JP5103495B2 - Heating system - Google Patents

Heating system Download PDF

Info

Publication number
JP5103495B2
JP5103495B2 JP2010050786A JP2010050786A JP5103495B2 JP 5103495 B2 JP5103495 B2 JP 5103495B2 JP 2010050786 A JP2010050786 A JP 2010050786A JP 2010050786 A JP2010050786 A JP 2010050786A JP 5103495 B2 JP5103495 B2 JP 5103495B2
Authority
JP
Japan
Prior art keywords
pressure
hot water
heat exchanger
heating fluid
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010050786A
Other languages
Japanese (ja)
Other versions
JP2010159963A (en
Inventor
昭治 海原
Original Assignee
株式会社ミヤワキ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミヤワキ filed Critical 株式会社ミヤワキ
Priority to JP2010050786A priority Critical patent/JP5103495B2/en
Publication of JP2010159963A publication Critical patent/JP2010159963A/en
Application granted granted Critical
Publication of JP5103495B2 publication Critical patent/JP5103495B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Description

本発明は、例えば蒸気のような加熱流体を熱源として冷水を加熱することにより温水を生成するものであって、特に、90℃±10℃程度の高温の温水を必要とする用途に好適に適用できる加熱システムに関するものである。   The present invention generates hot water by heating cold water using a heating fluid such as steam as a heat source, and is particularly suitable for applications requiring high-temperature hot water of about 90 ° C. ± 10 ° C. It relates to a heating system that can be used.

従来、冷水を蒸気で加熱することにより温水を生成する、加熱システムの一種である給湯装置が知られている(特許文献1参照)。この給湯装置は、図6に示すように、熱交換器60によって蒸気のような加熱流体Sの熱で冷水Cを加熱することにより温水Mを生成するものであり、給水源WAからの冷水Cを冷水配管61によって前記熱交換器60に導き、加熱流体供給源VAからの加熱流体Sを加熱流体配管62によって前記熱交換器60に導き、熱交換器60で冷水Cと加熱流体Sとの間の熱交換により生成された温水Mを温水配管63から導出する。前記加熱流体配管62にはこれの内部を流動する加熱流体Sの通過量を調節する調節弁64が設けられ、前記温水配管63には熱交換器60の出口側近傍に温度センサ65が設けられている。   2. Description of the Related Art Conventionally, a hot water supply apparatus that is a type of heating system that generates hot water by heating cold water with steam is known (see Patent Document 1). As shown in FIG. 6, this hot water supply apparatus generates hot water M by heating cold water C with heat of a heating fluid S such as steam by a heat exchanger 60, and cold water C from a water supply source WA. Is led to the heat exchanger 60 by the cold water pipe 61, the heating fluid S from the heating fluid supply source VA is led to the heat exchanger 60 by the heating fluid pipe 62, and the cold water C and the heating fluid S are exchanged by the heat exchanger 60. The hot water M generated by the heat exchange between them is led out from the hot water pipe 63. The heating fluid pipe 62 is provided with a regulating valve 64 for adjusting the passing amount of the heating fluid S flowing inside, and the hot water pipe 63 is provided with a temperature sensor 65 in the vicinity of the outlet side of the heat exchanger 60. ing.

前記給湯装置では、給水源WAからの冷水Cと加熱流体供給源VAからの加熱流体Sとが熱交換器60で熱交換されることによって温水Mが生成され、この温水Mがカラン66の開弁により外部へ取り出される。前記熱交換器60を通った熱交換後の加熱流体Sは、復水(ドレン)として排出通路67から外部へ排出される。また、この給湯装置では、熱交換器60で生成した温水Mの温度を温度センサ65で感知し、その感知した温水Mの温度情報をフィードバック回路68により調節弁64へフィードバックして、温水Mの温度が高ければ調節弁64を絞ることにより熱交換器60への加熱流体Sの供給量を減少させ、逆に温水Mの温度が低ければ調節弁64を開くことにより加熱流体Sの供給量を増加させて、所定温度の温水Mを取り出すようになっている。   In the hot water supply device, hot water M is generated by heat exchange between the cold water C from the water supply source WA and the heating fluid S from the heating fluid supply source VA in the heat exchanger 60, and this hot water M is opened by the curan 66. It is taken out by the valve. The heated fluid S after the heat exchange that has passed through the heat exchanger 60 is discharged to the outside from the discharge passage 67 as condensate (drain). In this hot water supply apparatus, the temperature of the hot water M generated by the heat exchanger 60 is detected by the temperature sensor 65, and the temperature information of the detected hot water M is fed back to the control valve 64 by the feedback circuit 68. If the temperature is high, the supply amount of the heating fluid S to the heat exchanger 60 is decreased by restricting the adjustment valve 64. Conversely, if the temperature of the hot water M is low, the supply amount of the heating fluid S is reduced by opening the adjustment valve 64. It is made to increase and the hot water M of predetermined temperature is taken out.

特開2006−112719号公報JP 2006-127719 A

しかしながら、前記給湯装置では、温水Mの温度を感知して、その温度に基づき調節弁64の弁開度をフィードバック制御して加熱流体Sの熱交換器60への供給量を調節しているので、温度センサ65の応答性の遅れや、距離が離れた温度センサ65と調節弁64との間の温度情報の伝達遅れによる加熱流体Sの供給量変化に対する温水Mの温度変化の遅れなどに起因して、熱交換器60から導出される温水Mの温度が約50℃の温度変動幅で繰り返し変動することがあり、これにより、常に、設定給湯温度の温水Mを安定に生成するのが難しい。   However, in the hot water supply device, the temperature of the hot water M is sensed, and the amount of heating fluid S supplied to the heat exchanger 60 is adjusted by feedback control of the valve opening degree of the control valve 64 based on the temperature. Due to a delay in the response of the temperature sensor 65, a delay in the temperature change of the hot water M with respect to a change in the supply amount of the heating fluid S due to a delay in the transmission of temperature information between the temperature sensor 65 and the control valve 64 that are separated from each other Then, the temperature of the hot water M led out from the heat exchanger 60 may fluctuate repeatedly with a temperature fluctuation range of about 50 ° C., and thus it is difficult to always stably generate the hot water M at the set hot water temperature. .

ここで、カラン66の給湯口から取り出す温水Mの設定給湯温度を40〜70℃程度の比較的低い温度範囲に設定する場合には、上述のように熱交換器60からの温水Mの温度が約50℃の温度変動幅で変動する場合であっても、特に問題はない。つまり、熱交換器60からは、前記設定給湯温度(40〜70℃)よりも高い70〜120℃の温度範囲の温水Mを導出できるので、この温水Mに例えば冷水を混合して前記設定給湯温度40〜70℃の温水を得られるように調節することが可能である。   Here, when the set hot water temperature of the hot water M taken out from the hot water outlet of the currant 66 is set to a relatively low temperature range of about 40 to 70 ° C., the temperature of the hot water M from the heat exchanger 60 is set as described above. Even if the temperature fluctuates by about 50 ° C., there is no particular problem. That is, since the hot water M in a temperature range of 70 to 120 ° C. higher than the set hot water supply temperature (40 to 70 ° C.) can be derived from the heat exchanger 60, for example, cold water is mixed with the hot water M and the set hot water supply is used. It is possible to adjust so as to obtain hot water having a temperature of 40 to 70 ° C.

ところが、例えば殺菌や消毒などの用途に用いるために90℃±10℃程度の高い設定給湯温度の温水を得たい場合、前記給湯装置では、熱交換器60からの温水Mの温度が、上述したように約50℃の温度変動幅で変動して設定給湯温度の最低温度である80℃よりも低下することがあるので、常に設定給湯温度の範囲内の温水を安定に得ることができない。そこで、温度調節弁にて熱交換器60から100℃以上の高温の温水を導出するように設定することが考えられるが、その場合、熱交換器60からの温水の温度が100〜150℃の温度範囲内で変動することがある。   However, when it is desired to obtain hot water having a high set hot water temperature of about 90 ° C. ± 10 ° C. for use in applications such as sterilization and disinfection, for example, in the hot water supply device, the temperature of the hot water M from the heat exchanger 60 is as described above. As described above, there is a case where the temperature fluctuates with a temperature fluctuation range of about 50 ° C. and falls below 80 ° C. which is the minimum temperature of the set hot water supply temperature, so that hot water within the set hot water supply temperature range cannot always be obtained stably. Therefore, it is conceivable to set so that hot water having a temperature of 100 ° C. or higher is derived from the heat exchanger 60 by the temperature control valve. In this case, the temperature of the hot water from the heat exchanger 60 is 100 to 150 ° C. May vary within temperature range.

