JP2010221169A - Volatile organic matter recovery system and volatile organic matter recovery method - Google Patents

Volatile organic matter recovery system and volatile organic matter recovery method Download PDF

Info

Publication number
JP2010221169A
JP2010221169A JP2009073154A JP2009073154A JP2010221169A JP 2010221169 A JP2010221169 A JP 2010221169A JP 2009073154 A JP2009073154 A JP 2009073154A JP 2009073154 A JP2009073154 A JP 2009073154A JP 2010221169 A JP2010221169 A JP 2010221169A
Authority
JP
Japan
Prior art keywords
volatile organic
organic matter
voc
recovery system
organic substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009073154A
Other languages
Japanese (ja)
Other versions
JP5697852B2 (en
Inventor
Akira Monkawa
亮 紋川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Original Assignee
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Industrial Technology Research Instititute (TIRI) filed Critical Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority to JP2009073154A priority Critical patent/JP5697852B2/en
Publication of JP2010221169A publication Critical patent/JP2010221169A/en
Application granted granted Critical
Publication of JP5697852B2 publication Critical patent/JP5697852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

<P>PROBLEM TO BE SOLVED: To provide a volatile organic matter recovery system and a volatile organic matter recovery method that can efficiently liquefy and recover volatile organic matter. <P>SOLUTION: The volatile organic matter recovery system includes an adsorbing means 10 for adsorbing and collecting the volatile organic matter by passing an atmosphere containing the vaporized volatile organic matter, an enriching means 30 for desorbing the volatile organic matter collected by the adsorbing means, aspirating the volatile organic matter and enriching them by absorbing with an absorber 35, and a liquefying and recovering means 50 for recovering the volatile organic matter enriched by the enriching means as a liquid 64. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、揮発性有機物回収システム及び揮発性有機物回収方法に関する。   The present invention relates to a volatile organic matter recovery system and a volatile organic matter recovery method.

塗装、印刷、洗浄等の様々な分野において大量に用いられている有機溶剤の多くは、揮発性有機物(VOC)を多量に含んでいる。このような有機溶剤の使用に伴い、VOCガスが大量に発生し、大気中に放出されて拡散している。VOCは、光化学オキシダントと浮遊粒子状物質の主な原因であるため、工場等の固定発生源からのVOCの排出及び飛散に関し、排出規制や自主的取組の促進が取り組まれている。   Many of organic solvents used in large quantities in various fields such as painting, printing, and cleaning contain a large amount of volatile organic substances (VOC). With the use of such an organic solvent, a large amount of VOC gas is generated and released into the atmosphere and diffused. Since VOC is the main cause of photochemical oxidants and suspended particulate matter, efforts are being made to promote emission regulations and voluntary efforts regarding the emission and scattering of VOCs from fixed sources such as factories.

例えば、大規模工場等で発生する比較的高濃度のVOCに関しては、主に触媒、助燃剤などを用いた燃焼法により処理する方法が提案されている(例えば特許文献1、2参照)。しかし、VOCを燃焼により処理する方法は、中小工場で発生した低濃度・大風量のVOC処理には適していない。そのため、特に中小工場が中心である塗装、印刷、洗浄業界が望むような、低コストでのVOC処理を可能にする技術は不十分であり、さらなる開発が望まれている。   For example, a method of treating a relatively high concentration VOC generated in a large-scale factory or the like by a combustion method mainly using a catalyst, a combustion aid, or the like has been proposed (for example, see Patent Documents 1 and 2). However, the method of treating VOC by combustion is not suitable for VOC treatment of low concentration and large air volume generated in small and medium factories. Therefore, the technology that enables VOC processing at a low cost as desired by the painting, printing, and cleaning industries, particularly small and medium factories, is insufficient, and further development is desired.

このような要望を満たすためには、低VOC濃度であっても高い吸着能力を有する吸着材を使用し、回収する方法が適している。例えば代表的な吸着材である活性炭は、1000m/g以上の大比表面積を有し、VOCを効率的に回収することが可能である(例えば特許文献3参照)。しかし、活性炭では、吸着後の再生により、活性が低下するため、再利用に制限があるなど問題がある。 In order to satisfy such a demand, a method of collecting by using an adsorbent having a high adsorption capacity even at a low VOC concentration is suitable. For example, activated carbon, which is a typical adsorbent, has a large specific surface area of 1000 m 2 / g or more and can efficiently recover VOC (see, for example, Patent Document 3). However, activated carbon has a problem that its activity is reduced due to regeneration after adsorption, so that there is a limitation in reuse.

一方、非可燃性吸着材であるゼオライト等の無機酸化物系吸着材は、再生が可能であり、不燃性の無機物を利用するため、可燃性VOCガスの回収にも適している。しかし、ゼオライト等の無機酸化物系吸着材は、活性炭に比べて、処理できるVOC量が少ないことや、高価であることなどの問題点がある。   On the other hand, inorganic oxide-based adsorbents such as zeolite, which are non-flammable adsorbents, can be regenerated and use non-flammable inorganic substances, and are therefore suitable for recovery of combustible VOC gas. However, inorganic oxide-based adsorbents such as zeolite have problems such as a small amount of VOC that can be treated and high cost compared to activated carbon.

また、有機溶剤を回収する装置やシステムが種々提案されている。一般に、有機溶剤回収装置は、気化した有機溶剤を濃縮する濃縮装置と、濃縮された有機溶剤を液化する液化装置とから構成される。例えば、内部に吸着材をそれぞれ有する複数の吸着塔を用い、1塔の吸着材に有機溶剤を吸着させた後、この塔の吸着材から真空ポンプによる吸引と加熱によって有機溶剤を脱着させて回収するとともに、吸着操作を他の塔に切り換える吸着方法が提案されている(例えば特許文献4参照)。   Various apparatuses and systems for recovering organic solvents have been proposed. In general, the organic solvent recovery device includes a concentrating device that concentrates a vaporized organic solvent and a liquefying device that liquefies the concentrated organic solvent. For example, using a plurality of adsorption towers each having an adsorbent inside, the organic solvent is adsorbed on the adsorbent of one tower, and then the organic solvent is desorbed from the adsorbent of this tower by suction and heating with a vacuum pump and recovered. In addition, an adsorption method for switching the adsorption operation to another tower has been proposed (for example, see Patent Document 4).

しかし、上記のような複数の吸収塔で交互に吸着及び脱着を繰り返す方法では、吸着材に吸着した有機溶剤の脱着時に塔内にある程度の流量の空気を送り込まないと十分脱着しないことから、脱着工程の流量を大幅に減少させることはできず、濃縮倍率を十分高めることが難しい。また、回収した有機溶剤を液化して再利用する場合、回収した有機溶剤の濃縮倍率が低いと、後段の液化過程において冷却装置によって十分冷却しないと液化回収ができないことから、冷却装置が大型化し、コストも高くなってしまう。   However, in the method of repeating adsorption and desorption alternately in a plurality of absorption towers as described above, since desorption is not sufficient unless a certain amount of air is sent into the tower when desorbing the organic solvent adsorbed on the adsorbent, The flow rate of the process cannot be greatly reduced, and it is difficult to sufficiently increase the concentration factor. Also, when the recovered organic solvent is liquefied and reused, if the concentration rate of the recovered organic solvent is low, the cooling device cannot be liquefied and recovered unless it is sufficiently cooled by the cooling device in the subsequent liquefaction process. The cost will be high.

特許3768733号公報Japanese Patent No. 3768733 特開2004−125329号公報JP 2004-125329 A 特開2000−93727号公報JP 2000-93727 A 特許第3421923号公報Japanese Patent No. 3421923

本発明は、揮発性有機物を効率的に液化して回収することができる揮発性有機物回収システム及び揮発性有機物回収方法を提供することを目的とする。   An object of the present invention is to provide a volatile organic substance recovery system and a volatile organic substance recovery method that can efficiently liquefy and recover volatile organic substances.

