JP5103690B2 - Method for inspecting bonding state of solder ball to semiconductor product substrate and inspection system thereof - Google Patents

Method for inspecting bonding state of solder ball to semiconductor product substrate and inspection system thereof Download PDF

Info

Publication number
JP5103690B2
JP5103690B2 JP2007308508A JP2007308508A JP5103690B2 JP 5103690 B2 JP5103690 B2 JP 5103690B2 JP 2007308508 A JP2007308508 A JP 2007308508A JP 2007308508 A JP2007308508 A JP 2007308508A JP 5103690 B2 JP5103690 B2 JP 5103690B2
Authority
JP
Japan
Prior art keywords
solder ball
substrate
heat
thin film
ball mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007308508A
Other languages
Japanese (ja)
Other versions
JP2009135179A (en
Inventor
裕章 古賀
誠 貞木
忍 里中
一喜 椛
Original Assignee
株式会社野毛電気工業
国立大学法人 熊本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社野毛電気工業, 国立大学法人 熊本大学 filed Critical 株式会社野毛電気工業
Priority to JP2007308508A priority Critical patent/JP5103690B2/en
Publication of JP2009135179A publication Critical patent/JP2009135179A/en
Application granted granted Critical
Publication of JP5103690B2 publication Critical patent/JP5103690B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は、はんだボールの半導体製品基板への接合状態検査方法及びその検査システムに係り、特に、BGA型パッケージやCSP型パッケージ等の集積回路パッケージの基板へのはんだボールの接合状態を非接触により検査するはんだボールの半導体製品基板への接合状態検査方法及びその検査システムに関する。   The present invention relates to a method for inspecting a bonding state of a solder ball to a semiconductor product substrate and an inspection system therefor, and more particularly to a non-contact bonding state of a solder ball to a substrate of an integrated circuit package such as a BGA type package or a CSP type package. The present invention relates to a method for inspecting a bonding state of a solder ball to be inspected to a semiconductor product substrate and an inspection system therefor.

BGA型パッケージやCSP型パッケージ等のはんだボール搭載半導体製品の基板電極部と、はんだボールと、の接合状態は、この半導体製品が実装された電子機器の寿命へ影響を及ぼす大きな要因となる。上記の集積回路パッケージの基板電極部へのはんだボールの接合状態試験方法として、従来、はんだボール搭載半導体製品をはんだボール搭載面の逆側から加熱し、加熱中の各はんだボール上の温度変化により良否判定を行う検査方法(特許文献1)、はんだボール搭載半導体製品全体を一定温度まで加熱した後、はんだボール搭載面と逆側を冷却し、冷却中のはんだボール上の温度変化で良否を判定する方法(特許文献2)のような、非破壊による検査方法が知られている。これらの方法によれば、引っ張りやせん断破壊を伴う破壊試験による時間とコストを短縮あるいは削減できる。一方、これらの特許文献の特許文献1の方法では、はんだボール搭載面と逆面から加熱を行うので良否判定に必要なハンダボール表面温度までの到達時間が、はんだボール搭載半導体製品の厚さ、材料、形状に依存することとなり、良否判定の精度低下、検査の長時間化をきたす問題があった。また、特許文献2の方法では、冷却用に常時冷却装置を稼働させる必要があり、また冷水や液体窒素などの冷媒を用いるので使用環境によっては冷却装置の結露防止の対策が必要となって検査に要するコストを増大させる問題があった。これに対し、出願人は、製品のはんだボール搭載面を加熱し、かつ冷却させつつその際の赤外線検出手段による赤外線データを基礎にして良否判定を行なうことで、これらの欠点を解消し、はんだボールの半導体製品基板への接合状態を高効率かつ良好な精度により低コストで検査し得る方法を先に提案した(特許文献3)。ところで、製品のはんだボール搭載面からの赤外線を検出してそれらの接合状態の良否を検査する場合には赤外線の放射率を向上させることによりそれらをデータとして判定する場合により精度の高い判定結果を期待できる。一般にはんだボール搭載半導体製品のはんだボール接合状態の良否を、放射される赤外線の検出に基づくデータにより行う場合に、直接被検体を測定するだけでは正確な温度が測定できず、検査精度が低下する問題がある。そこで、被検体への処理として高放射率塗料を被検査対象に塗布するもの(特許文献4,5)や高放射率の網状体を使用して測定精度を向上させるもの(特許文献6)等の提案がなされている。   The bonding state between the substrate electrode portion of the solder ball mounted semiconductor product such as the BGA type package or the CSP type package and the solder ball is a major factor affecting the life of the electronic device on which the semiconductor product is mounted. As a method for testing the bonding state of the solder ball to the substrate electrode part of the integrated circuit package described above, conventionally, the solder ball mounted semiconductor product is heated from the opposite side of the solder ball mounting surface, and the temperature change on each solder ball during heating is used. Inspection method to perform pass / fail judgment (Patent Document 1), after heating the entire solder ball mounted semiconductor product to a certain temperature, cool the opposite side of the solder ball mounted surface, and judge pass / fail by temperature change on the solder ball during cooling Non-destructive inspection methods, such as the method of doing this (Patent Document 2), are known. According to these methods, it is possible to reduce or reduce the time and cost of a destructive test involving pulling or shear fracture. On the other hand, in the method of Patent Document 1 of these Patent Documents, since the heating is performed from the opposite side of the solder ball mounting surface, the arrival time to the solder ball surface temperature necessary for pass / fail judgment is determined by the thickness of the solder ball mounted semiconductor product, This depends on the material and shape, and there are problems that the accuracy of the quality determination is lowered and the inspection time is extended. Further, in the method of Patent Document 2, it is necessary to always operate a cooling device for cooling, and since a coolant such as cold water or liquid nitrogen is used, it is necessary to take measures to prevent condensation of the cooling device depending on the use environment. There has been a problem of increasing the cost required for this. On the other hand, the applicant eliminates these defects by heating and cooling the solder ball mounting surface of the product and making a pass / fail judgment on the basis of the infrared data by the infrared detection means at that time. A method that can inspect the bonding state of a ball to a semiconductor product substrate with high efficiency and good accuracy at low cost has been proposed (Patent Document 3). By the way, when detecting the infrared rays from the solder ball mounting surface of the product and inspecting the quality of their joined state, the judgment result with higher accuracy is obtained when judging them as data by improving the emissivity of infrared rays. I can expect. In general, when the quality of solder balls in a semiconductor product mounted with solder balls is determined based on data based on the detection of emitted infrared rays, it is not possible to measure the exact temperature by directly measuring the subject, resulting in a decrease in inspection accuracy. There's a problem. Thus, as a treatment for the subject, a high emissivity paint is applied to the object to be examined (Patent Documents 4 and 5), a high emissivity network is used to improve the measurement accuracy (Patent Document 6), etc. Proposals have been made.

特開2000−260800JP 2000-260800 A 特許第3372924Japanese Patent No. 3372924 特開2007−95992JP2007-95992 特開2003−226826JP2003-226826A 特開2000−258371JP 2000-258371 A 特開平9−113473JP-A-9-113473

上記の特許文献4では、被検査物に顔料、溶媒及び分散剤を含有する塗料であって、分散剤として無機白色粉末、特に有機ベントナイトを含有する塗料を塗布する点、特許文献5では、被検査対象物に光エネルギーに対する吸収率が高いグラファイト系の離型材を塗布する点が開示されている。しかしながら、上記の特許文献の方法ではいずれも、塗料を製品から剥がす工程が別途に必要となり、作業が煩雑で効率が悪く、検査作業時間、検査コスト上昇をきたす。さらに、特許文献6では、例えば80メッシュ程度のステンレス金網を被検査対象に合わせ圧接させる作業が必要であり、複雑な形状の対象の場合には外形形状に合わせて保持させることは困難であるばかりでなく、金網自体により赤外線放射率を低下させるものであり、はんだボールの半導体製品基板への接合状態について良好な精度による検査を行い難いという問題があった。   In the above-mentioned Patent Document 4, a paint containing a pigment, a solvent and a dispersant is applied to an object to be inspected, and a paint containing an inorganic white powder, particularly organic bentonite, is applied as the dispersant. It is disclosed that a graphite release material having a high absorption rate for light energy is applied to an inspection object. However, any of the methods disclosed in the above-mentioned patent documents requires an additional step of peeling the paint from the product, which is complicated and inefficient, and increases the inspection work time and the inspection cost. Furthermore, in Patent Document 6, for example, a work of attaching a stainless steel mesh of about 80 mesh to the object to be inspected and press-contacting the object to be inspected is required, and in the case of a complicated shape object, it is difficult to hold it in accordance with the outer shape. In addition, the infrared emissivity is lowered by the wire mesh itself, and there is a problem that it is difficult to inspect the bonding state of the solder ball to the semiconductor product substrate with good accuracy.

本発明は、上記従来の課題に鑑みてなされたものであり、その1つの目的は、簡単な構成でありながら、多量の対象製品を迅速に検査処理し、かつ高精度にはんだボールの半導体製品基板への接合状態検査を実現できるはんだボールの半導体製品基板への接合状態検査方法及びその検査システムを提供することにある。   The present invention has been made in view of the above-described conventional problems, and one object of the present invention is to quickly inspect a large amount of target products while having a simple configuration, and to perform semiconductor processing of solder balls with high accuracy. An object of the present invention is to provide a method for inspecting a bonding state of a solder ball to a semiconductor product substrate and an inspection system thereof that can realize a bonding state inspection to the substrate.

上記の目的を達成するために、本発明は、半導体製品基板に形成されたはんだボールの製品基板への接合状態検査方法であり、はんだボール搭載基板面を加熱する加熱工程と、
加熱されたはんだボール搭載基板面を冷却する冷却工程と、冷却中のはんだボール及びはんだボール近傍の基板上の赤外線を検出する検出工程と、検出した赤外線量に基づく熱エネルギー分布データによりはんだボールの基板への接合状態の良否を判定する良否判定工程と、を含み、加熱工程においてはんだボール搭載基板面を加熱後、冷却工程に移行する前に、伸縮性を有する合成樹脂又は合成ゴム製の耐熱性薄膜でありその表面粗さが(耐熱性薄膜表面粗さ>はんだボール表面粗さ)である耐熱性薄膜からなる赤外線高放射率媒体をはんだボール搭載基板面に着脱自在に被覆し負圧圧着させる工程を備えたことを特徴とするはんだボールの半導体製品基板への接合状態検査方法。
In order to achieve the above object, the present invention is a method for inspecting the bonding state of a solder ball formed on a semiconductor product substrate to the product substrate, a heating step of heating the solder ball mounting substrate surface,
A cooling process for cooling the heated solder ball mounting substrate surface, a detection process for detecting infrared rays on the solder ball being cooled and the board in the vicinity of the solder ball, and a thermal energy distribution data based on the detected amount of infrared rays. Heat quality made of a synthetic resin or synthetic rubber having elasticity before heating to the cooling process after heating the solder ball mounting board surface in the heating process. Infrared high emissivity medium consisting of a heat-resistant thin film with a surface roughness of (heat-resistant thin film surface roughness> solder ball surface roughness) is detachably coated on the surface of the solder ball mounting substrate and subjected to negative pressure bonding A method for inspecting a bonding state of a solder ball to a semiconductor product substrate, characterized by comprising the step of:

