JP2011025219A - Exhaust gas cleaning method containing water-soluble volatile hydrocarbon of large amount and high humidity - Google Patents

Exhaust gas cleaning method containing water-soluble volatile hydrocarbon of large amount and high humidity Download PDF

Info

Publication number
JP2011025219A
JP2011025219A JP2009213426A JP2009213426A JP2011025219A JP 2011025219 A JP2011025219 A JP 2011025219A JP 2009213426 A JP2009213426 A JP 2009213426A JP 2009213426 A JP2009213426 A JP 2009213426A JP 2011025219 A JP2011025219 A JP 2011025219A
Authority
JP
Japan
Prior art keywords
exhaust gas
water
adsorption
honeycomb
large amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009213426A
Other languages
Japanese (ja)
Inventor
Hiroshi Tawara
弘 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EPSILON CO Ltd
Original Assignee
EPSILON CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EPSILON CO Ltd filed Critical EPSILON CO Ltd
Priority to JP2009213426A priority Critical patent/JP2011025219A/en
Publication of JP2011025219A publication Critical patent/JP2011025219A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treating method of a large amount of exhaust gas exceeding 10,000 m<SP>3</SP>/h of high humidity of 50% or more of R.H., and containing lean water-soluble VOC of several hundred to several thousand ppm in the exhaust gas. <P>SOLUTION: In an exhaust gas treating method, an adsorbing apparatus is used for treating the exhaust gas containing lean water-soluble hydrocarbon and a large amount of moisture. The adsorbing apparatus consists of a layer packed with zeolite-made honeycomb or zeolum-made honeycomb as an adsorbent, so-called a molecular sieve adsorbent, wherein a pre-stage alternately performing adsorption and desorption, is packed with a honeycomb layer formed of zeolite or zeolum having a pore diameter of about 3 Å and/or a honeycomb layer consisting of hydrophobic silica gel, and a rear stage is packed with particulate meso-hole activated carbon and/or hydrophobic silica gel, with the upper and lower stages communicated with each other. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、室内に充満する多湿空気や、臭気を含む高湿度の雰囲気ガス、及び/又は水溶性で且つ希薄な揮発性炭化水素を含む大量で且つ多湿な排ガスの浄化方法に関し、特に、大気中に放散される臭気を伴う極く希薄な水溶性VOCを含む大量且つ高湿度の排ガスを処理して生活空間を快適な状態に保つ一方で、含まれている水溶性のVOCを濃縮して、そのまま回収する場合に用いられる装置であって、従来から用いられている「デシカントローター」のように、脱着操作に200〜300℃の温度を必要とし、それを徒らに燃焼させて温暖化ガスとして問題視されている炭酸ガス(CO2)として大気中に放散させるのではなく、地球温暖化防止の観点及び公害防止の観点から、上記排ガス中の水分をほぼゼロPPMにまで落として臭気成分を別けて回収し、生活空間を浄化する目的に加え、該排ガスから、臭気成分の一つである水溶性VOCを効率よく分離し、再利用するための吸着方式に係る、希薄なVOCを含む大量かつ高湿度の排ガス浄化方法に関する。 The present invention relates to a method for purifying a large amount of humid exhaust gas containing humid air filled in a room, high-humidity atmospheric gas containing odor, and / or water-soluble and dilute volatile hydrocarbons. While processing a large amount of high-humidity exhaust gas containing extremely dilute water-soluble VOCs with odors diffused in it, the living space is kept comfortable while concentrating the water-soluble VOCs contained This is a device that is used for recovery as it is, and like the “desiccant rotor” that has been used in the past, it requires a temperature of 200 to 300 ° C. for desorption operation, and it is warmed by burning it freely. instead of being released into the atmosphere as a carbon dioxide gas has been questioned (CO 2) gas, dropped from the point of view of the perspective and pollution prevention of global warming, to almost zero PPM moisture in said exhaust gas odor In addition to the purpose of separating and recovering components and purifying living spaces, a dilute VOC related to an adsorption method for efficiently separating and reusing water-soluble VOC, which is one of the odor components, from the exhaust gas. The present invention relates to a large amount and high humidity exhaust gas purification method.

従来から、VOCを含む排ガスを処理する方法は、多数提案されている。則ち、公害防止の観点から、法的に義務づけられたVOC排出濃度の規制値を満足すべく排ガス中のVOCを除去する手段としては、燃焼法、吸着法、吸収法、膜法等々が知られている。   Conventionally, many methods for treating exhaust gas containing VOC have been proposed. In other words, from the viewpoint of pollution prevention, combustion methods, adsorption methods, absorption methods, membrane methods, etc. are known as means for removing VOCs in exhaust gas to satisfy legally required VOC emission concentration regulation values. It has been.

然し乍ら、上記の方法は、処理する排ガスの量が毎時数百乃至は数千m3で、かつ、含まれているVOCの濃度が%オーダーの比較的濃い場合に限られていた。このうち、PPMオーダーの希薄な、しかも水溶性のVOCを含む大量の排ガスの処理方法としては、吸着剤としてハイシリカゼオライトを用い、吸着、脱着を交互に繰り返し回転するハニカム式ローターによって、この希薄なVOCを数千PPMの濃度にまで濃縮して触媒燃焼させるか、直接燃焼法によるかは別として、唯一汎用されてきた燃焼法は、昨今の温暖化ガス(炭酸ガス)の排出規制の強化によって、適用が著しく困難な状況に立ち至った。 However, the above method is limited to the case where the amount of exhaust gas to be treated is several hundred to several thousand m 3 per hour and the concentration of VOC contained is relatively high on the order of%. Among them, as a method for treating a large amount of exhaust gas containing a thin and water-soluble VOC on the order of PPM, a high-silica zeolite is used as an adsorbent, and this dilute honeycomb rotor rotates alternately and repeatedly by adsorption and desorption. The only combustion method that has been widely used, apart from whether it is concentrated to a few thousand PPM for catalytic combustion or by direct combustion method, is the recent strengthening of greenhouse gas (carbon dioxide) emission regulations This led to a situation where it was extremely difficult to apply.

このような状況を踏まえて、吸着法、吸収法、膜分離法、或いは繊維状活性炭法が、燃やさずにVOCを回収できる適用技術として注目を集めており、既に、吸着したVOCがガソリンベーパーのように水分と親和性がない場合は、吸脱着する際にスチームを使わずに乾式のままで効率よく回収出来る技術が開発されている。例えば吸着法について言えば、下記特許文献1、下記特許文献2、下記特許文献3、下記特許文献4、下記特許文献5等々枚挙に遑がない。   Based on this situation, the adsorption method, absorption method, membrane separation method, or fibrous activated carbon method has attracted attention as an applied technology that can recover VOC without burning. In the case where there is no affinity for moisture as described above, a technology has been developed that enables efficient recovery in the dry state without using steam when adsorbing and desorbing. For example, with respect to the adsorption method, there is no problem in enumerating the following Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, Patent Document 4, Patent Document 5, and the like.