一方、給水源WAである水道水の圧力は、通常、0.2〜0.3MPa程度であるが、冷水Cの使用量が増大したときには、0.1MPa以下まで低下することがある。この場合、熱交換器60の液側(温水側)では、温度センサ65の応答性の遅れ等で温水Mが120℃まで上昇することにより、飽和圧力0.1MPaまで上昇し、冷水Cの圧力以上の圧力になるため、熱交換器60の液側に冷水Cが供給されなくなって、その熱交換器60の液側内の残留水(熱水)が加熱流体Sで加熱されて蒸気化され、熱交換器60内の圧力が過度に上昇する。このフラッシュ蒸気に冷水を混合しても、設定給湯温度の温水Mを安定に生成することができないだけでなく、温水Mの給湯量が不測に変動するなどの異常作動が生じるとともに、前記フラッシュ蒸気が冷水配管61に向け逆流して給湯装置内の部品の損傷発生の原因となる。 On the other hand, the pressure of tap water that is the water supply source WA is usually about 0.2 to 0.3 MPa, but may decrease to 0.1 MPa or less when the amount of cold water C used is increased. In this case, on the liquid side (hot water side) of the heat exchanger 60, the hot water M rises to 120 ° C. due to a delay in the response of the temperature sensor 65, so that the saturation pressure rises to 0.1 MPa, and the pressure of the cold water C Because of the above pressure, the cold water C is not supplied to the liquid side of the heat exchanger 60, and the residual water (hot water) in the liquid side of the heat exchanger 60 is heated by the heating fluid S and vaporized. The pressure in the heat exchanger 60 increases excessively . Even if cold water is mixed with the flash steam, not only the hot water M at the set hot water temperature cannot be stably generated, but also an abnormal operation such as an unexpected change in the amount of hot water supplied to the hot water M occurs. Flows back toward the cold water pipe 61 and causes damage to components in the hot water supply apparatus.

そこで、本発明は、熱交換器内の熱水の圧力が上昇し過ぎるのを防止できる加熱システムを提供することを目的としている。 Then, this invention aims at providing the heating system which can prevent the pressure of the hot water in a heat exchanger rising too much .

上記目的を達成するために、本発明に係る加熱システムは、加熱流体と冷水との間の熱交換により温水を生成する熱交換器と、前記熱交換器から温水Mを導出する温水導出通路と、加熱流体供給源からの前記加熱流体を前記熱交換器に導く加熱流体通路に設けられて前記熱交換器に供給される加熱流体の圧力を調節する圧力調節弁とを備え、前記圧力調節弁は、その出口もしくは出口から熱交換器入口まで、または熱交換器出口の加熱流体の圧力の低下に応じて弁開度を増大させるように構成されており、さらに、給水源からの冷水を前記熱交換器に導く冷水通路に設けられた逆止弁と、前記逆止弁と前記熱交換器との間で冷水通路に設けられて冷水通路内の圧力が上昇し過ぎるのを防止する逃し弁とを備えている。 In order to achieve the above object, a heating system according to the present invention includes a heat exchanger that generates hot water by heat exchange between a heating fluid and cold water, and a hot water outlet passage that extracts hot water M from the heat exchanger. A pressure control valve provided in a heating fluid passage for guiding the heating fluid from a heating fluid supply source to the heat exchanger and adjusting a pressure of the heating fluid supplied to the heat exchanger, Is configured to increase the valve opening in response to a decrease in the pressure of the heating fluid from the outlet or the outlet to the heat exchanger inlet or at the heat exchanger outlet, and further, the cold water from the water supply source is A check valve provided in the cold water passage leading to the heat exchanger, and a relief valve provided in the cold water passage between the check valve and the heat exchanger to prevent the pressure in the cold water passage from rising excessively And.

この構成によれば、逆止弁と熱交換器との間で冷水通路に逃し弁が設けられているので、冷水通路内の圧力、つまり熱交換器内の熱水の圧力が上昇し過ぎるのを防止することができる。これとともに、圧力調節弁の出口もしくは出口から熱交換器入口まで、または熱交換器出口の加熱流体の圧力に応じて圧力調節弁の弁開度を変化させるので、熱交換器への加熱流体の供給量の制御を加熱流体の流動系統内のみで独立して行えるため、給湯量の増減に対応して時間遅れなく加熱流体の熱交換器への供給量を制御できる結果、熱交換器で生成される温水はほぼ一定温度となる。したがって、例えば90℃±10℃程度の高い温水を生成する場合であっても、その設定給湯温度の温水を常に安定して生成することができる。 According to this configuration, since the relief valve is provided in the cold water passage between the check valve and the heat exchanger, the pressure in the cold water passage, that is, the pressure of hot water in the heat exchanger is excessively increased. Can be prevented. At the same time, since the valve opening of the pressure control valve is changed according to the pressure of the heating fluid from the outlet or outlet of the pressure control valve to the heat exchanger inlet or at the heat exchanger outlet, the heating fluid to the heat exchanger is changed. Since the supply amount can be controlled independently only within the heating fluid flow system, the amount of heating fluid supplied to the heat exchanger can be controlled without delay in response to the increase or decrease in the amount of hot water supply. The heated water is at a substantially constant temperature. Therefore, for example, even when hot water having a high temperature of about 90 ° C. ± 10 ° C. is generated, hot water at the set hot water supply temperature can always be generated stably.

本発明の加熱システムによれば、逆止弁と熱交換器との間で冷水通路に逃し弁が設けられて、冷水通路内の圧力、つまり熱交換器内の熱水の圧力が上昇し過ぎるのを防止することができる。 According to the heating system of the present invention , a relief valve is provided in the cold water passage between the check valve and the heat exchanger, and the pressure in the cold water passage, that is, the pressure of hot water in the heat exchanger increases excessively. Can be prevented.

本発明の第1実施形態に係る加熱システムを示す系統図である。It is a distribution diagram showing the heating system concerning a 1st embodiment of the present invention. 同上の加熱システムの圧力調節弁の閉弁状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the valve closing state of the pressure control valve of a heating system same as the above. 同上の圧力調節弁の開弁状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the valve opening state of a pressure control valve same as the above. 本発明の第2実施形態に係る加熱システムを示す系統図である。It is a systematic diagram which shows the heating system which concerns on 2nd Embodiment of this invention. 同上の加熱システムの圧力調節弁の閉弁状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the valve closing state of the pressure control valve of a heating system same as the above. 従来の加熱システムの系統図である。It is a systematic diagram of the conventional heating system.

以下、本発明の好ましい実施形態について図面を参照しながら説明する。図1は本発明の第1実施形態に係る加熱システム10Aを示す系統図である。この実施形態の加熱システム10Aは、90℃±10℃の高温の温水を給湯する用途に適用できるものであり、飽和蒸気のような加熱流体Sの熱で被加熱流体である冷水Cを加熱することにより高温の温水Hを生成する熱交換器11を備えている。前記熱交換器11としては、例えば複数のプレートを重ねて、その間に図示しない加熱流体Sの通路と冷水Cの通路とを、前記プレートを介して交互に配置したプレート型熱交換器と呼ばれるものが、小型で熱交換容量が比較的大きいことから、好ましい。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing a heating system 10A according to the first embodiment of the present invention. The heating system 10A of this embodiment can be applied to the use of supplying hot water having a high temperature of 90 ° C. ± 10 ° C., and heats the cold water C that is the fluid to be heated by the heat of the heating fluid S such as saturated steam. The heat exchanger 11 which produces | generates the hot water H of high temperature is provided. The heat exchanger 11 is called a plate heat exchanger in which, for example, a plurality of plates are stacked, and a passage of a heating fluid S and a passage of cold water C (not shown) are alternately arranged therebetween via the plates. However, it is preferable because of its small size and relatively large heat exchange capacity.