また、本発明は、半導体製品基板に形成されたはんだボールの製品基板への接合状態検査システムであり、はんだボール搭載基板面Hを加熱する加熱手段(12)と、加熱されたはんだボール搭載基板面を冷却する冷却手段(14)と、冷却中のはんだボール24及びはんだボール近傍の基板上の赤外線を検出する検出手段(16)と、検出した赤外線量に基づく熱エネルギー分布データによりはんだボールの基板への接合状態の良否を判定する良否判定手段(18)と、加熱工程においてはんだボール搭載基板面を加熱後、冷却させる前に、伸縮性を有する合成樹脂又は合成ゴム製の耐熱性薄膜でありその表面粗さが(耐熱性薄膜表面粗さ>はんだボール表面粗さ)である耐熱性薄膜38からなり、はんだボール搭載基板面に着脱自在に被覆される赤外線高放射率媒体と、を備えたことを特徴とするはんだボールの半導体製品基板への接合状態検査システム10から構成される。
はんだボール搭載基板面を加熱工程で加熱し、加熱されたはんだボール搭載基板面を冷却工程で冷却する前にはんだボール搭載基板面に着脱自在に被覆される耐熱性薄膜を含む着脱式赤外線高放射生成手段により耐熱性薄膜を着脱自在に被覆し、その後、冷却、赤外線検出を行うので、基板からの赤外線放射率を高くした状態で検出でき、高分解能のエネルギー分布データを基礎にはんだボール接合状態の良否を精度良く行う。そして、検査終了製品は耐熱性薄膜を表面から離脱させてそのまま実機組み込みに利用できる。耐熱性薄膜は、はんだボールに比べて非鏡面の表面粗さを有する高分子フィルム素材であり、耐熱性、厚さ、伸縮性、熱伝導特性などについてある程度適正な範囲のものであることが求められる。耐熱性薄膜は加熱された直後にはんだボール搭載基板面上に密着被覆されるので、例えば90℃以上の耐熱性が要求されるとともに、膜厚は0.1mm以下が望ましい。これは、例えば伸縮性や熱伝導性にすぐれても膜厚が厚すぎると熱拡散を生じ、それが顕著になると外部に放射される赤外線エネルギーレベルを低下させるからである。耐熱性薄膜の素材としては例えばシリコンゴム、ポリウレタンゴム、ゴム系有機フィルム等が挙げられる。耐熱性薄膜38は、加熱装置により加熱されて検査対象の温度が例えば80℃以下程度となるように設定されるので、少なくとも90℃に耐え得る耐熱特性を有する素材であるとよい。より詳しくは、80℃程度の温度に耐え得る素材であるとよい。また、伸縮性として引っ張り強さが9.8(MPa)程度あるとよい。はんだボール搭載基板面への耐熱性薄膜の着脱被覆についてはその機能を具備する限り具体的な機械構成や移動方式について任意に設定できる。例えば耐熱性薄膜の端部側を着脱自在に把持する着脱把持機構を用意し、それを横方向あるいは縦方向等に移動させながら、ボール搭載基板面全体を被覆するようにするとよい。
The present invention also relates to a system for inspecting the bonding state of a solder ball formed on a semiconductor product substrate to the product substrate, a heating means (12) for heating the solder ball mounting substrate surface H, and the heated solder ball mounting substrate. The cooling means (14) for cooling the surface, the detecting means (16) for detecting infrared rays on the solder ball 24 being cooled and the substrate in the vicinity of the solder balls, and the thermal energy distribution data based on the detected amount of infrared rays, A quality judgment means (18) for judging the quality of the bonded state to the board, and a heat-resistant thin film made of synthetic resin or synthetic rubber having elasticity before heating and cooling the solder ball mounting board surface in the heating process. There the surface roughness is made of a heat resistant film 38 is (heat resistance thin film surface roughness> the solder ball surface roughness), the removably to the solder ball mounting substrate surface A cemented state inspection system 10 to the semiconductor product substrate solder balls infrared high emissivity medium, comprising the to be.
Detachable infrared high radiation including a heat-resistant thin film that is detachably coated on the solder ball mounting board surface before the solder ball mounting board surface is heated in the heating process and the heated solder ball mounting board surface is cooled in the cooling process. Since the heat-resistant thin film is detachably covered by the generation means, and then cooling and infrared detection are performed, detection can be performed with the infrared emissivity from the substrate increased, and the solder ball bonding state based on high-resolution energy distribution data The quality of the product is accurately determined. And the finished product can be used as it is by detaching the heat-resistant thin film from the surface. A heat-resistant thin film is a polymer film material that has a non-mirror surface roughness compared to solder balls, and is required to have a certain range of heat resistance, thickness, stretchability, thermal conductivity, etc. It is done. Since the heat-resistant thin film is tightly coated on the surface of the solder ball mounting substrate immediately after being heated, for example, heat resistance of 90 ° C. or higher is required and the film thickness is preferably 0.1 mm or less. This is because, for example, if the film thickness is too thick even if excellent in stretchability and thermal conductivity, thermal diffusion occurs, and if this becomes significant, the infrared energy level emitted to the outside is lowered. Examples of the material for the heat-resistant thin film include silicon rubber, polyurethane rubber, and rubber-based organic film. Since the heat-resistant thin film 38 is set so that the temperature to be inspected is, for example, about 80 ° C. or less by being heated by a heating device, the heat-resistant thin film 38 is preferably a material having heat resistance characteristics that can withstand at least 90 ° C. More specifically, the material may withstand a temperature of about 80 ° C. Further, it is preferable that the tensile strength is about 9.8 (MPa) as stretchability. About the attachment or detachment coating | cover of the heat resistant thin film to the solder ball mounting board | substrate surface, as long as it has the function, it can set arbitrarily about a specific mechanical structure and a moving system. For example, a detachable gripping mechanism that detachably grips the end side of the heat-resistant thin film may be prepared, and the entire ball mounting substrate surface may be covered while moving it in the horizontal direction or the vertical direction.

その際、はんだボール搭載基板22Aを基台本体46に保持した状態でその上から前記赤外線高放射率媒体を被覆し、その状態で、はんだボール搭載基板面Hの凹凸部分全体について負圧吸引手段42により赤外線高放射率媒体を密着状に負圧圧着させる基台装置40を有するとよい。 At that time, while the solder ball mounting substrate 22A is held on the base body 46, the infrared high emissivity medium is coated on the base body 46, and in this state, negative pressure suction means is applied to the entire uneven portion of the solder ball mounting substrate surface H. It is preferable to have a base device 40 for negatively pressure-bonding the infrared high emissivity medium in a close contact state by 42.

また、基台装置40は、はんだボール搭載基板面H全体を覆うように赤外線高放射率媒体を載置させた状態で基台本体46とはんだボール搭載基板22Aとの間の隙間Gを介して負圧駆動源42によりはんだボール搭載基板面Hの凹凸部分全体について赤外線高放射率媒体を密着状に負圧圧着させる基台内吸引経路52を有するとよい。 Further, the base device 40 has a gap G between the base body 46 and the solder ball mounting substrate 22A in a state where the infrared high emissivity medium is placed so as to cover the entire solder ball mounting substrate surface H. It is preferable to have an in-base suction path 52 for negatively pressure-bonding the infrared high emissivity medium in a close contact state with respect to the entire uneven portion of the solder ball mounting substrate surface H by the negative pressure driving source 42.

さらに、基台内吸引経路52は、赤外線高放射率媒体をはんだボール搭載基板面Hに載置させた状態で、該赤外線高放射率媒体とはんだボール搭載基板面との隙間54に連通するように設けられているとよい。また、基台本体46に半導体製品基板22Aを保持させた状態ではんだボール搭載基板全体をその内側に収容させるように環状の気密部材50を基台本体46から上方に突設させるとなおよい。 Furthermore, the base in the suction passage 52 is in a state of being placed on the ball mounting substrate surface H solder infrared high emissivity medium, so as to communicate with the gap 54 between the solder ball mounting substrate surface with the infrared high emissivity medium It is good to be provided. Further, it is more preferable that the annular airtight member 50 is protruded upward from the base body 46 so that the entire solder ball mounting board is accommodated in the state where the semiconductor product substrate 22A is held on the base body 46.

また、耐熱性薄膜の膜厚が0.02mm〜0.1mmであるとよく、熱拡散による放射エネルギー損失を伴うことなく、赤外線エネルギー放射効率を向上させ得る。   Moreover, it is good that the film thickness of a heat resistant thin film is 0.02 mm-0.1 mm, and infrared energy radiation efficiency can be improved, without accompanying the radiation energy loss by thermal diffusion.

また、耐熱性薄膜が少なくとも90℃に耐えうる耐熱特性を有するとよい。   Further, it is preferable that the heat resistant thin film has a heat resistant characteristic capable of withstanding at least 90 ° C.

本発明のはんだボールの半導体製品基板への接合状態検査方法によれば、半導体製品基板に形成されたはんだボールの製品基板への接合状態検査方法であり、はんだボール搭載基板面を加熱する加熱工程と、加熱されたはんだボール搭載基板面を冷却する冷却工程と、冷却中のはんだボール及びはんだボール近傍の基板上の赤外線を検出する検出工程と、検出した赤外線量に基づく熱エネルギー分布データによりはんだボールの基板への接合状態の良否を判定する良否判定工程と、を含み、加熱工程においてはんだボール搭載基板面を加熱後、冷却工程に移行する前に、耐熱性の薄膜からなる赤外線高放射率媒体をはんだボール搭載基板面に着脱自在に被覆し負圧圧着させる工程を備えた構成であるから、はんだボールの赤外線エネルギー量によるエネルギー分布画像によるはんだボールの接合部の良否判定を高精度に行えるとともに、塗料の塗布の際の検査終了後の剥離作業等を伴うことなく、検査効率を向上させることができる。   According to the method for inspecting the bonding state of the solder ball to the semiconductor product substrate of the present invention, the method for inspecting the bonding state of the solder ball formed on the semiconductor product substrate to the product substrate is a heating step of heating the surface of the solder ball mounting substrate. A cooling process for cooling the heated solder ball mounting substrate surface, a detection process for detecting infrared rays on the solder balls being cooled and the board in the vicinity of the solder balls, and heat energy distribution data based on the detected amount of infrared solder. A pass / fail judgment step for judging pass / fail of the bonding state of the ball to the substrate, and after heating the solder ball mounting substrate surface in the heating step, before moving to the cooling step, an infrared high emissivity composed of a heat-resistant thin film Infrared energy amount of solder ball because it is equipped with a process to detachably cover the surface of the solder ball mounting board and press the negative pressure The quality determination of the joint of the solder ball due to the energy distribution image with together performed with high precision, without the inspection after completion of the separating operation, such as during the paint coating, thereby improving the inspection efficiency.

また、本発明のはんだボールの半導体製品基板への接合状態検査システムによれば、半導体製品基板に形成されたはんだボールの製品基板への接合状態検査システムであり、はんだボール搭載基板面を加熱する加熱手段と、加熱されたはんだボール搭載基板面を冷却する冷却手段と、冷却中のはんだボール及びはんだボール近傍の基板上の赤外線を検出する検出手段と、検出した赤外線量に基づく熱エネルギー分布データによりはんだボールの基板への接合状態の良否を判定する良否判定手段と、を含み、加熱工程においてはんだボール搭載基板面を加熱後、冷却させる前に、はんだボール搭載基板面に着脱自在に被覆される耐熱性薄膜を含む着脱式赤外線高放射生成手段と、を備えた構成であるから、簡単な構成でありながら、多量の対象製品を迅速に検査処理し、かつ高精度にはんだボールの半導体製品基板への接合状態検査を非接触で行うことができ、同時に検査済みの対象製品について特殊の処理を施すことなく実機に利用でき、最終的な検査効率を向上させることができる。   Further, according to the system for inspecting the bonding state of the solder ball to the semiconductor product substrate of the present invention, the system for inspecting the bonding state of the solder ball formed on the semiconductor product substrate to the product substrate is used to heat the surface of the solder ball mounting substrate. Heating means, cooling means for cooling the heated solder ball mounting substrate surface, detection means for detecting infrared rays on the solder balls being cooled and the board in the vicinity of the solder balls, and thermal energy distribution data based on the detected amount of infrared rays The solder ball mounting board surface is detachably coated on the solder ball mounting board surface before heating and cooling the solder ball mounting board surface in the heating process. A detachable infrared high radiation generation means including a heat-resistant thin film. The product can be inspected quickly, and the solder balls can be inspected in a non-contact manner with high precision. At the same time, the inspected product can be used in actual equipment without any special treatment. The final inspection efficiency can be improved.

