is connected to the pipeline F in the incoming direction of the adsorption and desorber II and the feed valve II of the adsorption and desorption system of the dual-channel switching system I is connected to the discharge direction.
所述的吸附解吸器I和吸附解吸器II均包括桶状加热器、处于桶状加热器中心的吸附剂和分别安装于桶状加热器两端的吸附剂固定过滤装置、快速装卸器;The adsorption-desorber I and the adsorption-desorber II both include a barrel heater, an adsorbent in the center of the barrel heater, and an adsorbent fixed filter device and a quick loading and unloading device respectively installed at both ends of the barrel heater;
所述的桶状加热器包括电加热、水浴加热、油浴加热和蒸汽加热的一种或多种的组合;所述的吸附剂为活性炭、焦粉改性制品、高性能吸附碳材料和气凝胶的一种或多种的组合;所述的吸附剂固定过滤装置为石棉、金属烧结物、合金网和玻璃棉的一种或多种的组合。The barrel heater includes one or more combinations of electric heating, water bath heating, oil bath heating and steam heating; the adsorbent is activated carbon, coke powder modified products, high-performance adsorbent carbon materials and gas condensate. A combination of one or more glues; the adsorbent-fixed filter device is a combination of one or more of asbestos, metal sinter, alloy mesh and glass wool.
所述的解吸气系统包括依次相连的解吸气源、压力精控阀、流量精控阀和自动流量控制阀;The stripping gas system includes a stripping gas source, a pressure precision control valve, a flow precision control valve and an automatic flow control valve that are connected in sequence;
所述的吸附剂排出及分析系统包括安装在管线R上的吸附剂排料阀I、安装在管线S上的吸附剂排料阀II;所述的管线R和S并联后汇合接于吸附剂收集罐后连接有吸附剂分析器;The adsorbent discharge and analysis system includes an adsorbent discharge valve I installed on the pipeline R, and an adsorbent discharge valve II installed on the pipeline S; the pipelines R and S are connected in parallel and are connected to the adsorbent. An adsorbent analyzer is connected behind the collection tank;
所述的吸附剂分析器为BET、XRD和FT-IR分析器的一种或多种的组合;The adsorbent analyzer is a combination of one or more of BET, XRD and FT-IR analyzers;
所述的解吸气源为氮气、空气、二氧化碳、氦气和蒸汽的一种或多种的组合。The desorption gas source is one or a combination of nitrogen, air, carbon dioxide, helium and steam.
所述的吹扫输送气源系统分为并联的两路,一路连接于加料管线Q、W上的吸附剂卸料阀I、吸附剂卸料阀II来料端;一路连接于吸附解吸系统进料阀I、吸附解吸系统进料阀II、吸附剂排料阀I、吸附剂排料阀II、吸附剂卸料阀I、吸附剂卸料阀II和管线R、S,实现吸附剂带压在线输送和各管线气力清堵。The purging and conveying air source system is divided into two parallel paths, one is connected to the feed end of the adsorbent discharge valve I and adsorbent discharge valve II on the feeding pipelines Q and W; one is connected to the inlet of the adsorption and desorption system. Feed valve I, adsorption and desorption system feed valve II, adsorbent discharge valve I, adsorbent discharge valve II, adsorbent discharge valve I, adsorbent discharge valve II and pipelines R and S to achieve adsorbent pressure Online transportation and pneumatic clearing of each pipeline.
所述的色谱分析系统包括分别依次连接在管线Z和管线J上的压力远程监测器、过滤器、系统备压阀、总流量监测器和防倒流装置;管线J的总流量监测器和防倒流装置之间通过快拆变径、微流量控制阀和色谱仪相连;The chromatographic analysis system includes a pressure remote monitor, a filter, a system backup valve, a total flow monitor and an anti-backflow device, which are respectively connected to the pipeline Z and the pipeline J in turn; the total flow monitor and the anti-backflow device of the pipeline J. The devices are connected to the chromatograph through quick-release variable diameter, micro-flow control valve;
所述的尾气排放系统包括依次相连的尾气切断阀、阻火装置和放空器,其中尾气切断阀与色谱分析系统的防倒流装置出口相连。The tail gas discharge system comprises a tail gas cut-off valve, a fire arrester and a blower which are connected in sequence, wherein the tail gas cut-off valve is connected with the outlet of the anti-backflow device of the chromatographic analysis system.
所述的吸附剂在线加料系统包括依次相连的吸附剂暂存罐、称重仪和粉体切断阀,粉体切断阀出口分别与并联的加料管线Q、W相连。The adsorbent online feeding system includes an adsorbent temporary storage tank, a weighing instrument and a powder shut-off valve which are connected in sequence, and the outlet of the powder shut-off valve is respectively connected with the parallel feeding pipelines Q and W.
本发明的多元低碳烃吸附解吸评价方法,其特征在于包括以下步骤:The multi-component low-carbon hydrocarbon adsorption and desorption evaluation method of the present invention is characterized by comprising the following steps:
步骤一、吸附剂装载及系统清扫过程:Step 1. Adsorbent loading and system cleaning process:
1.1、在吸附解吸器I和吸附解吸器II上下两端放置吸附剂固定过滤装置,在吸附剂暂存罐装载吸附剂,打开吹扫输送气源系统引入输送气至吸附剂在线加料系统,吸附剂经吹扫输送气源系统气力输送进入吸附解吸系统,吸附剂装填完毕后记录吸附剂装载量;1.1. Place adsorbent fixed filter devices at the upper and lower ends of adsorption-desorber I and adsorption-desorber II, load adsorbent in the adsorbent temporary storage tank, open the purging and conveying gas source system to introduce the conveying gas to the adsorbent online feeding system, The adsorbent is pneumatically transported into the adsorption and desorption system through the purging and conveying air source system, and the loading amount of the adsorbent is recorded after the adsorbent is loaded;
1.2、设定解吸气系统的压力、流量和置换时间,用吹扫解吸气源气体置换吸附解吸系统同时检查装置管路气密性;1.2. Set the pressure, flow rate and replacement time of the desorption gas system, replace the adsorption and desorption system with the purge and desorption gas source gas, and check the air tightness of the device pipeline;
步骤二、切换样本气体过程:Step 2. Switch the sample gas process:
控制供气系统在多元低碳烃模拟气系统独立供气、多元低碳烃直接进料系统独立供气和两个系统混合供气三种状态下切换,实现不同样本气体供气:The gas supply system is controlled to switch between three states: the independent gas supply of the multi-component low-carbon hydrocarbon simulated gas system, the independent gas supply of the multi-component low-carbon hydrocarbon direct feeding system, and the mixed gas supply of the two systems, so as to realize the gas supply of different sample gases:
1)多元低碳烃模拟气系统独立供气:将V1~Vn个不同气体成分的单组分供气系统接入多元低碳烃模拟气系统,并设定每组单组分供气系统的压力精控阀、流量精控阀和自动流量控制阀开度,直到单组分供气系统的自动流量控制阀和总流量监测器数值达到试验要求;1) Independent gas supply of the multi-component low-carbon hydrocarbon simulated gas system: Connect the single-component gas supply systems with different gas components V1 to Vn to the multi-component low-carbon hydrocarbon simulated gas system, and set the gas supply of each group of single-component gas supply systems. The opening of the pressure precision control valve, the flow precision control valve and the automatic flow control valve, until the values of the automatic flow control valve and the total flow monitor of the single-component gas supply system meet the test requirements;
