JPH0499046A - Detection of bubble and device therefor - Google Patents

Detection of bubble and device therefor

Info

Publication number
JPH0499046A
JPH0499046A JP2207873A JP20787390A JPH0499046A JP H0499046 A JPH0499046 A JP H0499046A JP 2207873 A JP2207873 A JP 2207873A JP 20787390 A JP20787390 A JP 20787390A JP H0499046 A JPH0499046 A JP H0499046A
Authority
JP
Japan
Prior art keywords
sample
infrared camera
bubbles
temperature
bubble detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2207873A
Other languages
Japanese (ja)
Other versions
JP3006051B2 (en
Inventor
Kimitoku Yoshida
公徳 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20787390A priority Critical patent/JP3006051B2/en
Publication of JPH0499046A publication Critical patent/JPH0499046A/en
Application granted granted Critical
Publication of JP3006051B2 publication Critical patent/JP3006051B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To carry out an inspection of bubbles in an adhesion layer in a non- destructive manner, accurately and simply by a method wherein a sample is heated, the state of rise of the surface temperature of the sample is observed by an infrared camera and the bubbles in the adhesion layer are detected. CONSTITUTION:A heater block 11 is moved to a position isolated completely from a sample support base 9 and a current is applied to the block 11 by a control device 12 to heat sufficiently the block 11. A sample 8 is fixed on the base 11 during this heating. After that, the block 11 is moved to the position directly under the base 9 and the base 11 and the sample 8 are heated. A process that the sample 8 is heated and the temperature of the sample 8 rises is photographed by an infrared camera 14 and temperature differences in the interior of the sample are classified by colors and projected by a monitor 17. The whole surface of the sample 8 is projected on the screen of the monitor 17 and as the rate of temperature rise of bubbles 5 generated in the polyimide bonding agent 3 of the sample 8 is low compared to that of the layer of the agent 3, an operator can immediately decide the bubble parts by a change in the colors seeing the screen of the monitor. In case the fine bubble parts are inspected, the bubble parts are enlarged and can be seen by moving a microscope to the lower part of the camera 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Si基板上に形成された半導体デバイス面上
に薄膜化した半導体デバイスを接着する場合、接着層に
発生する気泡を検出する気泡検出方法およびその装置に
関する。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a method for detecting air bubbles generated in an adhesive layer when a thin semiconductor device is bonded onto a semiconductor device surface formed on a Si substrate. The present invention relates to a detection method and device.

〔従来の技術〕[Conventional technology]

SOIを用いた二次元回路素子の試作が頻繁に行われて
いる。この三次元回路素子の製造工程は、■St基板へ
の半導体デバイスの形成、■半導体デバイスの薄膜化、
■裏面処理、■半導体デバイスの張り合わせ積層などが
ある。この内、■の半導体デバイスの張り合わせ積層工
程では、第3図に示すように、Si基板1上に形成され
た半導体デバイス2の上面にポリイミド接着剤3を塗布
し、別の薄膜化した半導体デバイス4を接着しているが
、その際、接着層に気泡5を発生することがある。
Prototyping of two-dimensional circuit elements using SOI is frequently performed. The manufacturing process of this three-dimensional circuit element consists of: ■ forming a semiconductor device on an St substrate; ■ thinning the semiconductor device;
■Backside processing, ■Lamination of semiconductor devices, etc. Among these, in the semiconductor device bonding and laminating process (3), as shown in FIG. 4, but at that time, air bubbles 5 may be generated in the adhesive layer.

この気泡は、■薄膜化した半導体デバイスの機械的強度
が低下する、■気泡部分の半導体デバイスの特性が低下
する、■半導体デバイスを薄膜化するための平坦研摩が
困龍となるなどの問題を生ずる原因となり、張り合わせ
後の試料の良否判定検査が必要である。
These bubbles cause problems such as: 1) the mechanical strength of the thinned semiconductor device decreases, 2) the characteristics of the semiconductor device in the bubble area deteriorate, and 2) flat polishing to thin the semiconductor device becomes difficult. Therefore, it is necessary to inspect the sample after lamination to determine its quality.