また、前記加熱システム10Aは、外部の給水源(例えば水道水)WAから供給される冷水Cを前記熱交換器11に導く冷水通路12と、加熱流体供給源(例えばボイラ)VAから供給される飽和蒸気のような加熱流体Sを前記熱交換器11に導く加熱流体通路13と、前記熱交換器11で生成された高温の温水Hを導出する温水導出通路14と、熱交換器11を通った加熱後の加熱流体Sを復水(ドレン)として排出する復水排出通路15とを有している。   The heating system 10A is supplied from a cold water passage 12 that guides cold water C supplied from an external water supply source (for example, tap water) WA to the heat exchanger 11 and a heating fluid supply source (for example, a boiler) VA. The heating fluid passage 13 that guides the heating fluid S such as saturated steam to the heat exchanger 11, the hot water outlet passage 14 that guides the hot water H generated by the heat exchanger 11, and the heat exchanger 11 pass through. And a condensate discharge passage 15 for discharging the heated heating fluid S as condensate (drain).

加熱流体通路13には圧力調節弁17Aが配設されており、この圧力調節弁17Aは、これの出口50の加熱流体Sの圧力の低下に応じて弁開度を増大させることにより、つまり、出口圧力に基づくフィードバック制御により、加熱流体供給源VAからの加熱流体Sの圧力を設定圧力に調節したのちに熱交換器11に供給するものである。   A pressure regulating valve 17A is disposed in the heating fluid passage 13, and the pressure regulating valve 17A increases the valve opening according to the decrease in the pressure of the heating fluid S at the outlet 50 thereof, that is, The pressure of the heating fluid S from the heating fluid supply source VA is adjusted to the set pressure by feedback control based on the outlet pressure, and then supplied to the heat exchanger 11.

熱交換器11から高温の温水Hが導出される温水導出通路14には湯水混合弁44が配設されており、この湯水混合弁44は、熱交換器11からの高温の温水Hに給水源WAからの冷水Cを混合して、所望の設定給湯温度に調節した温水Mを生成して給湯出口となる給湯口弁(カラン)24を介して給湯する。なお、この実施形態の加熱システム10Aは、上述したように90℃±10℃の高温の温水Mを給湯するものであるから、熱交換器11からは、100℃以上の高温の温水Hを生成して温水導出通路14に導出するようになっている。そこで、以下の説明では、説明の便宜上、温水導出通路14から導出される100℃以上の温水を「熱水H」と称して、給湯口弁24から取り出される設定給湯温度の温水Mとの区別を明確にする。   A hot water mixing valve 44 is disposed in the hot water outlet passage 14 through which the hot water H is led out from the heat exchanger 11, and the hot water mixing valve 44 supplies water to the hot water H from the heat exchanger 11. Cold water C from WA is mixed, hot water M adjusted to a desired set hot water supply temperature is generated, and hot water is supplied through a hot water supply valve (curan) 24 serving as a hot water supply outlet. In addition, since the heating system 10A of this embodiment supplies hot water M having a high temperature of 90 ° C. ± 10 ° C. as described above, the heat exchanger 11 generates hot water H having a temperature of 100 ° C. or higher. Thus, the water is led out to the hot water lead-out passage 14. Therefore, in the following description, for convenience of explanation, hot water of 100 ° C. or higher derived from the hot water outlet passage 14 is referred to as “hot water H” and is distinguished from the hot water M having a set hot water temperature extracted from the hot water supply valve 24. To clarify.

さらに、冷水通路12から分岐して前記湯水混合弁44に至る冷水バイパス通路42および冷水通路12における熱交換器11に対し上流側の箇所には、逆止弁31,32がそれぞれ配設されている。また、復水排出通路15には、熱交換器11から排出される加熱流体Sの圧力が所定圧力以上となったときに閉弁して加熱流体Sの排出を阻止する機能を持たせた、周知の蒸気トラップ33が配設されている。前記所定圧力は、圧力設定弁17Aの設定圧力(0.05〜0.06MPa)よりも高く、かつ冷水Cの予測最低圧力(0.1MPa)以下の圧力、例えば、0.1MPaに設定されている。この実施形態では、メカニカルの蒸気トラップ33を使用しており、所定圧力以上になると蒸気トラップ33内の弁体の閉弁力が上昇して閉塞状態となる。冷水通路12における逆止弁32と熱交換器11との間の箇所から分岐した冷水排出通路34には、給湯口弁24からの温水Mの取り出しが停止されたときに熱交換器11内の熱水Hの圧力が上昇し過ぎるのを防止する逃し弁35が配設されている。   Further, check valves 31 and 32 are respectively arranged at locations upstream of the heat exchanger 11 in the cold water bypass passage 42 and the cold water passage 12 branched from the cold water passage 12 to the hot water mixing valve 44. Yes. Further, the condensate discharge passage 15 has a function of closing the valve when the pressure of the heating fluid S discharged from the heat exchanger 11 exceeds a predetermined pressure to prevent the discharge of the heating fluid S. A well-known steam trap 33 is provided. The predetermined pressure is set to a pressure higher than the set pressure (0.05 to 0.06 MPa) of the pressure setting valve 17A and lower than the predicted minimum pressure (0.1 MPa) of the cold water C, for example, 0.1 MPa. Yes. In this embodiment, a mechanical steam trap 33 is used, and when the pressure exceeds a predetermined pressure, the valve closing force of the valve body in the steam trap 33 rises and becomes a closed state. In the cold water discharge passage 34 branched from the portion between the check valve 32 and the heat exchanger 11 in the cold water passage 12, the hot water M from the hot water supply valve 24 is stopped when the hot water M is taken out. A relief valve 35 for preventing the pressure of the hot water H from rising excessively is provided.

つぎに、圧力調節弁17Aの具体的構造について、図2を参照しながら説明する。図2は圧力調節弁17Aの閉弁状態を示したもので、この圧力調節弁17Aは、ケース本体18の上端開口部に上カバー19が連結されており、ケース本体18の内部は、仕切り壁部18aにより上部の受圧室21と下部の加熱流体通路13とに区画されている。この加熱流体通路13の出口側、つまり後述する弁体28よりも下流側と受圧室21とが、仕切り壁部18aに形成された小径の連通孔18bを介して互いに連通されて、出口側の加熱流体Sの圧力が受圧室21に作用するようになっている。この圧力調節弁17Aは、加熱流体供給源VA(図1)から0.2〜0.5MPaの圧力で供給される飽和蒸気である加熱流体Sを、冷水Cの予測最低圧力である0.1MPaよりも低い0.05〜0.06MPaの設定圧力に調節して流出させるようになっている。   Next, a specific structure of the pressure control valve 17A will be described with reference to FIG. FIG. 2 shows a closed state of the pressure control valve 17A. The pressure control valve 17A has an upper cover 19 connected to the upper end opening of the case body 18, and the inside of the case body 18 has a partition wall. The upper pressure receiving chamber 21 and the lower heating fluid passage 13 are partitioned by the portion 18a. The outlet side of the heating fluid passage 13, that is, the downstream side of the valve body 28 described later and the pressure receiving chamber 21 are communicated with each other via a small-diameter communication hole 18 b formed in the partition wall portion 18 a, and The pressure of the heating fluid S is applied to the pressure receiving chamber 21. The pressure control valve 17A is configured to supply the heating fluid S, which is saturated steam supplied at a pressure of 0.2 to 0.5 MPa from the heating fluid supply source VA (FIG. 1), to 0.1 MPa that is the predicted minimum pressure of the cold water C. The pressure is adjusted to a lower set pressure of 0.05 to 0.06 MPa and is allowed to flow out.

前記ケース本体18の下端部には、下端開口を封止する下カバー20が連結されて、ケース本体18と下カバー20とにより、加熱流体通路13の一部を形成する弁室22が形成されており、この弁室22に塵埃除去用のスクリーン16が配置されている。前記ケース本体18、上カバー19および下カバー20により、ケーシング25が形成されている。前記仕切り壁部18aの中央部に形成された円筒状の支持部18cには、鉛直方向に延びて上端部および下部が受圧室21および加熱流体通路13にそれぞれ位置する弁棒26が摺動自在に支持されており、この弁棒26の下端部に、弁室22内に配置された弁体28が、弁体28と下カバー20との間に装着された圧縮コイルばねからなる復帰ばね27により当接されている。弁体28はスクリーン16の内側(下流側)に位置しており、スケール・ごみなどの異物のかみ込みが防止されている。また、加熱流体通路13を開閉する弁体28は、加熱流体通路13に設けられた弁座部材23の弁口に復帰ばね27により押し付けられて閉弁状態となり、かつ弁棒26の下動により押し下げられて弁座部材23から離間することにより開弁状態となる。   A lower cover 20 that seals a lower end opening is connected to a lower end portion of the case body 18, and a valve chamber 22 that forms a part of the heating fluid passage 13 is formed by the case body 18 and the lower cover 20. A dust removing screen 16 is arranged in the valve chamber 22. A casing 25 is formed by the case body 18, the upper cover 19 and the lower cover 20. A cylindrical support portion 18c formed at the central portion of the partition wall portion 18a is slidable with a valve rod 26 extending in the vertical direction and having an upper end portion and a lower portion located in the pressure receiving chamber 21 and the heating fluid passage 13, respectively. The valve body 28 disposed in the valve chamber 22 at the lower end of the valve rod 26 is a return spring 27 comprising a compression coil spring mounted between the valve body 28 and the lower cover 20. It is contacted by. The valve body 28 is located on the inner side (downstream side) of the screen 16 to prevent foreign matters such as scales and dust from entering. Further, the valve body 28 for opening and closing the heating fluid passage 13 is pressed by the return spring 27 against the valve opening of the valve seat member 23 provided in the heating fluid passage 13 to be closed, and when the valve rod 26 is moved downward. By being pushed down and separated from the valve seat member 23, the valve is opened.

ケーシング25のケース本体18と上カバー19との連結箇所には取付部材29が挟持固定されており、この取付部材29に、有底筒状のベローズからなる受圧部材30が吊り下げ状態に支持されている。前記受圧室21は、ケース本体18と取付部材29と受圧部材30とにより、受圧部材30の外側に形成されている。受圧部材30の下端部は弁棒26の上端面に相対向している。   An attachment member 29 is sandwiched and fixed at a connection portion between the case main body 18 and the upper cover 19 of the casing 25, and a pressure receiving member 30 made of a bottomed cylindrical bellows is supported by the attachment member 29 in a suspended state. ing. The pressure receiving chamber 21 is formed outside the pressure receiving member 30 by the case body 18, the attachment member 29, and the pressure receiving member 30. The lower end portion of the pressure receiving member 30 is opposed to the upper end surface of the valve rod 26.

上カバー19の外周面を覆っている操作部材37は、上カバー19の上端部にこれを貫通して鉛直に延びる調節軸体38が回転自在に支持されており、前記操作部材37と調節軸体38とが一体回転するように連結されている。この調節軸体38の上カバー19内における上部箇所には雄ねじ部38aが形成されており、この雄ねじ部38にナット状の圧力設定部材39が回転止めされた状態で螺合されている。この圧力設定部材39と有底筒状の受圧部材30内の底部に配置されたばね受け部材40との間に、圧縮コイルばねからなる圧力設定用ばね41が介装されている。したがって、操作部材37を回転操作すると、この操作部材37と一体に調節軸体38が回転して、この調節軸体38の雄ねじ部38aに螺合されている圧力設定部材39が雄ねじ部38aに沿って上下方向に移動することにより、圧力設定用ばね41のばね力を変化させて、受圧室21の圧力により受圧部材30が縮み方向に働く力と圧力設定ばね41および復帰ばね27のばね力とのバランスによって弁体28の開度を変化させることにより、上述した圧力調節弁17Aの設定圧力を調節できるようになっている。   The operation member 37 covering the outer peripheral surface of the upper cover 19 is supported by an upper end portion of the upper cover 19 so that an adjustment shaft 38 extending vertically through the upper cover 19 is rotatably supported. The body 38 is connected to rotate integrally. A male screw portion 38a is formed at an upper portion in the upper cover 19 of the adjustment shaft body 38, and a nut-like pressure setting member 39 is screwed into the male screw portion 38 in a state where the nut-shaped pressure setting member 39 is prevented from rotating. Between the pressure setting member 39 and the spring receiving member 40 disposed at the bottom of the bottomed cylindrical pressure receiving member 30, a pressure setting spring 41 including a compression coil spring is interposed. Therefore, when the operation member 37 is rotated, the adjustment shaft body 38 is rotated integrally with the operation member 37, and the pressure setting member 39 screwed into the male screw portion 38a of the adjustment shaft body 38 is engaged with the male screw portion 38a. The pressure force of the pressure setting spring 41 is changed by moving the pressure setting spring 41 in the vertical direction, and the force of the pressure receiving member 30 acting in the contraction direction by the pressure of the pressure receiving chamber 21 and the spring force of the pressure setting spring 41 and the return spring 27. By changing the opening degree of the valve body 28 according to the balance, the set pressure of the pressure control valve 17A described above can be adjusted.

つぎに、前記加熱システム10Aの作用について説明する。この加熱システム10Aでは、稼働に先立って、圧力調節弁17Aの設定圧力が予め設定される。この設定圧力の具体的な調整手段について説明する。上述したように、加熱流体供給源VAからは0.2〜0.5MPaの圧力の飽和蒸気が加熱流体Sとして供給され、給水源WAからは、0.2〜0.3MPaの圧力の水道水が冷水Cとして供給されるが、水道水は使用量が増大したときに0.1MPa付近まで低下することがあるので、これを考慮して、冷水Cの予測最低圧力を0.1〜0.3MPaと見なすこととする。そこで、この実施形態では、圧力調節弁17の設定圧力を、冷水Cの予測最低圧力である0.1MPaよりも低い0.05〜0.06MPaに調整する。これにより、圧力調節弁17Aは、0.2〜0.5MPaの圧力で供給される加熱流体Sを0.05〜0.06MPaの設定圧力に調節、つまり減圧して流出させる。   Next, the operation of the heating system 10A will be described. In this heating system 10A, the set pressure of the pressure control valve 17A is set in advance prior to operation. A specific means for adjusting the set pressure will be described. As described above, saturated steam having a pressure of 0.2 to 0.5 MPa is supplied as the heating fluid S from the heating fluid supply source VA, and tap water having a pressure of 0.2 to 0.3 MPa is supplied from the water supply source WA. Is supplied as cold water C, but when tap water is used, tap water may drop to near 0.1 MPa. It is assumed that 3 MPa. Therefore, in this embodiment, the set pressure of the pressure control valve 17 is adjusted to 0.05 to 0.06 MPa, which is lower than 0.1 MPa, which is the predicted minimum pressure of the cold water C. Thereby, the pressure adjusting valve 17A adjusts the heated fluid S supplied at a pressure of 0.2 to 0.5 MPa to a set pressure of 0.05 to 0.06 MPa, that is, reduces the pressure to flow out.

図1の給湯口弁24が閉じられた温水Mの不使用時には、加熱流体Sの消費量が、熱交換器11および圧力調節弁17Aの出口側配管の放熱のみとなるため、僅かな量となる。この加熱流体Sの僅かな消費量の状態で圧力調節弁17Aにて設定圧力を0.05〜0.06MPaに調整されている。つまり、図2の圧力調節弁17Aの弁体28が、この加熱流体Sの僅かな消費量になるように弁開度を微開状態に調節し、設定圧力が一定に維持される。   When the hot water M with the hot water supply valve 24 of FIG. 1 closed is not used, the consumption amount of the heating fluid S is only the heat radiation of the heat exchanger 11 and the outlet side piping of the pressure control valve 17A. Become. The set pressure is adjusted to 0.05 to 0.06 MPa by the pressure control valve 17A with a slight consumption amount of the heating fluid S. That is, the valve body 28 of the pressure control valve 17A in FIG. 2 adjusts the valve opening to the slightly open state so that the heating fluid S is slightly consumed, and the set pressure is maintained constant.

図1の給湯口弁24が開かれたときには、給水源WAからの冷水Cが冷水通路12を通って熱交換器11に流入するとともに、熱交換器11において加熱流体Sが消費される、つまり加熱流体Sの熱エネルギが冷水Cに伝達されて消費されるので、圧力調節弁17Aの出口側の加熱流体Sの圧力が低下し、この圧力の低下が図2の連通孔18bを通じて受圧室21に作用して、受圧部材30の押し上げ力を低下させる。そのため、ばね受け部材40が、圧力調整用ばね41のばね力により受圧部材30を下方に伸長させながら下降して弁棒26を押し下げるので、図3に示すように、圧力調節弁17Aの弁体28の開度が増加し、加熱流体Sが圧力調節弁17A内の加熱流体通路13を通って出口50から流出し、図1の熱交換器11に供給される。   When the hot water supply valve 24 in FIG. 1 is opened, the cold water C from the water supply source WA flows into the heat exchanger 11 through the cold water passage 12, and the heating fluid S is consumed in the heat exchanger 11, that is, Since the heat energy of the heating fluid S is transmitted to the cold water C and consumed, the pressure of the heating fluid S on the outlet side of the pressure control valve 17A decreases, and this pressure decrease is caused by the pressure receiving chamber 21 through the communication hole 18b of FIG. Acting on the pressure receiving member 30 to reduce the pushing force of the pressure receiving member 30. Therefore, the spring receiving member 40 is lowered while the pressure receiving member 30 is extended downward by the spring force of the pressure adjusting spring 41 and pushes down the valve rod 26. Therefore, as shown in FIG. 3, the valve body of the pressure adjusting valve 17A The opening 28 is increased, and the heating fluid S flows out from the outlet 50 through the heating fluid passage 13 in the pressure control valve 17A and is supplied to the heat exchanger 11 in FIG.

熱交換器11に導かれた加熱流体Sと冷水通路12を通って熱交換器11に導かれた冷水Cとの間の熱交換により設定給湯温度以上の高温の熱水Hが生成され、この熱水Hが温水導出通路14を通って湯水混合弁44に供給される。湯水混合弁44では、前記熱水Hにバイパス通路42を通って供給される冷水Cを混合して、設定給湯温度の温水Mを生成する。このとき、湯水混合弁44は、その感温部が設定給湯温度になるように冷水Cの流入用弁口の弁開度と熱水Hの流入用弁口の弁開度を自動調節する。こうして、設定給湯温度となった温水Mが給湯口弁24から取り出される。ここで、圧力調節弁17Aの前記設定圧力0.05〜0.06MPaは冷水Cの予測最低圧力0.1MPa以下に設定されているので、熱交換器11の液側(熱水側)内の温度は、最大値で0.05〜0.06Mpaの飽和温度である。すなわち、熱交換器11の液側(熱水側)内の圧力は、飽和圧力0.1Mpa以下であるから、冷水Cの予測最低圧力よりも低く、したがって、冷水の供給が遮断されないから、加熱流体Sの加熱により残留水が蒸気化されることがないので、液側でフラッシュ蒸気の発生によって異常作動が生じるおそれがない。   Heat exchange between the heating fluid S led to the heat exchanger 11 and the cold water C led to the heat exchanger 11 through the cold water passage 12 generates hot water H having a temperature higher than the set hot water supply temperature. Hot water H is supplied to the hot water mixing valve 44 through the hot water outlet passage 14. In the hot water mixing valve 44, the hot water H is mixed with the cold water C supplied through the bypass passage 42 to generate hot water M at a set hot water supply temperature. At this time, the hot water / water mixing valve 44 automatically adjusts the valve opening degree of the inflow valve port for the cold water C and the valve opening degree of the inflow valve port for the hot water H so that the temperature sensing part becomes the set hot water supply temperature. Thus, the hot water M that has reached the set hot water supply temperature is taken out from the hot water supply valve 24. Here, since the set pressure 0.05 to 0.06 MPa of the pressure control valve 17A is set to the predicted minimum pressure 0.1 MPa or less of the cold water C, it is in the liquid side (hot water side) of the heat exchanger 11. The temperature is a saturation temperature of 0.05 to 0.06 Mpa at the maximum value. That is, since the pressure in the liquid side (hot water side) of the heat exchanger 11 is equal to or lower than the saturation pressure of 0.1 Mpa, it is lower than the predicted minimum pressure of the cold water C, and therefore the supply of cold water is not shut off. Since the residual water is not vaporized by heating the fluid S, there is no possibility that abnormal operation will occur due to the generation of flash vapor on the liquid side.

ここで、比較的大量の温水Mを使用する目的で給湯口弁24が大きな弁開度に開かれたときには、熱交換器11での加熱流体Sの消費量が増大するので、圧力調節弁17Aの出口側の加熱流体Sの圧力が低下し、図3の圧力設定ばね41による押下げ力と受圧部材30による押上げ力との差が大きくなって弁体28の開度がさらに大きくなり、より多量の加熱流体Sが図1の熱交換器11に供給される。圧力調節弁17Aは、出口側の加熱流体Sの圧力の変化をフィードバックして弁体28の弁開度を調整するため、温水Mの使用量により加熱流体Sの消費量が増大したときは、弁体28の開度を大きくすることにより、出口側の加熱流体Sの圧力の低下量を抑えるように制御する。この状態から給湯口弁24が小さな弁開度に絞られたときには、圧力調節弁17Aが上記と逆の動作を行い、図3の弁体28の開度が低下して、圧力調節弁17Aの出口側の加熱流体Sの圧力が設定圧力に保たれる。   Here, when the hot water supply valve 24 is opened to a large valve opening for the purpose of using a relatively large amount of hot water M, the consumption amount of the heating fluid S in the heat exchanger 11 increases, so the pressure control valve 17A. The pressure of the heating fluid S on the outlet side of the pressure decreases, the difference between the pressing force by the pressure setting spring 41 in FIG. 3 and the pressing force by the pressure receiving member 30 increases, and the opening degree of the valve body 28 further increases. A larger amount of heating fluid S is supplied to the heat exchanger 11 of FIG. The pressure control valve 17A feeds back the change in the pressure of the heated fluid S on the outlet side to adjust the valve opening of the valve body 28. Therefore, when the consumption amount of the heated fluid S increases due to the amount of hot water M used, By increasing the opening degree of the valve body 28, control is performed to suppress the amount of decrease in the pressure of the heating fluid S on the outlet side. When the hot water supply valve 24 is throttled to a small valve opening from this state, the pressure control valve 17A performs the reverse operation to the above, and the opening of the valve body 28 in FIG. The pressure of the heating fluid S on the outlet side is kept at the set pressure.

こうして、図1の加熱システム10Aは、給湯口弁24から取り出される温水Mの流量の増減に対応して圧力調節弁17Aの弁開度が変化することによって熱交換器11への加熱流体Sの供給量を増減させる。   In this way, the heating system 10A in FIG. 1 changes the opening degree of the pressure control valve 17A in accordance with the increase or decrease in the flow rate of the hot water M taken out from the hot water supply valve 24, and thereby the heating fluid S to the heat exchanger 11 is changed. Increase or decrease the supply.

この加熱システム10Aでは、熱交換器11で生成される熱水Hの温度などを制御情報として用いずに、熱交換器11への加熱流体Sの供給量の調節を、加熱流体通路13に配設した圧力調節弁17Aの弁開度を、圧力調節弁17Aの出口側の加熱流体Sの圧力に基づくフィードバック制御により行っている。つまり、加熱流体Sの熱交換器11への供給量の制御を加熱流体Sの流動系統内でのみ独立して行っている。このため、従来の加熱システムのように調節弁を温水系統内の温度情報に基づきフィードバック制御することに起因して温水温度の感知遅れや加熱流体の供給量変化に対する温水の温度変化の遅れなどが発生するものとは異なり、この加熱システム10Aでは、温水Mの使用量の増減に対応して時間遅れなく加熱流体Sの熱交換器11への供給量を制御でき、かつ熱交換器11への加熱流体Sの圧力が常に圧力調節弁17Aの設定圧力となるように迅速に制御できる。特に、この実施形態の圧力調節弁17Aは、図3のケーシング25内に設けた連通孔18bを通して加熱流体通路13の出口側の加熱流体Sの圧力を受圧室21にフィードバックする内部検出タイプに構成されているので、ほぼ時間遅れなく加熱流体Sの供給量および圧力を調節することができる。   In this heating system 10A, adjustment of the supply amount of the heating fluid S to the heat exchanger 11 is arranged in the heating fluid passage 13 without using the temperature of the hot water H generated in the heat exchanger 11 as control information. The valve opening degree of the provided pressure control valve 17A is controlled by feedback control based on the pressure of the heating fluid S on the outlet side of the pressure control valve 17A. That is, the supply amount of the heating fluid S to the heat exchanger 11 is controlled independently only within the flow system of the heating fluid S. For this reason, the control valve is feedback-controlled based on the temperature information in the hot water system as in the conventional heating system, so that there is a delay in sensing the hot water temperature, a delay in the temperature change of the hot water with respect to the heating fluid supply amount change, etc. Unlike what is generated, in this heating system 10A, the supply amount of the heating fluid S to the heat exchanger 11 can be controlled without a time delay corresponding to the increase or decrease of the amount of use of the hot water M, and The heating fluid S can be quickly controlled so that the pressure of the heating fluid S always becomes the set pressure of the pressure control valve 17A. In particular, the pressure control valve 17A of this embodiment is configured as an internal detection type that feeds back the pressure of the heating fluid S on the outlet side of the heating fluid passage 13 to the pressure receiving chamber 21 through the communication hole 18b provided in the casing 25 of FIG. Therefore, the supply amount and pressure of the heating fluid S can be adjusted almost without time delay.

また、熱交換器11では、加熱流体Sの供給量の大小に拘らず常に圧力調節弁17Aの設定圧力、0.05〜0.06MPaに調節された飽和蒸気である加熱流体Sが供給されるので、その飽和蒸気の飽和温度である110℃付近の熱水Hを生成できるとともに、上述したように加熱流体Sの供給量を給湯量の増減に応じて時間遅れなく制御できる。給湯量の増加によって圧力調節弁17Aにて設定された加熱流体Sの圧力は低下するが、圧力によるフィードバック制御で弁開度を安定させているため、ハンチング等の変動はなく、低下した圧力で安定し、生成される熱水Hも、低下した圧力の飽和温度付近で安定する。このように、熱水Hの温度を設定給湯温度90℃よりも十分高く維持できることから、給湯量が最大流量となった場合、熱水Hも最大流量となって温度低下を生じるが、この最大流量となったときの熱水Hの温度が設定給湯温度90℃を下回ることがない。これにより、高温用の湯水混合弁44にて、設定給湯温度である90℃±10℃の高温の温水Mを常に安定して生成することができる。   Further, in the heat exchanger 11, regardless of the supply amount of the heating fluid S, the heating fluid S that is a saturated steam adjusted to the set pressure of the pressure control valve 17A, 0.05 to 0.06 MPa is always supplied. Therefore, while being able to produce | generate the hot water H of 110 degreeC vicinity which is the saturation temperature of the saturated steam, the supply amount of the heating fluid S can be controlled without time delay according to the increase / decrease in the amount of hot water supply as mentioned above. Although the pressure of the heating fluid S set in the pressure control valve 17A is reduced by the increase in the amount of hot water supply, the valve opening is stabilized by feedback control based on the pressure. Stable and generated hot water H is also stabilized near the saturation temperature of the reduced pressure. Thus, since the temperature of the hot water H can be maintained sufficiently higher than the set hot water supply temperature 90 ° C., when the hot water supply amount reaches the maximum flow rate, the hot water H also becomes the maximum flow rate and causes a temperature drop. The temperature of the hot water H when the flow rate is reached does not fall below the set hot water supply temperature 90 ° C. Thereby, the hot water mixing valve 44 for high temperature can always produce | generate the hot water M of high temperature 90 degreeC +/- 10 degreeC which is preset hot water supply temperature stably.

ところで、この加熱システム10Aでは、何らかの原因、例えば加熱流体Sに含まれるスケール・ごみなどが図3の圧力調節弁17Aの弁体28に詰まることによって閉弁不能に陥るような故障が発生した場合、図1の圧力調節弁17Aでの減圧がなされなくなる結果、熱交換器11に供給される加熱流体Sの圧力が冷水Cの圧力以上に上昇して熱交換器11の液側にフラッシュ蒸気が発生するといった事態の発生が予想される。これに対し、この実施形態では、スチームトラップ33の閉弁圧力を、冷水Cの圧力以下で、かつ圧力調節弁17Aの設定圧力よりも僅かに高い一定値0.1MPaに設定している。   By the way, in this heating system 10A, for some reason, for example, when a failure occurs such that the valve body 28 of the pressure control valve 17A in FIG. As a result, the pressure of the pressure adjusting valve 17A in FIG. 1 is no longer reduced. As a result, the pressure of the heating fluid S supplied to the heat exchanger 11 rises above the pressure of the cold water C, and flash steam is generated on the liquid side of the heat exchanger 11. The occurrence of such a situation is expected. On the other hand, in this embodiment, the valve closing pressure of the steam trap 33 is set to a constant value of 0.1 MPa that is lower than the pressure of the cold water C and slightly higher than the set pressure of the pressure regulating valve 17A.

したがって、前記スチームトラップ33は、圧力調節弁17Aが正常に作動している通常時において、復水排出通路15内の加熱流体Sの圧力が0.1MPa以下であるから、開弁して、復水排出通路15内の復水を外部に排出する。一方、圧力調節弁17Aに上述のような故障が生じた場合には、圧力調節弁17Aが開弁状態に保持され続けて高い圧力、0.2〜0.5MPaの加熱流体Sが熱交換器11を経て復水排出通路15に達する。これにより、スチームトラップ33が閉弁して、加熱流体Sの流動を停止させる。したがって、熱交換器11内において加熱流体Sの大きな熱エネルギが冷水Cに伝達され続けるのが防止されるので、熱交換器11の液側にフラッシュ蒸気が大量に発生するのを防止できる。   Therefore, the steam trap 33 is opened and restored because the pressure of the heating fluid S in the condensate discharge passage 15 is 0.1 MPa or less during normal operation of the pressure control valve 17A. Condensate in the water discharge passage 15 is discharged to the outside. On the other hand, when the above-described failure occurs in the pressure control valve 17A, the pressure control valve 17A is kept in the open state, and the high pressure, heated fluid S of 0.2 to 0.5 MPa is applied to the heat exchanger. 11 and reaches the condensate discharge passage 15. Thereby, the steam trap 33 closes and the flow of the heating fluid S is stopped. Therefore, since large heat energy of the heating fluid S is prevented from being transmitted to the cold water C in the heat exchanger 11, it is possible to prevent a large amount of flash steam from being generated on the liquid side of the heat exchanger 11.

こうして加熱流体Sの流動が停止すると、自然放熱により復水排出通路15内の加熱流体Sの温度が低下し、これに伴って圧力が設定圧力0.1MPa以下まで低下した時点で、スチームトラップ33が開弁する、つまり通常時の状態に復帰する。したがって、その間に圧力調節弁17Aの故障を直しておけば、加熱システム10Aは直ちに通常運転に入ることができる。このように、圧力調節弁17Aに故障が生じて異常作動が発生しても、スチームトラップ33が即座に閉弁状態となることによって熱交換器11の液側にフラッシュ蒸気が生じるのを未然に防止して、フラッシュ蒸気の逆流によるシステム内部品の損傷発生を防止し、かつ湯水混合弁44を保護できる。   When the flow of the heating fluid S stops in this way, the temperature of the heating fluid S in the condensate discharge passage 15 decreases due to natural heat dissipation, and when the pressure decreases to a set pressure of 0.1 MPa or less along with this, the steam trap 33. Opens, that is, returns to the normal state. Therefore, if the failure of the pressure control valve 17A is corrected during that time, the heating system 10A can immediately start normal operation. In this way, even if the pressure control valve 17A fails and an abnormal operation occurs, the steam trap 33 is immediately closed to prevent flash steam from being generated on the liquid side of the heat exchanger 11. Therefore, it is possible to prevent the occurrence of damage to the components in the system due to the backflow of the flash steam, and to protect the hot and cold mixing valve 44.

なお、圧力調節弁17Aのフィードバック制御に用いられる出口圧力は、加熱流体通路13における圧力調節弁17Aの弁体28から出口50までの部位、および出口50から熱交換器11の入口までの部位の圧力に等しいから、これら部位のどの場所から検出してもよい。   The outlet pressure used for feedback control of the pressure control valve 17A is a portion of the heating fluid passage 13 from the valve body 28 to the outlet 50 of the pressure control valve 17A and a portion from the outlet 50 to the inlet of the heat exchanger 11. Since it is equal to the pressure, it may be detected from any location of these parts.

図4は本発明の第2実施形態に係る加熱システム10Bを示す系統図であり、図5はその加熱システム10Bの圧力調節弁17Bの閉弁状態を示す縦断面図である。これらの図において、図1および図2と同一若しくは相当するものには同一の符号を付して、重複する説明を省略する。この加熱システム10Bが第1実施形態と異なるのは、第1実施形態の内部検出タイプの圧力調節弁17Aに代えて、図4の熱交換器11の下流側の加熱流体Sの圧力に基づきフィードバック制御を行う外部検出タイプの圧力調節弁17Bを用いたことであり、そのために、復水排出通路15と図5の圧力調節弁17Bの受圧室21とを、圧力検出管36により連通させている。圧力調節弁17Bの設定圧力は第1実施形態と同様に、例えば0.05〜0.06MPaである。   FIG. 4 is a system diagram showing a heating system 10B according to the second embodiment of the present invention, and FIG. 5 is a longitudinal sectional view showing a closed state of the pressure regulating valve 17B of the heating system 10B. In these drawings, the same or corresponding parts as those in FIGS. 1 and 2 are denoted by the same reference numerals, and redundant description is omitted. This heating system 10B is different from the first embodiment in that feedback is based on the pressure of the heating fluid S on the downstream side of the heat exchanger 11 in FIG. 4 in place of the internal detection type pressure control valve 17A of the first embodiment. This is because an external detection type pressure control valve 17B that performs control is used. For this purpose, the condensate discharge passage 15 and the pressure receiving chamber 21 of the pressure control valve 17B in FIG. . The set pressure of the pressure control valve 17B is, for example, 0.05 to 0.06 MPa, as in the first embodiment.

この加熱システム10Bは、基本的に第1実施形態とほぼ同様に作用するので、第1実施形態と異なる作用についてのみ説明する。温水Mの不使用時には、加熱流体Sの消費量が熱交換器11および圧力調節弁17Aの出口側配管の放熱のみとなるため、僅かな量となり、熱交換器11の下流側の復水排出通路15における加熱流体Sの圧力が圧力調節弁17Bの設定圧力である0.05〜0.06MPaに維持される。したがって、この圧力をフィードバックした圧力調節弁17Bの弁開度は微開状態となる。   Since this heating system 10B basically operates in the same manner as in the first embodiment, only the operation different from that in the first embodiment will be described. When the hot water M is not used, the consumption amount of the heating fluid S is only the heat radiation of the heat exchanger 11 and the outlet side piping of the pressure control valve 17A, so that the amount is small and the condensate discharge downstream of the heat exchanger 11 is discharged. The pressure of the heating fluid S in the passage 15 is maintained at 0.05 to 0.06 MPa, which is the set pressure of the pressure control valve 17B. Therefore, the valve opening degree of the pressure control valve 17B that feeds back this pressure is slightly opened.

給湯口弁24を開いて温水Mを使用しているとき、給湯口弁24からの給湯量が最大給湯量の約50%以下の場合には、小容量タイプの熱交換器11における加熱流体入口側と加熱流体出口側の圧力はほぼ同じであるが、給湯量が最大給湯量の約50%以上になった場合には、熱交換器11内にて交換熱量の増加に伴い、加熱流体Sの凝縮が激しくなるので、第1実施形態で説明したとおり、熱交換器11内の加熱流体Sの温度と圧力が低下する。熱交換器11内を通過する飽和蒸気である加熱流体Sは、圧力が低下するほど液体分が多くなり、流動抵抗を受けやすくなるために圧力損失が生じるので、熱交換器11の加熱流体出口側の圧力、つまり復水排出通路15の圧力が熱交換器11の入口側よりも低下する。   When the hot water supply valve 24 is opened and the hot water M is used, if the hot water supply amount from the hot water supply valve 24 is about 50% or less of the maximum hot water supply amount, the heating fluid inlet in the small capacity type heat exchanger 11 is used. The pressure on the side of the heating fluid and the outlet side of the heating fluid are substantially the same, but when the amount of hot water supply is about 50% or more of the maximum hot water supply amount, the heating fluid S increases with the exchange heat amount in the heat exchanger 11. Therefore, as described in the first embodiment, the temperature and pressure of the heating fluid S in the heat exchanger 11 are reduced. The heating fluid S that is saturated steam that passes through the heat exchanger 11 has a liquid component that increases as the pressure decreases, and is susceptible to flow resistance, resulting in a pressure loss. Therefore, the heating fluid outlet of the heat exchanger 11 Side pressure, that is, the pressure in the condensate discharge passage 15 is lower than the inlet side of the heat exchanger 11.

こうして大きく低下した復水排出通路15の圧力が圧力検出管36を通じて圧力調節弁17Bの受圧室21(図5)に伝達されるので、受圧部材30の押し上げ力が大きく低下する。この大きく低下した押し上げ力の分だけ、圧力調整用ばね41のばね力により受圧部材30を下方に伸張させることができるので、圧力調節弁17Bの弁開度は、第1実施形態の内部検出タイプの圧力調節弁17Aよりも大きくなる。すなわち、受圧室21で検出される圧力が低い程、弁体28の開度が大きくなり、加熱流体Sの流量を増加させることができる。したがって、図5の圧力調節弁17Bの制御方式を用いることにより、熱交換器11に流入できる加熱流体Sの流量が増加するため、温水Mの給湯量が増加し、能力アップとなる。熱交換器11における圧力低下を大きくするには、小容量の熱交換器11を使用するのが好ましい。   Since the pressure in the condensate discharge passage 15 thus greatly reduced is transmitted to the pressure receiving chamber 21 (FIG. 5) of the pressure regulating valve 17B through the pressure detection pipe 36, the pushing force of the pressure receiving member 30 is greatly reduced. Since the pressure receiving member 30 can be extended downward by the spring force of the pressure adjusting spring 41 by the greatly reduced pushing force, the valve opening degree of the pressure adjusting valve 17B is the internal detection type of the first embodiment. It becomes larger than the pressure control valve 17A. That is, as the pressure detected in the pressure receiving chamber 21 is lower, the opening degree of the valve body 28 is increased, and the flow rate of the heating fluid S can be increased. Therefore, by using the control method of the pressure control valve 17B of FIG. 5, the flow rate of the heating fluid S that can flow into the heat exchanger 11 increases, so the amount of hot water M supplied increases and the capacity increases. In order to increase the pressure drop in the heat exchanger 11, it is preferable to use a small capacity heat exchanger 11.

温水Mの給湯量が増加したとき、熱交換器11の出口側圧力の低下による圧力調節弁17Bの弁開度の増加に伴い、加熱流体Sの流量が増加するので、熱交換器11の入口側圧力(つまり、加熱流体通路13下流側の圧力)が圧力調節弁17Bの設定圧力よりも上昇することがある。ところが、圧力調節弁17Bは、図5の受圧室21と加熱流体通路13とがケース本体18の仕切り壁部18aで互いに隔離されているので、上述の設定圧力よりも上昇した加熱流体通路13下流側の加熱流体Sの圧力が受圧室21に対し閉弁方向の力を付与するように作用することがなく、圧力調節弁17Bは、熱交換器11の下流側の加熱流体Sの低い圧力が受圧室21に作用し続けることによって大きな弁開度を保持し続けるから、加熱流体Sの流量が減少しない。なお、弁棒26と支持部18cとの摺動面部位には、図示省略したOリングが取り付けられて、受圧室21と弁体28の下流側13との間の気密性および液密性が確保されている。このような気密構造は図2の圧力調節弁17Aにも適宜採用される。   When the hot water supply amount of the hot water M increases, the flow rate of the heating fluid S increases as the valve opening of the pressure control valve 17B increases due to the decrease of the outlet side pressure of the heat exchanger 11, so the inlet of the heat exchanger 11 The side pressure (that is, the pressure on the downstream side of the heating fluid passage 13) may be higher than the set pressure of the pressure control valve 17B. However, since the pressure receiving chamber 21 and the heating fluid passage 13 of FIG. 5 are separated from each other by the partition wall portion 18a of the case body 18, the pressure regulating valve 17B is downstream of the heating fluid passage 13 that has risen above the set pressure. The pressure of the heating fluid S on the downstream side of the heat exchanger 11 is low because the pressure of the heating fluid S on the side does not act to apply a force in the valve closing direction to the pressure receiving chamber 21. By continuing to act on the pressure receiving chamber 21, a large valve opening is kept, so the flow rate of the heating fluid S does not decrease. Note that an O-ring (not shown) is attached to a sliding surface portion between the valve stem 26 and the support portion 18c, so that air tightness and liquid tightness between the pressure receiving chamber 21 and the downstream side 13 of the valve body 28 are provided. It is secured. Such an airtight structure is also appropriately employed in the pressure control valve 17A in FIG.

一般に、この実施形態で用いている、受圧部材30が弁体28を直接的に作動させる受圧直動タイプの圧力調節弁17Bは、パイロット弁からの供給圧力を駆動部で受圧して主弁体を作動させるタイプの圧力調節弁に比較して、安価で故障が少なくメンテナンス性が良いなどのメリットがある反面、加熱流体Sの圧力を低下させて導出することから、加熱流体Sの流量を大きくできないデメリットがある。また、この実施形態の最大給湯量に対して、十分に余力のある容量の大きな熱交換器を使用した場合には、給湯量が実施形態の最大給湯量の50%以上になっても熱交換器内での交換熱量が少ないため、熱交換器の入口側と出口側との加熱流体Sの圧力が殆ど変わらないのに対し、この実施形態で用いた小容量タイプの熱交換器は、最大給湯量の50%以上となった場合に熱交換器の入口側に対して出口側の加熱流体Sの圧力が低下する。したがって、この実施形態の加熱システム10Bは、受圧直動タイプの圧力調節弁17Bを用いるとともに、小容量タイプの熱交換器11を用いることにより、コンパクト化およびコスト低減を図りながら、加熱流体Sの大きな圧力低下を発生させることで加熱流体Sの大きな流量にも使用できる利点があるので、高温の温水Mを大量に使用する用途に好適に用いることができる。   In general, the pressure receiving direct acting type pressure regulating valve 17B used in this embodiment, in which the pressure receiving member 30 directly operates the valve body 28, receives the supply pressure from the pilot valve by the drive unit and receives the main valve body. Compared to the type of pressure control valve that operates, there is a merit such as low cost, few failures and good maintainability. However, since the pressure of the heating fluid S is reduced and derived, the flow rate of the heating fluid S is increased. There is a disadvantage that cannot be done. In addition, when a heat exchanger having a sufficient capacity with respect to the maximum hot water supply amount of this embodiment is used, heat exchange is performed even if the hot water supply amount is 50% or more of the maximum hot water supply amount of the embodiment. Since the amount of heat exchanged in the chamber is small, the pressure of the heating fluid S at the inlet side and the outlet side of the heat exchanger hardly changes, whereas the small capacity type heat exchanger used in this embodiment has a maximum When it becomes 50% or more of the hot water supply amount, the pressure of the heating fluid S on the outlet side decreases with respect to the inlet side of the heat exchanger. Accordingly, the heating system 10B of this embodiment uses the pressure receiving direct acting type pressure control valve 17B and the small capacity type heat exchanger 11, thereby reducing the size and cost of the heating fluid S. Since there is an advantage that it can be used for a large flow rate of the heating fluid S by generating a large pressure drop, it can be suitably used for applications in which a large amount of hot water M is used.

10A,10B 加熱システム
11 熱交換器
13 加熱流体通路
14 温水導出通路
17A,17B 圧力調節弁
44 湯水混合弁
S 加熱流体
C 冷水
M 温水
VA 加熱流体供給源
WA 給水源
10A, 10B Heating system 11 Heat exchanger 13 Heating fluid passage 14 Hot water outlet passage 17A, 17B Pressure regulating valve 44 Hot water mixing valve S Heating fluid C Cold water M Hot water VA Heating fluid supply source WA Water supply source

Claims (1)

加熱流体Sと冷水Cとの間の熱交換により温水Mを生成する熱交換器11と、
前記熱交換器11から温水Mを導出する温水導出通路14と、
加熱流体供給源VAからの前記加熱流体Sを前記熱交換器11に導く加熱流体通路13に設けられて前記熱交換器11に供給される加熱流体Sの圧力を調節する圧力調節弁17Aとを備え、
前記圧力調節弁17Aは、その出口もしくは出口から熱交換器入口まで、または熱交換器出口の加熱流体Sの圧力の低下に応じて弁開度を増大させるように構成されており、さらに、
給水源WAからの冷水Cを前記熱交換器11に導く冷水通路12に設けられた逆止弁32と、
前記逆止弁32と前記熱交換器11との間で冷水通路12に設けられて冷水通路12内の圧力が上昇し過ぎるのを防止する逃し弁35とを備えている加熱システム。
A heat exchanger 11 that generates hot water M by heat exchange between the heating fluid S and cold water C;
A hot water outlet passage 14 for leading the hot water M from the heat exchanger 11;
A pressure adjusting valve 17A provided in the heating fluid passage 13 for guiding the heating fluid S from the heating fluid supply source VA to the heat exchanger 11 and adjusting the pressure of the heating fluid S supplied to the heat exchanger 11; Prepared,
The pressure control valve 17A is configured to increase the valve opening according to a decrease in the pressure of the heating fluid S from the outlet or outlet to the heat exchanger inlet or at the heat exchanger outlet,
A check valve 32 provided in the cold water passage 12 for guiding the cold water C from the water supply source WA to the heat exchanger 11;
A heating system comprising a relief valve 35 provided in the cold water passage 12 between the check valve 32 and the heat exchanger 11 to prevent the pressure in the cold water passage 12 from rising excessively.
JP2010050786A 2010-03-08 2010-03-08 Heating system Active JP5103495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010050786A JP5103495B2 (en) 2010-03-08 2010-03-08 Heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010050786A JP5103495B2 (en) 2010-03-08 2010-03-08 Heating system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007070283A Division JP5103040B2 (en) 2007-03-19 2007-03-19 Heating system

Publications (2)

Publication Number Publication Date
JP2010159963A JP2010159963A (en) 2010-07-22
JP5103495B2 true JP5103495B2 (en) 2012-12-19

Family

ID=42577239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010050786A Active JP5103495B2 (en) 2010-03-08 2010-03-08 Heating system

Country Status (1)

Country Link
JP (1) JP5103495B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107238300B (en) * 2017-07-11 2023-03-31 北京凌顶科技有限公司 Intelligent temperature adjusting device and shower system
JP7303554B2 (en) * 2020-08-12 2023-07-05 株式会社ミヤワキ hot water system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814421B2 (en) * 1986-07-02 1996-02-14 株式会社日阪製作所 Hot water temperature control device for water heater
JPH01281362A (en) * 1988-05-02 1989-11-13 Takagi Ind Co Ltd Mechanism for hot water supply
JPH0358691U (en) * 1989-10-14 1991-06-07
JP2585445B2 (en) * 1990-02-21 1997-02-26 株式会社大洋バルブ製作所 Proportional control valve
JP3725652B2 (en) * 1997-02-28 2005-12-14 株式会社ガスター Piping unit, hot water supply device and hot water supply system
JP3872912B2 (en) * 1998-02-26 2007-01-24 株式会社ガスター Combustion equipment and check device with overpressure prevention function

Also Published As

Publication number Publication date
JP2010159963A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
JP5230683B2 (en) High temperature drain recovery system
JP2017502224A (en) Valve and method for controlling a valve in a fluid conduit
GB2454065A (en) Valve assembly for water heaters
US20110214767A1 (en) Water delivery system and valve for a sink
JP5103495B2 (en) Heating system
JP5103040B2 (en) Heating system
GB2549601A (en) Water heater
JP4917417B2 (en) Cogeneration system
JP6895157B2 (en) Internal circulation type hot water supply system
JP4893218B2 (en) Heat pump system for hot water supply
KR20160074935A (en) Active heating control system using a flow sensor
CN114270085A (en) Quick dome loaded pilot valve bypass
TW202012862A (en) Heat exchanger and method for using the same
JP4943117B2 (en) Heating system
JP4954668B2 (en) Heating system
JP2006112719A (en) Steam hot water supply system
JP5463096B2 (en) Hot water generator and steam hot water supply system using the same
JP6248753B2 (en) Boiler system
JP3962753B2 (en) Hot water system
JP2014001880A (en) Storage water heater
JP4943118B2 (en) Heating system
JP2016188741A (en) Drain recovery system
JP2011021328A (en) Hot water/water mixing device
JP4889380B2 (en) Heating system
JP7303554B2 (en) hot water system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5103495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250