2)多元低碳烃直接进料系统独立供气:用多元低碳烃混合气采集罐采集多元低碳烃混合气样或将多元低碳烃直接接入待测气直接接口,设定多元低碳烃直接进料系统的压力精控阀、流量精控阀和自动流量控制阀开度,直到流自动流量控制阀数值和总流量监测器数值达到试验要求;2) Independent gas supply of the multi-component low-carbon hydrocarbon direct feeding system: use the multi-component low-carbon hydrocarbon mixture gas collection tank to collect the multi-component low-carbon hydrocarbon mixture gas sample or connect the multi-component low-carbon hydrocarbon directly to the direct interface of the gas to be tested, and set the multi-component low-carbon hydrocarbon mixture gas sample. The opening of the pressure precision control valve, flow precision control valve and automatic flow control valve of the hydrocarbon direct feeding system, until the value of the automatic flow control valve and the value of the total flow monitor meet the test requirements;
3)两个系统混合供气:多元低碳烃混合气采集罐和单组分供气系统同时工作,并在二级混合器混合,设定每个系统的压力精控阀、流量精控阀和自动流量控制阀开度,直到流自动流量控制阀数值和总流量监测器数值达到试验要求;3) The two systems are mixed with gas supply: the multi-component low-carbon hydrocarbon mixed gas collection tank and the single-component gas supply system work at the same time, and are mixed in the secondary mixer, and the pressure precision control valve and flow precision control valve of each system are set. and automatic flow control valve opening, until the flow automatic flow control valve value and total flow monitor value meet the test requirements;
步骤三、吸附评价过程:Step 3. Adsorption evaluation process:
3.1、操作双通道切换系统I,使得待测气体进入吸附解吸器I,吸附完毕的气体经双通道切换系统II由管道J进入色谱仪进行分析;3.1. Operate the dual-channel switching system I, so that the gas to be tested enters the adsorption-desorber I, and the adsorbed gas enters the chromatograph through the pipeline J through the dual-channel switching system II for analysis;
3.2、调节管道J上的系统备压阀的数值为工艺设定值;3.2. Adjust the value of the system backup pressure valve on the pipeline J to the process setting value;
3.3、根据试验要求,依据步骤二控制供气系统的工作状态,开始吸附过程;3.3. According to the test requirements, control the working state of the gas supply system according to step 2, and start the adsorption process;
3.4、将色谱仪通过快拆变径连接到系统,部分样本气体经微流量控制阀调节达到仪器要求后进入色谱仪分析吸附效果;3.4. Connect the chromatograph to the system through the quick release variable diameter, and part of the sample gas is adjusted by the micro-flow control valve to meet the requirements of the instrument and then enter the chromatograph to analyze the adsorption effect;
3.5、双通道吸附过程:3.5. Double channel adsorption process:
当步骤3.4的色谱仪分析的脱除率γ低于10~70%时,操作双通道切换系统I,使得待测气体进入吸附解吸器II,吸附完毕的气体经双通道切换系统II由管道J进入色谱仪进行分析,接着重复步骤3.2~3.4,直到色谱仪分析的脱除率γ低于10~70%时,停止吸附试验或利用吸附剂在线加料系统在线添加吸附剂进行在线加料的长周期吸附试验;When the removal rate γ analyzed by the chromatograph in step 3.4 is lower than 10-70%, operate the dual-channel switching system I, so that the gas to be tested enters the adsorption and desorber II, and the adsorbed gas passes through the dual-channel switching system II from the pipeline J Enter the chromatograph for analysis, then repeat steps 3.2 to 3.4 until the removal rate γ analyzed by the chromatograph is lower than 10 to 70%, stop the adsorption test or use the adsorbent online feeding system to add adsorbent online for a long period of online feeding adsorption test;
步骤四、解吸附及分析过程:Step 4. Desorption and analysis process:
借助双通道切换系统I和双通道切换系统II,解吸附过程能够在A、B、C三种状态之间切换:With dual-channel switching system I and dual-channel switching system II, the desorption process can be switched between three states: A, B, and C:
A:吸附解吸器I和吸附解吸器II同时解吸附A: Simultaneous desorption of adsorption-desorber I and adsorption-desorber II
a1)操作双通道切换系统I和双通道切换系统II状态,使得解吸气体进入并联的吸附解吸器I和吸附解吸器II;a1) Operate the state of the dual-channel switching system I and the dual-channel switching system II, so that the desorbed gas enters the parallel adsorption-desorber I and the adsorption-desorber II;
a2)设置解吸气系统的吹扫置换压力P=0.0~5.0MPa,同时自动流量控制阀数值和总流量监测器数值达到试验要求;a2) Set the purge displacement pressure P=0.0~5.0MPa of the desorption gas system, and at the same time the value of the automatic flow control valve and the value of the total flow monitor meet the test requirements;
a3)打开桶状加热器,使得桶状加热器达到设定温度T=50~500℃,进行加热吸附剂再生;a3) Turn on the barrel heater, make the barrel heater reach the set temperature T=50~500℃, and regenerate the heated adsorbent;
a4)停止解吸气系统,关闭桶状加热器,待系统压力降至常压时,打开吸附解吸系统进料阀I、吸附解吸系统进料阀II、吸附剂排料阀I、吸附剂排料阀II,吸附剂进入吸附剂收集罐;a4) Stop the desorption gas system, close the barrel heater, and when the system pressure drops to normal pressure, open the adsorption and desorption system feed valve I, the adsorption and desorption system feed valve II, the adsorbent discharge valve I, and the adsorbent discharge valve. Material valve II, the adsorbent enters the adsorbent collection tank;
a5)利用吸附剂分析器对吸附剂收集罐内的吸附剂进行BET、XRD、FT-IR分析,计算吸附剂吸附容量U;a5) Carry out BET, XRD, FT-IR analysis on the adsorbent in the adsorbent collection tank with an adsorbent analyzer, and calculate the adsorption capacity U of the adsorbent;
B:吸附解吸器I吸附,吸附解吸器II解吸附同时操作过程:B: adsorption-desorber I adsorption, adsorption-desorber II desorption simultaneous operation process:
b1)操作双通道切换系统I状态,使得供气系统的待测气体进入吸附解吸器I进行吸附试验,同时操作双通道切换系统II使得吸附完毕的气体由管道J进入色谱仪进行分析,吸附解吸器I接着进行步骤3.2~3.3的吸附评价过程;b1) Operate the state of the dual-channel switching system I, so that the gas to be tested in the gas supply system enters the adsorption and desorber I to carry out the adsorption test, and simultaneously operate the dual-channel switching system II so that the adsorbed gas enters the chromatograph from the pipeline J for analysis, and the adsorption and desorption are carried out. Device I then performs the adsorption evaluation process of steps 3.2 to 3.3;
b2)同时,操作双通道切换系统I状态,使得解吸气系统的解吸气体进入吸附解吸器II,操作双通道切换系统II使得吸附解吸器II接入管道Z后接入尾气排放系统,将解吸气系统的压力精控阀设定到吹扫置换压力P=0.0~5.0MPa,调节解吸气系统的流量精控阀和自动流量控制阀直到流自动流量控制阀数值和总流量监测器数值达到试验要求,打开桶状加热器使得解吸温度达到设定温度T=50~500℃,吹扫解吸气源进入吸附解吸器II进行吸附剂再生,停止解吸气系统,关闭桶状加热器,待系统压力P降至常压时,打开吸附解吸系统进料阀II、吸附剂排料阀II,吸附剂进入吸附剂收集罐,利用吸附剂分析器对吸附剂收集罐内的吸附剂进行BET、XRD、FT-IR分析,计算吸附剂吸附容量U;b2) At the same time, operate the state of the dual-channel switching system I, so that the desorbed gas of the desorption gas system enters the adsorption-desorber II; The pressure precision control valve of the suction system is set to the purge displacement pressure P = 0.0 ~ 5.0MPa, and the flow precision control valve and automatic flow control valve of the desorption system are adjusted until the value of the automatic flow control valve and the total flow monitor value flow. To meet the test requirements, turn on the barrel heater to make the desorption temperature reach the set temperature T = 50 ~ 500 ℃, purge the desorption gas source into the adsorption and desorber II to regenerate the adsorbent, stop the desorption gas system, and turn off the barrel heater. When the system pressure P drops to normal pressure, open the feed valve II and adsorbent discharge valve II of the adsorption and desorption system, the adsorbent enters the adsorbent collection tank, and the adsorbent in the adsorbent collection tank is BETed by the adsorbent analyzer. , XRD, FT-IR analysis, and calculate the adsorption capacity U of the adsorbent;
C:吸附解吸器I解吸附,吸附解吸器II吸附同时操作过程:C: adsorption-desorber I desorption, adsorption-desorber II adsorption and simultaneous operation process:
c1)操作双通道切换系统I状态,使得供气系统的待测气体进入吸附解吸器II进行吸附试验,同时操作双通道切换系统II使得吸附完毕的气体由管道J进入色谱仪进行分析,吸附解吸器II接着进行步骤3.2~3.3的吸附评价过程;c1) Operate the state of the dual-channel switching system I, so that the gas to be tested in the gas supply system enters the adsorption and desorber II for adsorption test, and at the same time operate the dual-channel switching system II, so that the adsorbed gas enters the chromatograph through the pipeline J for analysis, adsorption and desorption Device II then performs the adsorption evaluation process in steps 3.2 to 3.3;
c2)同时,操作双通道切换系统I状态,使得解吸气系统的解吸气体进入吸附解吸器I,操作双通道切换系统II使得吸附解吸器I接入管道Z后接入尾气排放系统,将解吸气系统的压力精控阀设定到吹扫置换压力P=0.0~5.0MPa,调节解吸气系统的流量精控阀和自动流量控制阀直到流自动流量控制阀数值和总流量监测器数值达到试验要求,打开桶状加热器使得解吸温度达到设定温度T=50~500℃,吹扫解吸气源进入吸附解吸器I进行吸附剂再生,停止解吸气系统,关闭桶状加热器,待系统压力P降至常压时,打开吸附解吸系统进料阀I、吸附剂排料阀I,吸附剂进入吸附剂收集罐,利用吸附剂分析器对吸附剂收集罐内的吸附剂进行BET、XRD、FT-IR分析,计算吸附剂吸附容量U;c2) At the same time, operate the state of the dual-channel switching system I, so that the desorbed gas of the desorption gas system enters the adsorption-desorber I, and operate the dual-channel switching system II so that the adsorption-desorber I is connected to the pipeline Z and then connected to the exhaust emission system, and the desorber I is connected to the exhaust gas discharge system. The pressure precision control valve of the suction system is set to the purge displacement pressure P = 0.0 ~ 5.0MPa, and the flow precision control valve and automatic flow control valve of the desorption system are adjusted until the value of the automatic flow control valve and the total flow monitor value flow. To meet the test requirements, turn on the barrel heater to make the desorption temperature reach the set temperature T = 50 ~ 500 ° C, purge the desorption gas source into the adsorption and desorber I to regenerate the adsorbent, stop the desorption gas system, and turn off the barrel heater. When the system pressure P drops to normal pressure, open the feed valve I and adsorbent discharge valve I of the adsorption and desorption system, and the adsorbent enters the adsorbent collection tank, and the adsorbent in the adsorbent collection tank is subjected to BET using the adsorbent analyzer. , XRD, FT-IR analysis, and calculate the adsorption capacity U of the adsorbent;
步骤五、系统堵塞排除:Step 5. Eliminate system blockage:
吸附解吸系统进料阀I、吸附解吸系统进料阀II、吸附剂排料阀I、吸附剂排料阀II、吸附剂卸料阀I、吸附剂卸料阀II、管线R、S的一种或多种的组合发生堵塞时,打开吹扫输送气源系统进行堵塞排除。Adsorption and desorption system feed valve I, adsorption and desorption system feed valve II, adsorbent discharge valve I, adsorbent discharge valve II, adsorbent discharge valve I, adsorbent discharge valve II, one of pipelines R and S When one or more combinations are blocked, open the purging and conveying air supply system to remove the blockage.
所述的脱除率γ和吸附剂吸附容量U计算方法为:The calculation method of the removal rate γ and the adsorption capacity U of the adsorbent is:
(1)脱除率γ计算方法:(1) Calculation method of removal rate γ:
γ=(Co-Ct)/C0×100γ=(C o -C t )/C 0 ×100
式中,Ct-某一时刻的组分浓度,vol%;In the formula, C t - component concentration at a certain time, vol%;
C0-初始状态的组分浓度,vol%;C 0 - component concentration in the initial state, vol%;
γ-脱除率,%;γ-Removal rate, %;
(2)吸附剂吸附容量U计算方法:(2) Calculation method of adsorbent adsorption capacity U:
式中,C0-某一组分的初始浓度,mol%;In the formula, C 0 -the initial concentration of a certain component, mol%;
Ct-某一组分在t时刻的出口浓度,mol%;C t - outlet concentration of a component at time t, mol%;
m-吸附剂装填量,g;m-adsorbent loading, g;
t-吸附时间,min;t-adsorption time, min;
Fv-吸附气体流量,L/min;Fv-adsorbed gas flow, L/min;
Mf-某一组分的相对分子质量,g/mol;M f - the relative molecular mass of a component, g/mol;
U-吸附剂吸附容量,g/100g吸附剂。U-adsorbent adsorption capacity, g/100g adsorbent.
本发明的有益效果在于:The beneficial effects of the present invention are:
本发明通过包括多元低碳烃模拟气系统和多元低碳烃直接进料系统组成的供气系统可实现多种气体样本的常压、带压吸附和高温惰性气体解吸附,解决了现有技术不能带压吸附和仅能单一通道进行吸附解吸试验的弊端,本发明利用先进的常压和带压双通道切换系统、供气系统、吸附剂分析系统和高温惰性气体解吸附,最终实现了多种样本气体和吸附剂的加压、长周期、双通道评价,具有操作简便、在线读取结果的特点,具有较好的拓展性和市场前景。The invention can realize atmospheric pressure, pressure adsorption and high temperature inert gas desorption of various gas samples through a gas supply system comprising a multi-component low-carbon hydrocarbon simulated gas system and a multi-component low-carbon hydrocarbon direct feeding system, which solves the problem of the prior art. The disadvantages of not being able to carry out adsorption under pressure and only being able to carry out adsorption and desorption tests in a single channel, the present invention utilizes advanced atmospheric pressure and pressured dual-channel switching systems, gas supply systems, adsorbent analysis systems and high-temperature inert gas desorption, and finally realizes multi-channel desorption. The pressurized, long-term, dual-channel evaluation of various sample gases and adsorbents has the characteristics of easy operation and online reading of results, and has good expansibility and market prospects.
本发明还公开了基于双通道切换系统I、双通道切换系统II的双通道吸附解吸评方法,可实现长周期的吸附试验和双通道分别进行吸附试验和解吸试验;基于吹扫输送气源的系统堵塞排除方法;提供了多元低碳烃吸附解吸评价方法、脱除率γ和吸附剂吸附容量U计算方法。The invention also discloses a dual-channel adsorption and desorption evaluation method based on the dual-channel switching system I and the dual-channel switching system II, which can realize long-term adsorption test and dual-channel adsorption test and desorption test respectively; The system blockage removal method; provides the multi-low carbon hydrocarbon adsorption and desorption evaluation method, removal rate γ and adsorbent adsorption capacity U calculation method.