従来、この検査は、接着積層された半導体デバイスの試
料を作業者が目視で観察し、気泡が発生していると思わ
れる試料を選別し、これを切断して接着層の気泡検査を
行っていた。
Conventionally, this inspection involves an operator visually observing a sample of semiconductor devices that have been laminated with adhesive, selecting samples that appear to have air bubbles, and then cutting the sample to inspect the bubbles in the adhesive layer. Ta.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来の検査は目視により行っているため
、検査に個人差があり品質が安定せず、歩留まりが低下
する問題点があった。また、半導体デバイスを切断する
ため、検査の能率が悪いなどの問題点があった。
However, since conventional inspections are performed visually, there are problems in that inspections vary from person to person, resulting in unstable quality and reduced yield. Furthermore, since the semiconductor device is cut, there are problems such as poor inspection efficiency.

本発明の目的は、上記問題点を除去し、接着層の気泡検
査を非破壊で正確かつ、簡単に行える気泡検出方法およ
び検出装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned problems and provide a bubble detection method and a detection device that allow bubble inspection of an adhesive layer to be performed non-destructively, accurately, and simply.

〔課題を解決するための手段〕 上記目的を達成するため、本発明に係る気泡検出方法に
おいては、多層半導体デバイス構造試料の接着層に発生
ずる気泡を検出する気泡検出方法であって、 前記試料を加熱し、該試料の表面温度上昇状態を赤外線
カメラで観察することにより、前記接着層中の気泡を検
出するものである。
[Means for Solving the Problems] In order to achieve the above object, a bubble detection method according to the present invention is a bubble detection method for detecting bubbles generated in an adhesive layer of a multilayer semiconductor device structure sample, the method comprising: The bubbles in the adhesive layer are detected by heating the sample and observing the rise in surface temperature of the sample using an infrared camera.

また、本発明に係る気泡検出装置においては、加熱手段
と、赤外線カメラ装置とを有し、多層半導体デバイス構
造試料の接着層に発生する気泡を検出する気泡検出装置
であって、 加熱手段は、前記試料を加熱するものであり、赤外線カ
メラ装置は、加熱された前記試料の表面温度上昇状態を
画像化し、前記接着層中の気泡を検出するものであり、 また前記加熱手段は、試料加熱用の発熱面を均一な温度
分布にする耐熱カーボン塗料を有するものである。
Further, the bubble detection device according to the present invention includes a heating means and an infrared camera device, and detects bubbles generated in an adhesive layer of a multilayer semiconductor device structure sample, the heating means comprising: The infrared camera device is for heating the sample, the infrared camera device is for imaging the surface temperature increase state of the heated sample and detecting air bubbles in the adhesive layer, and the heating means is for heating the sample. The heat-resistant carbon coating provides a uniform temperature distribution on the heat-generating surface.

〔作用〕[Effect]

張り合わせた半導体デバイス試料を加熱すれば、気泡部
分と、接着剤層部分とでは、試料表面に温度むらが生じ
るため、それを赤外線カメラで観察測定することにより
気泡の発生部分を容易に検出できる。さらに、耐熱カー
ボン塗料を塗布することにより加熱温度のむらを解消で
きる。
When a bonded semiconductor device sample is heated, temperature unevenness occurs on the sample surface between the bubble portion and the adhesive layer portion, so by observing and measuring this with an infrared camera, the portion where bubbles are generated can be easily detected. Furthermore, by applying a heat-resistant carbon paint, uneven heating temperature can be eliminated.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明の気泡検出装置に用いる3層半導体デバ
イス梢造を示す断面図である。
FIG. 3 is a sectional view showing a three-layer semiconductor device structure used in the bubble detection device of the present invention.