特開平9 − 47635号公報Japanese Patent Laid-Open No. 9-47635 特開平9 − 57060号公報Japanese Patent Laid-Open No. 9-57060 特開平9 −215908号公報JP-A-9-215908 特開平11 − 71584号公報Japanese Patent Laid-Open No. 11-71584 特開平11 − 77495号公報Japanese Patent Laid-Open No. 11-77495 特開2002−293754号公報JP 2002-293754 A 特開2003−154027号公報Japanese Patent Laid-Open No. 2003-154027 特開2007− 38201号公報JP 2007-38201 A

然し乍ら、含まれるVOCがメタノールやエタノールのように、水溶性の場合には、湿度の高い空気中に含まれる水分とを効率的に別けることが難しく、例えば上記特許文献7に開示されているように、種々の金属を坦持させた活性炭を用いて、水溶性のVOC、例えばメタノールを吸着と同時に触媒作用で分解して仕舞う、所謂、防毒マスクへの適用例があるが、この場合は用いた活性炭は再使用出来ず使い棄てになる。しかも前述したように適用事例は、RHが小さく、しかも濃厚なVOCを含む毎時数百乃至、高々、数千m3の排ガス処理に限られている。 However, when the contained VOC is water-soluble, such as methanol or ethanol, it is difficult to efficiently separate it from moisture contained in high-humidity air. For example, it is disclosed in Patent Document 7 above. In addition, there is an application example to a so-called gas mask in which activated carbon carrying various metals is used to decompose water-soluble VOC, such as methanol, by catalytic action and simultaneously decomposed. The activated carbon that was used cannot be reused and is discarded. Moreover, as described above, the application examples are limited to exhaust gas treatment of several hundred to three thousand m 3 at most including RH and a rich VOC.

その問題を解決すべく本発明者は、上記特許文献6に提案したように、多量の水分を含むVOC混合ガス中の水分を、3Aゼオラム(東ソー(株)の商品名で出荷当時は微粒状)を用いて予め吸着させて除去した後、孔径の異なる吸着剤を多段に積んだ層を通過させる事によって、排ガス中に含有されている水溶性のVOC、即ち、酢酸エチル、エタノール、ブタノール、エタノール類をほぼ100%に近い純度で回収する事に成功した。然し乍ら、微粒状のゼオラム3Aを用いる多層充填方式は、吸着剤層を通過する排ガスの上昇速度が速すぎると(秒速約30cmが限度)、小さな粒径の吸着剤が浮き上がってフラッデイング現象を起こす為に、その限度の秒速で処理するとなると、処理する排ガスの量が毎時千m3以上の場合には、装置の大きさが莫大になり、経済的に成立しないからである。加えて、繊維状活性炭を用いる吸着法の場合にも見られるように、秒速1mを超す速度で吸着はできても、脱着には必ずスチームを必要とするので、脱着したVOCに同伴する水分(液体)をそのまま棄てる訳にはいかず、水処理設備に多大な費用がかかる。 In order to solve the problem, the present inventor, as proposed in the above-mentioned Patent Document 6, finely divides the moisture in the VOC mixed gas containing a large amount of moisture under the trade name of 3A Zeorum (Tosoh Corporation). ) And pre-adsorbed to remove water-soluble VOCs contained in exhaust gas, that is, ethyl acetate, ethanol, butanol, We succeeded in recovering ethanol with a purity close to 100%. However, in the multi-layer packing method using fine zeolam 3A, if the rising speed of the exhaust gas passing through the adsorbent layer is too high (limited to about 30 cm per second), the adsorbent with a small particle size rises and causes a flooding phenomenon. For this reason, if the processing is performed at the limit of the second speed, if the amount of exhaust gas to be processed is 1000 m 3 or more per hour, the size of the device becomes enormous and it is not economically established. In addition, as can be seen in the case of the adsorption method using fibrous activated carbon, even if adsorption can be performed at a speed exceeding 1 m / s, steam is always required for desorption, so the moisture accompanying the desorbed VOC ( (Liquid) cannot be discarded as it is, and the water treatment facility is expensive.

前記に引用したように、上記特許文献8に開示されている方法、及び更なる改良方法として本出願人等がその後に出願した方法(特願2008−2635号)においては、前段にはメソ孔活性炭からなるハニカム状吸着剤及び/又は疎水性シリカゲルからなるコルゲート層を充填し、後段には粒状のメソポア(孔)活性炭及び/又は粒状の疎水性シリカゲル層を充填し、それぞれを上下に連通した吸着塔を用いる事によって、前段で吸着された未だに希薄なVOCを後段に引き込んで溜め込む事により、更に濃縮させる場合の手段として、後段の下部に設けた真空ポンプを用いて、前段の吸着段階で水分を飛ばしたあとに残されたVOCを、後段、即ち下段の処理装置に一氣に通貫させて移動して、後段で更なる濃縮を行う操作方法が、高湿度の排ガス中に存在するVOCが水溶性の揮発性炭化水素、例えばメタノールやエタノール、或いは酢酸エチルなどを含む場合のガスを処理する場合に限り、必ずしも最良の装置構成ではない事が実験によって確かめられた。   As cited above, in the method disclosed in the above-mentioned Patent Document 8 and the method (Japanese Patent Application No. 2008-2635) filed later by the present applicant as a further improvement method, the first stage is a mesopore. A honeycomb adsorbent made of activated carbon and / or a corrugated layer made of hydrophobic silica gel is filled, and a granular mesopore (pore) activated carbon and / or a granular hydrophobic silica gel layer is filled in the subsequent stage, and they are communicated with each other vertically. By using the adsorption tower, the still diluted VOC adsorbed in the former stage is drawn into the latter stage and stored, and as a means for further concentration, a vacuum pump provided at the lower part of the latter stage is used as the means for the former stage. An operation method in which the VOC remaining after the moisture is removed is passed through the latter stage, that is, the lower stage processing apparatus, and further concentrated in the latter stage is a high humidity. Experiments have confirmed that the VOC present in the exhaust gas is not necessarily the best equipment configuration only when processing gases when water-soluble volatile hydrocarbons such as methanol, ethanol, or ethyl acetate are treated. It was.

その主たる原因は、前述した方法は、上段のハニカム吸着剤は原料ガス中の水分を素通りさせて、水に不溶な揮発性炭化水素のみを吸着せしめる剤、即ち、メソ孔活性炭や疎水性シリカゲルを用いている為である。   The main cause is that the above-described method is such that the upper honeycomb adsorbent allows the moisture in the raw material gas to pass through, and adsorbs only volatile hydrocarbons insoluble in water, that is, mesoporous activated carbon or hydrophobic silica gel. This is because it is used.

そこで、本発明者等は、上記のフラッデイング現象を起こさない吸着剤として、且つ水分だけを吸着する吸着剤として著名な3Aゼオラムを、粒状のままではなく、これをハニカム状にするべく、特定のバインダーを加えて成形したハニカム状の吸着剤を前段濃縮に適用して水分のみを吸着せしめ、前段で吸着されなかった水溶性のVOCはその塔頂から取り出して、後段の底部に繰り返し供給して濃縮せしめ、ここで濃縮されたVOCは、本発明者等による公知の技術で回収するという方法を提案したものである。   Therefore, the present inventors specified 3A zeolite which is famous as an adsorbent that does not cause the above-mentioned flooding phenomenon and adsorbs only moisture, so that it does not remain granular but is made into a honeycomb shape. The honeycomb-shaped adsorbent formed by adding the above binder is applied to the pre-concentration to adsorb only water, and the water-soluble VOC that has not been adsorbed in the pre-stage is taken out from the top of the tower and repeatedly supplied to the bottom of the post-stage. The VOC concentrated here is proposed by a method of recovering by a known technique by the present inventors.