上記目的を達成するため、以下の発明が提供される。
<1> 気化した揮発性有機物を含む雰囲気を通過させることにより前記揮発性有機物を吸着して捕集する吸着手段と、前記吸着手段により捕集された揮発性有機物を脱着させ、該揮発性有機物を吸引するとともに吸収材に吸収させて濃縮する濃縮手段と、前記濃縮手段により濃縮された揮発性有機物を液体として回収する液化回収手段と、を有する揮発性有機物回収システム。
<2> 前記吸着手段が、筒状に配置された吸着材と、前記吸着材に吸着された揮発性有機物の脱着を促進させる加熱手段と、前記吸着材から脱着して前記濃縮手段により吸引された揮発性有機物の逆流を防止する弁と、を有する<1>に記載の揮発性有機物回収システム。
<3> 前記吸着材が、ミクロ孔、メソ孔、又はマクロ孔を有する多孔質状である<1>又は<2>に記載の揮発性有機物回収システム。
<4> 前記吸着材が、活性炭、ゼオライト、シリカライト、粘土鉱物、疎水性シリカゲル、メソポーラスシリカ、カーボンナノチューブ、多孔質高分子、及び多孔質金属錯体からなる群から選択される1種以上を含む<1>〜<3>のいずれかに記載の揮発性有機物回収システム。
<5> 前記濃縮手段が、前記吸着手段から脱着させた揮発性有機物を収容する密閉型の収容室と、前記収容室内に吸引負圧を生じさせる吸引手段と、前記吸引負圧により前記収容室内に吸引されて収容された揮発性有機物を吸収する前記吸収材とを備える<1>〜<4>のいずれかに記載の揮発性有機物回収システム。
<6> 前記濃縮手段を運搬する運搬手段をさらに有する<1>〜<5>のいずれかに記載の揮発性有機物回収システム。
<7> 前記吸収材が、固体状であって、前記揮発性有機物を吸収する多孔質疎水性有機分子を含む<1>〜<6>のいずれかに記載の揮発性有機物回収システム。
<8> 前記吸収材が、前記揮発性有機物を吸収することによりゲル化する<1>〜<7>のいずれかに記載の揮発性有機物回収システム。
<9> 前記吸収材が、ゲル状であって、前記揮発性有機物を溶解する不活性有機溶媒と、前記不活性有機溶媒のゲル化剤としての疎水性有機分子物質とを含む<1>〜<7>のいずれかに記載の揮発性有機物回収システム。
<10> 前記収容室内の少なくとも上部及び下部に、前記吸収材が収納された吸収材収納容器が設けられている<5>〜<9>のいずれかに記載の揮発性有機物回収システム。
<11> 前記吸収材収納容器が、開閉手段を備えた仕切板を有する<10>に記載の揮発性有機物回収システム。
<12> 前記液化回収手段が、前記吸収材に吸収されている揮発性有機物を気化させる気化手段と、該気化した揮発性有機物を冷却して液化する冷却手段と、該液化した揮発性有機物を回収する回収容器と、を備える<1>〜<11>のいずれかに記載の揮発性有機物回収システム。
<13> 気化した揮発性有機物を含む雰囲気を通過させることにより前記揮発性有機物を吸着して捕集する吸着工程と、前記吸着手段により捕集された揮発性有機物を脱着させ、該揮発性有機物を吸引するとともに吸収材に吸収させて濃縮する濃縮工程と、前記濃縮手段により濃縮された揮発性有機物を液体として回収する液化回収工程と、を有する揮発性有機物の回収方法。
In order to achieve the above object, the following invention is provided.
<1> Adsorption means for adsorbing and collecting the volatile organic matter by passing through an atmosphere containing vaporized volatile organic matter, and desorbing the volatile organic matter collected by the adsorption means, A volatile organic substance recovery system comprising: concentration means for sucking in and absorbing the absorbent and concentrating; and liquefaction recovery means for recovering the volatile organic substance concentrated by the concentration means as a liquid.
<2> The adsorbing means is adsorbed in a cylindrical shape, a heating means for promoting desorption of volatile organic substances adsorbed on the adsorbent, and desorbed from the adsorbent and sucked by the concentrating means. The volatile organic matter recovery system according to <1>, further comprising a valve that prevents backflow of the volatile organic matter.
<3> The volatile organic substance recovery system according to <1> or <2>, wherein the adsorbent is a porous material having micropores, mesopores, or macropores.
<4> The adsorbent includes one or more selected from the group consisting of activated carbon, zeolite, silicalite, clay mineral, hydrophobic silica gel, mesoporous silica, carbon nanotube, porous polymer, and porous metal complex. The volatile organic substance recovery system according to any one of <1> to <3>.
<5> The concentrating unit includes a sealed storage chamber that stores the volatile organic substance desorbed from the adsorption unit, a suction unit that generates a negative suction pressure in the storage chamber, and the suction chamber by the suction negative pressure. The volatile organic matter recovery system according to any one of <1> to <4>, further comprising the absorbent that absorbs the volatile organic matter that is sucked into and stored in the absorbent.
<6> The volatile organic substance recovery system according to any one of <1> to <5>, further including a transporting unit that transports the concentration unit.
<7> The volatile organic matter recovery system according to any one of <1> to <6>, wherein the absorbent material is solid and includes porous hydrophobic organic molecules that absorb the volatile organic matter.
<8> The volatile organic substance recovery system according to any one of <1> to <7>, wherein the absorbent material gels by absorbing the volatile organic substance.
<9> The absorbent material is in the form of a gel, and includes an inert organic solvent that dissolves the volatile organic substance, and a hydrophobic organic molecular substance as a gelling agent for the inert organic solvent. The volatile organic substance recovery system according to any one of <7>.
<10> The volatile organic substance recovery system according to any one of <5> to <9>, wherein an absorbent material storage container in which the absorbent material is stored is provided at least in an upper part and a lower part of the storage room.
<11> The volatile organic matter recovery system according to <10>, wherein the absorbent material storage container includes a partition plate provided with an opening / closing means.
<12> The liquefying and recovering means includes a vaporizing means for vaporizing the volatile organic matter absorbed in the absorbent material, a cooling means for cooling and vaporizing the vaporized volatile organic matter, and the liquefied volatile organic matter. A volatile organic substance recovery system according to any one of <1> to <11>, comprising a recovery container for recovery.
<13> An adsorption step for adsorbing and collecting the volatile organic matter by passing through an atmosphere containing vaporized volatile organic matter, and desorbing the volatile organic matter collected by the adsorption means, and the volatile organic matter A method for recovering volatile organic matter, comprising: a concentration step for sucking and concentrating the product by absorbing it in an absorbent material; and a liquefaction recovery step for recovering the volatile organic matter concentrated by the concentration means as a liquid.

本発明によれば、揮発性有機物を効率的に液化して回収することができる揮発性有機物回収システム及び揮発性有機物回収方法が提供される。   According to the present invention, a volatile organic substance recovery system and a volatile organic substance recovery method capable of efficiently liquefying and recovering volatile organic substances are provided.

第1の実施形態の揮発性有機物回収システムを構成する吸着手段と濃縮手段の一例を示す概略図である。It is the schematic which shows an example of the adsorption | suction means and the concentration means which comprise the volatile organic substance collection | recovery system of 1st Embodiment. 第1の実施形態の揮発性有機物回収システムを構成する液化回収手段の一例を示す概略図である。It is the schematic which shows an example of the liquefaction collection | recovery means which comprises the volatile organic substance collection | recovery system of 1st Embodiment. 吸着手段を拡大して示す概略図である。It is the schematic which expands and shows an adsorption | suction means. 吸着カートリッジにおけるVOCの吸着時及び脱着時の流れの一例を示す概略図である。It is the schematic which shows an example of the flow at the time of adsorption | suction and desorption of VOC in an adsorption cartridge. 吸着カートリッジにおけるVOCの吸着時及び脱着時の流れの他の例を示す概略図である。It is the schematic which shows the other example of the flow at the time of adsorption | suction of VOC in an adsorption | suction cartridge, and removal | desorption. 吸着カートリッジの側面における開閉手段を開放した状態(吸着時)を示す概略図である。It is the schematic which shows the state (at the time of adsorption | suction) which the opening-and-closing means in the side surface of the adsorption | suction cartridge was open | released. 吸着カートリッジの側面における開閉手段を閉鎖した状態(脱着時)を示す概略図である。It is the schematic which shows the state (at the time of attachment or detachment) which closed the opening-and-closing means in the side of an adsorption cartridge. 第2の実施形態の揮発性有機物回収システムを示す概略図である。It is the schematic which shows the volatile organic substance collection | recovery system of 2nd Embodiment. 第3の実施形態の揮発性有機物回収システムを示す概略図である。It is the schematic which shows the volatile organic substance collection | recovery system of 3rd Embodiment. 試験例1の試験結果を示す図である。It is a figure which shows the test result of Test Example 1. 試験例2及び3で使用した脱着試験装置の構成を示す概略図である。It is the schematic which shows the structure of the desorption test apparatus used by Test Example 2 and 3. FIG.

以下、添付の図面を参照しながら本発明についてより具体的に説明する。
本発明に係る揮発性有機物(VOC)回収システムは、気化した揮発性有機物を含む雰囲気を通過させることにより前記揮発性有機物を吸着して捕集する吸着手段と、前記吸着手段により捕集された揮発性有機物を脱着させ、該揮発性有機物を吸引するとともに吸収材に吸収させて濃縮する濃縮手段と、前記濃縮手段により濃縮された揮発性有機物を液体として回収する液化回収手段と、を有する。
Hereinafter, the present invention will be described more specifically with reference to the accompanying drawings.
A volatile organic matter (VOC) recovery system according to the present invention is collected by an adsorption means for adsorbing and collecting the volatile organic substance by passing through an atmosphere containing vaporized volatile organic matter, and the adsorption means. Concentrating means for desorbing the volatile organic substance, sucking the volatile organic substance and absorbing the volatile organic substance and concentrating the volatile organic substance, and liquefaction collecting means for recovering the volatile organic substance concentrated by the concentrating means as a liquid.

−第1の実施形態−
図1は、第1の実施形態のVOC回収システムを構成する吸着手段10と濃縮手段30の一例を示し、図2は、第1の実施形態のVOC回収システムを構成する液化回収手段50の一例を示している。この揮発性有機物(VOC)回収システムは、主に、VOCを含む雰囲気ガスからVOCを選択的に吸着する吸着カートリッジ20等を備えたVOC吸着装置(吸着手段)10と、VOC吸着装置10に吸着された後脱着させたVOCを濃縮して回収するVOC回収車(濃縮手段)30と、VOC回収車30により濃縮して回収した揮発性有機物を液体として回収する冷却コンデンサー56等を備えた液化回収装置(液化回収手段)50から構成されている。
-First embodiment-
FIG. 1 shows an example of the adsorption means 10 and the concentration means 30 constituting the VOC recovery system of the first embodiment, and FIG. 2 shows an example of the liquefaction recovery means 50 constituting the VOC recovery system of the first embodiment. Is shown. The volatile organic matter (VOC) recovery system mainly includes a VOC adsorption device (adsorption means) 10 including an adsorption cartridge 20 that selectively adsorbs VOC from atmospheric gas containing VOC, and the VOC adsorption device 10 The VOC recovery vehicle (concentration means) 30 for concentrating and recovering the VOC that has been desorbed after being removed, and the liquefaction recovery provided with the cooling condenser 56 for recovering the volatile organic matter concentrated and recovered by the VOC recovery vehicle 30 as a liquid The apparatus (liquefaction collection means) 50 is comprised.

<VOC吸着装置>
VOC吸着装置10は、ガス導入口12、拡散槽14、プレフィルター16、VOC吸着カートリッジ20、回収車接続口18、排風機22、ガス排出口24などから構成されている。
図3に示すように、固定発生源から発生したVOCを含む雰囲気(VOCガス)は、排出ポンプ(不図示)により、導入口12を通じて拡散槽14に導入される。VOCガスは拡散槽14にて均一に拡散され、プレフィルター16により固形物が除去される。続いて、吸着材が充填されているVOC吸着カートリッジ20でVOCを吸着して捕集した後、排出口24から清浄空気として大気中に放出される。
<VOC adsorption device>
The VOC adsorption device 10 includes a gas introduction port 12, a diffusion tank 14, a prefilter 16, a VOC adsorption cartridge 20, a collection vehicle connection port 18, an exhaust fan 22, a gas discharge port 24, and the like.
As shown in FIG. 3, the atmosphere (VOC gas) containing VOC generated from the fixed generation source is introduced into the diffusion tank 14 through the inlet 12 by a discharge pump (not shown). The VOC gas is uniformly diffused in the diffusion tank 14 and the solid matter is removed by the prefilter 16. Subsequently, VOC is adsorbed and collected by the VOC adsorption cartridge 20 filled with the adsorbent, and then released from the discharge port 24 into the atmosphere as clean air.

本発明で用いる吸着カートリッジ20の形状は特に限定されず、例えば、円筒形、円錐形、直方形などを採用することができるが、図4に示すように、中心部が空洞29の筒形であって、側面に吸着材21が充填されている、言わば竹輪型であることが望ましい。   The shape of the suction cartridge 20 used in the present invention is not particularly limited. For example, a cylindrical shape, a conical shape, a rectangular shape, or the like can be adopted. However, as shown in FIG. Therefore, it is desirable that the side surface is filled with the adsorbent 21, that is, a bamboo ring type.

また、吸着カートリッジ20は、例えば吸着材21の充填部にVOCの脱着(脱離)を促進させるための加熱手段23が設けられていることが望ましい。加熱手段23としては、VOCを吸着する間はVOCの通過を遮らないように、金網など、孔が開いた板状のもの、あるいは、棒状のものなどを吸着材21の充填部に配置しておくことが好ましい。   Further, the adsorption cartridge 20 is preferably provided with a heating means 23 for promoting the desorption (desorption) of the VOC at the filling portion of the adsorbent 21, for example. As the heating means 23, a plate-like thing with a hole such as a wire mesh or a rod-like thing is arranged in the filling part of the adsorbent 21 so as not to block the passage of the VOC while adsorbing the VOC. It is preferable to keep it.

また、吸着カートリッジ20の上部には接続口付の仕切りが設けられていることが望ましく、特に、吸着材21から脱着して濃縮手段30により吸引されたVOCの逆流を防止する弁(逆止弁)27を設けることが好ましい。   Further, it is desirable that a partition with a connection port is provided at the upper part of the adsorption cartridge 20, and in particular, a valve (a check valve) that prevents the back flow of the VOC that is detached from the adsorbent 21 and sucked by the concentrating means 30. 27) is preferably provided.

吸着材21としては、通過するVOCと化学反応せずにVOCを吸着し、かつ、加熱、吸引などによって脱着させることができるものであれば特に限定されず、回収するVOCの種類に応じて選択すればよい。例えば、ミクロ孔、メソ孔、又は、マクロ孔を有する多孔質状であることが好ましい。具体的には、活性炭、ゼオライト、シリカライト、粘土鉱物、疎水性シリカゲル、メソポーラスシリカ、カーボンナノチューブ、多孔質高分子、及び多孔質金属錯体が挙げられ、これらの中から選択した1種を用いることができ、2種類以上を併用してもよい。   The adsorbent 21 is not particularly limited as long as it can adsorb VOC without chemically reacting with the passing VOC and can be desorbed by heating, suction, etc., and is selected according to the type of VOC to be recovered. do it. For example, a porous shape having micropores, mesopores, or macropores is preferable. Specific examples include activated carbon, zeolite, silicalite, clay mineral, hydrophobic silica gel, mesoporous silica, carbon nanotube, porous polymer, and porous metal complex. Use one selected from these. Two or more types may be used in combination.

VOCガスを吸着カートリッジ20に導入して通過させる流路としては、例えば、図4に点線で示すように、カートリッジ20の下部から入り、空洞部分29を通って側面から排出されてもよいし、図5に示すように、側面から入って空洞部分29に抜け、下部から排出されてもよい。いずれの場合も、吸着材21を支持する支持体31としては金網などの通気性が高いものを使用し、吸着材を通過することによって発生する圧力損出をできるだけ小さくし、かつVOC吸着量が最大となるようなガス流通方式を採用することが望ましい。   As a flow path for introducing and passing the VOC gas into the adsorption cartridge 20, for example, as shown by a dotted line in FIG. 4, the flow may enter from the lower part of the cartridge 20 and be discharged from the side surface through the hollow portion 29. As shown in FIG. 5, it may enter from the side, pass through the cavity 29, and be discharged from the bottom. In either case, the support 31 that supports the adsorbent 21 is made of a highly breathable material such as a wire mesh, the pressure loss generated by passing through the adsorbent is minimized, and the VOC adsorption amount is as low as possible. It is desirable to adopt a gas distribution method that maximizes the gas flow.