図に示すように、本発明の気泡検出装置に用いる試料8
としての3層半導体デバイス構造は、81基板1上に形
成した半導体デバイス2の上面に、薄膜状に平坦研磨し
た半導体デバイス4をポリイミド接着剤3にて接着した
構造となっている。この際、ポリイミド接着剤3中には
、気泡5が発生することがある。
As shown in the figure, sample 8 used in the bubble detection device of the present invention
The three-layer semiconductor device structure is such that a semiconductor device 4 which has been flattened into a thin film is adhered to the upper surface of a semiconductor device 2 formed on an 81 substrate 1 using a polyimide adhesive 3. At this time, bubbles 5 may be generated in the polyimide adhesive 3.

第1図は本発明の気泡検出装置の実施例の構成を示す斜
視図である。
FIG. 1 is a perspective view showing the structure of an embodiment of the bubble detection device of the present invention.

図において、試料8は、試料支持台9の上面に設置され
ている。試料支持台9は、基盤10に支柱を介して固定
されている。試料支持台9の下面には、ヒーターを鋳込
んだヒーターブロック11が試料支持台9の真下位置か
ら試料支持台9より完全に離れる位置まで移動可能に基
mioに設置されている。ヒーターブロック11には、
ヒーターの温度を制御する制御装置12が接続されてい
る。試料8の真上位置で、上下移動可能に設置されたア
ーム13の先端は、赤外線カメラ14が固定されている
In the figure, a sample 8 is placed on the top surface of a sample support stand 9. The sample support stand 9 is fixed to a base 10 via supports. A heater block 11 in which a heater is cast is installed on the lower surface of the sample support stand 9 so as to be movable from a position directly below the sample support stand 9 to a position completely away from the sample support stand 9. In the heater block 11,
A control device 12 is connected to control the temperature of the heater. An infrared camera 14 is fixed to the tip of an arm 13 that is vertically movable and installed directly above the sample 8 .

赤外線カメラ14は、試f18の全面が視野に入る位置
に設置されている。赤外線カメラ14の下部には左右に
移動可能に顕微fi1sが設置されている。さらに、赤
外線カメラ14には、画像処理装置16と画像を映し出
すモニタ17とが接続されている。
The infrared camera 14 is installed at a position where the entire surface of the test F18 can be seen. A microscope fi1s is installed at the bottom of the infrared camera 14 so as to be movable left and right. Furthermore, an image processing device 16 and a monitor 17 for displaying images are connected to the infrared camera 14.

次に、気泡検出方法について述べる。Next, a bubble detection method will be described.

先に説明した気泡検出装置を用い、まず、ヒーターブロ
ック11を試料支持台9より完全に離れた位置に移動し
、制御装置12によりヒーターブロック11に通電して
ヒーターブロック11を十分に加熱(実施例では約15
0℃)する、この加熱している間に、試料支持台11に
試料8を固定する。ヒーターブロック11が所定の温度
に加熱された後、試料支持台9の真下位置に移動し、試
料支持台11と試料8とを加熱する。試料8が加熱され
試料8の温度が上昇する過程を赤外線カメラ14で捉え
、モニター17で温度差を色分けして映す、モニター1
1の画面では、試料8の表面全体が映し出され、試料8
のポリイミド接着剤3に発生した気泡5はポリイミド接
着剤3の層に比べ温度の上昇率が低いため、作業者は、
モニター17の画面を見て色の変化によりすぐに気泡部
を判断できる。微小な気泡部を検査する場合は顕微鏡1
5を赤外線カメラ14の下部に移動すれば、気泡部を拡
大して見ることができる。つまり、赤外線カメラで試料
全体をマクロに観察測定し、顕微鏡を用いて気泡部を個
々にミクロ(本実施例では気泡直径φ0.1まで)に観
察測定する。試料の温度上昇時に観察測定できる時間は
約3分である。
Using the bubble detection device described above, first move the heater block 11 to a position completely away from the sample support 9, and then apply electricity to the heater block 11 using the control device 12 to sufficiently heat the heater block 11 (implementation). In the example, about 15
During this heating, the sample 8 is fixed on the sample support stand 11. After the heater block 11 is heated to a predetermined temperature, it moves to a position directly below the sample support stand 9 and heats the sample support stand 11 and the sample 8. A monitor 1 captures the process in which the sample 8 is heated and the temperature of the sample 8 increases with an infrared camera 14, and displays the temperature difference in color on a monitor 17.
On screen 1, the entire surface of sample 8 is displayed, and sample 8
The air bubbles 5 generated in the polyimide adhesive 3 have a lower rate of temperature rise than the layer of the polyimide adhesive 3, so the operator should:
By looking at the screen of the monitor 17, the bubble portion can be immediately determined by the change in color. Microscope 1 when inspecting minute bubbles
5 to the lower part of the infrared camera 14, the bubble can be enlarged and viewed. That is, the entire sample is macroscopically observed and measured using an infrared camera, and each bubble portion is individually microscopically observed (in this example, the bubble diameter is up to φ0.1) using a microscope. The time during which observation and measurement can be performed when the temperature of the sample increases is approximately 3 minutes.