即ち、前段回収、後段濃縮という方法であって、RHが50%を越すような多湿で且つ毎時一万m3を越すような大量の排ガス中に数百乃至数千ppmの希薄な水溶性VOCを含む場合の処理方法を提供することである。更にまた本発明の目的は、生活空間の除湿目的としても好適に適用出来る方法として提案したものである。 That is, it is a method of pre-stage recovery and post-stage concentration, which is a dilute water-soluble VOC of several hundred to several thousand ppm in a large amount of exhaust gas having a high humidity of RH exceeding 50% and exceeding 10,000 m 3 per hour. It is providing the processing method in the case of including. Furthermore, the object of the present invention is proposed as a method that can be suitably applied as a dehumidifying purpose for living spaces.

上記目的を達成するため、本発明の排ガス浄化方法は、水に溶け、且つ水と共沸現象を示すメタノールやエタノールのような希薄なVOCを含み、しかも大量で且つ、高湿度の排ガスの浄化方法を好適に適用する方法であり、吸着剤として 、先に本発明者等が提案した方法とは逆に、前記吸着装置の前段には3Åの孔径を有するゼオライト乃至はゼオラムから成形したハニカム層及び/又は疎水性シリカゲルからなるハニカム層を、後段には粒状若しくはハニカム状のメソ孔活性炭及び/又は疎水性シリカゲルを充填した上下層を連通した該吸着装置を用いることを特徴する、大量且つ高湿度の水分を含む排ガスの処理方法である。   In order to achieve the above object, the exhaust gas purification method of the present invention includes a diluted VOC that dissolves in water and exhibits an azeotropic phenomenon with water, such as methanol and ethanol, and is capable of purifying a large amount of high-humidity exhaust gas. In contrast to the method previously proposed by the present inventors, the adsorbent is a honeycomb layer formed from zeolite or zeolite having a pore diameter of 3 mm at the previous stage of the adsorbing device. And / or a honeycomb layer composed of hydrophobic silica gel, and a large amount and a high amount of the adsorbing device in which upper and lower layers filled with granular or honeycomb mesoporous activated carbon and / or hydrophobic silica gel are connected in the subsequent stage. This is a method for treating exhaust gas containing moisture of humidity.

また、本発明に係る希薄なVOCを含む大量の排ガス浄化方法は、前記の吸脱着装置の脱着時手段は、上記の吸着装置の頂部から常温に近い少量の温風乃至は窒素を用い、及び/又は真空ポンプを併用して吸脱着の切り替え時間を1〜30分とし、得られた水分を系外に放出すると共に、吸着時に前段から放出される水分を含まない水溶性のVOCを吸着装置(後段)に戻して繰り返し濃縮させ、ある程度(破過寸前まで)濃縮された後、該装置の下部から真空ポンプを用いて吸引し、及び/又は頂部から少量の空気乃至は窒素を併用し、吸脱着の切り替え時間を1〜30分とし、かつ、得られた水分はそのまま屋外に放出する除湿装置を兼ねた、多湿な空気中に存在する水溶性のVOCの回収方法である。   Further, in the method for purifying a large amount of exhaust gas containing a dilute VOC according to the present invention, the desorption means of the adsorption / desorption device uses a small amount of warm air or nitrogen from the top of the adsorption device to a room temperature, and Adsorption device that uses a vacuum pump to change the adsorption / desorption switching time from 1 to 30 minutes, releases the obtained water out of the system, and does not contain water released from the previous stage during adsorption (Rear stage), repeatedly concentrated, concentrated to some extent (before breakthrough), then suctioned from the bottom of the apparatus using a vacuum pump and / or a small amount of air or nitrogen from the top, This is a method for recovering water-soluble VOCs present in humid air, in which the switching time between adsorption and desorption is 1 to 30 minutes, and the obtained moisture also serves as a dehumidifying device that releases it as it is.

この際、冷却してもなおかつ未凝縮のVOCガスは後段の吸着装置の底部に戻すことを特徴とし、上段をハニカムによる精製部、下段を粒状若しくはハニカム状のメソポア(孔)活性炭及び/又は粒状の疎水性シリカゲルによる濃縮部とする一体化した装置にすることによって、前段ハニカム層を通過する処理ガス速度を秒速1〜2mにまで高めて、前段を素通りする水溶性の希薄なVOCをここで5〜10培程度に濃縮させる一方、脱着時、真空ポンプによって、この濃縮ガスを吸引して冷却し、その際の未凝縮ガスを再び後段の濃縮層の底部に戻すことによって、更に濃厚なVOCにする。   At this time, the cooled and uncondensed VOC gas is returned to the bottom of the latter adsorption device, the upper part is a purification section using a honeycomb, the lower part is granular or honeycomb-shaped mesopore activated carbon and / or granular. By using an integrated device with a hydrophobic silica gel concentration part, the processing gas speed passing through the preceding honeycomb layer is increased to 1 to 2 m per second, and a water-soluble diluted VOC passing through the preceding stage is obtained here. While concentrating to about 5-10 cultures, at the time of desorption, the concentrated gas is sucked and cooled by a vacuum pump, and the uncondensed gas at that time is returned to the bottom of the subsequent concentrated layer, thereby further enriching the VOC. To.

このように、吸脱着の際のこの繰り返しによって、上段と連通した下段の粒径吸着剤に平衡吸着量に相当するVOCを溜め込む、所謂、カスケード式アダプター(脱着毎に未凝縮のVOCを原料にリターンさせずにこの塔に集めて濃縮し溜め混む吸着塔)の役割を果たすことが可能になる。かかる装置構成と操作方法によって、多湿な空気中に含まれるメタノールやエタノールのような水溶性のVOCを容易に常温程度でも液化させて液体として回収が可能になる。よって、大気に排出するガス中のVOC濃度をほぼゼロppmにすることが出来る。しかも除湿の効果も期待できる画期的な方法である。なおカスケード式アダプター方式については本発明者等による特許第2766793号(特開平9−57060号)に詳しい。   In this way, by repeating this adsorption / desorption, a so-called cascade adapter (using uncondensed VOC for each desorption as a raw material) stores VOC corresponding to the equilibrium adsorption amount in the lower particle size adsorbent communicating with the upper stage. It is possible to play the role of an adsorption tower that collects, concentrates and accumulates in this tower without returning. With such an apparatus configuration and operation method, a water-soluble VOC such as methanol or ethanol contained in humid air can be easily liquefied even at room temperature and recovered as a liquid. Therefore, the VOC concentration in the gas discharged to the atmosphere can be reduced to almost zero ppm. Moreover, it is an epoch-making method that can be expected to have a dehumidifying effect. The cascade adapter method is described in detail in Japanese Patent No. 2766793 (Japanese Patent Laid-Open No. 9-57060) by the present inventors.

更に本発明に係る希薄な水溶性VOCを含む大量で且つ、多湿な排ガスの浄化方法は、前段に用いるハニカムの原料であるゼオライト乃至はゼオラム(いずれも出荷時は粒状乃至は粉末状)をハニカム状に成形する際に不可欠なバインダーがセピオライトと無機繊維及び/又はコロイダルシリカを有機結合剤と混合したのち焼成してなる材である事を特徴としている。この理由は通常、モレキュラーシーブに吸着された水分は、前記したように、脱着に200〜300℃の加熱媒体が必要であるが、この操作によって脱着条件を大幅に変更出来るからである。   Further, according to the present invention, a method for purifying a large amount and a high amount of exhaust gas containing dilute water-soluble VOC is obtained by using zeolite or zeolum (both granular or powdery at the time of shipment) as a honeycomb raw material used in the previous stage. It is characterized in that the binder indispensable for forming into a shape is a material obtained by mixing sepiolite and inorganic fibers and / or colloidal silica with an organic binder and then firing. This is because the moisture adsorbed on the molecular sieve usually requires a heating medium of 200 to 300 ° C. for desorption as described above, but the desorption conditions can be significantly changed by this operation.

即ち、常温付近の温風乃至は窒素ガスをパージガスとして使用する事が可能になる。かくして請求項4に記載したように、前記の方法で処理した多湿な排ガス中に含まれる水溶性のVOC濃度がほぼ100%で回収することが可能になった。なお付記すれば、本発明で使用するゼオライト乃至はゼオラムは、(株)東ソーのゼオラム3A(商品名)乃至はユニオン昭和(株)の3A乃至は4A(商品名)であるが、相当品であれば品名は問わない。   That is, it becomes possible to use hot air or nitrogen gas near room temperature as the purge gas. Thus, as described in claim 4, it becomes possible to recover the water-soluble VOC concentration contained in the humid exhaust gas treated by the above method at almost 100%. In addition, the zeolite or zeoram used in the present invention is Tosoh's Zeolum 3A (trade name) or Union Showa Co., Ltd. 3A to 4A (trade name). Any product name is acceptable.

本発明の場合は、上段に用いる3Å孔径のゼオライトハニカム層は、理論的に孔径2.8Åの水分のみが吸着される筈であって、除湿手段としての適用例は多いが、その場合、吸着した水分の脱着手段は300〜400℃の熱風が必要になる。それを避けるためには、使用するモレキュラーシーブゼオライトを用いてハニカムに成形する際のバインダーがノーハウの対象になる。その場合でも脱着に300℃前後の熱風を使うのを避ける手段としては、常温に近いパージガスと併用する脱着手段として必ず真空ポンプが必要になる。然し乍ら、吸着時、水分以外に吸着されずに大気中に排出される水溶性のVOCの濃度がそのままでは希薄過ぎて、回収することが不能になる恐れがあると同時に、大気汚染物質として飛散する。もつともこの希薄な水溶性炭化水素を別途に設けた塔に導いて吸収液で洗う方法もあるが、経済的ではない。   In the case of the present invention, the zeolite honeycomb layer having a three-pore diameter used in the upper stage should theoretically adsorb only water having a pore diameter of 2.8 liters, and there are many examples of application as a dehumidifying means. The desorbing means for the moisture required requires hot air of 300 to 400 ° C. In order to avoid this, the binder when forming into a honeycomb using the molecular sieve zeolite to be used becomes the object of know-how. Even in such a case, as a means for avoiding the use of hot air of about 300 ° C. for desorption, a vacuum pump is always required as a desorption means used in combination with a purge gas close to room temperature. However, at the time of adsorption, the concentration of the water-soluble VOC that is discharged into the atmosphere without being adsorbed by anything other than moisture is too dilute as it is and may not be able to be recovered, and at the same time, it is scattered as an air pollutant . At the same time, there is a method of introducing this dilute water-soluble hydrocarbon to a separately provided tower and washing it with an absorbing solution, but this is not economical.

その理由としてハニカムを採用する最大のメリツトが、秒速1mを越えるスピードで吸着剤層を通過せしめ、かつ、剤との接触時間が1〜2秒で吸着完了する利点とは裏腹に、吸着剤(スケスケの状態のハニカムでは嵩比重が0.1程度)の破過が早いということである。因みに、従来使用されている粒状活性炭の嵩比重は0.5前後であってハニカムに比べて4〜5培の吸着容量を持つ。然し乍ら、粒状の活性炭層がフラッデイング(浮き上がり現象)を起こすガスの上昇速度は秒速0.3mである。従って、ハニカムの濃縮割合、即ち吸着量は、使用するハニカムの組成と充填量にも依るが、同じ容量のメソ孔活性炭を主材とする場合の約1/5程度であるものの、吸着剤層を通過する上昇速度で相殺されることになる。よって、吸着剤を粒状とするかハニカム状とするかの選択は、処理するガスの量による。   The biggest advantage of adopting honeycomb as the reason is that the adsorbent (adsorbent () In the case of the honey-comb honeycomb, the breakthrough of the bulk specific gravity is about 0.1) is quick. Incidentally, the bulk specific gravity of conventionally used granular activated carbon is around 0.5, and has an adsorption capacity of 4-5 cultures compared to a honeycomb. However, the rising speed of the gas causing the flooding (floating phenomenon) of the granular activated carbon layer is 0.3 m / s. Therefore, although the concentration ratio of the honeycomb, that is, the adsorption amount depends on the composition and filling amount of the honeycomb to be used, it is about 1/5 of the case where the main material is mesoporous activated carbon, but the adsorbent layer. It will be offset by the rising speed that passes through. Therefore, the selection of whether the adsorbent is granular or honeycomb depends on the amount of gas to be processed.

従って、PPMのオーダーの濃度であっても、上記特許文献7による後段回収装置でほぼ100%、VOCの回収は可能であるが、排ガス中に含まれるVOCが数百ppmと更に希薄になり、しかも水溶性であり、かつ、水分を多量に含む毎時数千乃至数万m3のガスを処理する場合を考えると、前段で水分を吸着させたのち、続けて後段で水溶性の揮発性炭化水素を回収する装置構成の是非が問われる。理由の一つは吸着した水分の脱着が容易ではないことである。   Therefore, even if the concentration is on the order of PPM, the post-recovery device according to Patent Document 7 can recover almost 100% of the VOC, but the VOC contained in the exhaust gas is further diluted to several hundred ppm, Moreover, considering the case of treating a gas of several thousand to several tens of thousands of cubic meters per hour that is water-soluble and contains a large amount of water, after water is adsorbed in the former stage, water-soluble volatile hydrocarbons are subsequently used in the latter stage. The pros and cons of collecting the equipment is questioned. One reason is that it is not easy to desorb the adsorbed moisture.

従来から公知にように、ハニカム層から成る塔を二つ設けて、交互に吸脱着操作を行い、脱着の際に用いる真空ポンプで吸引して得た排ガス(この場合は水分と微量の水溶性VOC)を冷却したあと、未凝縮ガスを、片方のハニカムに繰り返し戻す方法は、ハニカムの吸着容量が少ないが為に装置の容量が非常に大きくなる。要するに破過が早い為に操作後に大気中に放散される空気中のVOCの回収率が80%にも満たないことは前述した通りである。装置構成上前段回収のための、真空ポンプとは別個に、後段回収にも脱着手段として、前段同様に真空ポンプが必要になり、加えて、シーケンス操作もそれぞれが独立するために経済性が著しく損なわれる。   As conventionally known, two towers made of honeycomb layers are provided, and the adsorption and desorption operations are alternately performed, and exhaust gas obtained by suction with a vacuum pump used for desorption (in this case, moisture and a small amount of water-soluble) The method of repeatedly returning the non-condensed gas to one of the honeycombs after cooling the VOC) results in a very large capacity of the apparatus because the honeycomb adsorption capacity is small. In short, since the breakthrough is quick, the recovery rate of VOC in the air diffused into the atmosphere after operation is less than 80%, as described above. Separately from the vacuum pump for the former stage collection, the vacuum pump is necessary as the desorption means for the latter stage collection as well as the former stage. In addition, since the sequence operation is independent of each other, the economy is extremely high. Damaged.

本実施例に係る装置の一例を示す概略図である。It is the schematic which shows an example of the apparatus which concerns on a present Example.