附图说明Description of drawings
图1为本发明的整体结构示意图Fig. 1 is the overall structure schematic diagram of the present invention
图2为本发明中吸附解吸器I 24、吸附解吸器II 25的结构示意图FIG. 2 is a schematic structural diagram of the adsorption-
图中:1、供气系统;2、双通道切换系统I;3、吸附解吸系统;4、双通道切换系统II;5、色谱分析系统;6、尾气排放系统;7、解吸气系统;8、吸附剂排出及分析系统;9、吸附剂在线加料系统;10、吹扫输送气源系统;11、解吸气源;12、多元低碳烃模拟气系统;13、多元低碳烃直接进料系统;14、压力精控阀;15、流量精控阀;16、自动流量控制阀;17、一级混合器;18、单组分供气系统;19、多元低碳烃混合气采集罐;20、待测气直接接口;21、二级混合器;22、吸附解吸系统进料阀I;23、吸附解吸系统进料阀II;24、吸附解吸器I;25、吸附解吸器II;26、吸附剂排料阀I;27、吸附剂排料阀II;28吸附剂收集罐;29、吸附剂分析器;30、吸附剂暂存罐;31、称重仪;32、粉体切断阀;33、吸附剂卸料阀I;34、吸附剂卸料阀II;35、压力远程监测器;36、过滤器;37、系统备压阀;38、总流量监测器;39、防倒流装置;40、快拆变径;41、微流量控制阀;42、色谱仪;43、切断阀;44、阻火装置;45、放空器;46、快速装卸器;47、吸附剂固定过滤装置;48、桶状加热器;49、吸附剂。In the figure: 1. Air supply system; 2. Dual-channel switching system I; 3. Adsorption and desorption system; 4. Dual-channel switching system II; 5. Chromatographic analysis system; 6. Exhaust gas discharge system; 7. Desorption gas system; 8. Adsorbent discharge and analysis system; 9. Adsorbent online feeding system; 10. Purging and conveying gas source system; 11. Desorption gas source; 12. Multi-component low-carbon hydrocarbon simulated gas system; material system; 14, pressure precision control valve; 15, flow precision control valve; 16, automatic flow control valve; 17, one-stage mixer; 18, single-component gas supply system; 20. Direct interface of gas to be measured; 21. Secondary mixer; 22. Feed valve I of adsorption and desorption system; 23. Feed valve II of adsorption and desorption system; 24. Adsorption and desorption device I; 25, adsorption and desorption device II; 26, adsorbent discharge valve I; 27, adsorbent discharge valve II; 28, adsorbent collection tank; 29, adsorbent analyzer; 30, adsorbent temporary storage tank; 31, weighing instrument; 32, powder cut off valve; 33, adsorbent discharge valve I; 34, adsorbent discharge valve II; 35, pressure remote monitor; 36, filter; 37, system backup pressure valve; 38, total flow monitor; 39, anti-backflow device; 40, quick release variable diameter; 41, micro-flow control valve; 42, chromatograph; 43, shut-off valve; 44, flame arrester; 45, venting device; 46, quick loading and unloading device; 47, adsorbent fixed filter device ; 48, barrel heater; 49, adsorbent.
具体实施方式Detailed ways
下面结合具体实施例对本发明作进一步详细描述,但不作为对本发明的限定。The present invention will be described in further detail below with reference to specific embodiments, but it is not intended to limit the present invention.
本发明的总体结构不同于传统的吸附解吸装置,借助特殊设计的供气系统1、双通道切换系统I 2、双通道切换系统II 4、吸附解吸器I 24和吸附解吸器II 25可提供特殊配比的多元低碳烃模拟气和多元低碳烃直接进料等条件下的多种样本气体的常压、带压吸附和高温惰性气体解吸附,进一步的基于双通道切换系统I 2、双通道切换系统II 4可实现多种样本气体和吸附剂的加压、长周期双通道吸附解吸试验,具有操作简便、在线读取结果的特点,具有较好的拓展性和市场前景。The overall structure of the present invention is different from the traditional adsorption and desorption device, and can provide special Atmospheric pressure, pressurized adsorption and high temperature inert gas desorption of various sample gases under the conditions of proportioned multi-component low-carbon hydrocarbon simulated gas and multi-component low-carbon hydrocarbon direct feeding, further based on dual-channel switching system I 2, dual The channel switching system II 4 can realize the pressurized, long-term dual-channel adsorption and desorption test of various sample gases and adsorbents. It has the characteristics of easy operation and online reading of results, and has good expansion and market prospects.
由于本发明具有多种操作方案,现以多元低碳烃模拟气双通道带压吸附,吸附解吸器I 24吸附、吸附解吸器II 25解吸附同时操作过程为实施例,对本发明作进一步详细描述。Since the present invention has various operation schemes, the present invention will be further described in detail by taking the dual-channel pressure adsorption of multi-component low-carbon hydrocarbon simulated gas, adsorption by adsorption-
参见图1,多元低碳烃吸附解吸评价装置包括供气系统1、双通道切换系统I 2、吸附解吸系统3、双通道切换系统II 4、色谱分析系统5、尾气排放系统6、解吸气系统7、吸附剂排出及分析系统8、吸附剂在线加料系统9和吹扫输送气源系统10。Referring to Figure 1, the multi-component low-carbon hydrocarbon adsorption and desorption evaluation device includes a gas supply system 1, a dual-channel switching system I 2, an adsorption and desorption system 3, a dual-channel switching system II 4, a chromatographic analysis system 5, a tail gas emission system 6, and a stripping gas System 7 , adsorbent discharge and analysis system 8 , adsorbent online feeding system 9 and purging and conveying
供气系统1与双通道切换系统I 2相连,接着通过并联的管线M、L与吸附解吸系统3相连后通过并联的管线K、F与双通道切换系统II 4相连,双通道切换系统II 4通过并联的管线Z、J与色谱分析系统5相连后与尾气排放系统6相连。吸附剂排出及分析系统8通过并联的管线R、S连接于双通道切换系统I 2。吸附剂在线加料系统9通过并联的加料管线Q、W斜接于吸附解吸系统2出口管线K、F。The gas supply system 1 is connected with the dual-channel switching system I 2, then connected with the adsorption and desorption system 3 through the parallel pipelines M and L, and then connected with the dual-channel switching system II 4 through the parallel pipelines K and F. The dual-channel switching system II 4 It is connected to the chromatographic analysis system 5 through parallel pipelines Z and J, and then connected to the exhaust gas discharge system 6 . The adsorbent discharge and analysis system 8 is connected to the dual channel switching system I 2 through parallel lines R, S. The adsorbent online feeding system 9 is connected to the outlet pipelines K and F of the adsorption and desorption system 2 through parallel feeding pipelines Q and W.
多元低碳烃模拟气系统12和多元低碳烃直接进料系统13组成供气系统1,所述的多元低碳烃模拟气系统12和多元低碳烃直接进料系统13并联后与二级混合器21相连;所述的多元低碳烃模拟气系统12包括V1~Vn个单组分供气系统18;所述的每一个单组分供气系统18包括依次相连的供气装置V、压力精控阀14、流量精控阀15和自动流量控制阀16;所述的每两组单组分供气系统18并联后与一级混合器17相连后再相互并联。The multi-component low-carbon hydrocarbon simulated gas system 12 and the multi-component low-carbon hydrocarbon direct feeding system 13 constitute the gas supply system 1. The multi-component low-carbon hydrocarbon simulated gas system 12 and the multi-component low-carbon hydrocarbon direct feeding system 13 are connected in parallel with the secondary low-carbon hydrocarbon simulated gas system 12. The mixers 21 are connected; the multi-component low-carbon simulated gas system 12 includes V1-Vn single-component gas supply systems 18; each of the single-component gas supply systems 18 includes sequentially connected gas supply devices V, V The pressure precise control valve 14, the flow precise control valve 15 and the automatic flow control valve 16; the two groups of single-component gas supply systems 18 are connected in parallel with the first-
多元低碳烃直接进料系统13包括依次相连的多元低碳烃混合气采集罐19、压力精控阀14、流量精控阀15和自动流量控制阀16和垂直接于多元低碳烃混合气采集罐19和压力精控阀14之间的待测气直接接口20;供气系统1可根据不同的评价试验要求样本气体要求进行自主配气或者直接用采气罐直接进气。The multi-component low-carbon hydrocarbon direct feeding system 13 includes a multi-component low-carbon hydrocarbon mixed gas collection tank 19, a pressure precision control valve 14, a flow precision control valve 15 and an automatic flow control valve 16, which are connected in sequence and are vertically connected to the multi-component low-carbon hydrocarbon gas mixture. A direct interface 20 for the gas to be measured between the collection tank 19 and the pressure precise control valve 14; the gas supply system 1 can independently distribute the sample gas according to different evaluation test requirements or directly use the gas collection tank to directly inhale.