第2図は本発明の気泡検出装置の実施例の構成を示す図
で第1図の一部断面図である。
FIG. 2 is a diagram showing the configuration of an embodiment of the bubble detection device of the present invention, and is a partial sectional view of FIG. 1.

第2図により本発明の気泡検出装置で重要となる試料加
熱用の発熱面を均一な温度分布にするための方法につい
て説明する。試料支持台9の上面と赤外線カメラ14を
支持固定しているアーム13の下面及び側面に耐熱(約
400℃)カーボン塗料18を塗布している。
With reference to FIG. 2, a method for providing a uniform temperature distribution on the heating surface for heating a sample, which is important in the bubble detection device of the present invention, will be explained. A heat-resistant (approximately 400° C.) carbon paint 18 is applied to the upper surface of the sample support stand 9 and the lower and side surfaces of the arm 13 that supports and fixes the infrared camera 14.

つまり、放射エネルギQの計算式Q=ε・σ・T’  
(εは材料放射率、σは係数、Tは温度)からも立証で
きるように、温度が一定であれば材料の放射率により放
射エネルギが異なる。逆にいえば放射エネルギの多い材
料は、エネルギの吸収も良い、例えば、材料放射率はア
ルミニウム材料のように表面が白色で光沢のあるものは
0.1と低く、カーボンのように表面がざらつき光沢が
無いものは1で高い、本実施例では試料支持台9及びカ
メラ支持アーム13にアルミニウム材料を地肌のまま用
いた場合、矢印Aのように試料8から出た熱がアーム1
3の表面で反射して、再び試料8に戻り輻射熱となるた
め、試料支持台9の表面温度分布は60℃程度の温度む
らがあった。さらに、試料支持台9の表面もアルミニウ
ム材料の地肌に光沢むらがあるため温度むらが現れた0
次に、試料支持台9の上面及び側面とカメラ支持アーム
13の下面及び側面に耐熱カーボン塗料18を塗布した
場合、アーム13から反射する輻射熱が無くなった。t
た、試料支持台9も光沢むらが無いなめ、試料支持台9
の表面温度分布を3℃以下にすることができた。
In other words, the calculation formula for radiant energy Q is Q=ε・σ・T'
As can be proven from (ε is the emissivity of the material, σ is the coefficient, and T is the temperature), if the temperature is constant, the radiant energy varies depending on the emissivity of the material. Conversely, materials with a lot of radiant energy also absorb energy well. For example, materials with a white and glossy surface like aluminum have a low emissivity of 0.1, while materials with a rough surface like carbon have a low emissivity of 0.1. If the sample support stand 9 and the camera support arm 13 are made of aluminum material as is, the heat emitted from the sample 8 will be transferred to the arm 1 as shown by arrow A.
3 and returned to the sample 8 as radiant heat, the surface temperature distribution of the sample support 9 had a temperature unevenness of about 60°C. Furthermore, the surface of the sample support stand 9 also has temperature unevenness due to the uneven gloss of the aluminum material.
Next, when the heat-resistant carbon paint 18 was applied to the top and side surfaces of the sample support stand 9 and the bottom and side surfaces of the camera support arm 13, the radiant heat reflected from the arm 13 disappeared. t
In addition, the sample support stand 9 also has no uneven gloss, so the sample support stand 9
It was possible to reduce the surface temperature distribution to 3°C or less.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、試料を加熱し、赤
外線カメラで観察測定するだけの簡単な装置により比較
的容易に、接着層の気泡を検出することができる。また
、検査作業者の個人差が無くなり、品質が安定し歩留ま
りを飛躍的に向上できる。さらに、試料支持台の温度む
らが無くなったため、気泡の検出精度を・向上できるな
どの効果がある。
As explained above, according to the present invention, bubbles in the adhesive layer can be detected relatively easily using a simple device that only heats a sample and observes and measures it with an infrared camera. Furthermore, individual differences among inspection workers are eliminated, quality is stabilized, and yield can be dramatically improved. Furthermore, since the temperature unevenness of the sample support is eliminated, the accuracy of bubble detection can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の気泡検出装置の実施例の構成を示す斜
視図、第2図は第1図の一部断面図、第3図は本発明の
気泡検出装置に用いる試料の構成を示す断面図である。 1・・・Si基板 3・・・ポリイミド接着剤 5・・・気泡 9・・・試料支持台 11・・・ヒーターブロック 13・・・アーム 15・・・顕rR鏡 11・・・モニター 2・・・半導体デバイス 4・・・半導体デバイス 8・・・試料 10・・・基盤 12・・・制御装置 14・・・赤外線カメラ 16・・・画像処理装置 18・・・耐熱カーボン塗料 第 図 第 図
Fig. 1 is a perspective view showing the configuration of an embodiment of the bubble detection device of the present invention, Fig. 2 is a partial sectional view of Fig. 1, and Fig. 3 shows the configuration of a sample used in the bubble detection device of the present invention. FIG. 1...Si substrate 3...Polyimide adhesive 5...Bubble 9...Sample support stand 11...Heater block 13...Arm 15...Microscope 11...Monitor 2... ...Semiconductor device 4...Semiconductor device 8...Sample 10...Base 12...Control device 14...Infrared camera 16...Image processing device 18...Heat-resistant carbon paint diagram