本発明の実施の形態は、希薄でかつ水溶性のVOC、例えば、メタノールやエタノール、酢酸エチル等を含む大量で且つ、RHが50%以上もある水分含有排ガスの処理に際して、吸着剤層と濃縮剤層とを上下に分けて一体化した装置であって、含まれている水分は上段に設けられたモレキュラーシーブ効果を目的とするハニカム層に吸着させ、その際に塔頂から排出される希薄な水溶性VOCを下段に設けたメソ孔活性炭(粒状)に導いて、ここで5〜10培程度に濃縮する”濃縮剤層”とを連結させた形で含む。この”ハニカム層”は、上記VOCを含む多湿な排ガスで予めプレコートしておくが、その理由は以下の通り。   In the embodiment of the present invention, an adsorbent layer and a concentration are used in the treatment of a water-containing exhaust gas containing a large amount of dilute and water-soluble VOC, for example, methanol, ethanol, ethyl acetate and the like, and RH of 50% or more. It is an apparatus that integrates the agent layer into upper and lower parts, and the contained moisture is adsorbed on the honeycomb layer for the purpose of the molecular sieve effect provided in the upper stage, and the dilute gas discharged from the top of the tower at that time A water-soluble VOC is introduced into the mesoporous activated carbon (granular) provided in the lower stage, and a “concentrating agent layer” that is concentrated to about 5 to 10 cultures is connected here. This "honeycomb layer" is pre-coated with a humid exhaust gas containing the VOC in advance, for the following reason.

即ち、ゼオラム3Aを例にとって、この層にメタノールを少量含むRHが80程度の多湿な空気を流すとした場合、最初はメタノールが吸着され、そのうちにこのメタノールは水分の吸着が進むにつれて水分と置き換わって、吸着塔出口には濃縮されたメタノールが大気に排出される。その後、水分が飽和吸着されるに従って、メタノールは吸着されなくなり、原料ガス中のメタノール濃度(入口)と大気放散ガス中のメタノール濃度(出口)が等しくなる現象からして、上記のプレコート操作が必要になる訳である。参考に、水の分子径は約2.7Å メタノールの分子径は約3.8Åであって、用いたハニカムの分子径は約3Åである。この現象は3Åゼオライトハニカム中に混入するセピオライトの効果によると推定される。   That is, taking Zeolum 3A as an example, when humid air containing a small amount of methanol and having an RH of about 80 is allowed to flow through this layer, methanol is first adsorbed, and this methanol is replaced with moisture as moisture adsorption proceeds. Thus, the concentrated methanol is discharged to the atmosphere at the outlet of the adsorption tower. After that, as moisture is saturated and adsorbed, methanol is no longer adsorbed, and the above pre-coating operation is necessary due to the phenomenon that the methanol concentration (inlet) in the source gas becomes equal to the methanol concentration (outlet) in the atmospheric emission gas. That is why. For reference, the molecular diameter of water is about 2.7 mm, the molecular diameter of methanol is about 3.8 mm, and the molecular diameter of the honeycomb used is about 3 mm. This phenomenon is presumed to be due to the effect of sepiolite mixed in the 3Å zeolite honeycomb.

以上の操作を続けて上段の”ハニカム層”に吸着された水分は、出来るだけ早く脱着させねばならないが(1〜30分以内 できれば10分程度)脱着手段は少量のパージガス及び/又は真空ポンプによる。この脱着時間の増減は真空ポンプの吸引能力(真空度)と併用するパージガスの量、即ちパージ係数(α)の如何によって短くすることも可能である。   The moisture adsorbed on the upper “honeycomb layer” should be desorbed as soon as possible (within 1 to 30 minutes, preferably about 10 minutes). The desorption means is a small amount of purge gas and / or vacuum pump. . The increase / decrease in the desorption time can be shortened depending on the amount of purge gas used in combination with the suction capacity (vacuum degree) of the vacuum pump, that is, the purge coefficient (α).

次にハニカム層を通過した水溶性の希薄なVOCは、後段に設けられた濃縮層、つまり粒状のメソ孔活性炭を充填した吸着塔に連続して導かれる。この層で5〜10培程度に濃縮されたVOCは、本発明者等が従来から慣用している方法にて真空ポンプで系外に取り出されるが、この濃縮層は、吸着孔径が1〜10ナノの、プレコートした粒径のメソポア(孔)活性炭を充填した吸着剤層、及び/又は、平均の吸着孔径が、4乃至6ナノに特化した粒径の疎水性シリカゲルをプレコートして用いており、ハニカムに比べて数倍の吸着容量を持つ為に、後段吸着剤層の底部に溜まったVOC、即ち、前段のハニカム操作によって吸着されなかったVOCがこの層に戻され、既に溜まっていた水溶性炭化水素と合体して、更に濃縮されたVOCとして下部に存在する。   Next, the water-soluble dilute VOC that has passed through the honeycomb layer is continuously led to a concentrated layer provided in a subsequent stage, that is, an adsorption tower filled with granular mesoporous activated carbon. The VOC concentrated to about 5 to 10 in this layer is taken out of the system by a vacuum pump by a method conventionally used by the present inventors. This concentrated layer has an adsorption pore size of 1 to 10 Nano-adsorbent layer filled with precoated particle size mesopore (pore) activated carbon and / or pre-coated hydrophobic silica gel with average adsorption pore size of 4 to 6 nano particle size Since the adsorption capacity is several times that of the honeycomb, the VOC accumulated at the bottom of the latter adsorbent layer, that is, the VOC that was not adsorbed by the previous honeycomb operation was returned to this layer and already accumulated. Combined with water-soluble hydrocarbons, it is present at the bottom as a more concentrated VOC.

このVOCを5分程度の切り替えスイングで真空ポンプによって外に取り出す、この繰り返し操作によって、上段を素通りした水溶性のVOCの濃度が著しく濃くなり、冷却温度をそれ程下げずに多量のVOCを液体として回収できるメリツトがある。このように前段と後段を上下に連通した吸着塔を用いて処理するが故に、大量かつ多湿な空気中に含まれる希薄で水に溶けるVOCを含む雰囲気空気中の水分を除湿できるという効果も期待出来るようになる。即ち、長期の保存を必要とする食料の貯蔵倉庫や、居住空間の快適化に資する効果は多大なものがあり、コスト如何によっては従来から汎用されているフレオン空調やデシカント空調と競合出来る可能性を秘めている。   This VOC is taken out by a vacuum pump with a switching swing of about 5 minutes. By this repeated operation, the concentration of the water-soluble VOC passing through the upper stage becomes extremely high, and a large amount of VOC is converted into a liquid without lowering the cooling temperature so much. There is merit that can be recovered. Thus, since the treatment is performed using the adsorption tower in which the former stage and the latter stage are vertically communicated, it is also expected to be able to dehumidify the moisture in the atmospheric air containing the dilute and water-soluble VOC contained in a large amount of humid air. become able to do. In other words, it has a great effect on food storage warehouses that require long-term storage and comfort in living spaces, and depending on the cost, it can compete with conventional Freon air conditioning and desiccant air conditioning. I have a secret.

本装置に於ける操作方法は、吸脱着操作の切り替え時間が1〜30分であって、望ましくは5〜10分程度、パージ操作には真空ポンプ及び/又は常温の空気乃至窒素、及び/又は真空ポンプを併用する。この際、水分を吸着した残りの排ガス、即ち希薄な水溶性のVOCは後段に設けた固体吸着剤にリターンさせ、取り出し易いように濃縮させて系外に取り出し、含まれているVOCを液体として回収すると共に、冷却し得なかった未凝縮ガスは前記濃縮装置の底部にリターンさせる。この方法で用いる真空ポンプの型式は問わないが、液封式の回転ポンプが望ましく、到達真空度は3.5Kpaあれば充分である。併用するパージガスは水分の少ない窒素ガスが適当であろう。   The operation method in this apparatus is that the switching time of the adsorption / desorption operation is 1 to 30 minutes, preferably about 5 to 10 minutes, the purge operation is a vacuum pump and / or room temperature air or nitrogen, and / or Use with a vacuum pump. At this time, the remaining exhaust gas that has adsorbed moisture, that is, dilute water-soluble VOC is returned to the solid adsorbent provided in the subsequent stage, concentrated for easy removal, taken out of the system, and contained VOC as liquid While recovering, the uncondensed gas that could not be cooled is returned to the bottom of the concentrator. The type of the vacuum pump used in this method is not limited, but a liquid ring rotary pump is desirable, and the ultimate vacuum is sufficient if it is 3.5 Kpa. The purge gas used in combination may be nitrogen gas with little moisture.

[本発明で対象とする排ガス]
本発明で対象とするガスは、塗装工場や半導体工場、化学製品を取り扱う製造工程などから排出される毎時数千乃至は数万m3以上の大量の排ガスであって、多量の水分を含み、且つ希薄な水溶性のVOC(例えばメタノールやエタノール、酢酸エチルのような水溶性でしかもアゼオトロピック現象を生じるようなアルコール類、ベンゼンやトルエンのような芳香族炭化水素類、ブタジエンやヘキセン、スチレンのようなジエン類重合物質、トリクレン、塩化メチレンや酢酸エチルのように公害防止条例で規制されている有害物質)を含むものである。しかも、好ましくは含有濃度が数百、数千PPMのオーダーであって、且つ水分を多量に含む毎時数千m3以上の排ガスを対象とするが、それ以外に、食料品の貯蔵倉庫や湿気を嫌う生活空間も対象になる。
[Exhaust gas targeted by the present invention]
The target gas in the present invention is a large amount of exhaust gas of several thousand to tens of thousands of m 3 or more discharged from a coating factory, a semiconductor factory, a manufacturing process for handling chemical products, etc. In addition, dilute water-soluble VOCs (for example, water-soluble alcohols such as methanol, ethanol, and ethyl acetate, and azeotropic phenomena, aromatic hydrocarbons such as benzene and toluene, butadiene, hexene, and styrene) And diene polymerized substances such as trichlene, methylene chloride and ethyl acetate). In addition, it is intended for exhaust gas with a concentration of several hundreds or thousands of PPM and containing a large amount of moisture and several thousand m 3 per hour. Living spaces that hate people are also targeted.

本実施例に係る希薄な水溶性VOCを含む大量の水分含有ガス(空気)の浄化方法において使用しうる装置の一例を図1により説明する。本例は図1に示すように送風機による原料排ガス供給ライン1、及び異なる吸着剤を上下に充填した吸着塔1A、1B、真空ポンプ4、気液を分離するための冷却器5、未凝縮ガス戻しライン7、回収液取り出しライン6、1A(1B)の頂部から排出されて下部の吸着剤層に導入されるVOCガスのライン9、パージガス供給ライン9Aからなる本装置を用いて、希薄なVOCを含む大量の排ガス(湿度の高い空気)を処理する例である。なお、10A、10B、11A、11B、12A、12B、13A、13B、14A、14B、15A、15Bは、いずれも電磁弁である。なお、以下においては、図示する前段の吸着塔を含む構成部分をA系といい、下段の吸着塔を含む構成部分をB系と称する。   An example of an apparatus that can be used in the method for purifying a large amount of water-containing gas (air) containing dilute water-soluble VOC according to the present embodiment will be described with reference to FIG. In this example, as shown in FIG. 1, a raw material exhaust gas supply line 1 by a blower, adsorption towers 1A and 1B filled with different adsorbents, a vacuum pump 4, a cooler 5 for separating gas and liquid, uncondensed gas By using this apparatus comprising the VOC gas line 9 discharged from the top of the return line 7, the recovered liquid take-out line 6, 1A (1B) and introduced into the lower adsorbent layer, and the purge gas supply line 9A, a diluted VOC is used. This is an example of processing a large amount of exhaust gas (humid air with high humidity). Note that 10A, 10B, 11A, 11B, 12A, 12B, 13A, 13B, 14A, 14B, 15A, and 15B are all electromagnetic valves. In the following, the constituent part including the preceding adsorption tower shown in the figure is referred to as A system, and the constituent part including the lower adsorption tower is referred to as B system.

本例において、A系に充填される吸着剤は、3Åの孔径からなるゼオライト製のハニカム及び/又は疎水性シリカゲルからなるハニカムであり、B系に充填される吸着剤は、粒状若しくはハニカム状のメソ孔活性炭及び/または疎水性シリカゲルをプレコートした状態にして充填するか、本装置を稼働する前にプレコート操作を終えたものを使用する。具体的には、A系のハニカム層は(株)トーソのゼオラム3Aであり、B系の濃縮層は、日の丸産業(株)のHPZ−11W(メソ孔活性炭)及び/又は富士シリシア化学社の粒状疎水性シリカゲル(商品名 S−4、S−6)である。   In this example, the adsorbent filled in the system A is a zeolite honeycomb having a pore size of 3 mm and / or a honeycomb made of hydrophobic silica gel, and the adsorbent filled in the system B is granular or honeycomb-shaped. Mesoporous activated carbon and / or hydrophobic silica gel is filled in a pre-coated state, or the pre-coating operation is completed before the apparatus is operated. Specifically, the A-type honeycomb layer is Zeolum 3A manufactured by Toso Co., Ltd., and the B-type concentrated layer is manufactured by Hinomaru Sangyo Co., Ltd. HPZ-11W (mesoporous activated carbon) and / or Fuji Silysia Chemical Ltd. It is a granular hydrophobic silica gel (trade names S-4, S-6).

本例では、原料ガス供給ライン1から”5000PPMの酢酸エチルを含む、相対湿度(RH)80%の空気”を、毎分100ccの割合でA系の底部から送気した。その前に吸着剤層を予め該ガスでプレコートする。また原料ガスライン1を通過する空気の送気速度は、剤との接触時間は約1秒、また切り替え時間は約20分であった。   In this example, “air having a relative humidity (RH) of 80% containing 5000 PPM of ethyl acetate” was fed from the bottom of the system A at a rate of 100 cc / min. Before that, the adsorbent layer is precoated with the gas in advance. Further, the air feeding speed of the air passing through the raw material gas line 1 was about 1 second for the contact time with the agent and about 20 minutes for the switching time.

検証された成果として、ゼオラム3Aハニカム層には酢酸エチルは吸着されずに水分だけが吸着されている事を確認した。次に、同様な条件で酢酸エチルに代えてメタノール蒸気を混合した場合の実験については以下の通りで、メタノールの分子径は3.8Åとされているが、この結果においては、A系に流入直後からメタノールが吸着されている現象を示した。然し乍ら、水分の吸着と共に吸着塔出口のメタノール濃度はC/C=1.0以上となり、濃縮されて脱着されたような現象を示した。その後、水分が飽和吸着されるとメタノールは吸着されなくなり、入り口濃度と出口濃度が等しくなった。   As a verified result, it was confirmed that ethyl acetate was not adsorbed on the zeolite 3A honeycomb layer but only water was adsorbed. Next, the experiment when methanol vapor is mixed instead of ethyl acetate under the same conditions is as follows. The molecular diameter of methanol is 3.8 mm, but in this result, it flows into the A system. The phenomenon that methanol was adsorbed was shown immediately after. However, the methanol concentration at the outlet of the adsorption tower was C / C = 1.0 or more together with the adsorption of moisture, indicating a phenomenon that it was concentrated and desorbed. Thereafter, when water was saturated and adsorbed, methanol was not adsorbed and the inlet concentration and outlet concentration became equal.

つまり、メタノールはA系のハニカム層を単に素通りしていると思われる現象が見られた。即ち、メタノール吸着量とメタノール脱着量がほぼ等しい事実からして、メタノールと水分とは交換吸着が行われたと推定できる。この事実は既にメソ孔活性炭のメーカーであるノリツト社(オランダ)の資料(ノリツト社テクニカルレポート TB 33/08−95:NORIT活性炭の濾過材とその装置)でも確かめられている。また、脱着については、実験の結果、窒素ガスを流すだけでも吸着水分量の半数以上の水分が脱着されることが判明した。   That is, a phenomenon that methanol seems to simply pass through the A-type honeycomb layer was observed. That is, based on the fact that the amount of methanol adsorbed and the amount of methanol desorbed are almost equal, it can be estimated that methanol and moisture were exchanged and adsorbed. This fact has already been confirmed in the material of Noritz (Netherlands), a manufacturer of mesoporous activated carbon (Noritt technical report TB 33 / 08-95: NORIT activated carbon filter medium and its device). As for desorption, as a result of experiments, it was found that more than half of the amount of adsorbed moisture was desorbed only by flowing nitrogen gas.

そこで比較例として、窒素ではなく、約60℃の温風ガスをハニカム層との接触時間約2秒で流すことによって、吸着水分量のほぼ全量が脱着されることが明らかになった。恐らく真空ポンプを温風と併用すれば、常温での脱着も可能になると推定される。次に、A系の頂部から放出される、前記の酢酸エチル、若しくはメタノールは「課題を解決するための手段」の項で説明したように、B系の吸着層の低部に繰り返し戻して濃縮させた後、本発明者等が有する数々の特許に開示された方法で処理するので、詳細は省略する。   Therefore, as a comparative example, it has been clarified that almost all of the adsorbed moisture amount is desorbed by flowing hot air gas of about 60 ° C. instead of nitrogen in a contact time of about 2 seconds with the honeycomb layer. Presumably, if a vacuum pump is used in combination with warm air, desorption at room temperature is possible. Next, as described in the section “Means for Solving the Problems”, the ethyl acetate or methanol released from the top of the A system is repeatedly returned to the lower part of the B system adsorption layer and concentrated. Then, the processing is performed by the methods disclosed in various patents owned by the present inventors, and the details are omitted.

このように、水溶性で希薄なVOCを含む、大量かつ高湿度の排ガスを上記の手段で、しかも、経済的にすぐれた新規な方法で処理することにより、上記ガスをゼロエミツションにまで浄化できることは、応用例が希薄な酢酸エチルやメタノールに限らず、従来、蒸留法か透過膜法でしか分離出来なかったバイオエタノールの濃縮分離にも適用が可能になり、しかも、多湿な食料倉庫、生活空間の除湿効果もが期待出来る。衆知のように平成14年4月(2002年4月)以降に実施されることが決まっている「特定化学物質の環境への排出量の把握及び管理の改善に関する法律」、いわゆる“PRTR法”に於いては、従来から慣行されてきた排出濃度の規制ではなく、工場全体の排出総量規制であって、前記したように、曝気の際に大量の空気に薄めて排出することができなくなる云々という法令を引き合いに出すまでもなく、かかる状況に鑑み、本発明者等は、VOCを含む排ガスを、従前とは異った新規な吸着剤を用いて処理し、排ガス中に混在するアルコール類や芳香族、等々に適用出来るため、地球温暖化ガスの防止技術としては画期的な発明でもあり、社会的ニーズに充分応えることが出来る。   In this way, a large amount of high-humidity exhaust gas containing water-soluble and dilute VOCs is treated by the above-mentioned means and by a novel method that is economically superior, thereby purifying the gas to zero emission. What can be done is not limited to dilute ethyl acetate and methanol, but can also be applied to the concentration and separation of bioethanol that could only be separated by distillation or permeable membrane methods. The dehumidifying effect of the living space can also be expected. As is known, the “Act on the Improvement of Management and Management of the Release of Specific Chemical Substances into the Environment”, the so-called “PRTR Law”, which is decided to be implemented after April 2002 (April 2002) However, it is not the regulation of emission concentration that has been conventionally practiced, but the regulation of the total emission amount of the whole factory, and as described above, it cannot be discharged after being diluted to a large amount of air during aeration. In view of such a situation, the present inventors treated the exhaust gas containing VOC with a new adsorbent different from the conventional one, and alcohols mixed in the exhaust gas. Therefore, it is an epoch-making invention as a technology for preventing global warming gas, and can fully meet social needs.

1…原料排ガス供給ライン
1A、1B…吸着塔
4…真空ポンプ
5…冷却器
6…回収液取り出しライン
7…未凝縮ガス戻しライン
9A…パージガス供給ライン
DESCRIPTION OF SYMBOLS 1 ... Raw material exhaust gas supply line 1A, 1B ... Adsorption tower 4 ... Vacuum pump 5 ... Cooler 6 ... Collected liquid take-out line 7 ... Uncondensed gas return line 9A ... Purge gas supply line

Claims (4)

吸着剤としてゼオライトハニカム、通称モレキュラーシーブ吸着剤を充填した層からなり、吸着と脱着を交互に行う吸着装置を用い、一方の吸着装置に水溶性の揮発性炭化水素を含む高濃度の水分含有排ガスを通過せしめ、該吸着装置内の吸着剤層に水分を吸着させ、水溶性の揮発性炭化水素を吸着装置の出口から放出し、その間に、他方の吸着装置を脱着に切り換えて、先に吸着された水分を系外に取り出して屋外に放出する事から成る処理方法において、
前記吸着装置の前段に3Åの孔径を有するゼオライトから成形したハニカム層及び/又は疎水性シリカゲルのハニカム層を、後段には粒状若しくはハニカム状のメソ孔活性炭及び/又は疎水性シリカゲルを充填した前段と後段とを連通した該吸着装置を用いて、希薄な水溶性炭化水素を含み、且つ水分を多量に含有する排ガスの処理方法。
A high-concentration water-containing exhaust gas containing water-soluble volatile hydrocarbons in one adsorbing device, consisting of a layer filled with zeolite honeycomb, commonly known as molecular sieve adsorbent, and performing adsorption and desorption alternately. And adsorbs the moisture by adsorbing the adsorbent layer in the adsorbing device and releasing the water-soluble volatile hydrocarbons from the outlet of the adsorbing device while switching the other adsorbing device to desorption. In the processing method consisting of taking out the released water out of the system and releasing it outdoors,
A pre-stage filled with a honeycomb layer formed from zeolite having a pore diameter of 3 mm and / or a hydrophobic silica gel honeycomb layer before the adsorbing apparatus, and a post-stage filled with granular or honeycomb mesoporous activated carbon and / or hydrophobic silica gel A method for treating exhaust gas containing dilute water-soluble hydrocarbons and containing a large amount of water, using the adsorption device communicating with the latter stage.
前記の吸脱着装置の脱着時手段は、上記の吸着装置(前段)の頂部から常温程度の温風乃至は窒素を吹き込み、及び/又は真空ポンプを用いて吸引し、吸・脱着の切り替え時間を1〜30分とし、得られた水分を系外に放出するとともに、吸着時に前段から放出される水分を含まない水溶性の揮発性炭化水素を、後段の吸着装置に戻して濃縮させる、請求項1に記載の大量且つ高湿度の水分を含む排ガスの処理方法。   The adsorption / desorption means of the adsorption / desorption device is configured to inject hot air or nitrogen at a room temperature from the top of the adsorption device (previous stage) and / or suck it using a vacuum pump, and adjust the adsorption / desorption switching time. It is 1 to 30 minutes, and the obtained water is released out of the system, and water-soluble volatile hydrocarbons that do not contain moisture released from the previous stage during adsorption are returned to the subsequent adsorption apparatus and concentrated. 2. A method for treating exhaust gas containing a large amount of high-humidity water according to 1. 前記の方法に於いて前段で使用するハニカムが、粒状乃至は粉状の原料(孔径が3Åのゼオライト)から所望の形に成形する際の手段として、セピオライトと無機繊維、及び/又はコロイダルシリカを有機結合剤と混合したのち、焼成して成る材であることを特徴とする請求項1及び2のいずれかに記載の大量且つ高湿度の水分を含む排ガスの処理方法。   In the above method, the honeycomb used in the preceding stage is formed from a granular or powdery raw material (zeolite having a pore diameter of 3 mm) into a desired shape by using sepiolite, inorganic fibers, and / or colloidal silica. The method for treating exhaust gas containing a large amount of moisture at a high humidity according to any one of claims 1 and 2, wherein the material is obtained by firing after mixing with an organic binder. 前記の方法で処理したのち回収した排ガス中の水溶性揮発性炭化水素濃度がほぼ100%である、請求項1及び2、3のいずれかに記載の希薄な揮発性炭化水素を含む大量且つ高湿度の水分を含む排ガス浄化方法。   The amount of water-soluble volatile hydrocarbons in the exhaust gas recovered after being treated by the above method is approximately 100%, and includes a large amount and a high amount of the diluted volatile hydrocarbons according to any one of claims 1, 2, and 3. An exhaust gas purification method containing moisture of humidity.
JP2009213426A 2009-04-17 2009-09-15 Exhaust gas cleaning method containing water-soluble volatile hydrocarbon of large amount and high humidity Pending JP2011025219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009213426A JP2011025219A (en) 2009-04-17 2009-09-15 Exhaust gas cleaning method containing water-soluble volatile hydrocarbon of large amount and high humidity

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009101467 2009-04-17
JP2009149249 2009-06-24
JP2009213426A JP2011025219A (en) 2009-04-17 2009-09-15 Exhaust gas cleaning method containing water-soluble volatile hydrocarbon of large amount and high humidity

Publications (1)

Publication Number Publication Date
JP2011025219A true JP2011025219A (en) 2011-02-10

Family

ID=43634605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009213426A Pending JP2011025219A (en) 2009-04-17 2009-09-15 Exhaust gas cleaning method containing water-soluble volatile hydrocarbon of large amount and high humidity

Country Status (1)

Country Link
JP (1) JP2011025219A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106379044A (en) * 2016-09-09 2017-02-08 广东芬尼克兹环保设备有限公司 Purification treatment system for organic waste gas and control method
CN107106965A (en) * 2014-12-31 2017-08-29 艾可普罗有限公司 Air cleaning system
CN108325337A (en) * 2018-03-05 2018-07-27 江苏汇金环保科技有限公司 A kind of high temperature catalytic combustion equipment absorbent charcoal adsorption tank
CN109701358A (en) * 2019-02-25 2019-05-03 广州键洋环保科技有限公司 A kind of organic exhaust gas adsorption and catalysis burning combined system and its technique
CN114225627A (en) * 2021-12-08 2022-03-25 上海绿强新材料有限公司 Combined molecular sieve adsorbent for concentrating and purifying VOCs (volatile organic compounds), method and device
CN114425216A (en) * 2020-10-10 2022-05-03 中国石油化工股份有限公司 Treatment method and device for VOCs waste gas with large air volume concentration fluctuation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107106965A (en) * 2014-12-31 2017-08-29 艾可普罗有限公司 Air cleaning system
CN107106965B (en) * 2014-12-31 2020-07-14 艾可普罗有限公司 Air cleaning system
CN106379044A (en) * 2016-09-09 2017-02-08 广东芬尼克兹环保设备有限公司 Purification treatment system for organic waste gas and control method
CN108325337A (en) * 2018-03-05 2018-07-27 江苏汇金环保科技有限公司 A kind of high temperature catalytic combustion equipment absorbent charcoal adsorption tank
CN109701358A (en) * 2019-02-25 2019-05-03 广州键洋环保科技有限公司 A kind of organic exhaust gas adsorption and catalysis burning combined system and its technique
CN109701358B (en) * 2019-02-25 2024-02-13 广州键洋环保科技有限公司 Organic waste gas adsorption and catalytic combustion combined system and process thereof
CN114425216A (en) * 2020-10-10 2022-05-03 中国石油化工股份有限公司 Treatment method and device for VOCs waste gas with large air volume concentration fluctuation
CN114225627A (en) * 2021-12-08 2022-03-25 上海绿强新材料有限公司 Combined molecular sieve adsorbent for concentrating and purifying VOCs (volatile organic compounds), method and device

Similar Documents

Publication Publication Date Title
US7608133B2 (en) Lithium-exchanged faujasites for carbon dioxide removal
CN106178821B (en) Carbon dioxide adsorption and recovery system and method
JP2011025219A (en) Exhaust gas cleaning method containing water-soluble volatile hydrocarbon of large amount and high humidity
JP2005510654A5 (en)
JP2008536682A (en) Temperature swing adsorption system
JP3974013B2 (en) Method for treating exhaust gas containing volatile hydrocarbons and apparatus for carrying out the method
JP2008504954A (en) Gas flow adsorption separation method
JP5657532B2 (en) Treatment of wet gas containing dust
KR101196932B1 (en) Method of purifying large quantity of exhaust gas containing dilute volatile hydrocarbon
CN101222969B (en) Method of purifying large quantity of exhaust gas containing dilute volatile hydrocarbon
JP5109028B2 (en) Method for purifying a large amount of exhaust gas containing lean volatile hydrocarbons
US5512082A (en) Process for the removal of volatile organic compounds from a fluid stream
JP2010221169A (en) Volatile organic matter recovery system and volatile organic matter recovery method
JP2008188493A (en) Water treatment apparatus
JP2010142728A (en) System for treating exhaust
JP2007160163A (en) Method of separating volatile readily adsorbable component and hardly adsorbable component from solution containing volatile readily adsorbable component and hardly adsorbable component using adsorbent
Rezaee et al. Adsorption properties and breakthrough model of formaldehyde on bone char
JP2008073642A (en) Multi-purpose gas treatment device and its operation method
JP3133988B2 (en) Equipment for treating lean gaseous hydrocarbons contained in waste gas
CN107246667A (en) A kind of electric field-assisted indoor air-purification device
CN208694615U (en) It is a kind of for handling the adsorbent equipment of organic exhaust gas
US5503658A (en) Process for the removal of volatile organic compounds from a fluid stream
JP4851432B2 (en) Volatile organic matter recovery processing apparatus and volatile organic matter recovery processing system having the same
JP2000117048A (en) Adsorptive capturing device and adsorptive recovering device of volatile petroleum compound
TW201204456A (en) Concentrating apparatus for absorbing and desorbing carbon dioxide in gas and method thereof