供气系统1可实现多种气体样本的评价分析:The gas supply system 1 can realize the evaluation and analysis of various gas samples:
方案一、多元低碳烃模拟样本气。多元低碳烃模拟气系统12可通过V1~Vn个单组分供气系统18来模拟评价试验需要的不同组成的样本气体,每个单组分供气系统18上连有压力精控阀14、流量精控阀15和自动流量控制阀16,可精确控制进入一级混合器17的单组分气量,从而保证多元低碳烃模拟气系统12气体的配比准确;Scheme 1. Multi-component low-carbon hydrocarbon simulation sample gas. The multi-component low-carbon hydrocarbon simulated gas system 12 can simulate sample gases of different compositions required for the evaluation test through V1-Vn single-component gas supply systems 18, and each single-component gas supply system 18 is connected with a pressure precision control valve 14. , the flow precision control valve 15 and the automatic flow control valve 16, can accurately control the single-component gas volume entering the first-
方案二、多元低碳烃直接进料。可采用多元低碳烃混合气采集罐19直接采集样本气体接入系统或将多元低碳烃混合气直接接入待测气直接接口20,进行检测和分析。Option 2: Direct feed of multi-component low-carbon hydrocarbons. The multi-component low-carbon hydrocarbon mixture gas collection tank 19 can be used to directly collect the sample gas and connect to the system, or the multi-component low-carbon hydrocarbon mixture gas can be directly connected to the gas to be measured direct interface 20 for detection and analysis.
供气系统1可根据试验要求在可以实现在不同气源组合A、B、C之间切换:The gas supply system 1 can be switched between different gas source combinations A, B, and C according to the test requirements:
A、多元低碳烃模拟气吸附过程A. Multi-component low-carbon hydrocarbon simulated gas adsorption process
将供气系统1切换至多元低碳烃模拟气系统12工作状态,将V1~Vn个不同气体成分的单组分供气系统18接入多元低碳烃模拟气系统12,并设定每组单组分供气系统18的压力精控阀14、流量精控阀15和自动流量控制阀16开度,直到单组分供气系统18的自动流量控制阀16和总流量监测器38数值达到试验要求;Switch the gas supply system 1 to the working state of the multi-component low-carbon hydrocarbon simulated gas system 12, connect the single-component gas supply systems 18 with V1 to Vn different gas components to the multi-component low-carbon hydrocarbon simulated gas system 12, and set each group The pressure fine control valve 14, the flow fine control valve 15 and the automatic flow control valve 16 of the single-component gas supply system 18 are opened until the values of the automatic flow control valve 16 and the total flow monitor 38 of the single-component gas supply system 18 reach Test requirements;
B、低碳烃直接进料吸附过程B. Low-carbon hydrocarbon direct feed adsorption process
将供气系统1切换至多元低碳烃直接进料系统13工作状态,用多元低碳烃混合气采集罐19采集多元低碳烃混合气样本并接入多元低碳烃直接进料系统13,设定多元低碳烃直接进料系统13的压力精控阀14、流量精控阀15和自动流量控制阀16开度,直到流自动流量控制阀16数值和总流量监测器38数值达到试验要求;Switch the gas supply system 1 to the working state of the multi-component low-carbon hydrocarbon direct feeding system 13, use the multi-component low-carbon hydrocarbon mixture gas collection tank 19 to collect the multi-component low-carbon hydrocarbon mixture gas sample and connect it to the multi-component low-carbon hydrocarbon direct feeding system 13, Set the pressure precision control valve 14, the flow precision control valve 15 and the automatic flow control valve 16 of the multi-component low-carbon hydrocarbon direct feeding system 13 to the opening degree until the flow automatic flow control valve 16 value and the total flow monitor 38 value meet the test requirements ;
C、模拟气和低碳烃直接进料混合进料吸附过程C. Simulated gas and low-carbon hydrocarbon direct feed mixed feed adsorption process
将供气系统1切换至多元低碳烃模拟气系统12和多元低碳烃直接进料系统13同时工作状态,用多元低碳烃混合气采集罐19采集多元低碳烃混合气样本并接入多元低碳烃直接进料系统13并设定该系统的压力精控阀14、流量精控阀15和自动流量控制阀16开度符合试验要求,同时根据试验要求将相应的相应单组分供气系统18接入多元低碳烃模拟气系统12并设定单组分供气系统18的压力精控阀14、流量精控阀15和自动流量控制阀16开度符合试验要求,多元低碳烃混合气采集罐19的气体和单组分供气系统18的气体在二级混合器21混合后进入吸附解吸器,试验过程中需保证总流量监测器38的数值也要符合试验要求。Switch the gas supply system 1 to the simultaneous working state of the multi-component low-carbon hydrocarbon simulated gas system 12 and the multi-component low-carbon hydrocarbon direct feeding system 13, and use the multi-component low-carbon hydrocarbon mixture gas collection tank 19 to collect the multi-component low-carbon hydrocarbon mixture sample and connect it to the The multi-low carbon hydrocarbon direct feeding system 13 and setting the pressure precision control valve 14, flow precision control valve 15 and automatic flow control valve 16 of the system meet the test requirements. The gas system 18 is connected to the multi-component low-carbon hydrocarbon simulated gas system 12, and the pressure precision control valve 14, the flow precision control valve 15 and the automatic flow control valve 16 of the single-component gas supply system 18 are set to meet the test requirements. The gas in the hydrocarbon mixture gas collection tank 19 and the gas in the single-component gas supply system 18 are mixed in the secondary mixer 21 and then enter the adsorption and desorber. During the test, it is necessary to ensure that the value of the total flow monitor 38 also meets the test requirements.
解吸气系统7包括依次相连的解吸气源11、压力精控阀14、流量精控阀15和自动流量控制阀16用于向系统提供流量稳定、压力可控的解吸气源。解吸气源11为高压氮气、低压氮气、空气、二氧化碳、氦气和蒸汽的一种或多种的组合。The stripping gas system 7 includes a stripping
吸附解吸系统3包括两组并联的依次相连的吸附解吸系统进料阀I 22、吸附解吸器I 24和吸附解吸系统进料阀II 23、吸附解吸器II 25,通过双通道切换系统I 2可实现在:①吸附解吸器I 24和吸附解吸器II 25同时吸附、②吸附解吸器I 24吸附和吸附解吸器II 25解吸附、③吸附解吸器I 24解吸附和吸附解吸器II 25吸附三种状态间转换。The adsorption and desorption system 3 includes two groups of adsorption and desorption system feed valves I 22, adsorption and desorption systems I 24, adsorption and desorption system feed valves II 23, and adsorption and desorption systems II 25, which are connected in sequence. Achieved in: ① adsorption-
吸附剂排出及分析系统8包括并联的连接有吸附剂排料阀I 26的管线R、连接有吸附剂排料阀II 27的管线S,并联管线R和S汇合后接于吸附剂收集罐28后连接吸附剂分析器29。通过双通道切换系统I 2、吸附剂排料阀I 26和吸附剂排料阀II 27之间的配合,可实现在:①吸附解吸器I 24单独排出吸附剂;②吸附解吸器II 25单独排出吸附剂;③吸附解吸器I 24和吸附解吸器II 25同时排出吸附剂三种状态间转换。吸附剂分析器29为BET、XRD和FT-IR分析器的一种或多种的组合,可具体评价吸附剂吸附完成后的特性,并与新鲜活性炭性质对比,考察解析再生效果。The adsorbent discharge and analysis system 8 includes a parallel pipeline R connected with the adsorbent discharge valve I 26, and a pipeline S connected with the adsorbent
吸附剂在线加料系统9包括吸附剂暂存罐30、称重仪31和依次相连的粉体切断阀32、并联的吸附剂卸料阀I 33和吸附剂卸料阀II 34。附剂暂存罐30用于存储新鲜的吸附剂,通过称重仪31在加料前后的差重可计算加料量,通过吹扫输送气源系统10可实现吸附剂的带压在线气力输送加料。The adsorbent online feeding system 9 includes an adsorbent
色谱分析系统5包括并联的管线Z、J,管线Z、J均包括依次相连的压力远程监测器35、过滤器36、系统备压阀37、总流量监测器38和防倒流装置39;快拆变径40、微流量控制阀41和色谱仪42依次相连后接于总流量监测38和防倒流装置39之间,防倒流装置39后端连接于尾气排放系统6。The chromatographic analysis system 5 includes parallel pipelines Z and J, and pipelines Z and J all include a pressure
尾气排放系统6包括依次相连的尾气切断阀43、阻火装置44和放空器45。来自吸附解吸系统3的大量检测气大部分经尾气排放系统6放空后,少部分经微流量控制阀41控流后进入色谱仪42分析脱除率。The exhaust gas discharge system 6 includes an exhaust gas shut-off valve 43 , a flame arrester 44 and a
所述的吹扫输送气源系统10分为并联的两路,一路连接于加料管线Q、W上的吸附剂卸料阀I 33、吸附剂卸料阀II 34来料端;一路连接于吸附解吸系统进料阀I 22、吸附解吸系统进料阀II 23、吸附剂排料阀I 26、吸附剂排料阀II 27、吸附剂卸料阀I 33、吸附剂卸料阀II 34和管线R、S,实现吸附剂带压在线输送和各管线气力清堵。The described purging and conveying
参见图2,吸附解吸器I 24和吸附解吸器II 25结构一致,均包括桶状加热器48、处于桶状加热器48中心的吸附剂49和连接于中心的吸附剂49两端的吸附剂固定过滤装置47、快速装卸器46;吸附剂49为活性炭、焦粉改性制品、高性能吸附碳材料和气凝胶的一种或多种的组合;所述的桶状加热器48包括电加热、水浴加热、油浴加热和蒸汽加热的一种或多种的组合;所述的吸附剂固定过滤装置47为石棉、金属烧结物、合金网和玻璃棉的一种或多种的组合。桶状加热器48可对吸附剂49进行加热解吸;位于吸附解吸器两端的吸附剂固定过滤装置47,可以起到过滤或防止床层内吸附剂49颗粒被气体带出装置的作用,快速装卸器46可实现吸附解吸器的快速装卸和疏通排堵。Referring to FIG. 2 , the adsorption-
本发明的多元低碳烃吸附解吸评价方法,包括以下步骤:The multi-component low-carbon hydrocarbon adsorption and desorption evaluation method of the present invention comprises the following steps:
步骤一、吸附剂装载及系统清扫过程:Step 1. Adsorbent loading and system cleaning process:
1.1在吸附剂暂存罐30中装载吸附剂49后记录称重仪31初始示数W1,接着在吸附解吸器I 24和吸附解吸器II 25上下两端放置吸附剂固定过滤装置47,打开吹扫输送气源系统10引入输送气至吸附剂在线加料系统9,打开粉体切断阀32、并联的吸附剂卸料阀I 33和吸附剂卸料阀II 34,吸附剂49经吹扫输送气源系统10气力输送进入吸附解吸器I 24和吸附解吸器II 25,吸附剂装填完毕后,记录称重仪31完结示数W2;1.1 After loading the adsorbent 49 in the adsorbent
1.2设定解吸气系统7的压力精控阀14为置换压力P=0.5~5MPa,缓慢打开解吸气系统7的流量精控阀15,并将自动流量控制阀16设定到试验要求,用吹扫解吸气源11气体置换吸附剂49床层T1=5~20min,同时检查装置管路气密性;1.2 Set the pressure precision control valve 14 of the stripping gas system 7 to the displacement pressure P=0.5-5MPa, slowly open the flow precision control valve 15 of the stripping gas system 7, and set the automatic flow control valve 16 to the test requirements, Replace the adsorbent 49 bed with the purge and
步骤二、切换样本气体过程:Step 2. Switch the sample gas process:
多元低碳烃模拟气系统12独立供气:将V1~Vn个不同气体成分的单组分供气系统18接入多元低碳烃模拟气系统12,并设定每组单组分供气系统18的压力精控阀14、流量精控阀15和自动流量控制阀16开度,直到单组分供气系统18的自动流量控制阀16和总流量监测器38数值达到试验要求;Independent gas supply for the multi-component low-carbon hydrocarbon simulated gas system 12: Connect the single-component gas supply systems 18 with different gas components V1 to Vn to the multi-component low-carbon hydrocarbon simulated gas system 12, and set each group of single-component gas supply systems 18 of the pressure precision control valve 14, the flow precision control valve 15 and the automatic flow control valve 16 are opened until the values of the automatic flow control valve 16 and the total flow monitor 38 of the single-component gas supply system 18 meet the test requirements;
本发明还可以通过多元低碳烃直接进料系统13独立供气:用多元低碳烃混合气采集罐19采集多元低碳烃混合气样或将多元低碳烃直接接入待测气直接接口20,设定多元低碳烃直接进料系统13的压力精控阀14、流量精控阀15和自动流量控制阀16开度,直到流自动流量控制阀16数值和总流量监测器38数值达到试验要求;The present invention can also independently supply gas through the multi-component low-carbon hydrocarbon direct feeding system 13: the multi-component low-carbon hydrocarbon mixed gas sample is collected by the multi-component low-carbon hydrocarbon mixed gas collection tank 19 or the multi-component low-carbon hydrocarbon is directly connected to the direct interface of the gas to be measured. 20. Set the opening of the pressure precision control valve 14, flow precision control valve 15 and automatic flow control valve 16 of the multi-component low-carbon hydrocarbon direct feeding system 13 until the value of the automatic flow control valve 16 and the value of the total flow monitor 38 reach Test requirements;
本发明还可以通过两个系统混合供气:多元低碳烃混合气采集罐19和单组分供气系统18同时工作,并在二级混合器21混合,设定每个系统的压力精控阀14、流量精控阀15和自动流量控制阀16开度,直到流自动流量控制阀16数值和总流量监测器38数值达到试验要求;The present invention can also supply gas by mixing two systems: the multi-component low-carbon hydrocarbon mixed gas collection tank 19 and the single-component gas supply system 18 work at the same time, and are mixed in the secondary mixer 21, and the pressure of each system is set for precise control. The valve 14, the flow precision control valve 15 and the automatic flow control valve 16 are opened until the value of the automatic flow control valve 16 and the value of the total flow monitor 38 meet the test requirements;
步骤三、吸附评价过程:Step 3. Adsorption evaluation process:
3.1、操作双通道切换系统I 2,使得待测气体进入吸附解吸器I 24,吸附完毕的气体经双通道切换系统II 4由管道J进入色谱仪42进行分析;3.1, operate the dual-channel switching system I 2, so that the gas to be measured enters the adsorption-
3.2、调节管道J上的系统备压阀37的数值为工艺设定值;3.2. Adjust the value of the system
3.3、根据试验要求,依据步骤二控制供气系统1的工作状态,开始吸附过程;3.3. According to the test requirements, control the working state of the gas supply system 1 according to step 2, and start the adsorption process;
3.4、将色谱仪42通过快拆变径40连接到系统,部分样本气体经微流量控制阀41调节达到仪器要求后进入色谱仪42分析吸附效果;3.4. Connect the chromatograph 42 to the system through the quick release variable diameter 40, and part of the sample gas is adjusted by the micro-flow control valve 41 to meet the requirements of the instrument and then enter the chromatograph 42 to analyze the adsorption effect;
3.5、双通道吸附过程:3.5. Double channel adsorption process:
当步骤3.4的色谱仪42分析的脱除率γ低于10~70%时,操作双通道切换系统I2,使得待测气体进入吸附解吸器II 25,吸附完毕的气体经双通道切换系统II 4由管道J进入色谱仪42进行分析,接着重复步骤3.2~3.4,直到色谱仪42分析的脱除率γ低于10~70%时,停止吸附试验;When the removal rate γ analyzed by the chromatograph 42 in step 3.4 is lower than 10-70%, operate the dual-channel switching system I2, so that the gas to be tested enters the adsorption-desorber II 25, and the adsorbed gas passes through the dual-channel switching system II 4 Enter the chromatograph 42 through the pipeline J for analysis, and then repeat steps 3.2 to 3.4 until the removal rate γ analyzed by the chromatograph 42 is lower than 10 to 70%, and the adsorption test is stopped;
步骤四、解吸附及分析过程:Step 4. Desorption and analysis process:
借助双通道切换系统I 2和双通道切换系统II 4,解吸附过程切换到方式B吸附解吸器I 24吸附和吸附解吸器II 25解吸附同时操作过程:With the aid of the two-channel switching system I 2 and the two-channel switching system II 4, the desorption process is switched to the mode B adsorption-desorber I 24 adsorption and adsorption-desorber II 25 The simultaneous operation process of desorption:
b1)操作双通道切换系统I 2状态,使得供气系统1的待测气体进入吸附解吸器I24进行吸附试验,同时操作双通道切换系统II 4使得吸附完毕的气体由管道J进入色谱仪42进行分析,吸附解吸器I 24接着进行步骤3.2~3.3的吸附评价过程;b1) Operate the state of the dual-channel switching system I2, so that the gas to be tested of the gas supply system 1 enters the adsorption and desorber I24 for adsorption test, and simultaneously operates the dual-channel switching system II4 to make the gas that has been adsorbed enter the chromatograph 42 from the pipeline J for carrying out Analysis, the adsorption and desorber I 24 is followed by the adsorption evaluation process of steps 3.2 to 3.3;
b2)同时,操作双通道切换系统I 2状态,使得解吸气系统7的解吸气体进入吸附解吸器II 25,操作双通道切换系统II 4使得吸附解吸器II 25接入管道Z后接入尾气排放系统6,将解吸气系统7的压力精控阀14设定到吹扫置换压力P=0.0~5.0MPa,调节解吸气系统7的流量精控阀15和自动流量控制阀16直到流自动流量控制阀16数值和总流量监测器38数值达到试验要求,打开桶状加热器48使得解吸温度达到设定温度T=50~500℃,吹扫解吸气源11进入吸附解吸器II 25进行吸附剂49再生,停止解吸气系统7,关闭桶状加热器48,待系统压力P降至常压时,打开吸附解吸系统进料阀II 23、吸附剂排料阀II 27,吸附剂进入吸附剂收集罐28,利用吸附剂分析器29对吸附剂收集罐28内的吸附剂进行BET、XRD、FT-IR分析,计算吸附剂吸附容量U;b2) At the same time, operate the state of the dual-channel switching system I2, so that the desorbed gas of the desorption gas system 7 enters the adsorption-desorber II 25, and operate the dual-channel switching system II 4 so that the adsorption-desorber II 25 is connected to the pipeline Z and then connected to the exhaust gas In the discharge system 6, set the pressure fine control valve 14 of the stripping gas system 7 to the purge displacement pressure P=0.0-5.0MPa, and adjust the flow precision control valve 15 and the automatic flow control valve 16 of the stripping gas system 7 until the flow The value of the automatic flow control valve 16 and the value of the total flow monitor 38 meet the test requirements, turn on the
解吸附及分析过程还可以通过A、C两种方式进行:The desorption and analysis process can also be carried out in two ways: A and C:
A:吸附解吸器I 24和吸附解吸器II 25同时解吸附:A: Simultaneous desorption of adsorption-
a1)操作双通道切换系统I 2和双通道切换系统II 4状态,使得解吸气体进入并联的吸附解吸器I 24和吸附解吸器II 25;a1) Operate the state of the dual-channel switching system I 2 and the dual-channel switching system II 4, so that the desorbed gas enters the parallel adsorption-
a2)设置解吸气系统7的吹扫置换压力P=0.0~5.0MPa,同时自动流量控制阀16数值和总流量监测器38数值达到试验要求;a2) Set the purge displacement pressure P=0.0~5.0MPa of the desorption gas system 7, and at the same time the value of the automatic flow control valve 16 and the value of the total flow monitor 38 meet the test requirements;
a3)打开桶状加热器48,使得桶状加热器48达到设定温度T=50~500℃,进行加热吸附剂再生;a3) Turn on the
a4)停止解吸气系统7,关闭桶状加热器48,待系统压力降至常压时,打开吸附解吸系统进料阀I 22、吸附解吸系统进料阀II 23、吸附剂排料阀I26、吸附剂排料阀II 27,吸附剂进入吸附剂收集罐28;a4) Stop the desorption gas system 7, close the
a5)利用吸附剂分析器29对吸附剂收集罐28内的吸附剂49进行BET、XRD、FT-IR分析,计算吸附剂吸附容量U;a5) Use the adsorbent analyzer 29 to carry out BET, XRD, FT-IR analysis on the adsorbent 49 in the adsorbent collection tank 28, and calculate the adsorbent adsorption capacity U;
C:吸附解吸器I 24解吸附,吸附解吸器II 25吸附同时操作过程:C: adsorption-desorber I 24 desorption, adsorption-desorber II 25 adsorption and simultaneous operation process:
c1)操作双通道切换系统I 2状态,使得供气系统1的待测气体进入吸附解吸器II25进行吸附试验,同时操作双通道切换系统II 4使得吸附完毕的气体由管道J进入色谱仪42进行分析,吸附解吸器II 25接着进行步骤3.2~3.3的吸附评价过程;c1) Operate the state of the dual-channel switching system I2, so that the gas to be tested in the gas supply system 1 enters the adsorption and desorber II25 to perform the adsorption test, and simultaneously operate the dual-channel switching system II4 so that the gas that has been adsorbed enters the chromatograph 42 through the pipeline J for testing. Analysis, the adsorption-desorber II 25 is then subjected to the adsorption evaluation process of steps 3.2 to 3.3;
c2)同时,操作双通道切换系统I 2状态,使得解吸气系统7的解吸气体进入吸附解吸器I 24,操作双通道切换系统II 4使得吸附解吸器I 24接入管道Z后接入尾气排放系统6,将解吸气系统7的压力精控阀14设定到吹扫置换压力P=0.0~5.0MPa,调节解吸气系统7的流量精控阀15和自动流量控制阀16直到流自动流量控制阀16数值和总流量监测器38数值达到试验要求,打开桶状加热器48使得解吸温度达到设定温度T=50~500℃,吹扫解吸气源11进入吸附解吸器I 24进行吸附剂49再生,停止解吸气系统7,关闭桶状加热器48,待系统压力P降至常压时,打开吸附解吸系统进料阀I 22、吸附剂排料阀I 26,吸附剂进入吸附剂收集罐28,利用吸附剂分析器29对吸附剂收集罐28内的吸附剂进行BET、XRD、FT-IR分析,计算吸附剂吸附容量U;c2) At the same time, operate the state of the dual-channel switching system I2, so that the desorbed gas of the desorption gas system 7 enters the adsorption-desorber I24, and operate the dual-channel switching system II4 so that the adsorption-desorber I24 is connected to the pipeline Z and then connected to the exhaust gas In the discharge system 6, set the pressure fine control valve 14 of the stripping gas system 7 to the purge displacement pressure P=0.0-5.0MPa, and adjust the flow precision control valve 15 and the automatic flow control valve 16 of the stripping gas system 7 until the flow The value of the automatic flow control valve 16 and the value of the total flow monitor 38 meet the test requirements, turn on the barrel heater 48 to make the desorption temperature reach the set temperature T=50~500°C, and purge the desorption gas source 11 into the adsorption and desorber I 24 for The adsorbent 49 is regenerated, the desorption gas system 7 is stopped, the barrel heater 48 is closed, and when the system pressure P drops to normal pressure, the adsorption and desorption system feed valve I 22 and the adsorbent discharge valve I 26 are opened, and the adsorbent enters The adsorbent collection tank 28 is used for BET, XRD, FT-IR analysis of the adsorbent in the adsorbent collection tank 28 by using the adsorbent analyzer 29, and the adsorption capacity U of the adsorbent is calculated;
步骤五:系统堵塞排除过程:Step 5: System blockage removal process:
吸附解吸系统进料阀I 22、吸附解吸系统进料阀II 23、吸附剂排料阀I 26、吸附剂排料阀II 27、吸附剂卸料阀I 33、吸附剂卸料阀II 34、管线R、S的一种或多种的组合发生堵塞时,打开吹扫输送气源系统10进行堵塞排除。Adsorption and desorption system feed valve I 22, adsorption and desorption system feed valve II 23, adsorbent discharge valve I 26, adsorbent
脱除率γ和吸附剂49吸附容量U的计算方法为:The calculation method of removal rate γ and adsorption capacity U of
(1)脱除率γ计算方法:(1) Calculation method of removal rate γ:
γ=(Co-Ct)/C0×100γ=(C o -C t )/C 0 ×100
式中,Ct-某一时刻的组分浓度,vol%;In the formula, C t - component concentration at a certain time, vol%;
C0-初始状态的组分浓度,vol%;C 0 - component concentration in the initial state, vol%;
γ-脱除率,%;γ-Removal rate, %;
(2)吸附剂吸附容量U计算方法:(2) Calculation method of adsorbent adsorption capacity U:
式中,C0-某一组分的初始浓度,mol%;In the formula, C 0 -the initial concentration of a certain component, mol%;
Ct-某一组分在t时刻的出口浓度,mol%;C t - outlet concentration of a component at time t, mol%;
m-吸附剂装填量,g;m-adsorbent loading, g;
t-吸附时间,min;t-adsorption time, min;
Fv-吸附气体流量,L/min;Fv-adsorbed gas flow, L/min;
Mf-某一组分的相对分子质量,g/mol;M f - the relative molecular mass of a component, g/mol;
U-吸附剂吸附容量,g/100g吸附剂。U-adsorbent adsorption capacity, g/100g adsorbent.
最后应该说明的是:以上实施例仅用于说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本权利要求范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the above embodiments, those of ordinary skill in the art should understand that: Modifications or equivalent substitutions are made to the specific embodiments, and any modifications or equivalent substitutions that do not depart from the spirit and scope of the present invention shall all be included in the scope of the present claims.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911299243.9A CN110940752B (en) | 2019-12-17 | 2019-12-17 | Multi-element low-carbon hydrocarbon adsorption and desorption evaluation device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911299243.9A CN110940752B (en) | 2019-12-17 | 2019-12-17 | Multi-element low-carbon hydrocarbon adsorption and desorption evaluation device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110940752A CN110940752A (en) | 2020-03-31 |
CN110940752B true CN110940752B (en) | 2022-08-05 |
Family
ID=69911299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911299243.9A Active CN110940752B (en) | 2019-12-17 | 2019-12-17 | Multi-element low-carbon hydrocarbon adsorption and desorption evaluation device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110940752B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114646571A (en) * | 2021-07-09 | 2022-06-21 | 中国石油天然气股份有限公司西南油气田分公司成都天然气化工总厂 | Low-temperature high-pressure adsorption measuring device and method for measuring adsorption quantity of material gas |
CN114646573A (en) * | 2021-07-09 | 2022-06-21 | 中国石油天然气股份有限公司西南油气田分公司成都天然气化工总厂 | Device for measuring adsorption quantity of material mixed gas and transfer weighing method |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1237472A (en) * | 1999-04-02 | 1999-12-08 | 成都华西化工研究所 | Method for recovering sulfur dioxide from gas and its equipment |
CN1087963C (en) * | 1999-06-18 | 2002-07-24 | 化学工业部西南化工研究设计院 | Removing and recovering nitrogen oxide(s) by adsorption separation method from mixed gas contg. nitrogen oxide(s) |
US7062905B2 (en) * | 2003-02-21 | 2006-06-20 | Southwest Research Institute | Control method for dual path NOx adsorber system |
JP5109028B2 (en) * | 2008-04-03 | 2012-12-26 | システム エンジ サービス株式会社 | Method for purifying a large amount of exhaust gas containing lean volatile hydrocarbons |
JP2009286683A (en) * | 2008-06-02 | 2009-12-10 | Kyuchaku Gijutsu Kogyo Kk | Method for producing and storing ozone using adsorbent |
CN103894039B (en) * | 2014-02-27 | 2016-05-11 | 广东电网公司电力科学研究院 | For coal fired power plant flue fall dirty can online weighing sorbent injection device |
CN205067265U (en) * | 2015-09-28 | 2016-03-02 | 南京天膜科技股份有限公司 | Gaseous dynamic adsorption desorption testing arrangement |
CN105513661B (en) * | 2016-01-15 | 2017-10-03 | 中国科学技术大学 | Waste gas pressure swing adsorption purge regeneration method and device is cleaned in a kind of fusion reactor hot cell |
CN105521692B (en) * | 2016-01-20 | 2018-07-06 | 义乌市中科院兰州化物所功能材料中心 | A kind of industrial discharge VOCs tail gas Site Detection evaluating apparatus and method |
CN108279182B (en) * | 2017-01-06 | 2020-06-16 | 南京林业大学 | A gas adsorbent evaluation device |
CN107930340A (en) * | 2017-11-29 | 2018-04-20 | 西南化工研究设计院有限公司 | Test the temperature swing adsorption system and method for volatile organic matter adsorbance and desorption quantity |
CN109613143A (en) * | 2019-01-25 | 2019-04-12 | 山西普丽环境工程股份有限公司 | For the Removal of catalyst of dioxin or the Performance Appraisal System of adsorbent and method |
-
2019
- 2019-12-17 CN CN201911299243.9A patent/CN110940752B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN110940752A (en) | 2020-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10241096B2 (en) | Non-methane total hydrocarbons analysis apparatus and method for the same | |
CN110940752B (en) | Multi-element low-carbon hydrocarbon adsorption and desorption evaluation device and method | |
CN105300744B (en) | System for flue gas NO and mercury of thermal power plant sample simultaneously and detect | |
CN105067752B (en) | Program heating analysis equipment and method for testing property of its catalyst | |
CN109000998B (en) | Material pyrolysis toxic flue gas collecting device and method | |
CN108489773B (en) | Sample collection device, system, method and storage medium | |
CN108279182A (en) | A kind of device for estimating gas absorbent | |
CN101907591A (en) | A multi-atmosphere dynamic thermogravimetric-differential thermal analyzer and its application in simulated evaluation of flue gas sulfur transfer performance | |
CN203053947U (en) | Multi-channel multi-component fixed source sampling analysis device | |
CN103308649A (en) | Multi-channel multi-component stationary source sampling and analysis system | |
CN206557172U (en) | A kind of on-line monitoring equipment for stationary source VOCs | |
CN210487693U (en) | Positive pressure type pollution source VOC on-line monitoring system | |
CN113324777B (en) | Polymorphic radioactive iodine environment simulation and equipment comprehensive evaluation equipment | |
CN106525999A (en) | Gas chromatographic detection method for gas | |
CN110791328B (en) | Dry desulfurization system and method for blast furnace gas | |
CN111603889A (en) | A small test system for adsorbent performance for industrial flue gas pollutant purification | |
CN211122442U (en) | Matrix type multi-point automatic inspection gaseous pollutant testing device | |
CN106404984A (en) | Equal-length middle-sized flue gas denitrification catalyst performance detection device and detection method | |
CN102662028B (en) | Device and method for detecting capability of catalyst in denitration system of coal-fired power plant to oxidize elemental mercury | |
CN204065045U (en) | Denitration demercuration catalyst activity assessment device | |
CN205192809U (en) | System for flue gas NO and mercury of thermal power plant sample simultaneously and detect | |
CN216955319U (en) | A gas sampler with constant pressure supply | |
RU182996U1 (en) | The device for the selection of multicomponent gas in the process stream | |
CN105115924B (en) | A kind of method and device of test carbon-supported catalyst demercuration performance | |
CN216387009U (en) | An automatic analyzer for analyzing total mercury in water quality |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241224 Address after: No.61 Tangyan Road, hi tech Zone, Xi'an City, Shaanxi Province Patentee after: THE NORTHWEST RESEARCH INSTITUTE OF CHEMICAL INDUSTRY CO.,LTD. Country or region after: China Address before: No.61 Tangyan Road, hi tech Zone, Xi'an City, Shaanxi Province Patentee before: SHAANXI YANCHANG PETROLEUM (Group) Co.,Ltd. Country or region before: China |