また、上記のはんだボールの半導体製品基板への接合状態検査システムは、はんだボール搭載基板を基台本体に保持した状態でその上から耐熱性薄膜を被覆し、その状態で、はんだボール搭載基板面の凹凸部分全体について負圧吸引手段により耐熱性薄膜を密着状に負圧圧着させる基台装置を有する構成であるから、単に耐熱性薄膜を台本体上に載置させ、負圧吸引させるだけで基板上の各はんだボールと耐熱性薄膜との間の隙間をなくすように薄膜を基板及び各はんだボール表面全体にわたって密着させることができ、熱伝導性確保とともに熱拡散を防止して赤外線エネルギー放射効率を向上させることができる。   In addition, the above-described system for inspecting the bonding state of the solder ball to the semiconductor product substrate covers the surface of the solder ball mounting substrate in such a state that the solder ball mounting substrate is held on the base body and the heat resistant thin film is coated thereon. Since the entire surface of the concavo-convex portion has a base device for negatively pressure-bonding the heat-resistant thin film in a close-contact manner by a negative pressure suction means, simply placing the heat-resistant thin film on the base body and sucking the negative pressure Infrared energy radiation efficiency by ensuring the thermal conductivity and preventing thermal diffusion as the thin film can be adhered to the entire surface of the board and each solder ball so as to eliminate the gap between each solder ball on the board and the heat-resistant thin film Can be improved.

また、基台装置は、はんだボール搭載基板面全体を覆うように耐熱性薄膜を載置させた状態で基台本体46とはんだボール搭載基板との間の隙間を介して負圧駆動源によりはんだボール搭載基板面の凹凸部分全体について耐熱性薄膜を密着状に負圧圧着させる基台内吸引経路を有する構成とすることにより、単に耐熱性薄膜を台本体上に載置させ、負圧吸引させるだけで基板上の各はんだボールと耐熱性薄膜との間の隙間をなくすように薄膜を基板及び各はんだボール表面全体にわたって実効的に密着させることができる。   In addition, the base device is soldered by a negative pressure drive source through a gap between the base body 46 and the solder ball mounting substrate in a state where a heat resistant thin film is placed so as to cover the entire surface of the solder ball mounting substrate. By adopting a structure that has a suction path in the base that negatively pressure-bonds the heat-resistant thin film in close contact with the entire uneven surface of the ball mounting substrate surface, the heat-resistant thin film is simply placed on the base body and sucked with negative pressure. The thin film can be effectively adhered to the entire surface of the substrate and each solder ball so as to eliminate the gap between each solder ball on the substrate and the heat-resistant thin film.

また、基台内吸引経路は、耐熱性薄膜をはんだボール搭載基板面に載置させた状態で、該耐熱性薄膜とはんだボール搭載基板面との隙間に連通するように設けられた構成であるから、単に耐熱性薄膜を台本体上に載置させ、負圧吸引させるだけで基板上の各はんだボールと耐熱性薄膜との間の隙間をなくすように薄膜を基板及び各はんだボール表面全体にわたって実効的に密着させることができる。   Further, the suction path in the base is configured to communicate with the gap between the heat resistant thin film and the solder ball mounting substrate surface in a state where the heat resistant thin film is placed on the solder ball mounting substrate surface. Then, simply place the heat-resistant thin film on the base and suck the negative pressure over the entire surface of the board and each solder ball so that there is no gap between each solder ball on the board and the heat-resistant thin film. It can be brought into close contact effectively.

また、基台本体に半導体製品基板を保持させた状態ではんだボール搭載基板全体をその内側に収容させるように環状の気密部材を基台本体から上方に突設させた構成であるから、単に耐熱性薄膜を台本体上に載置させ、負圧吸引させるだけで基板上の各はんだボールと耐熱性薄膜との間の隙間をなくすように薄膜を基板及び各はんだボール表面全体にわたって実効的に密着させることができる。   In addition, since the base airtight member is protruded upward from the base body so that the entire solder ball mounting board is accommodated inside the semiconductor product board held on the base body, it is simply heat resistant. The thin film is effectively adhered over the entire surface of the substrate and each solder ball so that the gap between each solder ball on the substrate and the heat-resistant thin film is eliminated simply by placing the conductive thin film on the base and sucking it under negative pressure. Can be made.

また、耐熱性薄膜の膜厚が0.02mm〜0.1mmであるとすることにより、薄膜内でのはんだボールや基板からの熱拡散を防止しつつ良好な熱伝導性、伸縮性を確保しうる。   In addition, the heat-resistant thin film has a thickness of 0.02 mm to 0.1 mm to ensure good thermal conductivity and elasticity while preventing thermal diffusion from the solder balls and the substrate in the thin film. sell.

また、耐熱性薄膜が少なくとも90℃に耐えうる耐熱特性を有する構成とすることにより、至近距離での急速加熱を前提とした赤外線エネルギー放射特性向上のための処理を連続続行できる。   In addition, when the heat-resistant thin film has a heat-resistant characteristic capable of withstanding at least 90 ° C., it is possible to continuously continue the process for improving the infrared energy radiation characteristic on the premise of rapid heating at a close distance.

以下、添付図面を参照しつつ本発明を実施するための最良の形態について説明する。図1ないし図6は、本発明の実施形態を示しており、図1は、本発明の実施形態に係るはんだボールの半導体製品基板への接合状態検査システム10の構成図である。なお、はんだボールの半導体製品基板への接合状態検査方法についても合わせて説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. FIG. 1 to FIG. 6 show an embodiment of the present invention, and FIG. 1 is a configuration diagram of a bonding state inspection system 10 for a solder ball to a semiconductor product substrate according to the embodiment of the present invention. A method for inspecting the bonding state of the solder ball to the semiconductor product substrate will also be described.

実施形態のはんだボールの半導体製品基板への接合状態検査システム(以下、「接合状態検査システム」という。)10は、加熱装置12と、冷却装置14と、検出装置16と、制御判定装置18と、着脱式赤外線高放射生成装置13と、を含む。   A solder ball bonding state inspection system (hereinafter referred to as a “bonding state inspection system”) 10 according to the embodiment includes a heating device 12, a cooling device 14, a detection device 16, and a control determination device 18. And a detachable infrared high radiation generator 13.

はんだボールは、BGA型パッケージやCSP型パッケージ等のはんだボール搭載半導体製品の基板電極部とのはんだ接合工程において生じる例えば0.6mm程度の径のボール状の合金接合部である。図1では、図示しないX−Yテーブルにより移動されるトレイ20上に位置決めされた状態ではんだボール搭載面Hを上にしてBGA型パッケージやCSP型パッケージ等の検査対象製品22(以下、「製品」という。)が配置されている。製品22のはんだボール搭載面H側には多数のはんだボール24が形成されて存在する。   The solder ball is a ball-shaped alloy joint having a diameter of, for example, about 0.6 mm, which occurs in a solder joint process with a substrate electrode portion of a solder ball-mounted semiconductor product such as a BGA type package or a CSP type package. In FIG. 1, a product 22 to be inspected such as a BGA type package or a CSP type package (hereinafter referred to as “product”) with the solder ball mounting surface H facing upward while being positioned on a tray 20 moved by an XY table (not shown). ") Is arranged. A large number of solder balls 24 are formed on the solder ball mounting surface H side of the product 22.

実施形態において、加熱装置12は、はんだボール搭載半導体製品のはんだボール搭載面を加熱する、検査対象の集積回路装置基板の第1の温度場形成手段である加熱手段であり、本実施形態において、例えば検査対象の基板のボール搭載面へ熱風を吹き付ける熱風送風機から構成されている。熱風送風機は図示しない空気を供給するファンと検査対象の基板のボール搭載面に対して熱風を吹き付けるように案内する吹出口26と、吹出口から吹出す前に空気を加熱するヒータ28と、を備えている。吹出口と製品基板はんだボール搭載面とは例えば7cm程度の至近距離であり、直接にはんだボール搭載面のみを加熱して加熱機能を効果的に生じさせる。また、熱応答速度が速く、各はんだボールと基板電極部分の接合状態の検査を短時間で行える。製品利用の関係から、加熱装置による加熱はんだボールが融解しない程度の温度、例えば60℃〜150℃の範囲で検査対象を加熱するのが好ましい。より好適には、70℃〜80℃の範囲に加熱するとよい。加熱装置12による加熱時間は1.0秒以上、60秒以下の範囲で行うのが望ましい。加熱時間が1.0秒以下の場合は、はんだボールの加熱が不十分となり60秒以上の場合は、はんだボール近傍の基板を熱しすぎ、検査時間を要するために好ましくない。その加熱時間は制御装置32により0.1〜5秒以内に制御されている。この加熱手段としては、熱風送風の他、例えば赤外線ランプその他の熱線照射ランプなどを用いることができる。   In the embodiment, the heating device 12 is a heating unit that is a first temperature field forming unit of an integrated circuit device substrate to be inspected, which heats a solder ball mounting surface of a semiconductor product mounted with a solder ball. For example, it comprises a hot air blower that blows hot air onto the ball mounting surface of the substrate to be inspected. The hot air blower includes a fan (not shown) for supplying air, an air outlet 26 for guiding hot air against the ball mounting surface of the substrate to be inspected, and a heater 28 for heating the air before the air is blown from the air outlet. I have. The blower outlet and the product substrate solder ball mounting surface are, for example, a close distance of about 7 cm, and the heating function is effectively generated by directly heating only the solder ball mounting surface. In addition, the thermal response speed is fast, and inspection of the bonding state between each solder ball and the substrate electrode portion can be performed in a short time. From the viewpoint of product utilization, it is preferable to heat the inspection object at a temperature at which the heated solder ball by the heating device does not melt, for example, in the range of 60 ° C to 150 ° C. More preferably, it is good to heat in the range of 70 to 80 degreeC. The heating time by the heating device 12 is preferably in the range of 1.0 second or more and 60 seconds or less. When the heating time is 1.0 second or less, heating of the solder balls is insufficient, and when the heating time is 60 seconds or more, the substrate in the vicinity of the solder balls is heated too much, which is not preferable. The heating time is controlled within 0.1 to 5 seconds by the control device 32. As the heating means, in addition to hot air blowing, for example, an infrared lamp or other heat ray irradiation lamp can be used.

冷却装置14は、加熱装置により加熱されたはんだボール搭載基板面を冷却するところの検査対象の集積回路装置基板の第2の温度場形成手段である冷却手段であり、例えば検査対象の基板のボール搭載面へ圧縮空気または低温空気を吹き付ける冷風吹き付け装置から構成されている。冷風吹き付け装置は図示しないポンプやファンなどの冷風空気の供給駆動源と、検査対象の基板のボール搭載面に対して冷却用空気を吹き付けるように案内する冷却用空気吹出口30と、を備えている。吹出口30と製品基板はんだボール搭載面Hとは例えば7cm程度の至近距離であり、直接にはんだボール搭載面のみを冷却して冷却機能を効果的に生じさせる。冷却装置14による冷却時間は0.1秒〜2秒の範囲で行うのが望ましい。冷却時間が0.1秒以下の場合は、はんだボールおよびはんだボール近傍の基板の冷却が不十分となり、2秒以上でははんだボール及びはんだボール近傍の基板を冷却し過ぎ、良否判定が困難となるため好ましくない。   The cooling device 14 is a cooling means which is a second temperature field forming means of the integrated circuit device substrate to be inspected for cooling the solder ball mounting substrate surface heated by the heating device. It is comprised from the cold wind spraying apparatus which sprays compressed air or low temperature air to a mounting surface. The cold air blowing device includes a cold air supply supply source such as a pump and a fan (not shown), and a cooling air outlet 30 that guides the cooling air to blow against the ball mounting surface of the substrate to be inspected. Yes. The blower outlet 30 and the product substrate solder ball mounting surface H are close to each other, for example, about 7 cm, and the cooling function is effectively generated by directly cooling only the solder ball mounting surface. The cooling time by the cooling device 14 is preferably in the range of 0.1 second to 2 seconds. If the cooling time is 0.1 second or less, the solder ball and the substrate in the vicinity of the solder ball are not sufficiently cooled. If the cooling time is 2 seconds or more, the solder ball and the substrate in the vicinity of the solder ball are excessively cooled. Therefore, it is not preferable.

加熱時間および冷却時間は後述の良否判定工程における正確さや精度を左右し得る要素であり、例えば上記の範囲以外に設定すると、それらを低下させる原因となる。なお、本実施形態では、冷却装置14を冷風吹き付け装置から構成しているので、冷却手段に水または低温媒体のような冷媒を必要とせず、したがって、広範囲の設置面積を必要とすることなく廉価なはんだボール接合状態検査システムを提供し得る。   The heating time and the cooling time are factors that can affect the accuracy and precision in the quality determination process described later. For example, if the heating time and the cooling time are set outside the above ranges, they may be reduced. In the present embodiment, since the cooling device 14 is constituted by a cold air spraying device, the cooling means does not require a coolant such as water or a low-temperature medium, and therefore is inexpensive without requiring a wide installation area. A solder ball bonding state inspection system can be provided.

検出装置16は、加熱装置による加熱に引き続いて冷却装置により冷却中のはんだボール及びはんだボール近傍の基板上の赤外線を検出する赤外線検出手段であり、例えば赤外線センサが用いられる。赤外線検出装置16は、測定対象物から放射される赤外線エネルギーを検出し、その熱エネルギー分布を基に温度分布を計測する手段であり、画像処理による赤外線エネルギー分布をディスプレイ上に表示させて観測可能としてもよい。本実施形態において、検出装置16は、赤外線サーモグラフィのように赤外線エネルギーを定量的に温度分布に変換して温度分布を計測する装置から構成されている。検出装置16は、冷却装置14に機構的に一体に組み込まれている。しかしながら、別体により独立して移動可能としても良い。   The detection device 16 is infrared detection means for detecting infrared rays on the solder ball being cooled by the cooling device and the substrate in the vicinity of the solder ball following the heating by the heating device, and an infrared sensor, for example, is used. The infrared detector 16 is a means for detecting infrared energy radiated from an object to be measured and measuring a temperature distribution based on the thermal energy distribution. The infrared energy distribution obtained by image processing can be displayed on a display and observed. It is good. In the present embodiment, the detection device 16 is configured by a device that quantitatively converts infrared energy into a temperature distribution and measures the temperature distribution, such as an infrared thermography. The detection device 16 is mechanically integrated into the cooling device 14. However, it may be movable independently by a separate body.

制御判定装置18は、赤外線検出手段16により検出した赤外線量に基づくエネルギー分布データを基に温度分布を計測し、その温度分布状態からはんだボールの基板への接合状態の良否を判定する良否判定手段であり、本実施形態において、コンピュータからなる制御装置32と、判定結果表示用のディスプレイ装置34と、を含む。ディスプレイ装置34は、検査対象製品の識別管理、その他の検査管理画面表示用にも用いられる。制御装置32は、加熱装置12、冷却装置14、赤外線センサ16、ディスプレイ装置34、さらには後述する着脱式赤外線高放射生成装置13等の機器に対して有線あるいは無線を介してこれらを制御可能に接続されておりそれらの機能を達成する上で必要な物理量を演算処理して動きや機能全体を司る。特に、赤外線センサ16で取得されたエネルギーデータを処理して温度データを計測生成し、それを用いた判定結果をディスプレイ装置34に表示させる。   The control determination device 18 measures the temperature distribution based on the energy distribution data based on the amount of infrared rays detected by the infrared detection means 16 and determines whether the solder ball is bonded to the substrate from the temperature distribution state. In the present embodiment, a control device 32 including a computer and a display device 34 for displaying the determination result are included. The display device 34 is also used for identification management of products to be inspected and for displaying other inspection management screens. The control device 32 can control devices such as the heating device 12, the cooling device 14, the infrared sensor 16, the display device 34, and the detachable infrared high-radiation generation device 13, which will be described later, via wires or wirelessly. It is connected and calculates the physical quantities necessary to achieve those functions, and controls the movement and functions as a whole. In particular, the energy data acquired by the infrared sensor 16 is processed to measure and generate temperature data, and a determination result using the temperature data is displayed on the display device 34.

本発明において、特徴的なことは加熱工程においてはんだボール搭載基板面Hを加熱後、冷却装置14により冷却させる前にはんだボール搭載基板面Hからの赤外線放射率特性を向上させる着脱式赤外線高放射生成装置13を配置させたことである。着脱式赤外線高放射生成装置13は、はんだボール搭載基板面Hに着脱自在に被覆される耐熱性薄膜38を含む。   In the present invention, a characteristic feature is that the solder ball mounting board surface H is heated in the heating process, and is then removed from the solder ball mounting board surface H before being cooled by the cooling device 14. That is, the generation device 13 is arranged. The detachable infrared high radiation generator 13 includes a heat-resistant thin film 38 that is detachably coated on the solder ball mounting substrate surface H.

図において、着脱式赤外線高放射生成装置13は、はんだボール搭載基板面Hからの赤外線放射量を高いレベルにさせ、得られる赤外線データによる最終的な温度分布データがはんだボールの接合状態の良否を高精度に反映させるようにする。すなわち、一般にはんだボール搭載半導体製品のはんだボール接合状態の良否を、放射される赤外線の検出に基づくデータにより行う場合に、赤外線センサで被検体を測定するだけでは接合状態の高精度の判定に充分な分布画像を生成させることは困難である。一般には、次式(1)のように、黒体放射の赤外線エネルギーに各々の物体のエネルギー放射率を加味した赤外線エネルギーがそれぞれの物体から放射されると考えられている。

Figure 0005103690
■ただし、W=赤外線エネルギー、ε=放射率、δ=定数、T=絶対温度。放射率(ε)は、(物体放射エネルギー)÷(黒体放射エネルギー)で定義される。 In the figure, the detachable infrared high radiation generator 13 raises the amount of infrared radiation from the solder ball mounting substrate surface H to a high level, and the final temperature distribution data based on the obtained infrared data determines whether the solder ball is joined or not. Reflect it with high accuracy. In other words, in general, when the quality of the solder ball bonding state of a semiconductor product with a solder ball is determined based on data based on the detection of the emitted infrared radiation, it is sufficient for the determination of the bonding state with high accuracy only by measuring the subject with the infrared sensor. It is difficult to generate a simple distribution image. In general, it is considered that infrared energy obtained by adding the energy emissivity of each object to the infrared energy of blackbody radiation is radiated from each object as shown in the following equation (1).
Figure 0005103690
(2) where W = infrared energy, ε = emissivity, δ = constant, T = absolute temperature. The emissivity (ε) is defined by (object radiant energy) ÷ (black body radiant energy).

そして、この放射率特性のうちで、物体の表面が粗いほど放射率は大きく、鏡面では小さいとされている。このため、鏡面状態の表面を有するはんだボールを多数含むはんだボール搭載基板面Hからの赤外線エネルギーレベルは低く、したがって、得られる温度分布データから良好な精度で良否判定を行うことが困難である。 Of these emissivity characteristics, the rougher the surface of the object, the greater the emissivity and the smaller the specular surface. For this reason, the infrared energy level from the solder ball mounting substrate surface H including a large number of solder balls having a mirror-finished surface is low, and therefore it is difficult to perform pass / fail judgment with good accuracy from the obtained temperature distribution data.

本実施形態においては、加熱工程においてはんだボール搭載基板面を加熱後、冷却させる前に、着脱式赤外線高放射生成装置13によりはんだボール搭載基板面Hからの赤外線エネルギーの放射率特性を向上させた状態として冷却し、その状態で赤外線エネルギーデータを取得するようにしているので、はんだボール接合部のクラックや空洞部の存在を高精度に検出することが可能となる。   In this embodiment, the emissivity characteristic of infrared energy from the solder ball mounting substrate surface H is improved by the detachable infrared high radiation generator 13 before heating and cooling the solder ball mounting substrate surface in the heating process. Since cooling is performed as a state and infrared energy data is acquired in that state, the presence of cracks and cavities in the solder ball joint can be detected with high accuracy.

図2において、着脱式赤外線高放射生成装置13は、耐熱性薄膜38と、基台装置40と、負圧吸引装置42と、を含む。基台装置40は加熱装置の加熱工程ではんだボール搭載基板面を加熱された製品基板22Aを受け取り、X−Yテーブル44上に載置されて縦横に移動可能とされている。   In FIG. 2, the detachable infrared high radiation generator 13 includes a heat-resistant thin film 38, a base device 40, and a negative pressure suction device 42. The base device 40 receives the product substrate 22A whose surface of the solder ball mounting substrate has been heated in the heating process of the heating device, is placed on the XY table 44, and can move vertically and horizontally.

基台装置40は、半導体製品基板22Aを保持し、その上から耐熱性薄膜38を被覆して該耐熱性薄膜38をそのはんだボール搭載基板面Hへ負圧圧着させ、その状態で冷却装置14によるはんだボール搭載基板面Hの冷却、ならびにその後のはんだボール搭載基板面Hからの耐熱性薄膜38の離脱を行わせる手段である。本実施形態において、該基台装置40は、上端部に平面を有する直方体状の台本体46と、その上面中央位置に凹設した検査対象の製品基板22Aを位置決めして配置させるための凹部48と、を備えている。台本体46の凹部の底壁の材質は断熱材で構成されており、はんだボール搭載基板からの熱拡散を防止している。なお、台本体46の凹部は製品基板22Aの固定用に粘着または吸着面を有している。また、図5に示すように、台本体46の上面であって、凹部48内に配置された製品基板22Aを内側にして囲むように気密部材50としてのゴム製の環状パッキンが基台本体46の上面から一部を上方に突設させて埋め込み状に配置されている。気密部材50は、製品基板22A全体を覆うように上面に耐熱性薄膜38を被覆させた状態で製品基板22Aの下面側から負圧吸引すると大きな摩擦係数の耐熱性薄膜38が気密部材50との接触位置で密着し、各はんだボール間の間隙を含む空隙全体を気密部材でその外部から仕切って、負圧化させるための負圧手段である。なお気密部材の上に耐熱性薄膜を載せ、さらにその上から押さえ部材を用いて挟みつけるようにして気密を保持させるようにしてもよい。   The base device 40 holds the semiconductor product substrate 22A, covers the heat-resistant thin film 38 from above, and negatively press-bonds the heat-resistant thin film 38 to the solder ball mounting substrate surface H. In this state, the cooling device 14 This is a means for cooling the solder ball mounting substrate surface H by, and then removing the heat resistant thin film 38 from the solder ball mounting substrate surface H. In this embodiment, the base device 40 has a rectangular parallelepiped base body 46 having a flat surface at the upper end, and a recess 48 for positioning and arranging a product substrate 22A to be inspected that is recessed at the center of the upper surface. And. The material of the bottom wall of the recess of the base body 46 is made of a heat insulating material, and prevents heat diffusion from the solder ball mounting board. The recess of the base body 46 has an adhesive or suction surface for fixing the product substrate 22A. Further, as shown in FIG. 5, a rubber annular packing as an airtight member 50 is provided on the base body 46 so as to surround the product substrate 22 </ b> A disposed in the recess 48 on the upper surface of the base body 46. A part is projected upward from the upper surface of each of them and is arranged in an embedded form. When the airtight member 50 is sucked from the lower surface side of the product substrate 22 </ b> A in a state where the upper surface is covered with the heat resistant thin film 38 so as to cover the entire product substrate 22 </ b> A, the heat resistant thin film 38 having a large coefficient of friction is formed between the airtight member 50 and the airtight member 50. It is a negative pressure means for tightly contacting at the contact position and partitioning the entire gap including the gaps between the solder balls from the outside with an airtight member to make the pressure negative. A heat-resistant thin film may be placed on the airtight member and the airtightness may be maintained by sandwiching the heat resistant thin film from above the heat resistant thin film.

さらに、基台装置40は、基台内吸引経路52を有する。基台内吸引経路52は、はんだボール搭載基板面H全体を覆うように耐熱性薄膜を載置させた状態ではんだボール搭載基板面Hの上に耐熱性薄膜を密着状に負圧圧着させる基台の負圧吸引経路であり、図3において、凹部48内に製品基板22Aを配置させた状態で該凹部48の壁面48Aと製品基板22Aの外形輪郭との間に設けられた1個または複数の隙間54と、隙間54に連通して製品基板22Aの下面側すなわち凹部48の底壁に4個凹設形成された中間通路56と、凹部48の底壁の中心に穿孔された凹部孔58から外部の吸引ホース60に連通するよう台本体内に形成された台通路62と、を含む。環状パッキン50より大きな耐熱性薄膜38を上から被せて、外部吸引ホース60に接続した吸引駆動手段としての例えば真空ポンプからなる負圧吸引装置42を駆動させると、基台内吸引経路52の隙間54は真空ポンプによる負圧吸引ルートに連通するとともに、図6に示す耐熱性薄膜38と各はんだボール24との間の空隙Gにも連通しているので、負圧吸引力で空隙内の空気を吸引することにより耐熱性薄膜38と各はんだボール24との密着性を向上させる。すなわち、基台内吸引経路52は、はんだボール搭載基板面H全体を覆うように耐熱性薄膜38を載置させた状態で基台本体46とはんだボール搭載基板22Aとの間の隙間54を介して負圧駆動源42によりはんだボール搭載基板面Hの凹凸部分全体について耐熱性薄膜38を密着状に負圧圧着させる。これによって、はんだボール表面からの赤外線エネルギーを耐熱性薄膜38により効率よく伝導させ、外部へ放射させることができる。   Further, the base device 40 has a base suction path 52. The suction path 52 in the base is a base for negatively pressure-bonding the heat-resistant thin film on the solder ball mounting substrate surface H in a state where the heat-resistant thin film is placed so as to cover the entire solder ball mounting substrate surface H. FIG. 3 shows one or a plurality of negative pressure suction paths provided between the wall surface 48A of the recess 48 and the outer contour of the product substrate 22A in a state where the product substrate 22A is disposed in the recess 48. , The intermediate passage 56 formed in the bottom surface of the product substrate 22 </ b> A, that is, in the bottom wall of the recess 48, and the recess hole 58 drilled in the center of the bottom wall of the recess 48. And a base passage 62 formed in the base body so as to communicate with the external suction hose 60. When a negative pressure suction device 42 composed of, for example, a vacuum pump as a suction drive means connected to the external suction hose 60 is driven by covering the heat resistant thin film 38 larger than the annular packing 50 from above, a gap between the suction paths 52 in the base is obtained. 54 communicates with the negative pressure suction route by the vacuum pump and also communicates with the gap G between the heat-resistant thin film 38 and each solder ball 24 shown in FIG. The adhesion between the heat-resistant thin film 38 and each solder ball 24 is improved. That is, the in-base suction path 52 passes through the gap 54 between the base body 46 and the solder ball mounting substrate 22A in a state where the heat-resistant thin film 38 is placed so as to cover the entire solder ball mounting substrate surface H. Then, the heat-resistant thin film 38 is negatively pressure-bonded in a close contact state over the entire uneven portion of the solder ball mounting substrate surface H by the negative pressure drive source 42. Thereby, infrared energy from the solder ball surface can be efficiently conducted by the heat-resistant thin film 38 and radiated to the outside.

耐熱性薄膜38は、はんだボール搭載基板面Hを着脱自在に被覆し、加熱後に赤外線高放射率状態を生成させる際にははんだボール搭載基板面Hを被覆して負圧密着するとともに、その状態で冷却装置により冷却し、同時に赤外線センサ等の赤外線検出装置16により赤外線エネルギーデータを取得後は、基板面Hから離脱して検査後の検査対象製品22に何らの処理を加えることなく製品として使用可能とさせる着脱式赤外線高放射生成装置の一要素である。耐熱性薄膜38は、耐熱性とともにある程度の伸縮性を有する合成樹脂、合成繊維、合成ゴム製薄膜の極薄フィルム状素材で形成される。耐熱性薄膜38は、所定の厚みを有する高分子薄膜であり、耐熱性のほかに柔軟性、ゴム弾性を有するのがこのましい。耐熱性薄膜38の素材としての例えば合成樹脂としては、熱硬化性樹脂、熱可塑性樹脂のいずれについても選択できる。熱硬化性樹脂としては、例えばフェノール樹脂、メラミン樹脂、エポキシ樹脂、シリコン樹脂、アルキド樹脂、ポリウレタン樹脂などが挙げられる。また、熱可塑性樹脂としては、ポリエチレン樹脂、ポリスチレン樹脂、ABS樹脂、ポリプロピレン、塩化ビニル樹脂、メタクリル樹脂、ポリエチレンテレフタレート、ポリカーボネート、ポリアミド、ポリイミド、ポリアクリロニトリル、フッ素樹脂、熱可塑性エラストマー、その他がある。また、合成ゴムとして、ブタジエンゴム、クロロプレンゴム、スチレンーブタジエンゴム、アクリロニトリルーブタジエンゴム、フッ素ゴム、シリコーンゴムなどがある。また、これらのゴムからなる有機高分子を主成分とする耐熱弾性フィルムで構成するとよい。より好ましくは、例えばシリコンゴム、ポリウレタンゴム、ゴム系有機フィルム等を用いると良い。耐熱性薄膜38は、加熱装置により加熱されて検査対象の温度が例えば80℃以下程度となるように設定されるので、少なくとも90℃に耐え得る耐熱特性を有する素材であるとよい。より詳しくは、80℃程度の温度に耐え得る素材であるとよい。また、伸縮性として引っ張り強さが9.8(MPa)程度であればよい。また、薄膜の厚さは、伸縮性並びに熱成分の伝導性に関わり、例えば薄膜の厚さは0.02mm〜0.1mmの範囲が望ましく、より好ましくは0.02mm〜0.05mmの範囲であるとよい。また、熱伝導性は、0.1W/(m・K)以上が望ましい。   The heat-resistant thin film 38 detachably covers the solder ball mounting substrate surface H, and when the infrared high emissivity state is generated after heating, the solder ball mounting substrate surface H is covered and adhered in negative pressure. After being cooled by the cooling device and acquiring infrared energy data by the infrared detecting device 16 such as an infrared sensor at the same time, it is detached from the substrate surface H and used as a product without applying any processing to the inspected product 22 after the inspection. It is one element of a detachable infrared high radiation generation device that is made possible. The heat-resistant thin film 38 is formed of an ultra-thin film-like material made of a synthetic resin, synthetic fiber, or synthetic rubber thin film having heat resistance and a certain degree of elasticity. The heat-resistant thin film 38 is a polymer thin film having a predetermined thickness and preferably has flexibility and rubber elasticity in addition to heat resistance. For example, a synthetic resin as a material of the heat-resistant thin film 38 can be selected from either a thermosetting resin or a thermoplastic resin. Examples of the thermosetting resin include phenol resin, melamine resin, epoxy resin, silicon resin, alkyd resin, polyurethane resin, and the like. The thermoplastic resin includes polyethylene resin, polystyrene resin, ABS resin, polypropylene, vinyl chloride resin, methacrylic resin, polyethylene terephthalate, polycarbonate, polyamide, polyimide, polyacrylonitrile, fluororesin, thermoplastic elastomer, and others. Synthetic rubbers include butadiene rubber, chloroprene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, fluorine rubber, and silicone rubber. Moreover, it is good to comprise with the heat-resistant elastic film which has the organic polymer which consists of these rubber | gum as a main component. More preferably, for example, silicon rubber, polyurethane rubber, rubber organic film or the like may be used. Since the heat-resistant thin film 38 is set so that the temperature to be inspected is, for example, about 80 ° C. or less by being heated by a heating device, the heat-resistant thin film 38 is preferably a material having heat resistance characteristics that can withstand at least 90 ° C. More specifically, the material may withstand a temperature of about 80 ° C. Moreover, the tensile strength should just be about 9.8 (MPa) as stretchability. The thickness of the thin film is related to the stretchability and the conductivity of the heat component. For example, the thickness of the thin film is preferably in the range of 0.02 mm to 0.1 mm, more preferably in the range of 0.02 mm to 0.05 mm. There should be. The thermal conductivity is preferably 0.1 W / (m · K) or more.

次に、図7〜図11を加えて参照しつつ、実施形態の装置の作用とともに、本発明のはんだボールの半導体製品基板への接合状態検査方法を説明する。基板22Aにはんだボール24が搭載された検査対象半導体製品22が、はんだボール搭載面Hを上面にし断熱材で構成された台本体46の凹部48に設置された状態で加熱装置箇所まで搬送される。図1において、加熱装置から吹出口温度180℃以上で検査対象の製品基板22Aまでの距離を7cm程度に設定して熱風を基板のはんだボール搭載面Hに向けて吹き付け加熱する。はんだボール基板が80℃程度に上昇したら、着脱式赤外線高放射生成装置13の基台本体46の凹部48の所定位置決め部位に該製品22を載置し、その状態から図1の薄膜上下動機構64を介して耐熱性薄膜38を上下に面を向けるように把持した状態で下降させ、台本体46の上面に載置させる(図3参照)。薄膜上下動機構64では、例えば、耐熱性薄膜38を把持して水平に展開した状態で上下駆動させる。このとき、耐熱性薄膜38は、環状パッキン50よりも広い面積で環状パッキンの外形より大きな外形輪郭で覆っている。この状態で負圧吸引装置42としての真空ポンプを駆動し、負圧吸引すると、凹部に載置された基板22Aの上面は台本体46の上面と略同一面となっているので、負圧力は、空隙Pの空気を吸引して耐熱性薄膜38を台本体上面に密着させる。このとき、図4の破線示のように、基板の隅部と凹部の隅部との隙間54からPおよび空隙Gの空気は流入し、中間通路56、凹部孔58、台通路62の経路で吸引駆動源側に吸引される。さらにこの負圧力は、図6の耐熱性薄膜38と各はんだボール24との間の空隙Gにも加わって、図6(b)のように各はんだボール24の表面の略全体にわたって耐熱性薄膜38が密着する。この状態のままではんだボール搭載半導体製品は冷却装置箇所まで搬送される。そして、冷却装置14により、例えば吹出口温度を10℃以下に設定した低温空気を加熱面と同じ面に吹き出すと、瞬間的な温度変化が起こり、この温度変化に対応する赤外線エネルギー量を赤外線センサで検出する。はんだボール搭載半導体製品は、はんだボール搭載面Hを冷却装置14による冷却直前から冷却終了まで、赤外線検出装置としての赤外線センサがはんだボール搭載面のはんだボール24上およびその周囲の製品基板22A上の赤外線エネルギーに対応する温度を測定する。冷却装置14は制御判定装置18により冷却時間として0.1〜1.0秒以内に測定時間が制御されている。また赤外線検出装置16は制御判定装置18により冷却装置14による冷却開始直前から冷却終了までの間はんだボール24と製品基板22A上の温度を検出するように測定時間が制御されている。冷却開始直前から冷却終了までのはんだボール24およびはんだボール近辺の製品基板22A上の温度は、赤外線検出装置16から制御判定装置18へ転送される。また、この時のはんだボール近辺の製品基板22A上の温度は、隣り合うはんだボール間の中央を測定する。そして、赤外線検出装置16から転送されるデータは制御判定装置18の制御装置32においてエネルギー分布データから温度分布データに変換され、それに基づく判定結果信号をディスプレイ装置34に送信し、はんだボールを含む各製品基板22Aの赤外線エネルギーの分布によるはんだボール接合部の高精度の良否判定を短時間で実現させる。はんだボール接合部にクラックや空洞部が存在する場合には、その部分の熱伝導率は低く、周囲の温度に比べて局部的にそれらの欠陥部の表面温度は高く現れるが、加熱に引き続き、加熱直後に冷却すると、接合不良部を有するボールでは、温度は低く現れる。 Next, while referring to FIGS. 7 to 11 together with the operation of the apparatus of the embodiment, the method for inspecting the bonding state of the solder ball to the semiconductor product substrate of the present invention will be described. The semiconductor product 22 to be inspected with the solder balls 24 mounted on the substrate 22A is transported to the heating device in a state where the solder ball mounting surface H is placed on the upper surface and the recessed portion 48 of the base body 46 made of a heat insulating material is installed. . 1, the distance from the heating device to the product substrate 22A to be inspected is set to about 7 cm when the outlet temperature is 180 ° C. or higher, and hot air is blown and heated toward the solder ball mounting surface H of the substrate. When the solder ball substrate rises to about 80 ° C., the product 22 is placed on a predetermined positioning portion of the recess 48 of the base body 46 of the detachable infrared high radiation generator 13, and the thin film vertical movement mechanism shown in FIG. The heat-resistant thin film 38 is lowered through 64 in a state where the heat-resistant thin film 38 is vertically oriented, and is placed on the upper surface of the base body 46 (see FIG. 3). In the thin-film vertically moving mechanism 64, for example, is vertically driven in a state developed in the horizontally holding the heat-resistant thin film 38. At this time, the heat resistant thin film 38 is covered with an outer contour larger than the annular packing 50 and larger than the outer shape of the annular packing. In this state, when the vacuum pump as the negative pressure suction device 42 is driven and negative pressure suction is performed, the upper surface of the substrate 22A placed in the recess is substantially flush with the upper surface of the base body 46, so the negative pressure is Then, the air in the gap P is sucked to bring the heat-resistant thin film 38 into close contact with the upper surface of the base body. At this time, as indicated by the broken line in FIG. 4, the air in P and the gap G flows from the gap 54 between the corner of the substrate and the corner of the recess, and passes through the intermediate passage 56, the recess hole 58, and the base passage 62. It is sucked to the suction drive source side. Furthermore, this negative pressure is also applied to the gap G between the heat resistant thin film 38 and each solder ball 24 in FIG. 6, and the heat resistant thin film is applied over substantially the entire surface of each solder ball 24 as shown in FIG. 6B. 38 is in close contact. In this state, the solder ball mounted semiconductor product is conveyed to the cooling device. Then, for example, when low-temperature air whose outlet temperature is set to 10 ° C. or less is blown out to the same surface as the heating surface by the cooling device 14, an instantaneous temperature change occurs, and the infrared energy amount corresponding to this temperature change is determined by the infrared sensor. Detect with. In the solder ball mounted semiconductor product, the infrared sensor as an infrared detecting device is placed on the solder ball 24 on the solder ball mounting surface and on the surrounding product substrate 22A from just before the solder ball mounting surface H is cooled by the cooling device 14 until the end of cooling. Measure the temperature corresponding to the infrared energy. The measuring time of the cooling device 14 is controlled by the control determination device 18 within 0.1 to 1.0 seconds as the cooling time. The infrared detector 16 is controlled by the control determination device 18 so as to detect the temperature on the solder ball 24 and the product substrate 22A from immediately before the start of cooling by the cooling device 14 until the end of cooling. The temperature on the solder ball 24 and the product substrate 22A in the vicinity of the solder ball from immediately before the start of cooling to the end of cooling is transferred from the infrared detection device 16 to the control determination device 18. At this time, the temperature on the product substrate 22A in the vicinity of the solder ball is measured at the center between the adjacent solder balls. The data transferred from the infrared detection device 16 is converted from energy distribution data to temperature distribution data in the control device 32 of the control determination device 18, and a determination result signal based on the data is transmitted to the display device 34. Highly accurate pass / fail judgment of the solder ball joint by the distribution of infrared energy of the product substrate 22A is realized in a short time. When there are cracks or cavities in the solder ball joint, the thermal conductivity of that part is low, and the surface temperature of those defective parts appears locally higher than the ambient temperature, but following heating, When cooled immediately after heating, the temperature of the ball having a poorly bonded portion appears low.

詳細には、図1において、赤外線検出装置16により検出された冷却開始直前から冷却終了までのはんだボール搭載面のはんだボール24近傍の製品基板22A上の温度の赤外線情報は、検出と同時に赤外線検出装置16から制御判定装置18に自動転送される。良否判定は、図7、8に示すように、加熱手段により加熱されたはんだボール搭載製品基板の接合良好なはんだボール241は、はんだボールから基板への大きな熱移動82が起こる。一方、接合不良はんだボール243では、はんだボールから製品基板22Aへの小さな熱移動84が起こり、さらに欠陥部分(はんだボールと基板電極間の接合不良部)83で製品基板22Aへ伝わらなかった熱移動86が起こるため、はんだボール自身に熱が溜まる。さらに、冷却では図8に示すように、はんだボール24の場合、その電極部25を介して下層からはんだボールへの大きな熱移動88があるため、接合良好ハンダボール241上の温度は冷却による熱の移動90があっても接合良好はんだボール241上の温度はある一定以上の温度を保持する。しかし、接合不良はんだボール243の場合、電極部25を介して下層から接合不良はんだボール243への小さな熱移動92しか起こらないため、接合不良はんだボール243上の温度は冷却による熱移動90が起こった後、はんだボール24上の温度はある一定以下の温度まで下がる。また、各はんだボール近辺の半導体基板22A上の温度は、各はんだボール上の温度と異なるが同程度の加熱及び冷却が行われており、各はんだボール近傍の半導体基板22A上の温度で各はんだボール上の温度を除した値(無次元化温度)を利用することで、サンプル内の温度偏りの影響を排除できる。なお、図7、8中、80は加熱手段により与えられたはんだボールへの熱移動、81は加熱手段により与えられた基板への熱移動、83ははんだボールと基板電極間の接合不良部、85は冷却手段により奪われた基板からの熱移動である。 Specifically, in FIG. 1, the infrared information of the temperature on the product substrate 22A in the vicinity of the solder ball 24 on the solder ball mounting surface immediately before the start of cooling until the end of cooling detected by the infrared detector 16 is detected simultaneously with the detection. Automatically transferred from the device 16 to the control determination device 18. As shown in FIGS. 7 and 8, the solder ball 241 with good bonding of the solder ball mounted product substrate heated by the heating means undergoes a large heat transfer 82 from the solder ball to the substrate. On the other hand, in the poorly bonded solder ball 243, a small heat transfer 84 occurs from the solder ball to the product substrate 22A, and further, the heat transfer that is not transmitted to the product substrate 22A at the defective portion (bonded defective portion between the solder ball and the substrate electrode) 83. Since 86 occurs, heat accumulates in the solder balls themselves. Furthermore, in the case of cooling, as shown in FIG. 8, in the case of the solder ball 24, since there is a large heat transfer 88 from the lower layer to the solder ball via the electrode portion 25, the temperature on the solder ball 241 with good bonding is the heat generated by the cooling. Even if there is the movement 90, the temperature on the solder ball 241 with good bonding is maintained at a certain level or higher. However, in the case of the poorly bonded solder ball 243, only a small heat transfer 92 from the lower layer to the poorly bonded solder ball 243 occurs via the electrode portion 25. After that, the temperature on the solder ball 24 drops to a temperature below a certain level. Further, the temperature on the semiconductor substrate 22A in the vicinity of each solder ball is different from the temperature on each solder ball, but is heated and cooled to the same extent, and each solder is heated at a temperature on the semiconductor substrate 22A in the vicinity of each solder ball. By using a value obtained by dividing the temperature on the ball (non-dimensional temperature), the influence of temperature deviation in the sample can be eliminated. In FIGS. 7 and 8, reference numeral 80 denotes heat transfer to the solder balls given by the heating means, 81 denotes heat transfer to the board given by the heating means, 83 denotes a defective joint between the solder balls and the board electrodes, Reference numeral 85 denotes heat transfer from the substrate taken away by the cooling means.

以下に、良否判定手順を示す。図9に示すように、処理1で冷却終了時、または冷却直前と冷却終了時の各はんだボール上と各はんだボール近辺の製品基板22A上温度を抽出する。次に、処理2では各はんだボール上の温度を各はんだボール近辺の製品基板22A上の温度で除し、無次元化温度を算出する。最後に処理3では、処理2で得られた無次元化温度を予め設定した基準値と比較し良否判定を行う。図10、図11は、ボールの番号を横軸に、冷却開始と冷却終了時の各はんだボールと各はんだボール近辺の製品基板22A上の温度比または温度比の差を縦軸にしたグラフである。   The quality determination procedure is shown below. As shown in FIG. 9, the temperature on each solder ball at the end of cooling in process 1 or immediately before and at the end of cooling and on the product substrate 22A in the vicinity of each solder ball is extracted. Next, in the process 2, the temperature on each solder ball is divided by the temperature on the product substrate 22A in the vicinity of each solder ball to calculate the dimensionless temperature. Finally, in the process 3, the non-dimensional temperature obtained in the process 2 is compared with a preset reference value, and quality is determined. FIG. 10 and FIG. 11 are graphs in which the horizontal axis represents the ball number and the vertical axis represents the temperature ratio or the temperature ratio difference between the solder balls at the start and end of cooling and the product substrate 22A near each solder ball. is there.

良否判定方法としては、図10に示すように冷却終了時の無次元化温度を使用する場合は、接合状態良好のはんだボールの無次元化温度94は予め設定した値96より高い値を示し、接合状態不良のはんだボールの無次元化温度98は予め設定した値96より低い値を示す。また図11に示すように冷却開始時と冷却終了時の無次元化温度差を使用する場合は、接合状態良好のはんだボールの無次元化温度102は予め設定した値104より低い値を示し、接合状態不良のはんだボールの無次元化温度106は予め設定した値10より高い値を示す。従って温度の偏りによる影響を受けることなく接合状態の良否判定ができ、さらに事前にはんだボールへ番号をつけていれば、どの箇所のはんだボールが不良状態であるかの確認が容易に検出できる。 As a pass / fail judgment method, when using the non-dimensional temperature at the end of cooling as shown in FIG. 10, the non-dimensional temperature 94 of the solder ball with good bonding state shows a value higher than a preset value 96, The dimensionless temperature 98 of the solder ball having a poor bonding state is lower than a preset value 96 . Further, as shown in FIG. 11, when using the dimensionless temperature difference at the start of cooling and at the end of cooling, the dimensionless temperature 102 of the solder ball with good bonding state shows a value lower than a preset value 104, dimensionless temperature 106 of the solder balls bonded state failure indicates a higher value 104 previously set value. Therefore, whether or not the joining state is good can be determined without being affected by the temperature deviation, and if the solder balls are numbered in advance, it is possible to easily detect which solder ball is in a defective state.

冷却終了時の無次元化温度を使用する場合は、接合状態良好はんだボールの無次元化温度94は1.0に近い値を示し、接合状態不良はんだボールの無次元化温度98は0.95以下の値を示す。従って、予め設定した値を1.0〜0.95の間で決定し、予め設定した値より大きい場合は接合良好はんだボール、小さい場合は接合不良はんだボールと判定する。 When the non-dimensional temperature at the end of cooling is used, the non-dimensional temperature 94 of the solder ball with good bonding state shows a value close to 1.0, and the non-dimensional temperature 98 of the solder ball with poor bonding state is 0.95. The following values are shown. Therefore, a preset value is determined between 1.0 and 0.95, and when it is larger than the preset value, it is determined that the solder ball is well bonded, and when it is small, it is determined as a poorly bonded solder ball.

前記の良否判定から接合良好製品と判定された製品は接合良好製品箇所へ、また接合不良製品と判定された製品は接合不良製品箇所へ排出される。 A product determined as a well-bonded product from the good / bad determination described above is discharged to a well-bonded product location, and a product determined to be a poorly bonded product is discharged to a poorly bonded product location.

以上説明したように、本発明のはんだボールの半導体製品基板への接合状態検査方法及びその検査システムにおいては、はんだボール搭載基板面を加熱手段で加熱し、加熱されたはんだボール搭載基板面を冷却手段で冷却する前にはんだボール搭載基板面に着脱自在に被覆される耐熱性薄膜を含む着脱式赤外線高放射生成手段による操作を行うので、はんだボールの赤外線エネルギー量によるエネルギー分布画像によるはんだボールの接合部の良否判定を高精度におこなえるとともに、塗料の塗布の際の検査終了後の剥離作業等を伴うことなく、検査効率を向上させることができる。 As described above, in the method for inspecting the bonding state of a solder ball to a semiconductor product substrate and the inspection system thereof according to the present invention, the surface of the solder ball mounted substrate is heated by the heating means, and the heated solder ball mounted substrate surface is cooled. Since the operation is performed by the detachable infrared high radiation generation means including the heat-resistant thin film that is detachably coated on the surface of the solder ball mounting board before cooling by means, the solder ball of the solder ball by the energy distribution image by the amount of infrared energy of the solder ball is used. It is possible to determine the quality of the bonded portion with high accuracy and to improve the inspection efficiency without accompanying a peeling work after the inspection at the time of applying the paint.

はんだボール搭載面においてボールのはんだ部の接合状態が良好なものと不良のものとを隣接位置に1対配置したものを3組形成した試料製品を用意し、これを上記の基台装置40の凹部48にセットし、熱風を当てて加熱後、圧縮空気を当てて冷却しながら、赤外線カメラにより耐熱性薄膜を被覆しない鏡面状態の場合と、耐熱性薄膜を被覆密着させた状態の場合のそれぞれについて、良品、不良品それぞれの3組の試料はんだボール上温度と、基板上の温度を冷却開始から冷却後について温度変化を計測した。図12〜図14は試料製品について耐熱性薄膜を使用しない鏡面状の表面を有する状態で行った比較例計測値グラフ、並びに図15〜図17は、耐熱性薄膜をはんだボール搭載面に被覆し、負圧吸着によりはんだボール搭載面上全体に耐熱性薄膜を被着させた状態で行った実施例計測値グラフを示す。 A sample product is prepared by forming three sets of a solder ball mounting surface in which a pair of ball solder portions having a good bonding state and a defective one are arranged at adjacent positions, and this is used for the base device 40 described above. Set in the concave portion 48, heated with hot air, heated with compressed air, cooled, and in a mirror state where the heat-resistant thin film is not coated with an infrared camera, and in a state where the heat-resistant thin film is coated and adhered, respectively The temperature change was measured after cooling the temperature on the sample solder ball and the temperature on the substrate for each of the three sets of good products and defective products. FIGS. 12 to 14 are comparative example measurement value graphs performed on a sample product in a state having a mirror-like surface that does not use a heat-resistant thin film, and FIGS. 15 to 17 illustrate a case where the solder ball mounting surface is coated with the heat-resistant thin film. The measurement value graph of the Example performed in the state which made the heat resistant thin film adhere to the whole solder ball mounting surface by negative pressure adsorption | suction is shown.

[計測機器]
加熱時の熱風発生器の仕様
加熱温度:吹出口から120℃以上の熱風を発生させ加熱させることができる機能を有し、被検体表面を5秒以内で80℃以上に熱することができる機能を有する。定格流量:100L/分。口径・距離:被検体全体を偏りなく加熱できる口径・距離を有する。吹出口から被検体までの距離は4cm程度に設定した。
冷却時の冷却機器の仕様
圧力:0.5MPa以上の圧力を維持することができるコンプレッサで、外気をそのまま圧縮した空気を冷却に使用した。吹出口:赤外線カメラ視野範囲を一度に冷却できる形状のもので、赤外線カメラ視野内で冷却の偏りができない程度まで離した位置に設定して行った。被検体からの距離は1cm程度に設定した。
赤外線カメラ
検出波長:8〜14μm
検出温度範囲:少なくとも20〜150℃を検出可能なものを用いた。
設置条件:被検体からレンズまで5.6cm(固定)、視野範囲、256(縦)×324(横)、空間分解能が少なくとも0.1mm(1画素あたり)のものを用いた。
被検体試料製品は、ボール数400個程度の製品を用い、赤外線カメラの1視野に収まるものを対象としている。
[計測手順]
吹出口温度120℃で5秒間、被検体表面から熱風吹き付け加熱を行い、耐熱性薄膜を被覆させて冷却、計測位置まで搬送し、減圧ポンプを駆動させて耐熱性薄膜を吸引密着させた状態で圧力が一定値以下になったら、吸引をし続けたままの状態で温度計測を行った。比較例は0.6秒間、実施例は0.4秒間冷却し、冷却終了後所要時間にわたって冷却開始からの時間帯で3個のボールと、基板全体についてそれぞれの温度計測を行った。
[グラフによる評価]
この実施例で接合良品ボールの検出温度が概して不良品ボールのそれより高く現れている。図12〜図14の比較例計測値では、検出による温度領域が32℃〜36℃程度であるのに対し、実施例計測値では、68℃〜78℃程度の領域で検出しており、赤外線エネルギーレベルと表面温度との相関より、耐熱性薄膜使用による場合に大きな赤外線放射率向上があったことが分かる。図12〜図14の比較例試料製品では、良品ボールと不良品ボールの検出温度差の変化が大きく、大きなバラツキがあったり、誤測定と想定される温度の反転状態が見られる部分が存在するのに対し、図15〜図17の実施例試料製品では良品ボールと不良品ボールの検出温度差は極めて緩やかな変化となって、ほぼ一定差で推移している。これによって、検出温度領域が高くなることも相まって、接合良、不良検出分解能が向上し、高精度に良否判定を行えることが理解される。すなわち、はんだボール搭載製品のボール搭載面を加熱直後に冷却する際に、加熱後に実施例のように、耐熱性薄膜を被着させた状態で冷却しその際のボール搭載面側の温度変化を検出することにより、その検出データを基にして所要の基準値を設定し、それとの比較によりボール接合部分の良否を高精度に判定する。複数のはんだボール搭載製品の判定処理を行う場合には、上記の実施形態の加熱工程、耐熱性薄膜の着脱工程、冷却工程、検出工程について各装置を並列配置させて、工程を進めるように同時に移動させるようにすることができる。
[Measuring equipment]
Specification heating temperature of the hot air generator at the time of heating: a function capable of generating and heating hot air of 120 ° C. or higher from the outlet, and a function of heating the subject surface to 80 ° C. or higher within 5 seconds Have Rated flow: 100 L / min. Aperture / distance: A bore / distance that can heat the entire subject without bias. The distance from the outlet to the subject was set to about 4 cm.
Specification pressure of cooling device during cooling: A compressor capable of maintaining a pressure of 0.5 MPa or more, and air compressed as it was was used for cooling. Air outlet: The shape of the infrared camera field of view can be cooled at a time, and it was set at a position separated to the extent that the cooling bias could not be biased within the infrared camera field of view. The distance from the subject was set to about 1 cm.
Infrared camera detection wavelength: 8-14 μm
Detection temperature range: The one capable of detecting at least 20 to 150 ° C was used.
Installation conditions: 5.6 cm (fixed) from subject to lens, visual field range, 256 (vertical) × 324 (horizontal), and spatial resolution of at least 0.1 mm (per pixel) were used.
The subject sample product is a product with about 400 balls and is intended to fit within one field of view of an infrared camera.
[Measurement procedure]
In a state in which hot air blowing is heated from the surface of the subject for 5 seconds at the outlet temperature of 120 ° C., the heat resistant thin film is coated, cooled, transported to the measurement position, and the vacuum pump is driven to bring the heat resistant thin film into close contact. When the pressure fell below a certain value, the temperature was measured while the suction was continued. The comparative example was cooled for 0.6 seconds, the example was cooled for 0.4 seconds, and the temperature was measured for each of the three balls and the entire substrate in the time zone from the start of cooling over the required time after the end of cooling.
[Evaluation by graph]
In this embodiment, the detected temperature of the bonded good balls is generally higher than that of the defective balls. In the measurement values of the comparative examples in FIGS. 12 to 14, the temperature range by detection is about 32 ° C. to 36 ° C., whereas in the measurement values of the examples, the detection is in the region of about 68 ° C. to 78 ° C. From the correlation between the energy level and the surface temperature, it can be seen that there was a significant improvement in infrared emissivity when the heat-resistant thin film was used. In the sample products of the comparative examples in FIGS. 12 to 14, there is a large change in the detected temperature difference between the non-defective balls and the defective balls, and there is a portion where there is a large variation or a temperature inversion state that is assumed to be an erroneous measurement. On the other hand, in the sample products of the examples of FIGS. 15 to 17, the detected temperature difference between the non-defective balls and the defective balls becomes a very gradual change and changes with a substantially constant difference. As a result, it is understood that, in combination with the detection temperature region becoming higher, the bonding quality and defect detection resolution are improved, and the quality determination can be performed with high accuracy. That is, when the ball mounting surface of a solder ball mounting product is cooled immediately after heating, the temperature is changed on the ball mounting surface side at that time by cooling with the heat-resistant thin film applied as in the embodiment after heating. By detecting, a required reference value is set based on the detected data, and the quality of the ball joint portion is determined with high accuracy by comparison with the reference value. When performing determination processing for a plurality of solder ball mounted products, the devices are arranged in parallel for the heating process, the heat-resistant thin film attachment / detachment process, the cooling process, and the detection process of the above-described embodiment, and the process proceeds simultaneously. It can be made to move.

本発明の1実施形態に係るはんだボールの半導体製品基板への接合状態検査システムの全体構成説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall configuration explanatory diagram of a bonding state inspection system for solder balls to a semiconductor product substrate according to an embodiment of the present invention. 図1の基台装置の縦断面説明図である。It is a longitudinal cross-sectional explanatory drawing of the base apparatus of FIG. 図2の基台装置の要部の拡大縦断面説明図である。FIG. 3 is an enlarged vertical cross-sectional explanatory view of a main part of the base device of FIG. 2. 図3の基台装置の凹部の拡大斜視説明図である。FIG. 4 is an enlarged perspective view of a recess of the base device of FIG. 3. 図3の基台装置の台本体の平面説明図である。It is a plane explanatory view of the base body of the base device of FIG. (a)、(b)は、凹部に載置した製品基板上に耐熱性薄膜を被覆して負圧吸引する際の作用説明図である。(A), (b) is operation | movement explanatory drawing at the time of coating | covering a heat resistant thin film on the product board | substrate mounted in the recessed part, and attracting | sucking a negative pressure. 熱エネルギーの移動を示す作用説明図である。It is effect | action explanatory drawing which shows the movement of a thermal energy. 熱エネルギーの移動を示す作用説明図である。It is effect | action explanatory drawing which shows the movement of a thermal energy. 良否判定の手順を示したフローチャート図である。It is the flowchart figure which showed the procedure of quality determination. 冷却終了時の無次元化温度を例示した図である。It is the figure which illustrated the dimensionless temperature at the time of completion | finish of cooling. 冷却直前と冷却終了時の無次元化温度差を例示した図である。It is the figure which illustrated the dimensionless temperature difference just before cooling and the time of completion | finish of cooling. 耐熱性薄膜を使用しない鏡面状の表面を有する状態で行った比較例計測値グラフ図である。It is a comparative example measured value graph which was performed in the state which has the mirror-like surface which does not use a heat resistant thin film. 耐熱性薄膜を使用しない鏡面状の表面を有する状態で行った比較例計測値グラフ図である。It is a comparative example measured value graph which was performed in the state which has the mirror-like surface which does not use a heat resistant thin film. 耐熱性薄膜を使用しない鏡面状の表面を有する状態で行った比較例計測値グラフ図である。It is a comparative example measured value graph which was performed in the state which has the mirror-like surface which does not use a heat resistant thin film. 耐熱性薄膜をはんだボール搭載面に被覆し、負圧吸着によりはんだボール搭載面上全体に耐熱性薄膜を被着させた状態で行った実施例計測値グラフ図である。It is the Example measured value graph which carried out in the state which coat | covered the heat resistant thin film on the solder ball mounting surface, and made the heat resistant thin film adhere to the whole solder ball mounting surface by negative pressure adsorption. 耐熱性薄膜をはんだボール搭載面に被覆し、負圧吸着によりはんだボール搭載面上全体に耐熱性薄膜を被着させた状態で行った実施例計測値グラフ図である。It is the Example measured value graph which carried out in the state which coat | covered the heat resistant thin film on the solder ball mounting surface, and made the heat resistant thin film adhere to the whole solder ball mounting surface by negative pressure adsorption. 耐熱性薄膜をはんだボール搭載面に被覆し、負圧吸着によりはんだボール搭載面上全体に耐熱性薄膜を被着させた状態で行った実施例計測値グラフ図である。It is the Example measured value graph which carried out in the state which coat | covered the heat resistant thin film on the solder ball mounting surface, and made the heat resistant thin film adhere to the whole solder ball mounting surface by negative pressure adsorption.

10 はんだボールの半導体製品基板への接合状態検査システム
12 加熱装置
13 着脱式赤外線高放射生成装置
14 冷却装置
16 検出装置
18 制御判定装置
22 検査対象製品
22A 製品基板
24 はんだボール
241 接合良好はんだボール
243 接合不良はんだボール
32 制御装置
34 ディスプレイ装置
36 着脱式赤外線高放射生成装置
38 耐熱性薄膜
40 基台装置
42 負圧吸引装置
46 台本体
48 凹部
50 環状パッキン
52 基台内吸引経路
54 隙間
H はんだボール搭載面
G 耐熱性薄膜と各はんだボールとの間の空隙
DESCRIPTION OF SYMBOLS 10 Joining state inspection system of solder ball to semiconductor product substrate 12 Heating device 13 Detachable infrared high radiation generator 14 Cooling device 16 Detection device 18 Control judgment device 22 Product to be inspected 22A Product substrate 24 Solder ball 241 Solder ball 243 with good bonding Solder balls with poor bonding 32 Control device 34 Display device 36 Detachable infrared high radiation generator 38 Heat resistant thin film 40 Base device 42 Negative pressure suction device 46 Base body 48 Recess 50 Ring packing 52 Intra-base suction path 54 Clearance H Solder ball Mounting surface G Gap between heat-resistant thin film and each solder ball

Claims (8)

半導体製品基板に形成されたはんだボールの製品基板への接合状態検査方法であり、
はんだボール搭載基板面を加熱する加熱工程と、
加熱されたはんだボール搭載基板面を冷却する冷却工程と、
冷却中のはんだボール及びはんだボール近傍の基板上の赤外線を検出する検出工程と、
検出した赤外線量に基づく熱エネルギー分布データによりはんだボールの基板への接合状態の良否を判定する良否判定工程と、を含み、
加熱工程においてはんだボール搭載基板面を加熱後、冷却工程に移行する前に、伸縮性を有する合成樹脂又は合成ゴム製の耐熱性薄膜でありその表面粗さが(耐熱性薄膜表面粗さ>はんだボール表面粗さ)である耐熱性薄膜からなる赤外線高放射率媒体をはんだボール搭載基板面に着脱自在に被覆し負圧圧着させる工程を備えたことを特徴とするはんだボールの半導体製品基板への接合状態検査方法。
A method for inspecting the bonding state of a solder ball formed on a semiconductor product substrate to the product substrate,
A heating process for heating the solder ball mounting substrate surface;
A cooling step for cooling the heated solder ball mounting substrate surface;
A detection step of detecting infrared rays on the solder ball being cooled and the substrate in the vicinity of the solder ball;
A pass / fail judgment step for judging pass / fail of the bonding state of the solder balls to the substrate by thermal energy distribution data based on the detected amount of infrared rays,
After heating the solder ball mounting substrate surface in the heating process and before moving to the cooling process, it is a heat-resistant thin film made of a synthetic resin or synthetic rubber having elasticity, and its surface roughness is (heat-resistant thin film surface roughness> solder A solder ball having a process of detachably coating a solder ball mounting substrate surface with an infrared high emissivity medium comprising a heat resistant thin film having a ball surface roughness) to a semiconductor product substrate Bonding state inspection method.
半導体製品基板に形成されたはんだボールの製品基板への接合状態検査システムであり、
はんだボール搭載基板面を加熱する加熱手段と、
加熱されたはんだボール搭載基板面を冷却する冷却手段と、
冷却中のはんだボール及びはんだボール近傍の基板上の赤外線を検出する検出手段と、
検出した赤外線量に基づく熱エネルギー分布データによりはんだボールの基板への接合状態の良否を判定する良否判定手段と、
加熱工程においてはんだボール搭載基板面を加熱後、冷却させる前に、伸縮性を有する合成樹脂又は合成ゴム製の耐熱性薄膜でありその表面粗さが(耐熱性薄膜表面粗さ>はんだボール表面粗さ)である耐熱性薄膜からなり、はんだボール搭載基板面に着脱自在に被覆される赤外線高放射率媒体と、を備えたことを特徴とするはんだボールの半導体製品基板への接合状態検査システム。
A system for inspecting the bonding state of a solder ball formed on a semiconductor product substrate to the product substrate,
Heating means for heating the solder ball mounting substrate surface;
Cooling means for cooling the heated solder ball mounting substrate surface;
Detection means for detecting infrared rays on a solder ball being cooled and a substrate in the vicinity of the solder ball;
A pass / fail judgment means for judging pass / fail of the bonding state of the solder balls to the substrate based on thermal energy distribution data based on the detected amount of infrared rays;
Before heating and cooling the solder ball mounting board surface in the heating process, it is a heat-resistant thin film made of synthetic resin or synthetic rubber having elasticity, and its surface roughness is (heat-resistant thin film surface roughness> solder ball surface roughness And an infrared high emissivity medium that is detachably coated on the surface of the solder ball mounting substrate, and a solder ball bonding state inspection system to the semiconductor product substrate.
はんだボール搭載基板を基台本体に保持した状態でその上から前記赤外線高放射率媒体を被覆し、その状態で、はんだボール搭載基板面の凹凸部分全体について負圧吸引手段により赤外線高放射率媒体を密着状に負圧圧着させる基台装置を有することを特徴とする請求項2記載のはんだボールの半導体製品基板への接合状態検査システム。 The solder ball mounting substrate to cover said infrared high emissivity medium thereon while holding the base body, in that state, the infrared high emissivity medium by negative pressure suction means for the entire uneven portion of the solder ball mounting substrate surface 3. A system for inspecting a bonding state of a solder ball to a semiconductor product substrate according to claim 2, further comprising a base device for negatively pressure-bonding the solder ball in a close contact state. 基台装置は、はんだボール搭載基板面全体を覆うように赤外線高放射率媒体を載置させた状態で基台本体とはんだボール搭載基板との間の隙間を介して負圧駆動源によりはんだボール搭載基板面の凹凸部分全体について赤外線高放射率媒体を密着状に負圧圧着させる基台内吸引経路を有することを特徴とする請求項2または3記載のはんだボールの半導体製品基板への接合状態検査システム。 The base device is a solder ball that is driven by a negative pressure drive source through a gap between the base body and the solder ball mounting substrate in a state where an infrared high emissivity medium is placed so as to cover the entire surface of the solder ball mounting substrate. 4. A bonding state of a solder ball to a semiconductor product substrate according to claim 2, further comprising: a suction path in the base for negatively pressure-bonding the infrared high emissivity medium in a close contact state with respect to the entire uneven portion of the mounting substrate surface. Inspection system. 基台内吸引経路は、赤外線高放射率媒体をはんだボール搭載基板面に載置させた状態で、該赤外線高放射率媒体とはんだボール搭載基板面との隙間に連通するように設けられていることを特徴とする請求項4記載のはんだボールの半導体製品基板への接合状態検査システム。 The suction passage base is in a state of being placed on the ball mounting substrate surface solder infrared high emissivity medium is provided so as to communicate with the gap between the solder ball mounting substrate surface with the infrared high emissivity medium The system for inspecting the bonding state of a solder ball to a semiconductor product substrate according to claim 4. 基台本体に半導体製品基板を保持させた状態ではんだボール搭載基板全体をその内側に収容させるように環状の気密部材を基台本体から上方に突設させたことを特徴とする請求項2ないし5のいずれかに記載のはんだボールの半導体製品基板への接合状態検査システム。   3. An annular hermetic member projecting upward from the base body so that the entire solder ball mounting board is accommodated inside the semiconductor product board while the base body is held on the base body. 6. A system for inspecting a bonding state of a solder ball according to any one of claims 5 to a semiconductor product substrate. 耐熱性薄膜の膜厚が0.02mm〜0.1mmであることを特徴とする請求項2ないし6のいずれかに記載のはんだボールの半導体製品基板への接合状態検査システム。   7. The system for inspecting the bonding state of a solder ball to a semiconductor product substrate according to claim 2, wherein the heat-resistant thin film has a thickness of 0.02 mm to 0.1 mm. 耐熱性薄膜が少なくとも90℃に耐えうる耐熱特性を有することを特徴とする請求項2ないし7のいずれかに記載のはんだボールの半導体製品基板への接合状態検査システム。
The system for inspecting the bonding state of a solder ball to a semiconductor product substrate according to any one of claims 2 to 7, wherein the heat-resistant thin film has a heat-resistant characteristic capable of withstanding at least 90 ° C.
JP2007308508A 2007-11-29 2007-11-29 Method for inspecting bonding state of solder ball to semiconductor product substrate and inspection system thereof Expired - Fee Related JP5103690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007308508A JP5103690B2 (en) 2007-11-29 2007-11-29 Method for inspecting bonding state of solder ball to semiconductor product substrate and inspection system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007308508A JP5103690B2 (en) 2007-11-29 2007-11-29 Method for inspecting bonding state of solder ball to semiconductor product substrate and inspection system thereof

Publications (2)

Publication Number Publication Date
JP2009135179A JP2009135179A (en) 2009-06-18
JP5103690B2 true JP5103690B2 (en) 2012-12-19

Family

ID=40866829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007308508A Expired - Fee Related JP5103690B2 (en) 2007-11-29 2007-11-29 Method for inspecting bonding state of solder ball to semiconductor product substrate and inspection system thereof

Country Status (1)

Country Link
JP (1) JP5103690B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185746A (en) * 2010-03-09 2011-09-22 Tatsumo Kk Method for inspecting printed circuit board, and inspection device used for it
CN117074423B (en) * 2023-10-16 2023-12-12 江苏图恩视觉科技有限公司 Film defect detection system and working method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3372924B2 (en) * 2000-03-17 2003-02-04 九州日本電気株式会社 Solder ball inspection apparatus and inspection method
JP3727276B2 (en) * 2002-02-26 2005-12-14 Necエレクトロニクス株式会社 Solder ball inspection apparatus and inspection method thereof
JP4863103B2 (en) * 2005-09-29 2012-01-25 株式会社九州ノゲデン Inspection method of solder ball joint state

Also Published As

Publication number Publication date
JP2009135179A (en) 2009-06-18

Similar Documents

Publication Publication Date Title
US8220991B2 (en) Electromagnetically heating a conductive medium in a composite aircraft component
US7553070B2 (en) Infrared NDI for detecting shallow irregularities
KR101149334B1 (en) An abnormality detecting apparatus for detecting abnormarlity at interface portion of contact arm, An electronic device testing apparatus and An electronic device testing system with the same, and An abnormality detecting method
US10492351B2 (en) Mounting apparatus and measuring method
JP4218037B2 (en) Detection device for defective part of specimen
US11780180B2 (en) Fiber composite laying device and fiber composite laying method for producing a fiber composite scrim for forming a fiber composite component
JP2018152376A (en) Die-bonding device and method of manufacturing semiconductor device
US10854779B2 (en) Micro-LED transfer method and manufacturing method
JP5103690B2 (en) Method for inspecting bonding state of solder ball to semiconductor product substrate and inspection system thereof
JP2016197099A (en) System and method to monitor thermal environment of composite structure using thermochromatic witness assembly
CN113252723A (en) Thermal imaging detection system
US7790499B2 (en) Observation apparatus and method for observing void in underfill resin
JP5781822B2 (en) Adhesive application state inspection method
JP2013076688A (en) Solder ball inspection device
JP2009079985A (en) Method and apparatus for testing adhesion strength of film and manufacturing method of product
KR101748029B1 (en) System for monitoring breakage of glass substrate
KR200478917Y1 (en) Take-out robot with mold temperature measuring unit
JP5333817B2 (en) Infrared inspection method for defective part of specimen
JP2008187085A (en) Inspecting device and inspecting method for substrate for temperature monitoring
JP2003347385A (en) Device and method for inspecting state of surface of wafer
JP3275796B2 (en) Manufacturing equipment for resin-coated steel
JP2009244144A5 (en)
JPH0499046A (en) Detection of bubble and device therefor
KR101461072B1 (en) Infrared thermography system and method for adhesive surface of wind blade
JP4863103B2 (en) Inspection method of solder ball joint state

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120915

R150 Certificate of patent or registration of utility model

Ref document number: 5103690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees