JP4954668B2 - Heating system - Google Patents

Heating system Download PDF

Info

Publication number
JP4954668B2
JP4954668B2 JP2006295134A JP2006295134A JP4954668B2 JP 4954668 B2 JP4954668 B2 JP 4954668B2 JP 2006295134 A JP2006295134 A JP 2006295134A JP 2006295134 A JP2006295134 A JP 2006295134A JP 4954668 B2 JP4954668 B2 JP 4954668B2
Authority
JP
Japan
Prior art keywords
valve
cold water
heating fluid
passage
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006295134A
Other languages
Japanese (ja)
Other versions
JP2008111596A (en
Inventor
孝弘 岡崎
Original Assignee
株式会社ミヤワキ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミヤワキ filed Critical 株式会社ミヤワキ
Priority to JP2006295134A priority Critical patent/JP4954668B2/en
Publication of JP2008111596A publication Critical patent/JP2008111596A/en
Application granted granted Critical
Publication of JP4954668B2 publication Critical patent/JP4954668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Description

本発明は、例えば蒸気のような加熱流体で冷水を加熱することにより温水を生成する加熱システムに関するものである。   The present invention relates to a heating system that generates hot water by heating cold water with a heating fluid such as steam.

従来、冷水を蒸気で加熱することにより温水を生成する、加熱システムの一種である給湯装置が知られている(特許文献1参照)。この給湯装置における加熱システムは、図8に示すように、熱交換器60によって蒸気のような加熱流体Sの熱で冷水Cを加熱することにより温水Mを生成するものであり、給水源WAからの冷水Cを冷水配管61によって前記熱交換器60に導き、加熱流体供給源VAからの加熱流体Sを加熱流体配管62によって前記熱交換器60に導き、熱交換器60で冷水Cと加熱流体Sとの間の熱交換により生成された温水Mを温水配管63から導出する。前記加熱流体配管62にはこれの内部を流動する加熱流体Sの通過量を調節する調節弁64が設けられ、前記温水配管63には熱交換器60の出口側近傍に温度センサ65が設けられている。   2. Description of the Related Art Conventionally, a hot water supply apparatus that is a type of heating system that generates hot water by heating cold water with steam is known (see Patent Document 1). As shown in FIG. 8, the heating system in this hot water supply apparatus generates hot water M by heating cold water C with heat of a heating fluid S such as steam by a heat exchanger 60, and is supplied from a water supply source WA. The cold water C is led to the heat exchanger 60 by a cold water pipe 61, the heating fluid S from the heating fluid supply source VA is led to the heat exchanger 60 by a heating fluid pipe 62, and the cold water C and the heating fluid are heated by the heat exchanger 60. Hot water M generated by heat exchange with S is led out from the hot water pipe 63. The heating fluid pipe 62 is provided with a regulating valve 64 for adjusting the passing amount of the heating fluid S flowing inside, and the hot water pipe 63 is provided with a temperature sensor 65 in the vicinity of the outlet side of the heat exchanger 60. ing.

前記給湯装置では、給水源WAからの冷水Cと加熱流体供給源VAからの加熱流体Sとが熱交換器60で熱交換されることによって温水Mが生成され、この温水Mがカラン66の開弁により外部へ取り出される。前記熱交換器60を通った熱交換後の加熱流体Sは、復水(ドレン)として排出通路67から外部へ排出される。また、この給湯装置では、熱交換器60で生成した温水Mの温度を温度センサ65で感知し、その感知した温水Mの温度情報をフィードバック回路68により調節弁64へフィードバックして、温水Mの温度が高ければ調節弁64を絞ることにより熱交換器60への加熱流体Sの供給量を減少させ、逆に温水Mの温度が低ければ調節弁64を開くことにより加熱流体Sの供給量を増加させて、所定温度の温水Mを取り出すようになっている。   In the hot water supply device, hot water M is generated by heat exchange between the cold water C from the water supply source WA and the heating fluid S from the heating fluid supply source VA in the heat exchanger 60, and this hot water M is opened by the curan 66. It is taken out by the valve. The heated fluid S after the heat exchange that has passed through the heat exchanger 60 is discharged to the outside from the discharge passage 67 as condensate (drain). In this hot water supply apparatus, the temperature of the hot water M generated by the heat exchanger 60 is detected by the temperature sensor 65, and the temperature information of the detected hot water M is fed back to the control valve 64 by the feedback circuit 68. If the temperature is high, the supply amount of the heating fluid S to the heat exchanger 60 is decreased by restricting the adjustment valve 64. Conversely, if the temperature of the hot water M is low, the supply amount of the heating fluid S is reduced by opening the adjustment valve 64. It is made to increase and the hot water M of predetermined temperature is taken out.

特開2006−112719号公報JP 2006-127719 A

しかしながら、前記給湯装置では、温水Mの温度を感知して、その感知した温度に基づき調節弁64をフィードバック制御する複雑な機構を必要とするので、コスト高となるだけでなく、温度センサ65による温水Mの温度の感知遅れや加熱流体Sの供給量変化に対する温水Mの温度変化の遅れなどに起因して、温水Mの温度が不測に変化し易いので、常に所定温度の温水Mを安定に生成するのが難しい。しかも、カラン66を閉弁しているとき、つまり、温水Mを使用していないときでも、熱交換器60で生成した温水Mの温度が温度センサ65で常に感知されているから、この温度情報に基づきフィードバック回路68が調節弁64をフィードバック制御して温水Mの温度を所定値に保つように熱交換器60へ加熱流体Sの供給量を制御するので、温水Mの不使用時であっても、温水配管63での放熱によっ温水Mの温度が低下すると、加熱流体Sが熱交換器60に供給されて無駄に消費されてしまう。   However, the hot water supply apparatus requires a complicated mechanism that senses the temperature of the hot water M and feedback-controls the control valve 64 based on the sensed temperature. The temperature of the hot water M is likely to change unexpectedly due to a delay in sensing the temperature of the hot water M or a change in the temperature of the hot water M relative to a change in the supply amount of the heating fluid S. Difficult to generate. Moreover, since the temperature of the hot water M generated by the heat exchanger 60 is always detected by the temperature sensor 65 even when the curan 66 is closed, that is, when the hot water M is not used, this temperature information. Therefore, the feedback circuit 68 feedback-controls the control valve 64 to control the supply amount of the heating fluid S to the heat exchanger 60 so as to keep the temperature of the hot water M at a predetermined value. However, when the temperature of the hot water M decreases due to heat radiation in the hot water pipe 63, the heating fluid S is supplied to the heat exchanger 60 and is wasted.

本発明は、前記従来の課題に鑑みてなされたもので、簡単で安価な構成としながらも、所定温度の温水を常に安定に生成することができるとともに、蒸気のような加熱流体が無駄に消費されることがない加熱システムを提供することを目的としている。   The present invention has been made in view of the above-described conventional problems, and can always stably generate hot water at a predetermined temperature while using a simple and inexpensive configuration, and wasteful heating fluid such as steam is consumed. It aims to provide a heating system that will never be done.

上記目的を達成するために、本発明の第1構成に係る加熱システムは、加熱流体と冷水との間の熱交換により温水を生成する熱交換器と、加熱流体供給源からの前記加熱流体を前記熱交換器に導く加熱流体通路と、給水源からの冷水を前記熱交換器に導く冷水通路と、前記冷水通路に設けられて、上流側の圧力が下流側の圧力よりも所定値以上大きくなったときに、その差圧によって開弁する圧力弁と、前記加熱流体通路に設けられて、前記圧力弁の上流側と下流側の差圧に応じて前記熱交換器への加熱流体の供給量を調節する調節弁と、前記圧力弁をバイパスする冷水のバイパス経路に設けられたオリフィスとを備え、前記冷水通路に設けた仕切り壁に前記圧力弁の弁口と前記オリフィスとが形成され、前記圧力弁は、前記弁口を開閉する弁体と、前記弁体を前記弁口に押し付ける圧縮ばねと、前記圧縮ばねのばね力を変化させて開弁圧力を調整する調整ねじとを有する。ここで、温水とは、40℃ないし60℃程度の温湯のみならず、60℃を越える高温の温水をも含む。 In order to achieve the above object, a heating system according to a first configuration of the present invention includes a heat exchanger that generates hot water by heat exchange between a heating fluid and cold water, and the heating fluid from a heating fluid supply source. The heating fluid passage leading to the heat exchanger, the cold water passage leading the cold water from the water supply source to the heat exchanger, and the cold water passage are provided so that the upstream pressure is larger than the downstream pressure by a predetermined value or more. when it becomes, and the pressure valve to open by the pressure difference, the provided heated fluid passage, the supply of heating fluid to the heat exchanger in accordance with the differential pressure between the upstream side and downstream side of the pressure valve An adjustment valve for adjusting the amount, and an orifice provided in a bypass path of cold water that bypasses the pressure valve, and a valve port of the pressure valve and the orifice are formed in a partition wall provided in the cold water passage, The pressure valve opens and closes the valve port A body and a compression spring for pressing the valve body to the valve port, and an adjusting screw the by changing the spring force of the compression spring adjusting the opening pressure. Here, the hot water includes not only hot water of about 40 ° C. to 60 ° C. but also hot water of over 60 ° C.

この構成によれば、例えばカランを閉弁して温水を使用していないときには、冷水通路内を冷水が流れておらず、前記冷水通路に設けられたオリフィスの上流側と下流側との間で差圧が発生しない。この場合、オリフィスの上流側と下流側の差圧に応じて熱交換器への加熱流体の供給量を調節する調節弁は閉弁しているので、熱交換器へ加熱流体が供給されないから、加熱流体が無駄に消費されることはない。一方、例えばカランを開放して温水を使用しているときには、冷水通路内を冷水が熱交換器に向かって流れ、前記冷水通路に設けられたオリフィスの上流側と下流側との間で冷水の差圧が発生する。したがって、オリフィスの上流側と下流側の冷水の差圧に応じて熱交換器への加熱流体の供給量を調節する調節弁を開弁し、この調節弁によって熱交換器へ加熱流体が供給される。このとき、前記差圧の大小により前記調節弁の開度が調節される。このように、温水を使用していないときには加熱流体が消費されることがなく、温水を使用しているときにのみ加熱流体が消費され、しかも加熱流体の供給量がこの差圧に応じて制御されるので、加熱流体が効率的に使用される。また、温水の温度を検知して調節弁をフィードバック制御しないので、温度検出の遅れがなくなり、常に安定した温度の温水が得られる。また、従来システムが温水の温度に基づき調節弁をフィードバック制御する複雑な機構を設けるのに比較して、簡単で安価な構成となり、その結果、コストダウンを達成できる。さらに、構造がコンパクトになるとともに、オリフィスの上流側と下流側との間に発生する差圧を直接的に圧力弁の上流側と下流側とに作用させることができ、圧力弁の応答性が向上する。 According to this configuration, for example, when the hot water is not used by closing the curan, the cold water is not flowing in the cold water passage, and between the upstream side and the downstream side of the orifice provided in the cold water passage. No differential pressure is generated. In this case, since the adjustment valve that adjusts the supply amount of the heating fluid to the heat exchanger according to the differential pressure between the upstream side and the downstream side of the orifice is closed, the heating fluid is not supplied to the heat exchanger. The heating fluid is not wasted. On the other hand, for example, when hot water is used with the curan open, the cold water flows in the cold water passage toward the heat exchanger, and the cold water flows between the upstream side and the downstream side of the orifice provided in the cold water passage. Differential pressure is generated. Therefore, a control valve that adjusts the supply amount of the heating fluid to the heat exchanger according to the differential pressure of the cold water upstream and downstream of the orifice is opened, and the heating fluid is supplied to the heat exchanger by this control valve. The At this time, the opening degree of the control valve is adjusted according to the magnitude of the differential pressure. Thus, the heating fluid is not consumed when hot water is not used, and the heating fluid is consumed only when hot water is used, and the supply amount of the heating fluid is controlled according to this differential pressure. Therefore, the heating fluid is used efficiently. Further, since the temperature of the hot water is detected and the control valve is not feedback controlled, there is no delay in temperature detection, and hot water having a stable temperature can be obtained at all times. In addition, the conventional system has a simple and inexpensive configuration as compared with the case where a complicated mechanism for feedback-controlling the control valve based on the temperature of hot water is provided, and as a result, cost reduction can be achieved. Furthermore, the structure is compact, and the differential pressure generated between the upstream side and the downstream side of the orifice can be directly applied to the upstream side and the downstream side of the pressure valve. improves.

ここで、温水の流量、つまり冷水の流量が少ないときは、冷水がオリフィスのみを通過し、そのときに前記差圧が生じる。他方、冷水の流量が多いときは、オリフィス前後の差圧が所定値を超える結果、圧力弁が開弁し、冷水がオリフィスと圧力弁の両方を通過するので、十分な流量が確保される。   Here, when the flow rate of hot water, that is, the flow rate of cold water is small, cold water passes only through the orifice, and at that time, the differential pressure is generated. On the other hand, when the flow rate of the chilled water is large, the pressure valve opens as a result of the differential pressure across the orifice exceeding a predetermined value, and the chilled water passes through both the orifice and the pressure valve, so that a sufficient flow rate is ensured.

また、本発明の第2構成に係る加熱システムは、加熱流体と冷水との間の熱交換により温水を生成する熱交換器と、加熱流体供給源からの前記加熱流体を前記熱交換器に導く加熱流体通路と、給水源からの冷水を前記熱交換器に導く冷水通路と、前記冷水通路に設けられて、上流側の圧力が下流側の圧力よりも所定値以上大きくなったときに開弁する圧力弁と、前記加熱流体通路に設けられて、前記圧力弁の上流側と下流側の差圧に応じて前記熱交換器への加熱流体の供給量を調節する調節弁と、前記圧力弁をバイパスする冷水のバイパス経路に設けられたオリフィスとを備え、前記調節弁は、前記加熱流体通路を開閉する弁体部を駆動する駆動部が、上流側導入通路を介して前記圧力弁の上流側の冷水が導入される上流側導入室と、下流側導入通路を介して前記圧力弁の下流側の冷水が導入される下流側導入室と、前記両導入室を仕切るダイヤフラムとを有し、前記上流側導入通路、下流側導入通路、上流側導入室および下流側導入室により前記バイパス経路が形成されており、前記上流側導入室および下流側導入室が前記オリフィスにより連通している。この構成によれば、冷水がオリフィスを通過することによる差圧が、ダイヤフラムで仕切られ、かつオリフィスにより連通されている上流側導入室と下流側導入室との間に発生するので、その差圧によりダイヤフラムを一層有効、且つ高い応答性で変形させることができ、調節弁の応答性が向上する。 The heating system according to the second configuration of the present invention includes a heat exchanger that generates hot water by heat exchange between a heating fluid and cold water, and guides the heating fluid from a heating fluid supply source to the heat exchanger. A heating fluid passage, a cold water passage that guides cold water from a water supply source to the heat exchanger, and a valve that opens when the pressure on the upstream side is greater than the pressure on the downstream side by a predetermined value or more. A pressure valve that is provided in the heating fluid passage and adjusts a supply amount of the heating fluid to the heat exchanger according to a differential pressure between the upstream side and the downstream side of the pressure valve, and the pressure valve An orifice provided in a bypass path of cold water that bypasses the control valve , and the control valve has a drive section that drives a valve body section that opens and closes the heating fluid path, upstream of the pressure valve via the upstream introduction path. Upstream introduction chamber where the cold water is introduced, and downstream A downstream introduction chamber into which cold water downstream of the pressure valve is introduced via an inlet passage; and a diaphragm that partitions the two introduction chambers; the upstream introduction passage, the downstream introduction passage, and the upstream introduction chamber and wherein the downstream inlet chamber and the bypass passage is formed, the upstream supply chamber and the downstream-side inlet chamber that are communicated by the orifice. According to this configuration, the differential pressure due to the cold water passing through the orifice is generated between the upstream introduction chamber and the downstream introduction chamber that are partitioned by the diaphragm and communicated by the orifice. Thus, the diaphragm can be deformed more effectively and with high responsiveness, and the responsiveness of the control valve is improved.

本発明の加熱システムによれば、温水を使用していないときには、冷水通路内を冷水が流れない結果、オリフィスの上流側と下流側との間で差圧が発生しないので、前記差圧に応じて作動する調節弁は閉弁しており、熱交換器へ加熱流体が供給されないから、加熱流体が無駄に消費されることはない。一方、温水を使用しているときには、冷水通路内を冷水が熱交換器に向かって流れ、オリフィスの上流側と下流側との間で冷水の差圧が発生し、この差圧に応じて前記調節弁を開弁し、この調節弁によって熱交換器へ加熱流体が供給される。このとき、前記差圧の大小により調節弁の開度が調節される。このように、温水を使用していないときには加熱流体が消費されることがなく、温水を使用しているときにのみ加熱流体が消費され、しかも加熱流体の供給量がこの差圧に応じて制御されるので、加熱流体が効率的に使用され、また、温度検出の遅れがなくなり、常に安定した温度の温水が得られる。また、温水の温度に基づき調節弁をフィードバック制御する複雑な機構を設けるのと比較して、簡単で安価な構成となり、その結果、コストダウンを達成できる。   According to the heating system of the present invention, when hot water is not used, the cold water does not flow in the cold water passage. As a result, no differential pressure is generated between the upstream side and the downstream side of the orifice. The regulating valve that operates in this manner is closed, and no heating fluid is supplied to the heat exchanger, so that the heating fluid is not wasted. On the other hand, when hot water is used, the cold water flows in the cold water passage toward the heat exchanger, and a differential pressure of the cold water is generated between the upstream side and the downstream side of the orifice. The control valve is opened, and heating fluid is supplied to the heat exchanger by the control valve. At this time, the opening degree of the control valve is adjusted by the magnitude of the differential pressure. Thus, the heating fluid is not consumed when hot water is not used, and the heating fluid is consumed only when hot water is used, and the supply amount of the heating fluid is controlled according to this differential pressure. Therefore, the heated fluid is used efficiently, and there is no delay in temperature detection, and hot water with a stable temperature is always obtained. Further, compared to providing a complicated mechanism for feedback control of the control valve based on the temperature of the hot water, the configuration is simple and inexpensive, and as a result, cost reduction can be achieved.

以下、本発明の好ましい実施形態について図面を参照しながら説明する。図1は本発明の第1実施形態に係る加熱システム10Aを示す系統図である。この加熱システム10Aは、蒸気のような加熱流体Sの熱で被加熱流体である冷水Cを加熱することにより温水Mを生成する熱交換器11を備えている。熱交換器11から導出される前記温水Mは、後述する湯水混合弁23からの温水M1よりも高温なので、以下では「熱水M」と呼ぶ。熱交換器11としては、例えば複数のプレートを重ねて、その間に図示しない加熱流体Sの通路と冷水Cの通路とを、前記プレートを介して交互に配置したプレート型熱交換器と呼ばれるものが、小型で熱交換容量が大きいことから、好ましい。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing a heating system 10A according to the first embodiment of the present invention. The heating system 10A includes a heat exchanger 11 that generates hot water M by heating cold water C that is a fluid to be heated with heat of a heating fluid S such as steam. The hot water M led out from the heat exchanger 11 is higher in temperature than hot water M1 from the hot water / mixing valve 23 described later, and will be referred to as “hot water M” below. As the heat exchanger 11, for example, a plate-type heat exchanger in which a plurality of plates are stacked and a passage of a heating fluid S and a passage of cold water C (not shown) are alternately arranged between the plates via the plates. It is preferable because of its small size and large heat exchange capacity.

また、前記加熱システム10Aは、外部の給水源WAから供給される冷水Cを前記熱交換器11に導く冷水通路12と、加熱流体供給源VAから供給される蒸気のような加熱流体Sを前記熱交換器11に導く加熱流体通路13と、前記熱交換器11で生成された熱水Mを導出する温水導出通路14と、熱交換器11を通った加熱後の加熱流体Sを復水(ドレン)として排出する復水排出通路15とを有している。   In addition, the heating system 10A includes a cold water passage 12 that guides cold water C supplied from an external water supply source WA to the heat exchanger 11, and a heating fluid S such as steam supplied from a heating fluid supply source VA. The heated fluid passage 13 that leads to the heat exchanger 11, the hot water outlet passage 14 that leads out the hot water M generated in the heat exchanger 11, and the heated fluid S that has passed through the heat exchanger 11 is condensed ( And a condensate discharge passage 15 for discharging as drain).

前記冷水通路12には、冷水通路12を冷水Cの流れ方向と直交する方向に延びて、冷水通路12を上流側と下流側に仕切る仕切り壁51が設けられており、この仕切り壁51に、上流側の圧力が下流側の圧力よりも所定値以上大きくなったときに開弁する圧力弁20と、この圧力弁20をバイパスする冷水Cのバイパス経路21Aと、このバイパス経路21Aを形成するオリフィス16Aとが設けられている。この具体的な構成は、図2に示すように、冷水通路12を構成する冷水配管50内に、冷水Cの流れ方向と直交する方向に延びる仕切り壁51を設け、この仕切り壁51に、オリフィス16Aと圧力弁20の弁口22とが並んで形成されている。オリフィス16Aは、冷水配管50内において上流側から下流側へ流れる冷水Cの通過流量を絞るように形成された小孔である。圧力弁20は、弁口22を開閉する弁体20aが圧縮コイルばね40のばね力により弁口22に押し付けられている。圧縮コイルばね40は、弁体20aとばね受け部材36との間に介装されており、ばね受け部材36に当接する調整ねじ41を仕切り壁51に向け進退させることにより圧縮コイルばね40のばね力を変化させて、開弁圧力、つまり弁体20aが弁口22を開放するときの仕切り壁51の上流側と下流側の圧力差を所定値に調整できるようになっている。   The cold water passage 12 is provided with a partition wall 51 that extends the cold water passage 12 in a direction orthogonal to the flow direction of the cold water C, and partitions the cold water passage 12 into an upstream side and a downstream side. A pressure valve 20 that opens when the pressure on the upstream side exceeds the pressure on the downstream side by a predetermined value, a bypass path 21A for cold water C that bypasses the pressure valve 20, and an orifice that forms the bypass path 21A 16A. As shown in FIG. 2, the specific configuration is such that a partition wall 51 extending in a direction perpendicular to the flow direction of the cold water C is provided in the cold water pipe 50 constituting the cold water passage 12, and an orifice is provided in the partition wall 51. 16A and the valve port 22 of the pressure valve 20 are formed side by side. The orifice 16A is a small hole formed so as to restrict the passage flow rate of the cold water C flowing from the upstream side to the downstream side in the cold water pipe 50. In the pressure valve 20, a valve body 20 a that opens and closes the valve port 22 is pressed against the valve port 22 by the spring force of the compression coil spring 40. The compression coil spring 40 is interposed between the valve body 20 a and the spring receiving member 36, and the adjustment screw 41 abutting on the spring receiving member 36 is advanced and retracted toward the partition wall 51, whereby the compression coil spring 40 is springed. By changing the force, the valve opening pressure, that is, the pressure difference between the upstream side and the downstream side of the partition wall 51 when the valve body 20a opens the valve port 22 can be adjusted to a predetermined value.

前記冷水配管50には、さらに、仕切り壁51を挟んで上流側の近傍箇所から上流側導入通路18を形成する上流側導入管52が分岐され、かつ仕切り壁51の下流側の近傍箇所から下流側導入通路19を形成する下流側導入管53が分岐されている。前記上流側導入管52および下流側導入管53の各先端は、図1の調節弁17に連結されている。この調節弁17は、加熱流体通路13に配設されて、圧力弁20の上流側と下流側の差圧に応じて開度が調整されることにより熱交換器11への加熱流体Sの供給量を調節するものである。つぎに、この調節弁17の具体的構造について、図3を参照しながら説明する。   In the cold water pipe 50, an upstream introduction pipe 52 that forms the upstream introduction passage 18 is branched from a location on the upstream side across the partition wall 51, and downstream from a location on the downstream side of the partition wall 51. A downstream introduction pipe 53 that forms the side introduction passage 19 is branched. The leading ends of the upstream introduction pipe 52 and the downstream introduction pipe 53 are connected to the control valve 17 of FIG. The regulating valve 17 is disposed in the heating fluid passage 13 and the opening degree is adjusted according to the differential pressure between the upstream side and the downstream side of the pressure valve 20, whereby the heating fluid S is supplied to the heat exchanger 11. The amount is adjusted. Next, a specific structure of the control valve 17 will be described with reference to FIG.

図3は調節弁17の閉弁状態を示したもので、調節弁17は、上部に加熱流体通路13が形成されたケーシング25内に、鉛直方向に配置された弁棒26が摺動自在に支持されており、この弁棒26の一端部(下端部)に、調節弁17の駆動部27が設けられているとともに、弁棒26の他端(上端)に、加熱流体通路13を開閉するボール弁からなる弁体部28が配置されている。   FIG. 3 shows a closed state of the control valve 17. In the control valve 17, a valve rod 26 arranged in a vertical direction is slidable in a casing 25 having a heated fluid passage 13 formed in the upper part. A drive portion 27 of the control valve 17 is provided at one end (lower end) of the valve rod 26, and the heating fluid passage 13 is opened and closed at the other end (upper end) of the valve rod 26. A valve body 28 made of a ball valve is disposed.

前記駆動部27は、前記オリフィス16Aおよび圧力弁20の上流側の圧力と下流側の圧力との差圧を受けて弁棒26を軸方向に駆動して弁体部28を前記軸方向に移動させることにより弁開度を調節するものであり、弁棒26の下端に設けられた円板状の受け部材26aと、この受け部材26aに重ね合わせ状態で固定されたダイヤフラム30と、このダイヤフラム30により上下に仕切られた下流側導入室39および上流側導入室38とを有している。上流側導入室38には、図2のオリフィス16Aの上流側の冷水Cが上流側導入路18を通って導入され、下流側導入室39には、オリフィス16Aの下流側の冷水Cが下流側導入路19を通って導入される。弁体部28は、この弁体部28とケーシング25との間に介装された圧縮コイルばね29のばね力を受けて、弁棒26の上端または弁座25aに押し付けられる。   The drive unit 27 receives the differential pressure between the upstream pressure and the downstream pressure of the orifice 16A and the pressure valve 20 to drive the valve rod 26 in the axial direction to move the valve body 28 in the axial direction. Accordingly, the opening of the valve is adjusted, and a disc-shaped receiving member 26a provided at the lower end of the valve stem 26, a diaphragm 30 fixed to the receiving member 26a in an overlapped state, and the diaphragm 30 And a downstream side introduction chamber 39 and an upstream side introduction chamber 38 which are partitioned vertically. Cold water C upstream of the orifice 16A in FIG. 2 is introduced into the upstream introduction chamber 38 through the upstream introduction path 18, and cold water C downstream of the orifice 16A is downstream in the downstream introduction chamber 39. It is introduced through the introduction path 19. The valve body portion 28 is pressed against the upper end of the valve stem 26 or the valve seat 25 a by receiving the spring force of the compression coil spring 29 interposed between the valve body portion 28 and the casing 25.

弁棒26とケーシング25との摺動面部位にはOリング42が取り付けられて、気密性および液密性が確保されており、これにより、下流側導入通路19から下流側導入室39に導入された冷水Cが加熱流体通路13に侵入しないように配慮されている。なお、図1に明示するように、この実施形態では弁棒26と弁体部28とが別体になった場合を例示しているが、これら弁棒26と弁体部28が一体的に形成されたものであってもよい。   An O-ring 42 is attached to a sliding surface portion between the valve stem 26 and the casing 25 to ensure airtightness and liquid tightness. Thus, the downstream side introduction passage 19 introduces the downstream side introduction chamber 39. It is considered that the chilled water C does not enter the heating fluid passage 13. As clearly shown in FIG. 1, in this embodiment, the case where the valve stem 26 and the valve body portion 28 are separated is illustrated, but the valve stem 26 and the valve body portion 28 are integrally formed. It may be formed.

また、図1に示すように、熱交換器11から導出された熱水Mを給湯出口となる給湯口弁(カラン)24に導く温水導出通路14には、熱交換器11からの熱水Mに給水源WAからの冷水Cを混合して、取り出すべき温水M1を所望の温度に調節する湯水混合弁23が配設されている。   Further, as shown in FIG. 1, hot water M from the heat exchanger 11 is provided in a hot water outlet passage 14 that guides the hot water M led out from the heat exchanger 11 to a hot water outlet valve (caran) 24 serving as a hot water outlet. A hot water mixing valve 23 is provided for mixing the cold water C from the water supply source WA and adjusting the hot water M1 to be taken out to a desired temperature.

さらに、冷水通路12から分岐して前記湯水混合弁23に至る冷水バイパス通路37および冷水通路12における上流側導入通路18の接続点よりも上流側の箇所には、逆止弁31,32がそれぞれ配設されている。また、復水排出通路15には、加熱流体Sである蒸気をトラップして復水のみを排出する蒸気トラップ33が配設されている。冷水通路12における圧力弁20と熱交換器11との間の箇所から分岐した冷水排出通路34には、給湯口弁24からの温水M1の取り出しが停止されたときに熱交換器11内の熱水Mの圧力が上昇し過ぎるのを防止する逃し弁35が配設されている。   Further, check valves 31 and 32 are provided at locations upstream of the connection point of the upstream side introduction passage 18 in the cold water passage 12 and the cold water bypass passage 37 that branches from the cold water passage 12 and reaches the hot water mixing valve 23, respectively. It is arranged. The condensate discharge passage 15 is provided with a steam trap 33 that traps the steam that is the heating fluid S and discharges only the condensate. In the cold water discharge passage 34 branched from the location between the pressure valve 20 and the heat exchanger 11 in the cold water passage 12, the heat in the heat exchanger 11 is removed when the extraction of the hot water M1 from the hot water supply valve 24 is stopped. A relief valve 35 is provided to prevent the pressure of the water M from rising too much.

つぎに、前記加熱システム10Aの作用について説明する。図1の給湯口弁24が閉じられた温水M1の不使用時には、冷水通路12内を冷水Cが流れないので、冷水通路12におけるオリフィス16Aを挟んで上流側と下流側の差圧がゼロとなり、かつ上流側導入室38と下流側導入室39の差圧もゼロとなる。そのため、図3に示すように、調節弁17は、弁体部28が圧縮コイルばね29のばね力により弁座25aに押し付けられて閉弁状態に保持され、加熱流体通路13が閉塞されて加熱流体Sの図1に示す熱交換器11への供給が停止される。すなわち、この加熱システム10Aでは、給湯口弁24の閉弁による冷水通路12内の冷水Cの流動停止をオリフィス16Aの上流側と下流側との差圧がゼロとなるのに基づき機械的に検知して、調節弁17を閉弁状態に保持する。したがって、従来の加熱システムのように温度センサで感知した温水の温度情報に基づき調節弁を常にフィードバック制御する場合とは異なり、給湯口弁24が開かれない限り、つまり温水M1が使用されない限り、熱交換器60へ加熱流体Sが供給されないので、加熱流体Sの無駄な消費を防止することができる。   Next, the operation of the heating system 10A will be described. When the hot water M1 with the hot water supply valve 24 shown in FIG. 1 closed is not used, the cold water C does not flow through the cold water passage 12, so that the differential pressure between the upstream side and the downstream side across the orifice 16A in the cold water passage 12 becomes zero. In addition, the differential pressure between the upstream side introduction chamber 38 and the downstream side introduction chamber 39 is also zero. Therefore, as shown in FIG. 3, in the adjusting valve 17, the valve body portion 28 is pressed against the valve seat 25 a by the spring force of the compression coil spring 29 and held in the closed state, and the heating fluid passage 13 is closed and heated. Supply of the fluid S to the heat exchanger 11 shown in FIG. 1 is stopped. That is, in this heating system 10A, the stop of the flow of the cold water C in the cold water passage 12 due to the closing of the hot water supply valve 24 is mechanically detected based on the fact that the differential pressure between the upstream side and the downstream side of the orifice 16A becomes zero. Then, the control valve 17 is held in the closed state. Therefore, unlike the case where the control valve is always feedback controlled based on the temperature information of the hot water sensed by the temperature sensor as in the conventional heating system, unless the hot water supply valve 24 is opened, that is, unless the hot water M1 is used, Since the heating fluid S is not supplied to the heat exchanger 60, wasteful consumption of the heating fluid S can be prevented.

給湯口弁24が開かれたときには、給水源WAからの冷水Cが冷水通路12のバイパス経路21Aに設けられたオリフィス16Aを通過して熱交換器11に流入する。この冷水Cがオリフィス16Aを通過するときには、ベンチュリ効果によって、冷水通路12におけるオリフィス16Aの下流側近傍の圧力が上流側近傍の圧力よりも低下する。この差圧が上流側導入通路18および下流側導入通路19を介して、図3の駆動部27の上流側導入室38および下流側導入室39に作用するので、上流側導入室38の圧力が下流側導入室39の圧力も大きくなる。この両導入室38,39間に生じる差圧により、図4に示すように、ダイヤフラム30が上方に向け変形されて受け部材26aを押し上げるので、それに伴って弁棒26が軸方向上方に駆動される。これにより、弁体部28が圧縮コイルばね29のばね力に抗して上方に移動され、調節弁17が開弁状態となり、加熱流体Sが加熱流体通路13を通って熱交換器11に供給される。   When the hot water supply valve 24 is opened, the cold water C from the water supply source WA passes through the orifice 16A provided in the bypass passage 21A of the cold water passage 12 and flows into the heat exchanger 11. When the cold water C passes through the orifice 16A, the pressure near the downstream side of the orifice 16A in the cold water passage 12 is lower than the pressure near the upstream side due to the venturi effect. This differential pressure acts on the upstream side introduction chamber 38 and the downstream side introduction chamber 39 of the drive unit 27 of FIG. 3 via the upstream side introduction passage 18 and the downstream side introduction passage 19. The pressure in the downstream introduction chamber 39 also increases. Due to the differential pressure generated between the two introduction chambers 38 and 39, as shown in FIG. 4, the diaphragm 30 is deformed upward and pushes up the receiving member 26a. Accordingly, the valve stem 26 is driven upward in the axial direction. The As a result, the valve body 28 is moved upward against the spring force of the compression coil spring 29, the adjustment valve 17 is opened, and the heating fluid S is supplied to the heat exchanger 11 through the heating fluid passage 13. Is done.

したがって、加熱流体通路13を通って熱交換器11に導かれた加熱流体Sとオリフィス16Aを通って熱交換器11に導かれた冷水Cとの間の熱交換により生成され、さらに湯水混合弁23で温度調節された温水M1が給湯口弁24から取り出される。ここで、給湯口弁24が小さな開度に開かれて比較的少量の温水M1が使用される場合には、圧力弁20が圧縮コイルばね40のばね力によって閉弁状態に保持され続けて、熱交換器11にはオリフィス16Aを通過した少量の冷水Cが供給される。他方、調節弁17は、両導入室38,39間の差圧に応じた開度となって、図1の熱交換器11への加熱流体Sの供給量を冷水Cの供給量に対応した少量に調節する。   Therefore, it is generated by heat exchange between the heating fluid S guided to the heat exchanger 11 through the heating fluid passage 13 and the cold water C guided to the heat exchanger 11 through the orifice 16A, and the hot water mixing valve The hot water M 1 whose temperature has been adjusted at 23 is taken out from the hot water supply valve 24. Here, when the hot water supply valve 24 is opened to a small opening and a relatively small amount of hot water M1 is used, the pressure valve 20 is kept in the closed state by the spring force of the compression coil spring 40, The heat exchanger 11 is supplied with a small amount of cold water C that has passed through the orifice 16A. On the other hand, the control valve 17 has an opening degree corresponding to the differential pressure between the introduction chambers 38 and 39, and the supply amount of the heating fluid S to the heat exchanger 11 in FIG. Adjust to a small amount.

一方、比較的大量の温水M1を使用する目的で給湯口弁24が大きな開度に開かれたときには、オリフィス16Aを通過する冷水Cの流量が増大して、仕切り壁51に対し上流側と下流側との間の差圧が圧力弁20の圧縮コイルばね40のばね力とバランスする所定値以上となったときに、圧力弁20が開弁して、オリフィス16Aよりも大径の弁口22を通過した大量の冷水Cが熱交換器11に供給される。このとき、圧力弁20の上流側と下流側との大きな差圧が上流側導入室38および下流側導入室39に作用して、調節弁17が大きな開度に調節され、加熱流体Sの供給量が増大する。   On the other hand, when the hot water supply valve 24 is opened to a large opening for the purpose of using a relatively large amount of hot water M1, the flow rate of the cold water C passing through the orifice 16A increases, and the upstream side and the downstream side with respect to the partition wall 51. When the pressure difference between the pressure valve 20 and the pressure valve 20 becomes equal to or greater than a predetermined value that balances with the spring force of the compression coil spring 40 of the pressure valve 20, the pressure valve 20 opens and the valve port 22 having a diameter larger than that of the orifice 16A A large amount of cold water C that has passed through is supplied to the heat exchanger 11. At this time, a large differential pressure between the upstream side and the downstream side of the pressure valve 20 acts on the upstream side introduction chamber 38 and the downstream side introduction chamber 39, the regulating valve 17 is adjusted to a large opening, and the heating fluid S is supplied. The amount increases.

上述のように、この加熱システム10Aでは、温水M1の使用量が少量のときは冷水Cが小径のオリフィス16Aのみを通過して、オリフィス16Aの上流側と下流側との間に生じる差圧により応答性良く調節弁17を作動させ、温水M1の使用量が大量のときは圧力弁20を開弁させて、その弁口22およびオリフィス16Aの両方を通して大量の冷水Cを熱交換器11に供給するようにしているので、調節弁17による熱水Mの温度調整の応答性の向上と大量の熱水の確保の双方を同時に達成することができる。換言すれば、大きな差圧を得るためにオリフィス16Aを小径に形成した場合には温水M1の大きな使用量が確保できず、一方、温水M1の大きな使用量を確保するためにオリフィス16Aを大径に形成した場合には上流側と下流側との間の差圧が小さくなることから、調節弁17による温度調節が困難となるが、この加熱システム10Aは、オリフィス16Aと圧力弁20とを並列に設けることにより、前述の相反する二つの課題を同時に解決している。   As described above, in the heating system 10A, when the amount of the hot water M1 used is small, the cold water C passes only through the small-diameter orifice 16A and is caused by the differential pressure generated between the upstream side and the downstream side of the orifice 16A. The control valve 17 is operated with good responsiveness, and when the amount of hot water M1 used is large, the pressure valve 20 is opened, and a large amount of cold water C is supplied to the heat exchanger 11 through both the valve port 22 and the orifice 16A. Therefore, it is possible to achieve both the improvement of the responsiveness of the temperature adjustment of the hot water M by the control valve 17 and the securing of a large amount of hot water at the same time. In other words, when the orifice 16A is formed to have a small diameter in order to obtain a large differential pressure, a large usage amount of the hot water M1 cannot be ensured, while on the other hand, the orifice 16A has a large diameter to ensure a large usage amount of the hot water M1. In this case, since the differential pressure between the upstream side and the downstream side becomes small, it becomes difficult to control the temperature by the control valve 17, but this heating system 10A has the orifice 16A and the pressure valve 20 in parallel. By providing in the above, the above two conflicting problems are solved simultaneously.

この実施形態の加熱システム10Aは、従来の加熱装置のように感知した温水温度に基づいて調節弁をフィードバック制御する複雑な機構に代えて、オリフィス16Aおよび圧力弁20の各々の上流側と下流側との間に生じる差圧に応じて調節弁17の開度を調整することにより熱交換器11への加熱流体Sの供給量を調節する簡単な構成としているので、コストダウンを図ることができる。それに加えて、従来の加熱システムにおける温度センサによる温水温度の感知遅れや加熱流体の供給量変化に対する温水の温度変化の遅れなどに起因する温水の不測の温度変化が生じないので、湯水混合弁23を経て常に所定温度の温水M1を安定して生成することができる。   The heating system 10A of this embodiment replaces a complicated mechanism that feedback-controls the regulating valve based on the sensed hot water temperature as in a conventional heating device, and instead of the upstream side and the downstream side of each of the orifice 16A and the pressure valve 20. The amount of heating fluid S supplied to the heat exchanger 11 is adjusted by adjusting the opening of the control valve 17 according to the differential pressure generated between the heat exchanger 11 and the cost. . In addition, since there is no unexpected temperature change of hot water due to a delay in sensing the temperature of the hot water by the temperature sensor in the conventional heating system or a delay in the temperature change of the hot water relative to the change in the supply amount of the heated fluid, the hot and cold mixing valve 23 Through the process, the hot water M1 having a predetermined temperature can always be stably generated.

図5は本発明の第2実施形態に係る加熱システム10Bを示す系統図であり、同図において、図1と同一若しくは相当するものには同一の符号を付して重複する説明を省略する。この加熱システム10Bが図1のものと相違するのは、冷水通路12に図2と同様の圧力弁20のみを設ける一方で、オリフィス16Bを、調節弁17におけるダイヤフラム30を貫通して設け、このオリフィス16Bを介して上流側導入室38と下流側導入室39とを連通させた構成のみである。したがって、この加熱システム10Bでは、圧力弁20をバイパスするバイバス経路21Bが、上流側導入通路18を形成する上流側導入管52、下流側導入通路19を形成する下流側導入管53、上流側導入室38および下流側導入室39により形成されており、そのバイパス経路21Bにオリフィス16Bが設けられている。   FIG. 5 is a system diagram showing a heating system 10B according to the second embodiment of the present invention, in which the same or corresponding parts as those in FIG. The heating system 10B differs from that in FIG. 1 in that only the pressure valve 20 similar to that in FIG. 2 is provided in the cold water passage 12, while the orifice 16B is provided through the diaphragm 30 in the control valve 17. Only the configuration in which the upstream side introduction chamber 38 and the downstream side introduction chamber 39 are communicated with each other via the orifice 16B. Therefore, in this heating system 10B, the bypass path 21B that bypasses the pressure valve 20 includes the upstream introduction pipe 52 that forms the upstream introduction path 18, the downstream introduction pipe 53 that forms the downstream introduction path 19, and the upstream introduction. The chamber 38 and the downstream introduction chamber 39 are formed, and the orifice 16B is provided in the bypass path 21B.

図5の圧力弁20およびオリフィス16Bの具体的な構成について説明する。図6に示すように、冷水通路12に設けられた仕切り壁51には圧力弁20のみが設けられている。他方、図7に示すように、ねじ部材43が、ダイヤフラム30の挿通孔を貫通して、受け部材26aのねじ孔にねじ込み固定されており、このねじ部材43の中心部に軸方向に形成された小径の貫通孔によってオリフィス16Bが形成されている。ねじ部材43の外周にはブッシュ44が配置されており、ねじ部材43の締結によりダイヤフラム30が圧潰するのを防止している。なお、オリフィス16Bは、この実施形態において、ねじ部材43を軸方向に貫通する小孔としたが、二点鎖線で示すように、ケーシング25に上流側導入室38および下流側導入室39を互いに連通するよう形成した小孔を設けるようにしてもよい。   Specific configurations of the pressure valve 20 and the orifice 16B in FIG. 5 will be described. As shown in FIG. 6, only the pressure valve 20 is provided on the partition wall 51 provided in the cold water passage 12. On the other hand, as shown in FIG. 7, the screw member 43 passes through the insertion hole of the diaphragm 30 and is screwed and fixed to the screw hole of the receiving member 26 a, and is formed in the central portion of the screw member 43 in the axial direction. The orifice 16B is formed by a small-diameter through hole. A bush 44 is disposed on the outer periphery of the screw member 43 to prevent the diaphragm 30 from being crushed by fastening the screw member 43. In this embodiment, the orifice 16B is a small hole that penetrates the screw member 43 in the axial direction. However, as shown by a two-dot chain line, the upstream introduction chamber 38 and the downstream introduction chamber 39 are connected to the casing 25. You may make it provide the small hole formed so that it might connect.

この加熱システム10Bは、基本的に第1実施形態とほぼ同様に作用するので、第1実施形態と異なる作用のみについて説明する。まず、図5の温水Mの不使用時の動作は第1実施形態と同一である。給湯口弁24が開かれたときには、給水源WAからの冷水Cが、上流側導入通路18、上流側導入室38、オリフィス16B、下流側導入室39および下流側導入通路19からなるバイパス経路21Bを通って流れる。このとき、オリフィス16Bに対し上流側導入室38内の圧力が下流側導入室38内の圧力よりも大きくなり、この両導入室38,39の間に生じる差圧により、ダイヤフラム30が図4の第1実施形態の場合とほぼ同様に上方に向け変形されて、図7の受け部材26aを押し上げるので、弁棒26が軸方向上方に駆動される。これにより、弁体部28が上方に移動して調節弁17が開弁状態となり、加熱流体Sが熱交換器11に供給される。上流側導入室38と下流側導入室39間の差圧が増大したとき、圧力弁20が開弁して、大量の温水M1が確保される。   Since this heating system 10B basically operates in the same manner as in the first embodiment, only the operation different from that in the first embodiment will be described. First, the operation when the hot water M in FIG. 5 is not used is the same as that of the first embodiment. When the hot water supply valve 24 is opened, the cold water C from the water supply source WA is bypassed by the bypass passage 21 </ b> B including the upstream introduction passage 18, the upstream introduction chamber 38, the orifice 16 </ b> B, the downstream introduction chamber 39, and the downstream introduction passage 19. Flowing through. At this time, the pressure in the upstream introduction chamber 38 with respect to the orifice 16B becomes larger than the pressure in the downstream introduction chamber 38. Due to the differential pressure generated between the introduction chambers 38 and 39, the diaphragm 30 is shown in FIG. In the same manner as in the case of the first embodiment, it is deformed upward and pushes up the receiving member 26a of FIG. 7, so that the valve stem 26 is driven upward in the axial direction. As a result, the valve body portion 28 moves upward, the control valve 17 is opened, and the heating fluid S is supplied to the heat exchanger 11. When the differential pressure between the upstream side introduction chamber 38 and the downstream side introduction chamber 39 increases, the pressure valve 20 opens and a large amount of hot water M1 is secured.

この加熱システム10Bにおいては、第1実施形態で説明したのと同様の効果を得ることができるのに加えて、一般にゴムなどの耐熱性の低い素材からなるダイヤフラム30が、バイパス経路21Bを通って流れる流れる冷水Cにより冷却されるので、加熱流体Sからの伝熱によるダイヤフラム30の熱劣化が防止されて、調節弁17の弁動作が安定化するとともに、ダイヤフラム30の寿命が長くなる。   In the heating system 10B, in addition to obtaining the same effect as described in the first embodiment, the diaphragm 30 generally made of a material having low heat resistance such as rubber passes through the bypass path 21B. Since it is cooled by the flowing cold water C, thermal deterioration of the diaphragm 30 due to heat transfer from the heating fluid S is prevented, the valve operation of the control valve 17 is stabilized, and the life of the diaphragm 30 is extended.

本発明の第1実施形態に係る加熱システムを示す系統図である。It is a distribution diagram showing the heating system concerning a 1st embodiment of the present invention. 同上の加熱システムにおけるオリフィスおよび圧力弁の近傍を示す縦断面図である。It is a longitudinal cross-sectional view which shows the vicinity of the orifice and pressure valve in a heating system same as the above. 同上の加熱システムにおける調節弁の閉弁状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the valve closing state of the control valve in a heating system same as the above. 同上の調節弁の開弁状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the valve opening state of a control valve same as the above. 本発明の第2実施形態に係る加熱システムを示す系統図である。It is a systematic diagram which shows the heating system which concerns on 2nd Embodiment of this invention. 同上の加熱システムにおける圧力弁の近傍を示す縦断面図である。It is a longitudinal cross-sectional view which shows the vicinity of the pressure valve in a heating system same as the above. 同上の加熱システムにおける調節弁の閉弁状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the valve closing state of the control valve in a heating system same as the above. 従来の加熱システムの系統図である。It is a systematic diagram of the conventional heating system.

符号の説明Explanation of symbols

10A、10B 加熱システム
11 熱交換器
12 冷水通路
13 加熱流体通路
16A、16B オリフィス
17 調節弁
18 上流側導入通路
19 下流側導入通路
20 圧力弁
21A、21B バイパス経路
22 弁口
27 駆動部
28 弁体部
30 ダイヤフラム
38 上流側導入室
39 下流側導入室
51 仕切り壁
S 加熱流体
C 冷水
M 温水(熱水)
M1 温水
VA 加熱流体供給源
WA 給水源
10A, 10B Heating system 11 Heat exchanger 12 Chilled water passage 13 Heating fluid passage 16A, 16B Orifice 17 Control valve 18 Upstream side introduction passage 19 Downstream side introduction passage 20 Pressure valve 21A, 21B Bypass passage 22 Valve port 27 Drive unit 28 Valve body Part 30 Diaphragm 38 Upstream side introduction chamber 39 Downstream side introduction chamber 51 Partition wall S Heating fluid C Cold water M Hot water (hot water)
M1 Hot water VA Heating fluid supply source WA Water supply source

Claims (2)

加熱流体と冷水との間の熱交換により温水を生成する熱交換器と、
加熱流体供給源からの前記加熱流体を前記熱交換器に導く加熱流体通路と、
給水源からの冷水を前記熱交換器に導く冷水通路と、
前記冷水通路に設けられて、上流側の圧力が下流側の圧力よりも所定値以上大きくなったときに、その差圧によって開弁する圧力弁と、
前記加熱流体通路に設けられて、前記圧力弁の上流側と下流側の差圧に応じて前記熱交換器への加熱流体の供給量を調節する調節弁と、
前記圧力弁をバイパスする冷水のバイパス経路に設けられたオリフィスと、
を備え、
前記冷水通路に設けた仕切り壁に前記圧力弁の弁口と前記オリフィスとが形成され、
前記圧力弁は、前記弁口を開閉する弁体と、前記弁体を前記弁口に押し付ける圧縮ばねと、前記圧縮ばねのばね力を変化させて開弁圧力を調整する調整ねじとを有する加熱システム。
A heat exchanger that generates hot water by heat exchange between the heating fluid and cold water;
A heating fluid passage for directing the heating fluid from a heating fluid supply to the heat exchanger;
A cold water passage for guiding cold water from a water supply source to the heat exchanger;
A pressure valve provided in the cold water passage, and opened by the differential pressure when the upstream pressure becomes larger than the downstream pressure by a predetermined value; and
A regulating valve provided in the heating fluid passage for adjusting a supply amount of the heating fluid to the heat exchanger according to a differential pressure between the upstream side and the downstream side of the pressure valve;
An orifice provided in a bypass path of cold water that bypasses the pressure valve;
With
A valve port of the pressure valve and the orifice are formed in a partition wall provided in the cold water passage,
The pressure valve includes a valve body that opens and closes the valve port, a compression spring that presses the valve body against the valve port, and a heating screw that adjusts the valve opening pressure by changing the spring force of the compression spring. system.
加熱流体と冷水との間の熱交換により温水を生成する熱交換器と、
加熱流体供給源からの前記加熱流体を前記熱交換器に導く加熱流体通路と、
給水源からの冷水を前記熱交換器に導く冷水通路と、
前記冷水通路に設けられて、上流側の圧力が下流側の圧力よりも所定値以上大きくなったときに開弁する圧力弁と、
前記加熱流体通路に設けられて、前記圧力弁の上流側と下流側の差圧に応じて前記熱交換器への加熱流体の供給量を調節する調節弁と、
前記圧力弁をバイパスする冷水のバイパス経路に設けられたオリフィスと、
を備え、
前記調節弁は、前記加熱流体通路を開閉する弁体部を駆動する駆動部が、上流側導入通路を介して前記圧力弁の上流側の冷水が導入される上流側導入室と、下流側導入通路を介して前記圧力弁の下流側の冷水が導入される下流側導入室と、前記両導入室を仕切るダイヤフラムとを有し、
前記上流側導入通路、下流側導入通路、上流側導入室および下流側導入室により前記バイパス経路が形成されており、
前記上流側導入室および下流側導入室が前記オリフィスにより連通している加熱システム。
A heat exchanger that generates hot water by heat exchange between the heating fluid and cold water;
A heating fluid passage for directing the heating fluid from a heating fluid supply to the heat exchanger;
A cold water passage for guiding cold water from a water supply source to the heat exchanger;
A pressure valve that is provided in the cold water passage and opens when the pressure on the upstream side is larger than the pressure on the downstream side by a predetermined value or more;
A regulating valve provided in the heating fluid passage for adjusting a supply amount of the heating fluid to the heat exchanger according to a differential pressure between the upstream side and the downstream side of the pressure valve;
An orifice provided in a bypass path of cold water that bypasses the pressure valve;
With
In the control valve, a drive unit that drives a valve body unit that opens and closes the heating fluid passage includes an upstream introduction chamber into which cold water upstream of the pressure valve is introduced via an upstream introduction passage, and a downstream introduction A downstream side introduction chamber into which cold water on the downstream side of the pressure valve is introduced through a passage, and a diaphragm that partitions the both introduction chambers,
The bypass path is formed by the upstream introduction passage, the downstream introduction passage, the upstream introduction chamber, and the downstream introduction chamber,
A heating system in which the upstream introduction chamber and the downstream introduction chamber communicate with each other through the orifice.
JP2006295134A 2006-10-31 2006-10-31 Heating system Active JP4954668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006295134A JP4954668B2 (en) 2006-10-31 2006-10-31 Heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006295134A JP4954668B2 (en) 2006-10-31 2006-10-31 Heating system

Publications (2)

Publication Number Publication Date
JP2008111596A JP2008111596A (en) 2008-05-15
JP4954668B2 true JP4954668B2 (en) 2012-06-20

Family

ID=39444196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006295134A Active JP4954668B2 (en) 2006-10-31 2006-10-31 Heating system

Country Status (1)

Country Link
JP (1) JP4954668B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5463115B2 (en) * 2009-10-05 2014-04-09 株式会社ミヤワキ Hot water system
JP7465010B1 (en) 2022-11-25 2024-04-10 株式会社ミヤワキ Steam Regulating Valve
JP7378178B1 (en) 2022-11-25 2023-11-13 株式会社ミヤワキ steam regulating valve

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130982A (en) * 1986-11-21 1988-06-03 Diesel Kiki Co Ltd Control valve
JPH0794958B2 (en) * 1988-06-30 1995-10-11 株式会社本山製作所 Temperature control device for heat exchanger
JP2000241023A (en) * 1999-02-19 2000-09-08 Miyawaki Inc Hot water supplier
JP2006112719A (en) * 2004-10-15 2006-04-27 Miyawaki Inc Steam hot water supply system

Also Published As

Publication number Publication date
JP2008111596A (en) 2008-05-15

Similar Documents

Publication Publication Date Title
JP4910163B2 (en) Constant temperature liquid circulation device and temperature control method in the device
JP3986968B2 (en) Plate type heat exchanger
US7819333B2 (en) Air conditioning circuit control using a thermostatic expansion valve and sequence valve
RU2314475C9 (en) Multistage heat exchanger
JP2017502224A (en) Valve and method for controlling a valve in a fluid conduit
KR20070053057A (en) Device for preventing initial hot water supplying in concentric tube type heat exchanger and its control method
CN100385158C (en) Valve apparatus for heat transfer, especially for heating element
JP4954668B2 (en) Heating system
WO2009145614A3 (en) Reaction assembly and flow splitter
KR101331629B1 (en) A plate heat exchanger
JP4943117B2 (en) Heating system
JP4943118B2 (en) Heating system
RU2570485C2 (en) Heat exchanger valve device
JP4889380B2 (en) Heating system
JP2006112719A (en) Steam hot water supply system
JP5103040B2 (en) Heating system
JP5463096B2 (en) Hot water generator and steam hot water supply system using the same
JP4728815B2 (en) Temperature control valve and heat exchanger equipped with the same
JP4304142B2 (en) Steam control valve, heat exchange apparatus and steam hot water system provided with the same
US7343928B2 (en) Regulator insert with hydraulic damping in outlet
JP3476619B2 (en) Expansion valve
RU2674805C1 (en) Discharge unit with single connection
JPH08114397A (en) Heat exchanger using temperature sensitive valve
KR200428505Y1 (en) Heating System
JP2003240138A (en) Flow rate controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R150 Certificate of patent or registration of utility model

Ref document number: 4954668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250