Claims (3)

【特許請求の範囲】[Claims] (1)多層半導体デバイス構造試料の接着層に発生する
気泡を検出する気泡検出方法であつて、前記試料を加熱
し、該試料の表面温度上昇状態を赤外線カメラで観察す
ることにより、前記接着層中の気泡を検出することを特
徴とする気泡検出方法。
(1) A bubble detection method for detecting air bubbles generated in an adhesive layer of a multilayer semiconductor device structure sample, the bubble detection method comprising heating the sample and observing an increase in surface temperature of the sample with an infrared camera. A bubble detection method characterized by detecting bubbles inside.
(2)加熱手段と、赤外線カメラ装置とを有し、多層半
導体デバイス構造試料の接着層に発生する気泡を検出す
る気泡検出装置であって、 加熱手段は、前記試料を加熱するものであり、赤外線カ
メラ装置は、加熱された前記試料の表面温度上昇状態を
画像化し、前記接着層中の気泡を検出するものであるこ
とを特徴とする気泡検出装置。
(2) A bubble detection device that includes a heating means and an infrared camera device and detects air bubbles generated in an adhesive layer of a multilayer semiconductor device structure sample, the heating means heating the sample; A bubble detection device characterized in that the infrared camera device images the state of increase in surface temperature of the heated sample and detects bubbles in the adhesive layer.
(3)前記加熱手段は、試料加熱用の発熱面を均一な温
度分布にする耐熱カーボン塗料を有するものであること
を特徴とする請求項第(2)項に記載の気泡検出装置。
(3) The bubble detection device according to claim 2, wherein the heating means includes a heat-resistant carbon paint that makes a heat-generating surface for heating the sample uniform in temperature distribution.
JP20787390A 1990-08-06 1990-08-06 Bubble detection method and device Expired - Fee Related JP3006051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20787390A JP3006051B2 (en) 1990-08-06 1990-08-06 Bubble detection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20787390A JP3006051B2 (en) 1990-08-06 1990-08-06 Bubble detection method and device

Publications (2)