吸着材21のVOC吸着飽和量に達した場合は、加熱手段23により吸着材21を加熱し、VOCを脱着させることができる。吸着カートリッジ20に設けた接続口18を回収車のホース37に接続し、VOCガスを回収する。VOCの脱着時には、図6に示すようにカートリッジ20の外周に設けたシャッター25を開放状態にしてもよいし、図7に示すように密閉状態にしてもよい。なお、開放状態の場合は、大気開放する時に流入する空気や不活性ガスの流速を利用した脱着の効果を付与することができ、密閉状態の場合は、減圧による脱着の効果を付与することができる。   When the VOC adsorption saturation amount of the adsorbent 21 is reached, the adsorbent 21 can be heated by the heating means 23 to desorb the VOC. The connection port 18 provided in the adsorption cartridge 20 is connected to the hose 37 of the collection vehicle, and the VOC gas is collected. When the VOC is detached, the shutter 25 provided on the outer periphery of the cartridge 20 may be opened as shown in FIG. 6, or may be sealed as shown in FIG. In the open state, the effect of desorption utilizing the flow rate of air or inert gas flowing in when the atmosphere is released can be provided, and in the sealed state, the effect of desorption by decompression can be provided. it can.

<VOC回収車>
VOC回収車30は、バルブ付の吸着カートリッジ接続口38及びホース37などの接続手段、VOCを収容する濃縮槽32、下部吸収槽36A、上部吸収槽36B、真空ポンプ34などから構成された回収ユニットを、自走車(搬送手段)40の荷台42に設置したものである。濃縮槽32は密閉型であり、真空ポンプ34によって濃縮槽32内に吸引負圧を生じさせ、吸引負圧により濃縮槽32内に吸引されて収容されたVOCが吸収槽36A,36B内の吸収材に吸収されるように構成されている。
<VOC collection vehicle>
The VOC recovery vehicle 30 is a recovery unit composed of connecting means such as a suction cartridge connection port 38 with a valve and a hose 37, a concentration tank 32 for storing VOC, a lower absorption tank 36A, an upper absorption tank 36B, a vacuum pump 34, and the like. Is installed on the loading platform 42 of the self-propelled vehicle (conveying means) 40. The concentration tank 32 is a closed type, and a vacuum negative pressure is generated in the concentration tank 32 by the vacuum pump 34, and the VOC sucked and accommodated in the concentration tank 32 by the suction negative pressure is absorbed in the absorption tanks 36A and 36B. It is configured to be absorbed by the material.

濃縮槽32の数及び配置は特に限定されないが、複数の濃縮槽32を設けることが好ましい。各濃縮槽32に吸収槽36A,36Bを配置して吸着カートリッジ20から脱着したVOCを同時に吸引するようにすれば、短時間で効率よく回収することができる。   The number and arrangement of the concentration tanks 32 are not particularly limited, but it is preferable to provide a plurality of concentration tanks 32. If the absorption tanks 36A and 36B are arranged in the respective concentration tanks 32 and the VOCs detached from the adsorption cartridge 20 are sucked at the same time, they can be efficiently collected in a short time.

吸収槽36A,36Bには、それぞれVOCを吸収する吸収材が配置されている。濃縮槽32内に吸引されたVOCは、温度の低下に伴い一部が液化し、液化したVOCは濃縮槽32の下部に設けられた吸収槽36Aに回収される。一方、気体のまま存在するVOCは、濃縮槽32の上部に設置した吸収槽36Bにおいて吸収される。なお、吸収槽36A,36Bの数及び配置は限定されず、例えば、濃縮槽32の内部側面に設けてもよい。   In each of the absorption tanks 36A and 36B, an absorbent material that absorbs VOC is disposed. A part of the VOC sucked into the concentration tank 32 is liquefied as the temperature decreases, and the liquefied VOC is collected in an absorption tank 36A provided in the lower part of the concentration tank 32. On the other hand, the VOC existing as a gas is absorbed in the absorption tank 36 </ b> B installed at the upper part of the concentration tank 32. In addition, the number and arrangement | positioning of absorption tank 36A, 36B are not limited, For example, you may provide in the internal side surface of the concentration tank 32. FIG.

また、吸収槽36A,36Bに開閉手段を備えた仕切板33を設けておくことが好ましい。開閉自在の仕切板33を設けておけば、液化回収装置50によってVOCを回収する際に、図2に示すように、吸収槽36から複数の管52を通じて短時間で効率的にVOCを回収することができる。   Moreover, it is preferable to provide the partition plate 33 provided with the opening-and-closing means in absorption tank 36A, 36B. If the partition plate 33 that can be freely opened and closed is provided, when the VOC is recovered by the liquefaction recovery device 50, the VOC is efficiently recovered in a short time through the plurality of tubes 52 from the absorption tank 36 as shown in FIG. be able to.

吸収材35としては、吸収したVOCを再度放出することができるものであれば特に限定されないが、VOCを吸収することによりゲル化し、VOCを液化捕集することができるもの、固体状であって、VOCを迅速に吸収できる多孔質疎水性有機分子を用いたもの、あるいは、ゲル状であって、VOCを溶解する不活性有機溶媒と、不活性有機溶媒のゲル化剤としての疎水性有機分子物質とを含むものなどが好ましい。例えば、特願2008−207817号の明細書に記載されている揮発性有機物吸収材を好適に用いることができる。   The absorbent 35 is not particularly limited as long as it can release the absorbed VOC again. However, the absorbent 35 can be gelated by absorbing the VOC and can liquefy and collect the VOC. , Using porous hydrophobic organic molecules capable of rapidly absorbing VOC, or gel-like inert organic solvent that dissolves VOC and hydrophobic organic molecule as a gelling agent for the inert organic solvent Those containing substances are preferred. For example, a volatile organic material absorbent described in the specification of Japanese Patent Application No. 2008-207817 can be suitably used.

上記VOCを溶解する不活性有機溶媒としては、芳香族炭化水素、脂肪族二塩基酸エステル、フタル酸エステル、シリコーンオイル及びこれらの混合物などが好ましい。特に、脂肪族二塩基酸エステルとしては、ジメチルアジペート、ジブチルアジペート、ジイソノニルアジペート、ジイソデシルアジペート、ジメチルセバケート及びこれらの混合物を好適に用いることができる。   As the inert organic solvent for dissolving the VOC, aromatic hydrocarbons, aliphatic dibasic acid esters, phthalic acid esters, silicone oils, and mixtures thereof are preferable. In particular, as the aliphatic dibasic acid ester, dimethyl adipate, dibutyl adipate, diisononyl adipate, diisodecyl adipate, dimethyl sebacate and a mixture thereof can be preferably used.

また、上記不活性有機溶媒のゲル化剤としての疎水性有機分子物質としては、ポリスチレン、オクタデシルアクリレート、トリアコンタアクリレート、ポリエチレングリコール、シクロデキストリン、ポリメチルアクリレート、ポリカーボネート、エポキシ樹脂、ポリエチレン、ポリエステル、ビニル樹脂、セルロース、脂肪族炭化水素樹脂、天然ゴム、スチレンブタジエン樹脂、クロロプレンゴム、ワックス、アルキッド樹脂及びこれらの混合物が好ましい。   In addition, hydrophobic organic molecular substances as gelling agents for the above inert organic solvents include polystyrene, octadecyl acrylate, triacontacrylate, polyethylene glycol, cyclodextrin, polymethyl acrylate, polycarbonate, epoxy resin, polyethylene, polyester, vinyl Resins, cellulose, aliphatic hydrocarbon resins, natural rubbers, styrene butadiene resins, chloroprene rubbers, waxes, alkyd resins and mixtures thereof are preferred.

VOC回収車30では、吸着カートリッジ20に吸着させたVOCをVOC吸着装置10から揮発性有機物を回収する前に濃縮槽を真空ポンプにより真空にする。VOC回収車30のホース37を吸着カートリッジ20に接続し、バルブ(不図示)を開放する。圧力の高い吸着カートリッジ20側から濃縮槽32側にVOCガスを含んだ空気が移動する。このように、真空ポンプ34によって真空状態にした濃縮槽32を大気開放することで吸着カートリッジ20を通じて流入する空気の移動をドライビングフォースとすることにより静的環境下での回収を実現することができる。   In the VOC recovery vehicle 30, the VOC adsorbed by the adsorption cartridge 20 is evacuated by a vacuum pump before recovering volatile organic substances from the VOC adsorption device 10. The hose 37 of the VOC recovery vehicle 30 is connected to the adsorption cartridge 20 and a valve (not shown) is opened. Air containing VOC gas moves from the adsorption cartridge 20 side having a high pressure to the concentration tank 32 side. As described above, recovery in a static environment can be realized by opening the concentration tank 32 that has been evacuated by the vacuum pump 34 to the atmosphere so that the movement of the air flowing in through the adsorption cartridge 20 becomes a driving force. .

濃縮槽32には高濃度VOCガスが集まり、温度の低下とともに液化したVOCが下部吸収槽36Aに流れ込む。液体VOCは、下部吸収槽36Aに設けられた吸収材35により吸収されて回収される。一方、濃縮槽32に残留するVOCガスは、上部吸収槽36Bに設けられた吸収材35により静的環境下において吸収されて回収される。VOCガスは、吸収材35に吸収される時に液化し、例えばゲル状物質として回収される。   High-concentration VOC gas collects in the concentration tank 32, and the liquefied VOC flows into the lower absorption tank 36A as the temperature decreases. The liquid VOC is absorbed and collected by the absorbent material 35 provided in the lower absorption tank 36A. On the other hand, the VOC gas remaining in the concentration tank 32 is absorbed and recovered in a static environment by the absorbent material 35 provided in the upper absorption tank 36B. The VOC gas is liquefied when absorbed by the absorbent 35 and is recovered as, for example, a gel substance.

<液化回収装置>
液化回収装置50は、エバポレーターの原理を用いており、吸収槽加熱手段(気化手段)54、冷却コンデンサー56、液体回収槽60、真空ポンプ62、冷却水循環手段58などから構成されている。
<Liquefaction recovery device>
The liquefaction recovery apparatus 50 uses the principle of an evaporator, and includes an absorption tank heating means (vaporization means) 54, a cooling condenser 56, a liquid recovery tank 60, a vacuum pump 62, a cooling water circulation means 58, and the like.

真空ポンプ62により液化回収装置全体(冷却コンデンサー56及び液体回収槽60)を減圧状態にするとともに、吸収槽36の吸収材35に捕集されているVOCを加熱処理により気化させて冷却コンデンサー56に移動させる。VOCガスは冷却トラップにより液体回収槽60に液化VOC64として回収される。
液化回収後の空気は、例えば、取り除けなかったVOCを除去する最終フィルタ(不図示)に流通後、大気中に放出すればよい。
The entire liquefaction recovery apparatus (the cooling condenser 56 and the liquid recovery tank 60) is reduced in pressure by the vacuum pump 62, and the VOC collected in the absorbent material 35 of the absorption tank 36 is vaporized by heat treatment to the cooling condenser 56. Move. The VOC gas is recovered as a liquefied VOC 64 in the liquid recovery tank 60 by a cooling trap.
The air after liquefaction recovery may be released into the atmosphere after passing through a final filter (not shown) that removes VOC that could not be removed, for example.

なお、VOCの液化回収は上記のような冷却トラップによる手段に限定されない。別の手段によるVOC液化回収装置として、例えば、上下圧縮板、圧縮手段、加熱、冷却手段などから構成し、圧縮などの物理的手段を用いて、吸収材35に含まれている液化VOCを搾り出すことで液化VOCを回収してもよい。この場合は、吸収材35は、スポンジのように吸収した液体を圧縮により容易に放出する構造・材質であることが望ましい。   The liquefaction recovery of VOC is not limited to the means using the cooling trap as described above. As a VOC liquefaction recovery apparatus by another means, for example, it is composed of an upper and lower compression plate, a compression means, a heating, a cooling means, etc., and squeezes the liquefied VOC contained in the absorbent material 35 using physical means such as compression. The liquefied VOC may be recovered by discharging. In this case, it is desirable that the absorbent material 35 has a structure / material that easily releases the absorbed liquid like a sponge by compression.

また、吸収材35としては、加熱あるいは冷却により吸収材35の構造を変化させ、圧縮等の物理手段を用いて容易に液体VOCを回収できる特徴を持つことが望ましい。このような材料の一例として、ピートモスが挙げられる。ピートモスはミズゴケが泥炭化したものであり、多孔質、疎水性、親油性を呈しているため、容易にVOCを吸収する。基本構造は、繊維状物質が絡まっているため、圧縮により吸収したVOCを放出する。   Further, it is desirable that the absorbent 35 has a feature that the structure of the absorbent 35 can be changed by heating or cooling, and the liquid VOC can be easily recovered using physical means such as compression. An example of such a material is peat moss. The peat moss is obtained by mud carbonizing sphagnum, and is porous, hydrophobic, and lipophilic, and therefore easily absorbs VOCs. Since the basic structure is entangled with fibrous material, VOC absorbed by compression is released.

このように、本実施形態では、VOC回収車30と組み合わせることにより、吸着材の交換や処理能力の低下を抑制することが可能である。また、回収車30中にVOC吸収材35を設けることにより、VOCガス運搬時の安全性を確保することが可能である。   Thus, in this embodiment, by combining with the VOC collection vehicle 30, it is possible to suppress the replacement of the adsorbent and the decrease in processing capacity. In addition, by providing the VOC absorbent 35 in the collection vehicle 30, it is possible to ensure safety when transporting the VOC gas.

また、本実施形態のVOC回収システム10,30,50は、設置場所、回収したVOCの処分などは特に限定されないが、吸収材35に濃縮液化したVOCを液化回収することにより、効率よくVOCを回収することが可能であるため、回収したVOCを再利用するリサイクルシステムとして用いることができる。   In addition, the VOC recovery system 10, 30, 50 of the present embodiment is not particularly limited in installation location, disposal of the recovered VOC, etc., but by liquefying and recovering the concentrated VOC in the absorbent 35, VOC can be efficiently collected. Since it can be recovered, it can be used as a recycling system for reusing the recovered VOC.

<吸着工程>
例えば、塗装、印刷、洗浄等に用いる有機溶剤を排出する工場にVOC吸着装置10を設置し、排出されたVOCを吸着捕集する。
<Adsorption process>
For example, the VOC adsorption device 10 is installed in a factory that discharges an organic solvent used for painting, printing, cleaning, etc., and the discharged VOC is adsorbed and collected.

<濃縮工程>
一定期間運転すると吸着限界に達するため、回収車30が工場に来て、吸着カートリッジ20からVOCを脱着させて回収する。回収には、吸着カートリッジ20を加熱してVOCを脱着させることにより、脱着したVOCを濃縮槽32に移動させ回収する。
濃縮槽32に貯められた高濃度VOCは、そのままでは、発火、爆発の危険性がある。また、高濃度とはいえ、直接液化して回収するには0℃付近まで冷却する必要があり、コストが高くなる。そこで、濃縮VOCを吸収材35に一旦吸収し、ゲル化させて運搬する。
<Concentration process>
Since the adsorption limit is reached after a certain period of operation, the collection vehicle 30 comes to the factory and removes the VOC from the adsorption cartridge 20 and collects it. For recovery, the adsorption cartridge 20 is heated to desorb VOC, and the desorbed VOC is moved to the concentration tank 32 and collected.
The high concentration VOC stored in the concentration tank 32 may ignite or explode if left as it is. Moreover, although it is high concentration, in order to collect and collect | recover directly, it is necessary to cool to about 0 degreeC, and cost becomes high. Therefore, the concentrated VOC is once absorbed into the absorbent material 35 and gelled for transportation.

<液化回収工程>
濃縮槽32内の吸収材35に吸収されて保持されたVOCは、吸収材35を減圧下で加熱し、冷却コンデンサー56により冷却することで、液体VOCとして回収される。回収した液体VOCは塗料用有機溶剤として再利用することができる。
<Liquefaction recovery process>
The VOC absorbed and held by the absorbent 35 in the concentration tank 32 is recovered as a liquid VOC by heating the absorbent 35 under reduced pressure and cooling it by the cooling condenser 56. The recovered liquid VOC can be reused as an organic solvent for paint.

第1の実施形態では、VOC吸着装置(吸着手段)10と、VOC回収車(濃縮手段)30と、液化回収装置(液化回収手段)50をそれぞれ分離してシステムを稼動させるが、吸着手段と濃縮手段と液化回収手段を一体化して稼動させるシステムとしてもよい。   In the first embodiment, the system is operated by separating the VOC adsorption device (adsorption means) 10, the VOC collection vehicle (concentration means) 30, and the liquefaction collection device (liquefaction collection means) 50, respectively. The concentrating means and the liquefaction collecting means may be integrated and operated.

−第2の実施形態−
図8は、第2の実施形態に係るVOC回収システムの構成を概略的に示している。本実施形態のVOC回収システム200は、VOC吸着装置(吸着手段)10と、VOC濃縮装置(濃縮手段)30と、液化回収装置(液化回収手段)50が一体的に構成されている。このような構成であれば、例えばVOCを排出工場内で液体VOCを回収してリサイクルすることができる。
-Second Embodiment-
FIG. 8 schematically shows the configuration of the VOC recovery system according to the second embodiment. In the VOC recovery system 200 of this embodiment, a VOC adsorption device (adsorption means) 10, a VOC concentration device (concentration means) 30, and a liquefaction recovery device (liquefaction recovery means) 50 are integrally configured. With such a configuration, for example, the VOC can be collected and recycled in the discharge factory.

−第3の実施形態−
図9は、第3の実施形態に係るVOC回収システムの構成を概略的に示している。本実施形態のVOC回収システム300では、濃縮手段と液化回収手段とを兼ねた濃縮液化回収手段70が設けられている。濃縮槽74内は真空ポンプ72によって吸引きれ、VOC吸着装置から移動したVOCは濃縮槽74内の上部に設けた吸収材35に吸収されて濃縮されるとともに、液化したVOCは濃縮槽74の下部に回収される。このような構成でも、例えばVOCを排出工場内で液体VOCを回収してリサイクルすることができる。
-Third embodiment-
FIG. 9 schematically shows the configuration of a VOC recovery system according to the third embodiment. In the VOC recovery system 300 of the present embodiment, a concentrated liquefaction recovery means 70 serving as both a concentration means and a liquefaction recovery means is provided. The inside of the concentration tank 74 can be sucked by the vacuum pump 72, and the VOC moved from the VOC adsorption device is absorbed and concentrated by the absorbent 35 provided in the upper part of the concentration tank 74, and the liquefied VOC is lower in the concentration tank 74. To be recovered. Even in such a configuration, for example, the VOC can be collected and recycled in the discharge factory.

以下、実施例(試験例)について説明する。   Hereinafter, examples (test examples) will be described.

<試験例1>
−温度の違いによる活性炭トルエン吸着等温線の変化−
顆粒状活性炭0.5gを30mLバイアルに入れTFライナー付きブチルゴム栓とアルミキャップで密栓し、トルエンを液体の状態で2μL〜400μL添加し、よく撹拌してから35、50、75、100、150℃の各吸着温度に設定されたヘッドスペースサンプラー中に24時間静置した。吸着平衡に達した後、ガスクロマトグラフィーで気相濃度を測定し、添加したトルエン量と気相存在量のマスバランスから吸着量を算出した。
<Test Example 1>
-Changes in activated carbon toluene adsorption isotherm due to temperature differences-
Put 0.5 g of granular activated carbon in a 30 mL vial, seal with a butyl rubber stopper with TF liner and an aluminum cap, add 2 μL to 400 μL of toluene in a liquid state, stir well, and then 35, 50, 75, 100, 150 ° C. The sample was allowed to stand for 24 hours in a headspace sampler set at each adsorption temperature. After reaching the adsorption equilibrium, the gas phase concentration was measured by gas chromatography, and the adsorption amount was calculated from the mass balance of the added toluene amount and the gas phase abundance.

図10に吸着等温線を示す。この結果、温度の上昇とともにトルエンの吸着量が減少した。150℃に加熱した時の活性炭におけるトルエン吸着量は、35℃の場合と比較すると約60%程度であった。この結果は、活性炭の加熱によりトルエンが脱着できることを示している。   FIG. 10 shows the adsorption isotherm. As a result, the amount of toluene adsorbed decreased with increasing temperature. The amount of toluene adsorbed on the activated carbon when heated to 150 ° C. was about 60% compared to the case of 35 ° C. This result shows that toluene can be desorbed by heating the activated carbon.

<試験例2>
−活性炭飽和吸着トルエンの脱着試験(開放環境)−
加熱乾燥した顆粒状活性炭1gを飽和トルエン蒸気中に24時間静置し、活性炭にトルエンを飽和吸着させた。活性炭の重量は、トルエンを吸着することにより、1.42gに増えており、0.42gのトルエンを吸着していることを示している。
<Test Example 2>
-Desorption test of activated carbon saturated adsorption toluene (open environment)-
1 g of the heated and dried granular activated carbon was allowed to stand in saturated toluene vapor for 24 hours, and toluene was saturated and adsorbed on the activated carbon. The weight of activated carbon is increased to 1.42 g by adsorbing toluene, indicating that 0.42 g of toluene is adsorbed.

図11に脱着試験装置の概要を示す。トルエン飽和活性炭1をガス洗浄瓶2の中に充填しオイルバス5中に入れた。洗浄瓶2のガス流入口には、逆止弁3を設置し、大気取り込み口とした。ガス排出口には逆止弁4、コック7Cの順に接続し、濃縮用セパラブルフラスコ6と接続した。セパラブルフラスコ6は、容量2Lで、コック7C,7Dを調節して予め真空ポンプで0.1Paに減圧した。
ガス洗浄瓶2を150℃、30分間加熱し、活性炭1中のトルエンを脱着させた。コック7A,7Bの開放に伴い、ガス洗浄瓶2の流入口から空気が流入し、トルエンガスを濃縮槽6に移動させた。
FIG. 11 shows an outline of the desorption test apparatus. Toluene saturated activated carbon 1 was filled in a gas washing bottle 2 and placed in an oil bath 5. A check valve 3 was installed at the gas inlet of the cleaning bottle 2 as an air intake port. A check valve 4 and a cock 7C were connected to the gas discharge port in this order, and connected to a separable flask 6 for concentration. The separable flask 6 had a volume of 2 L, and the pressure was reduced to 0.1 Pa with a vacuum pump in advance by adjusting the cocks 7C and 7D.
The gas washing bottle 2 was heated at 150 ° C. for 30 minutes to desorb toluene in the activated carbon 1. With the opening of the cocks 7A and 7B, air flowed in from the inlet of the gas cleaning bottle 2, and the toluene gas was moved to the concentration tank 6.

試験終了後、活性炭の重量を測定すると1.22gであった。これは、0.2gのトルエンが脱着したことを示している。脱着率は、約48%であった。   After the test, the weight of the activated carbon was measured to be 1.22 g. This indicates that 0.2 g of toluene has been desorbed. The desorption rate was about 48%.

<試験例3>
−活性炭飽和吸着トルエンの脱着試験(密閉環境)−
加熱乾燥した顆粒状活性炭1gを飽和トルエン蒸気中に24時間静置し、活性炭にトルエンを飽和吸着させた。活性炭の重量は、トルエンを吸着することにより、1.4gに増えており、0.4gのトルエンを吸着していることを示している。
<Test Example 3>
-Desorption test of activated carbon saturated adsorption toluene (sealed environment)-
1 g of the heated and dried granular activated carbon was allowed to stand in saturated toluene vapor for 24 hours, and toluene was saturated and adsorbed on the activated carbon. The weight of the activated carbon is increased to 1.4 g by adsorbing toluene, indicating that 0.4 g of toluene is adsorbed.

トルエン飽和活性炭1をガス洗浄瓶2の中に充填しオイルバス5中に入れた。洗浄瓶2のガス流入口には、コック7Aを設置し、大気と遮断した。ガス排出口には逆止弁4、コック7Cの順に接続し、濃縮用セパラブルフラスコ6と接続した。セパラブルフラスコ6は、容量2Lで、コック7C,7Dを調節して予め真空ポンプで0.1Paに減圧した。
ガス洗浄瓶2を150℃、30分間加熱し、活性炭1中のトルエンを脱着させた。コック7Bの開放に伴い、ガス洗浄瓶2とセパラブルフラスコ6の気圧が一定になるまで、洗浄瓶2側からセパラブルフラスコ6にトルエンガスを含む空気が移動した。
Toluene saturated activated carbon 1 was filled in a gas washing bottle 2 and placed in an oil bath 5. A cock 7A was installed at the gas inlet of the cleaning bottle 2 to block it from the atmosphere. A check valve 4 and a cock 7C were connected to the gas discharge port in this order, and connected to a separable flask 6 for concentration. The separable flask 6 had a volume of 2 L, and the pressure was reduced to 0.1 Pa with a vacuum pump beforehand by adjusting the cocks 7C and 7D.
The gas washing bottle 2 was heated at 150 ° C. for 30 minutes to desorb toluene in the activated carbon 1. With the opening of the cock 7B, air containing toluene gas moved from the cleaning bottle 2 side to the separable flask 6 until the pressure of the gas cleaning bottle 2 and the separable flask 6 became constant.

試験終了後、活性炭の重量を測定すると1.24gであった。これは、0.16gのトルエンが脱着したことを示している。脱着率は、約40%であった。   After the test, the weight of the activated carbon was 1.24 g. This indicates that 0.16 g of toluene has been desorbed. The desorption rate was about 40%.

以上本発明について説明したが、本発明は上記実施形態及び実施例(試験例)に限定されるものではない。例えば、吸着カートリッジは図4〜図7に示した形態に限定されず、適宜設計すればよい。   Although the present invention has been described above, the present invention is not limited to the above embodiments and examples (test examples). For example, the suction cartridge is not limited to the form shown in FIGS. 4 to 7 and may be designed as appropriate.

1 活性炭
2 ガス洗浄瓶
3 逆止弁
4 逆止弁
5 オイルバス
6 セパラブルフラスコ(濃縮槽)
7A,7B,7C,7D コック
10 吸着装置(吸着手段)
12 ガス導入口
14 拡散槽
16 プレフィルター
18 回収車接続口
20 吸着カートリッジ
21 吸着材
22 排風機
23 加熱手段
24 ガス排出口
25 シャッター
27 逆止弁
29 空洞
30 回収車(濃縮手段)
31 支持体
32 濃縮槽
33 仕切板
34 真空ポンプ
35 吸収材
36A 下部吸収槽(吸収材収納容器)
36B 上部吸収槽(吸収材収納容器)
37 ホース
38 吸着カートリッジ接続口
40 自走車(搬送手段)
42 荷台
50 液化回収装置(液化回収手段)
52 管
56 冷却コンデンサー
58 冷却水循環手段
60 液体回収槽
62 真空ポンプ
64 液化VOC
70 濃縮液化回収手段
72 真空ポンプ
74 濃縮槽(VOC収容室)
200 VOC回収システム
300 VOC回収システム
1 activated carbon 2 gas cleaning bottle 3 check valve 4 check valve 5 oil bath 6 separable flask (concentration tank)
7A, 7B, 7C, 7D Cock 10 Adsorption device (adsorption means)
12 Gas introduction port 14 Diffusion tank 16 Prefilter 18 Collection vehicle connection port 20 Adsorption cartridge 21 Adsorbent 22 Ventilator 23 Heating means 24 Gas discharge port 25 Shutter 27 Check valve 29 Cavity 30 Collection vehicle (concentration means)
31 Support 32 Concentration tank 33 Partition plate 34 Vacuum pump 35 Absorbent material 36A Lower absorbent tank (absorbent material storage container)
36B Upper absorption tank (absorbent container)
37 Hose 38 Adsorption cartridge connection port 40 Self-propelled vehicle (conveyance means)
42 Loading platform 50 Liquefaction collection device (liquefaction collection means)
52 Pipe 56 Cooling condenser 58 Cooling water circulation means 60 Liquid recovery tank 62 Vacuum pump 64 Liquefaction VOC
70 Concentrated liquefaction recovery means 72 Vacuum pump 74 Concentration tank (VOC storage chamber)
200 VOC recovery system 300 VOC recovery system

Claims (13)

気化した揮発性有機物を含む雰囲気を通過させることにより前記揮発性有機物を吸着して捕集する吸着手段と、
前記吸着手段により捕集された揮発性有機物を脱着させ、該揮発性有機物を吸引するとともに吸収材に吸収させて濃縮する濃縮手段と、
前記濃縮手段により濃縮された揮発性有機物を液体として回収する液化回収手段と、
を有する揮発性有機物回収システム。
Adsorbing means for adsorbing and collecting the volatile organic matter by passing through an atmosphere containing vaporized volatile organic matter;
A concentration means for desorbing the volatile organic matter collected by the adsorption means, sucking the volatile organic matter and absorbing the volatile organic matter into an absorbent, and concentrating;
Liquefaction recovery means for recovering the volatile organic substance concentrated by the concentration means as a liquid;
Volatile organic matter recovery system.
前記吸着手段が、筒状に配置された吸着材と、前記吸着材に吸着された揮発性有機物の脱着を促進させる加熱手段と、前記吸着材から脱着して前記濃縮手段により吸引された揮発性有機物の逆流を防止する弁と、を有する請求項1に記載の揮発性有機物回収システム。   The adsorbing means is an adsorbent arranged in a cylindrical shape, a heating means for promoting the desorption of volatile organic substances adsorbed on the adsorbent, and the volatile desorbed from the adsorbent and sucked by the concentrating means The volatile organic matter recovery system according to claim 1, further comprising a valve that prevents backflow of the organic matter. 前記吸着材が、ミクロ孔、メソ孔、又はマクロ孔を有する多孔質状である請求項1又は請求項2に記載の揮発性有機物回収システム。   The volatile organic substance recovery system according to claim 1 or 2, wherein the adsorbent is porous having micropores, mesopores, or macropores. 前記吸着材が、活性炭、ゼオライト、シリカライト、粘土鉱物、疎水性シリカゲル、メソポーラスシリカ、カーボンナノチューブ、多孔質高分子、及び多孔質金属錯体からなる群から選択される1種以上を含む請求項1〜請求項3のいずれか一項に記載の揮発性有機物回収システム。   The adsorbent includes one or more selected from the group consisting of activated carbon, zeolite, silicalite, clay mineral, hydrophobic silica gel, mesoporous silica, carbon nanotube, porous polymer, and porous metal complex. The volatile organic substance recovery system according to any one of claims 3 to 4. 前記濃縮手段が、前記吸着手段から脱着させた揮発性有機物を収容する密閉型の収容室と、前記収容室内に吸引負圧を生じさせる吸引手段と、前記吸引負圧により前記収容室内に吸引されて収容された揮発性有機物を吸収する前記吸収材とを備える請求項1〜請求項4のいずれか一項に記載の揮発性有機物回収システム。   The concentrating means is sucked into the accommodating chamber by a closed accommodating chamber for accommodating the volatile organic substance desorbed from the adsorbing means, a suction means for generating a negative suction pressure in the accommodating chamber, and the negative suction pressure. The volatile organic matter recovery system according to any one of claims 1 to 4, further comprising the absorbent material that absorbs the volatile organic matter contained in the container. 前記濃縮手段を運搬する運搬手段をさらに有する請求項1〜請求項5のいずれか一項に記載の揮発性有機物回収システム。   The volatile organic matter recovery system according to any one of claims 1 to 5, further comprising a transport unit that transports the concentration unit. 前記吸収材が、固体状であって、前記揮発性有機物を吸収する多孔質疎水性有機分子を含む請求項1〜請求項6のいずれか一項に記載の揮発性有機物回収システム。   The volatile organic substance recovery system according to any one of claims 1 to 6, wherein the absorbent material is in a solid state and includes porous hydrophobic organic molecules that absorb the volatile organic substance. 前記吸収材が、前記揮発性有機物を吸収することによりゲル化する請求項1〜請求項7のいずれか一項に記載の揮発性有機物回収システム。   The volatile organic substance recovery system according to any one of claims 1 to 7, wherein the absorbent material gels by absorbing the volatile organic substance. 前記吸収材が、ゲル状であって、前記揮発性有機物を溶解する不活性有機溶媒と、前記不活性有機溶媒のゲル化剤としての疎水性有機分子物質とを含む請求項1〜請求項7のいずれか一項に記載の揮発性有機物回収システム。   The said absorber is gel form, Comprising: The inert organic solvent which melt | dissolves the said volatile organic substance, and the hydrophobic organic molecular substance as a gelatinizer of the said inert organic solvent are contained. The volatile organic matter recovery system according to any one of the above. 前記収容室内の少なくとも上部及び下部に、前記吸収材が収納された吸収材収納容器が設けられている請求項5〜請求項9のいずれか一項に記載の揮発性有機物回収システム。   The volatile organic substance recovery system according to any one of claims 5 to 9, wherein an absorbent material storage container in which the absorbent material is stored is provided at least in an upper part and a lower part of the storage room. 前記吸収材収納容器が、開閉手段を備えた仕切板を有する請求項10に記載の揮発性有機物回収システム。   The volatile organic substance recovery system according to claim 10, wherein the absorbent material storage container includes a partition plate provided with an opening / closing means. 前記液化回収手段が、前記吸収材に吸収されている揮発性有機物を気化させる気化手段と、該気化した揮発性有機物を冷却して液化する冷却手段と、該液化した揮発性有機物を回収する回収容器と、を備える請求項1〜請求項11のいずれか一項に記載の揮発性有機物回収システム。   The liquefaction recovery means is a vaporization means for vaporizing the volatile organic matter absorbed in the absorbent, a cooling means for cooling and vaporizing the vaporized volatile organic matter, and a recovery for recovering the liquefied volatile organic matter. The volatile organic substance collection | recovery system as described in any one of Claims 1-11 provided with a container. 気化した揮発性有機物を含む雰囲気を通過させることにより前記揮発性有機物を吸着して捕集する吸着工程と、
前記吸着手段により捕集された揮発性有機物を脱着させ、該揮発性有機物を吸引するとともに吸収材に吸収させて濃縮する濃縮工程と、
前記濃縮手段により濃縮された揮発性有機物を液体として回収する液化回収工程と、
を有する揮発性有機物の回収方法。
An adsorption step for adsorbing and collecting the volatile organic matter by passing through an atmosphere containing vaporized volatile organic matter;
A concentration step of desorbing the volatile organic matter collected by the adsorbing means, sucking the volatile organic matter and absorbing and absorbing the volatile organic matter;
A liquefaction recovery step for recovering the volatile organic substance concentrated by the concentration means as a liquid;
A method for recovering volatile organic substances having
JP2009073154A 2009-03-25 2009-03-25 Volatile organic matter recovery system Active JP5697852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009073154A JP5697852B2 (en) 2009-03-25 2009-03-25 Volatile organic matter recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009073154A JP5697852B2 (en) 2009-03-25 2009-03-25 Volatile organic matter recovery system

Publications (2)

Publication Number Publication Date
JP2010221169A true JP2010221169A (en) 2010-10-07
JP5697852B2 JP5697852B2 (en) 2015-04-08

Family

ID=43038934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009073154A Active JP5697852B2 (en) 2009-03-25 2009-03-25 Volatile organic matter recovery system

Country Status (1)

Country Link
JP (1) JP5697852B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014213216A (en) * 2013-04-22 2014-11-17 株式会社根岸製作所 Method for suppressing evaporation of volatile organic solvent
CN112807935A (en) * 2021-03-12 2021-05-18 河南理工大学 Indoor voc adsorbs purifier
WO2022080536A1 (en) * 2020-10-16 2022-04-21 주식회사 에코코어기술 Method for surface modification of adsorbent having macroporous pore structure for reducing amount of tvocs generated from synthetic rubber
CN114887447A (en) * 2022-05-07 2022-08-12 江西大航工程技术研究有限公司 Chemical production line organic matter recovery processing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109794162B (en) * 2019-01-24 2020-09-22 河海大学 Indoor volatile organic compound removing device based on thermal desorption and cold extraction
CN109908696A (en) * 2019-02-25 2019-06-21 程海骁 A kind of the city ecological environment protection device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50117680A (en) * 1974-02-28 1975-09-13
JPS523576A (en) * 1975-06-25 1977-01-12 Antipoll Recycling Consult Method of removing vapor of organic solvents and adsorber and tank car for carrying out method thereof
JPH03288519A (en) * 1990-03-31 1991-12-18 Kurimoto Ltd Solvent recovery method
JPH0623225A (en) * 1992-07-09 1994-02-01 Mitsuo Harufuji Method and device for absorption of organic solvent in steam with super-absorbing @(3754/24)non-hydrophilic) polymer
JP2008036603A (en) * 2006-08-10 2008-02-21 National Institute Of Advanced Industrial & Technology Separating/absorbing material for volatile organic solvent
JP2009061449A (en) * 2007-08-15 2009-03-26 Tokyo Metropolitan Industrial Technology Research Institute Volatile organic compound absorbing material and its manufacturing method
JP2009142719A (en) * 2007-12-12 2009-07-02 Tokyo Metropolitan Industrial Technology Research Institute Volatile organic matter recovery apparatus and volatile organic matter recovery system having the same
JP2010149086A (en) * 2008-12-26 2010-07-08 Tokyo Metropolitan Industrial Technology Research Institute Apparatus and method for adsorbing and desorbing air containing volatile organic compound gas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50117680A (en) * 1974-02-28 1975-09-13
JPS523576A (en) * 1975-06-25 1977-01-12 Antipoll Recycling Consult Method of removing vapor of organic solvents and adsorber and tank car for carrying out method thereof
JPH03288519A (en) * 1990-03-31 1991-12-18 Kurimoto Ltd Solvent recovery method
JPH0623225A (en) * 1992-07-09 1994-02-01 Mitsuo Harufuji Method and device for absorption of organic solvent in steam with super-absorbing @(3754/24)non-hydrophilic) polymer
JP2008036603A (en) * 2006-08-10 2008-02-21 National Institute Of Advanced Industrial & Technology Separating/absorbing material for volatile organic solvent
JP2009061449A (en) * 2007-08-15 2009-03-26 Tokyo Metropolitan Industrial Technology Research Institute Volatile organic compound absorbing material and its manufacturing method
JP2009142719A (en) * 2007-12-12 2009-07-02 Tokyo Metropolitan Industrial Technology Research Institute Volatile organic matter recovery apparatus and volatile organic matter recovery system having the same
JP2010149086A (en) * 2008-12-26 2010-07-08 Tokyo Metropolitan Industrial Technology Research Institute Apparatus and method for adsorbing and desorbing air containing volatile organic compound gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014213216A (en) * 2013-04-22 2014-11-17 株式会社根岸製作所 Method for suppressing evaporation of volatile organic solvent
WO2022080536A1 (en) * 2020-10-16 2022-04-21 주식회사 에코코어기술 Method for surface modification of adsorbent having macroporous pore structure for reducing amount of tvocs generated from synthetic rubber
CN112807935A (en) * 2021-03-12 2021-05-18 河南理工大学 Indoor voc adsorbs purifier
CN114887447A (en) * 2022-05-07 2022-08-12 江西大航工程技术研究有限公司 Chemical production line organic matter recovery processing device
CN114887447B (en) * 2022-05-07 2022-12-16 江西大航工程技术研究有限公司 Chemical production line organic matter recovery processing device

Also Published As

Publication number Publication date
JP5697852B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5697852B2 (en) Volatile organic matter recovery system
CN104107621B (en) The method of the absorption resin pressure-variable adsorption recycling organic exhaust gas of nitrogen purging auxiliary
JP5058964B2 (en) Adsorption / desorption apparatus and adsorption / desorption method for air containing volatile organic compound gas
CN103079997B (en) The recovery of xenon and other high value compounds
CN102698558A (en) Device and method for adsorbing, recycling and treating organic waste gases efficiently
CN104722174B (en) A kind of method that reclaims VOC of nitrogen auxiliary
CN203469759U (en) Volatile organic waste gas recycling device
CN103212271B (en) Gas separating system and method for separating gas by using system thereof
JP2011025219A (en) Exhaust gas cleaning method containing water-soluble volatile hydrocarbon of large amount and high humidity
JP3133988B2 (en) Equipment for treating lean gaseous hydrocarbons contained in waste gas
JP2010142728A (en) System for treating exhaust
JP4851432B2 (en) Volatile organic matter recovery processing apparatus and volatile organic matter recovery processing system having the same
JP2009273975A (en) System for treatment of gas containing organic solvent
CN106540510A (en) It is a kind of can Detachment Activity charcoal fluidised bed adsorption dichloroethanes technique
CN203469757U (en) Organic waste gas recycling device
JP2840563B2 (en) Method for treating and recovering rich gaseous hydrocarbons contained in emitted gas
JP4911139B2 (en) Removal and recovery of volatile organic compounds
JP4973817B2 (en) Removal and recovery of volatile organic compounds
JP5441485B2 (en) Volatile organic substance processing apparatus and volatile organic substance processing method
JP2005095858A (en) Cleaning method of exhaust gas containing volatile hydrocarbon
CN203469760U (en) Organic waste gas recycling device
CN211987829U (en) Movable&#39;s VOC administers device
CN101219818A (en) Process for processing and recovering acetone wastewater
CN220071181U (en) VOC&#39;s device is got rid of in low temperature condensation
JPH1199314A (en) Operation of hydrocarbon vapor recovery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150212

R150 Certificate of patent or registration of utility model

Ref document number: 5697852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250