Publication Number Publication Date
JPH0499046A true JPH0499046A (en) 1992-03-31
JP3006051B2 JP3006051B2 (en) 2000-02-07

Family

ID=16546966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20787390A Expired - Fee Related JP3006051B2 (en) 1990-08-06 1990-08-06 Bubble detection method and device

Country Status (1)

Country Link
JP (1) JP3006051B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19928547B4 (en) * 1998-06-26 2007-12-27 Denso Corp., Kariya Method for producing a pressure sensor
EP2335861A1 (en) * 2009-12-21 2011-06-22 C.R.F. Società Consortile per Azioni Method and apparatus for joining panels constituting components of motor-vehicle bodies, with quality control through thermographic detection of the entire extension of edges
JP2019102742A (en) * 2017-12-07 2019-06-24 三菱電機株式会社 Wafer inspection method
CN110676159A (en) * 2019-10-24 2020-01-10 武汉新芯集成电路制造有限公司 Wafer bonding method and device
CN116169058A (en) * 2022-12-30 2023-05-26 天通银厦新材料有限公司 8 inch sapphire substrate paster device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19928547B4 (en) * 1998-06-26 2007-12-27 Denso Corp., Kariya Method for producing a pressure sensor
EP2335861A1 (en) * 2009-12-21 2011-06-22 C.R.F. Società Consortile per Azioni Method and apparatus for joining panels constituting components of motor-vehicle bodies, with quality control through thermographic detection of the entire extension of edges
US8876995B2 (en) 2009-12-21 2014-11-04 C.R.F. Societa Consortile Per Azioni Method and apparatus for joining panels constituting components of motor-vehicle bodies, with quality control
JP2019102742A (en) * 2017-12-07 2019-06-24 三菱電機株式会社 Wafer inspection method
CN110676159A (en) * 2019-10-24 2020-01-10 武汉新芯集成电路制造有限公司 Wafer bonding method and device
CN116169058A (en) * 2022-12-30 2023-05-26 天通银厦新材料有限公司 8 inch sapphire substrate paster device

Also Published As

Publication number Publication date
JP3006051B2 (en) 2000-02-07

Similar Documents

Publication Publication Date Title
US5834661A (en) Method of detecting defects in materials using infrared thermography
EP1918698B1 (en) Systems and method for locating failure events in samples under load
US6000844A (en) Method and apparatus for the portable identification of material thickness and defects using spatially controlled heat application
US9905014B2 (en) Method and system for the examination of a sample by means of thermography
Hung et al. Review and comparison of shearography and pulsed thermography for adhesive bond evaluation
CA2346265A1 (en) Device for contactless testing of test bodies
KR100785420B1 (en) Denting inspecting apparatus
US20060227342A1 (en) Dual photo-acoustic and resistivity measurement system
JP3006051B2 (en) Bubble detection method and device
TWI295827B (en) A device and a method for automatically inspecting the surface quality of a wafer by measuring bonding speed
CN114216403B (en) Discontinuous deformation measurement method based on infrared and visible light double-light camera
JP2017078624A (en) Method and device for inspecting connectability of sample
US7170075B2 (en) Inspection tool with a 3D point sensor to develop a focus map
JP5103690B2 (en) Method for inspecting bonding state of solder ball to semiconductor product substrate and inspection system thereof
Novoselov et al. Real-time control of nonflatness of components of infrared-range flip-chip photodetectors
Maier et al. Measurement of paint coating thickness by thermal transient method
Poduje et al. Inspection of bonded interfaces using scanning infrared interferometry
JPS62126338A (en) Method for detecting flaw of ceramic coating
JPH0356847A (en) Nondestructive detecting method for interfacial defect of coating member
Furstenberg et al. Infrared microthermography of microfabricated devices
JP2022120524A (en) Inspection method and inspection device for adhesive application state
JPH0222547A (en) Coating damage detecting method for external surface coated hollow material
RU2187173C2 (en) Device for checking hidden interface between contacting surfaces (alternatives)
US20060165150A1 (en) Method and apparatus for examining heat pipe temperature using infrared thermography
JP2001004574A (en) Interface defect inspection method of coating member

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees