JP4943117B2 - Heating system - Google Patents

Heating system Download PDF

Info

Publication number
JP4943117B2
JP4943117B2 JP2006295135A JP2006295135A JP4943117B2 JP 4943117 B2 JP4943117 B2 JP 4943117B2 JP 2006295135 A JP2006295135 A JP 2006295135A JP 2006295135 A JP2006295135 A JP 2006295135A JP 4943117 B2 JP4943117 B2 JP 4943117B2
Authority
JP
Japan
Prior art keywords
hot water
valve
cold water
temperature
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006295135A
Other languages
Japanese (ja)
Other versions
JP2008111597A (en
Inventor
孝弘 岡崎
Original Assignee
株式会社ミヤワキ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミヤワキ filed Critical 株式会社ミヤワキ
Priority to JP2006295135A priority Critical patent/JP4943117B2/en
Publication of JP2008111597A publication Critical patent/JP2008111597A/en
Application granted granted Critical
Publication of JP4943117B2 publication Critical patent/JP4943117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Description

本発明は、例えば蒸気のような加熱流体で冷水を加熱することにより温水を生成する加熱システムに関するものである。   The present invention relates to a heating system that generates hot water by heating cold water with a heating fluid such as steam.

従来、冷水を蒸気で加熱することにより温水を生成する、加熱システムの一種である給湯装置が知られている(特許文献1参照)。この給湯装置における加熱システムは、図5に示すように、熱交換器60によって蒸気のような加熱流体Sの熱で冷水Cを加熱することにより温水Mを生成するものであり、給水源WAからの冷水Cを冷水配管61によって前記熱交換器60に導き、加熱流体供給源VAからの加熱流体Sを加熱流体配管62によって前記熱交換器60に導き、熱交換器60で冷水Cと加熱流体Sとの間の熱交換により生成された温水Mを温水配管63から導出する。前記加熱流体配管62にはこれの内部を流動する加熱流体Sの通過量を調節する調節弁64が設けられ、前記温水配管63には熱交換器60の出口側近傍に温度センサ65が設けられている。   2. Description of the Related Art Conventionally, a hot water supply apparatus that is a type of heating system that generates hot water by heating cold water with steam is known (see Patent Document 1). As shown in FIG. 5, the heating system in this hot water supply apparatus generates hot water M by heating cold water C with heat from a heating fluid S such as steam by a heat exchanger 60, and is supplied from a water supply source WA. The cold water C is led to the heat exchanger 60 by a cold water pipe 61, the heating fluid S from the heating fluid supply source VA is led to the heat exchanger 60 by a heating fluid pipe 62, and the cold water C and the heating fluid are heated by the heat exchanger 60. Hot water M generated by heat exchange with S is led out from the hot water pipe 63. The heating fluid pipe 62 is provided with a regulating valve 64 for adjusting the passing amount of the heating fluid S flowing inside, and the hot water pipe 63 is provided with a temperature sensor 65 in the vicinity of the outlet side of the heat exchanger 60. ing.

前記給湯装置では、給水源WAからの冷水Cと加熱流体供給源VAからの加熱流体Sとが熱交換器60で熱交換されることによって温水Mが生成され、この温水Mがカラン66の開弁により外部へ取り出される。前記熱交換器60を通った熱交換後の加熱流体Sは、復水(ドレン)として排出通路67から外部へ排出される。また、この給湯装置では、熱交換器60で生成した温水Mの温度を温度センサ65で感知し、その感知した温水Mの温度情報をフィードバック回路68により調節弁64へフィードバックして、温水Mの温度が高ければ調節弁64を絞ることにより熱交換器60への加熱流体Sの供給量を減少させ、逆に温水Mの温度が低ければ調節弁64を開くことにより加熱流体Sの供給量を増加させて所定温度の温水Mを取り出すようになっている。   In the hot water supply device, hot water M is generated by heat exchange between the cold water C from the water supply source WA and the heating fluid S from the heating fluid supply source VA in the heat exchanger 60, and this hot water M is opened by the curan 66. It is taken out by the valve. The heated fluid S after the heat exchange that has passed through the heat exchanger 60 is discharged to the outside from the discharge passage 67 as condensate (drain). In this hot water supply apparatus, the temperature of the hot water M generated by the heat exchanger 60 is detected by the temperature sensor 65, and the temperature information of the detected hot water M is fed back to the control valve 64 by the feedback circuit 68. If the temperature is high, the supply amount of the heating fluid S to the heat exchanger 60 is decreased by restricting the adjustment valve 64. Conversely, if the temperature of the hot water M is low, the supply amount of the heating fluid S is reduced by opening the adjustment valve 64. The hot water M having a predetermined temperature is taken out by increasing the temperature.

特開2006−112719号公報JP 2006-127719 A

しかしながら、前記給湯装置では、温水Mの温度を感知して、その感知した温度に基づき調節弁64をフィードバック制御する複雑な機構を必要とするので、コスト高となるだけでなく、温度センサ65による温水Mの温度の感知遅れや加熱流体Sの供給量変化に対する温水Mの温度変化の遅れなどに起因して、温水Mの温度が不測に変化し易いので、常に所定温度の温水Mを安定に生成するのが難しい。また、カラン66を閉弁しているとき、つまり、温水Mを使用していないときでも、熱交換器60で生成した温水Mの温度が温度センサ65で常に感知されているから、この温度情報に基づきフィードバック回路68が調節弁64をフィードバック制御して温水Mの温度を所定値に保つように熱交換器60への加熱流体Sの供給量を制御するので、温水Mの不使用時であっても、温水配管63での放熱によって温水Mの温度が低下すると、加熱流体Sが熱交換器60に供給されて無駄に消費されてしまう。   However, the hot water supply apparatus requires a complicated mechanism that senses the temperature of the hot water M and feedback-controls the control valve 64 based on the sensed temperature. The temperature of the hot water M is likely to change unexpectedly due to a delay in sensing the temperature of the hot water M or a change in the temperature of the hot water M relative to a change in the supply amount of the heating fluid S. Difficult to generate. Further, even when the curan 66 is closed, that is, when the hot water M is not used, the temperature of the hot water M generated by the heat exchanger 60 is always sensed by the temperature sensor 65, so this temperature information. Therefore, the feedback circuit 68 feedback-controls the control valve 64 to control the supply amount of the heating fluid S to the heat exchanger 60 so as to keep the temperature of the hot water M at a predetermined value. However, when the temperature of the hot water M decreases due to heat radiation in the hot water pipe 63, the heating fluid S is supplied to the heat exchanger 60 and is wasted.

本発明は、前記従来の課題に鑑みてなされたもので、簡単で安価な構成としながらも、所定温度の温水を常に安定に生成することができるとともに、加熱流体が無駄に消費されることがなく、しかも、異常な高温の温水が発生した場合にこの温水の取り出しを有効に防止できる加熱システムを提供することを目的としている。   The present invention has been made in view of the above-described conventional problems, and can always generate hot water at a predetermined temperature stably while having a simple and inexpensive configuration, and the heating fluid can be consumed wastefully. Furthermore, it is an object of the present invention to provide a heating system that can effectively prevent the hot water from being taken out when abnormally high temperature hot water is generated.

上記目的を達成するために、本発明に係る加熱システムは、加熱流体と冷水との間の熱交換により温水を生成する熱交換器と、加熱流体供給源からの前記加熱流体を前記熱交換器に導く加熱流体通路と、給水源からの冷水を前記熱交換器に導く冷水通路と、前記冷水通路に設けられて、上流側の圧力が下流側の圧力よりも所定値以上大きくなったときに開弁する圧力弁と、前記加熱流体通路に設けられて前記熱交換器への加熱流体の供給量を調節する調節弁と、前記熱交換器から温水を導出する温水導出通路とを備えている。前記調節弁は、前記加熱流体通路を開閉する弁体部を駆動する駆動部が、上流側導入通路を介して前記圧力弁の上流側の冷水が導入される上流側導入室と、ダイヤフラムによって前記上流側導入室から仕切られた下流側導入室と、前記上流側導入室を前記下流側導入室に連通させるオリフィスと、前記ダイヤフラムの変形によって前記弁体部を駆動する弁駆動部材とを有している。さらに、前記温水導出通路に、前記下流側導入室に接続された冷水流入室を有し、温水温度が所定値以上のとき閉弁して、前記下流側導入室からの冷水が前記冷水流入室を通って前記温水導出通路内に流入するのを停止させる温度制御弁が設けられている。ここで、所定値の温水とは、40℃ないし60℃程度の温湯のみならず、60℃を越える高温の温水をも含む。   In order to achieve the above object, a heating system according to the present invention includes a heat exchanger that generates hot water by heat exchange between a heating fluid and cold water, and the heating fluid from a heating fluid supply source. A heating fluid passage that leads to the heat exchanger, a cold water passage that leads the cold water from the water supply source to the heat exchanger, and the cold water passage, when the upstream pressure becomes greater than the downstream pressure by a predetermined value or more. A pressure valve that opens, a control valve that is provided in the heating fluid passage and adjusts a supply amount of the heating fluid to the heat exchanger, and a hot water outlet passage that draws hot water from the heat exchanger. . In the control valve, the drive unit that drives the valve body unit that opens and closes the heating fluid passage includes an upstream introduction chamber into which cold water on the upstream side of the pressure valve is introduced via the upstream introduction passage, and a diaphragm. A downstream introduction chamber partitioned from the upstream introduction chamber, an orifice for communicating the upstream introduction chamber with the downstream introduction chamber, and a valve drive member for driving the valve body portion by deformation of the diaphragm ing. Further, the hot water outlet passage has a cold water inflow chamber connected to the downstream side introduction chamber, and is closed when the hot water temperature is equal to or higher than a predetermined value, so that the cold water from the downstream side introduction chamber becomes the cold water inflow chamber. There is provided a temperature control valve for stopping the flow of water through the hot water outlet passage. Here, the predetermined value of hot water includes not only hot water of about 40 ° C. to 60 ° C. but also hot water of over 60 ° C.

この構成によれば、例えばカランを閉弁して温水を使用していないときには、冷水通路内を冷水が流れておらず、調節弁の駆動部に設けられた上流側導入室と下流側導入室との間、つまりオリフィスの上流側と下流側との間で差圧が発生しない。この場合、オリフィスの上流側と下流側の差圧に応じて熱交換器への加熱流体の供給量を調節する調節弁は閉弁しているので、前記調節弁によって熱交換器へ加熱流体が供給されないから、加熱流体が無駄に消費されることはない。一方、カランを開放して温水を使用しているときには、冷水通路内の冷水が上流側導入室からオリフィスを通過して下流側導入室に流れるので、オリフィスの上流側と下流側との間で冷水の差圧が生じる。したがって、この差圧に応じたダイヤフラムの変形により調節弁が開弁し、この調節弁を通って加熱流体が熱交換器に供給される。このとき、前記差圧の大小により前記調節弁の開度が調節される。温水の使用料、つまり冷水の流量が増大して圧力弁の上流側と下流側の圧力差が所定値よりも大きくなると圧力弁が開弁して、大きな冷水流量が確保される。このように、温水を使用していないときには加熱流体が消費されることがなく、温水を使用しているときにのみ加熱流体が消費され、しかも加熱流体の供給量が前記差圧に応じて制御されるので、加熱流体が効率的に使用される。また、温水の温度を検知して調節弁をフィードバック制御しないので、温度検出の遅れがなくなり、常に所定温度の温水が安定して得られる。また、従来システムが温水の温度に基づき調節弁をフィードバック制御する複雑な機構を設けるのに比較して、簡単で安価な構成となり、その結果、コストダウンを達成できる。   According to this configuration, for example, when the hot water is not used by closing the curan, the cold water is not flowing in the cold water passage, and the upstream introduction chamber and the downstream introduction chamber provided in the drive portion of the control valve , That is, no differential pressure is generated between the upstream side and the downstream side of the orifice. In this case, since the regulating valve that adjusts the supply amount of the heating fluid to the heat exchanger according to the differential pressure between the upstream side and the downstream side of the orifice is closed, the heating fluid is supplied to the heat exchanger by the regulating valve. Since it is not supplied, the heated fluid is not wasted. On the other hand, when hot water is used with the curan open, the cold water in the cold water passage flows from the upstream introduction chamber through the orifice to the downstream introduction chamber, and therefore, between the upstream side and the downstream side of the orifice. A differential pressure of cold water is generated. Therefore, the control valve is opened by the deformation of the diaphragm according to the differential pressure, and the heating fluid is supplied to the heat exchanger through the control valve. At this time, the opening degree of the control valve is adjusted according to the magnitude of the differential pressure. When the flow rate of the hot water, that is, the flow rate of cold water increases and the pressure difference between the upstream side and the downstream side of the pressure valve becomes larger than a predetermined value, the pressure valve is opened, and a large flow rate of cold water is ensured. Thus, the heating fluid is not consumed when the hot water is not used, the heating fluid is consumed only when the hot water is used, and the supply amount of the heating fluid is controlled according to the differential pressure. Therefore, the heating fluid is used efficiently. In addition, since the temperature of the hot water is detected and the control valve is not feedback controlled, there is no delay in temperature detection, and hot water at a predetermined temperature is always obtained stably. In addition, the conventional system has a simple and inexpensive configuration as compared with the case where a complicated mechanism for feedback-controlling the control valve based on the temperature of hot water is provided, and as a result, cost reduction can be achieved.

例えばカランを開弁して温水を使用し始めると、オリフィスに冷水が流れることで生じる差圧により調節弁が開弁されて加熱流体が熱交換器に供給され、冷水を加熱する。温水の使用量が増大すると、冷水通路における圧力弁の下流側の圧力が低下するのに伴い圧力弁の上流側の圧力が下流側の圧力よりも所定値以上大きくなったときに圧力弁が開弁し、この圧力弁を通過した冷水が熱交換器に供給されるので、十分な流量の冷水、つまり十分な流量の温水が確保される。また、例えば、温水温度が所定値以上の異常な高温になった場合には、これを検知して温度制御弁が閉弁して、下流側導入室からの冷水が冷水流入室を通って温水導出通路に流入するのを停止させるので、冷水がオリフィスを通過しなくなってオリフィスの上流側と下流側の差圧がなくなり、調節弁が閉弁して加熱流体の熱交換器への供給を停止する。これにより、熱交換器から導出される温水の温度が低下するので、所定値以上の高温の温水が取り出されるのを有効に防止できる。   For example, when the curan is opened and hot water is started to be used, the control valve is opened by the differential pressure generated by the flow of cold water through the orifice, and the heating fluid is supplied to the heat exchanger to heat the cold water. When the amount of hot water used increases, the pressure valve opens when the pressure on the upstream side of the pressure valve becomes greater than the pressure on the downstream side as the pressure on the downstream side of the pressure valve in the cold water passage decreases. Since the cold water passing through the pressure valve is supplied to the heat exchanger, a sufficient flow rate of cold water, that is, a sufficient flow rate of hot water is ensured. Further, for example, when the hot water temperature becomes an abnormally high temperature equal to or higher than a predetermined value, this is detected, the temperature control valve is closed, and the cold water from the downstream introduction chamber passes through the cold water inflow chamber. Since the flow into the outlet passage is stopped, the cold water does not pass through the orifice, the differential pressure between the upstream and downstream sides of the orifice disappears, the control valve closes, and the supply of the heated fluid to the heat exchanger stops To do. Thereby, since the temperature of the hot water led out from the heat exchanger is lowered, it is possible to effectively prevent hot water having a temperature higher than a predetermined value from being taken out.

本発明において、例えば、前記温度制御弁はさらに、前記温水導出通路に接続された温水流入室と、前記冷水流入室と前記温水流入室とを区画する区画壁と、この区画壁に設けた弁口を開閉する弁体と、前記温水流入室内の温水の温度に基づいて前記弁体を駆動する感温駆動体とを備えることが好ましい。この構成によれば、温度制御弁が簡単な構造となる。   In the present invention, for example, the temperature control valve further includes a hot water inflow chamber connected to the hot water outlet passage, a partition wall that partitions the cold water inflow chamber and the hot water inflow chamber, and a valve provided on the partition wall It is preferable to include a valve body that opens and closes a mouth and a temperature-sensitive drive body that drives the valve body based on the temperature of hot water in the warm water inflow chamber. According to this configuration, the temperature control valve has a simple structure.

本発明において、前記オリフィスは、前記ダイヤフラムまたはこれを支持する調節弁のケーシングに設けることができる。   In the present invention, the orifice may be provided in a casing of the diaphragm or a regulating valve that supports the diaphragm.

本発明において、前記温水導出通路における前記温度制御弁の下流側に、温水と冷水を混合する湯水混合弁が設けられていることが好ましい。この構成によれば、温水温度が急激に所定値以上となったとき、前記温度制御弁の温度感知遅れによる閉弁遅れがあっても、湯水混合弁で冷水が混合されることで、温水の温度が低下するので、前記所定値以上の高温の温水がそのまま外部に取り出されるおそれがない。   In the present invention, it is preferable that a hot and cold water mixing valve for mixing hot water and cold water is provided on the downstream side of the temperature control valve in the hot water outlet passage. According to this configuration, when the hot water temperature suddenly becomes a predetermined value or more, even if there is a valve closing delay due to the temperature sensing delay of the temperature control valve, the hot water mixing valve mixes the cold water, Since the temperature is lowered, there is no possibility that hot water having a temperature higher than the predetermined value is taken out as it is.

本発明の加熱システムによれば、温水を使用していないときには、冷水通路を冷水が流れないので、オリフィスの上流側と下流側との間で差圧が発生しない結果、調節弁が閉弁して熱交換器へ加熱流体が供給されないから、加熱流体が無駄に消費されることはない。一方、温水を使用しているときには、冷水がオリフィスを通るので、オリフィスの上流側と下流側との間で発生した差圧により調節弁が開弁して熱交換器へ加熱流体が供給される。このとき、前記差圧により調節弁の開度が調節されて加熱流体の供給量が制御されるので、温度検出の遅れがなくなり、常に安定した温度の温水が得られる。大量の温水を使用するときには圧力弁が開弁するので、この圧力弁を通って大きな流量が確保される。しかも、温水温度が所定値以上の異常な高温になった場合には、温度制御弁が閉弁して下流側導入室からの冷水が冷水流入室を通って温水導出通路に流入するのを停止させる結果、冷水がオリフィスを通過して流れなくなり、調節弁が閉弁して熱交換器への加熱流体の供給が停止されるので、熱交換器から導出される温水の温度が低下して、異常な高温の温水が取り出されるのを防止できる。   According to the heating system of the present invention, when hot water is not used, cold water does not flow through the cold water passage, so that no differential pressure is generated between the upstream side and the downstream side of the orifice, so that the control valve is closed. Therefore, since the heating fluid is not supplied to the heat exchanger, the heating fluid is not wasted. On the other hand, when hot water is used, since cold water passes through the orifice, the control valve is opened by the differential pressure generated between the upstream side and the downstream side of the orifice, and the heating fluid is supplied to the heat exchanger. . At this time, since the opening of the control valve is adjusted by the differential pressure and the supply amount of the heated fluid is controlled, there is no delay in temperature detection, and hot water having a stable temperature is always obtained. When a large amount of hot water is used, the pressure valve opens, so that a large flow rate is secured through this pressure valve. In addition, when the hot water temperature becomes abnormally high above a predetermined value, the temperature control valve closes and the cold water from the downstream introduction chamber stops flowing into the hot water outlet passage through the cold water inflow chamber. As a result, the cold water stops flowing through the orifice, the control valve is closed, and the supply of the heating fluid to the heat exchanger is stopped, so the temperature of the hot water led out from the heat exchanger decreases, Unusually hot water can be prevented from being taken out.

以下、本発明の好ましい実施形態について図面を参照しながら説明する。図1は本発明の一実施形態に係る加熱システム10を示す系統図である。この加熱システム10は、蒸気のような加熱流体Sの熱で被加熱流体である冷水Cを加熱することにより温水Mを生成する熱交換器11を備えている。熱交換器11から導出される温水Mは、後述する湯水混合弁23からの温水M1よりも高温なので、以下では「熱水」と呼ぶ。熱交換器11としては、例えば複数のプレートを重ねて、その間に図示しない加熱流体Sの通路と冷水Cの通路とを、前記プレートを介して交互に配置したプレート型熱交換器と呼ばれるものが、小型で熱交換容量が大きいことから、好ましい。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing a heating system 10 according to an embodiment of the present invention. The heating system 10 includes a heat exchanger 11 that generates hot water M by heating cold water C that is a fluid to be heated with heat of a heating fluid S such as steam. Since the hot water M led out from the heat exchanger 11 is higher in temperature than hot water M1 from the hot water mixing valve 23 described later, it will be referred to as “hot water” below. As the heat exchanger 11, for example, a plate-type heat exchanger in which a plurality of plates are stacked and a passage of a heating fluid S and a passage of cold water C (not shown) are alternately arranged between the plates via the plates. It is preferable because of its small size and large heat exchange capacity.

また、前記加熱システム10は、外部の給水源WAから供給される冷水Cを前記熱交換器11に導く冷水通路12と、加熱流体供給源VAから供給される蒸気のような加熱流体Sを前記熱交換器11に導く加熱流体通路13と、前記熱交換器11で生成された熱水Mを導出する温水導出通路14と、熱交換器11を通った加熱後の加熱流体Sを復水(ドレン)として排出する復水排出通路15とを有している。   In addition, the heating system 10 includes a cold water passage 12 that guides cold water C supplied from an external water supply source WA to the heat exchanger 11, and a heating fluid S such as steam supplied from a heating fluid supply source VA. The heated fluid passage 13 that leads to the heat exchanger 11, the hot water outlet passage 14 that leads out the hot water M generated in the heat exchanger 11, and the heated fluid S that has passed through the heat exchanger 11 is condensed ( And a condensate discharge passage 15 for discharging as drain).

前記冷水通路12には、上流側の圧力が下流側の圧力よりも所定値以上大きくなったときに開弁する圧力弁20が設けられている。この圧力弁20の具体的な構成は、図2に示すように、冷水通路12を構成する冷水配管50内に、冷水Cの流れ方向と直交する方向に延びて冷水通路12を上流側と下流側に仕切る仕切り壁51を設け、この仕切り壁51に圧力弁20の弁口22が形成されている。この圧力弁20は、弁口22を開閉する弁体20aが圧縮コイルばね40のばね力により弁口22に押し付けられている。圧縮コイルばね40は、弁体20aとばね受け部材36との間に介装されており、ばね受け部材36に当接する調整ねじ41を仕切り壁51に向け進退させることにより圧縮コイルばね40のばね力を変化させて、開弁圧力、つまり弁体部20aが弁口22を開弁するときの仕切り壁51の上流側と下流側の圧力差を所定値に調整できるようになっている。   The cold water passage 12 is provided with a pressure valve 20 that opens when the upstream pressure becomes larger than the downstream pressure by a predetermined value or more. As shown in FIG. 2, the specific configuration of the pressure valve 20 extends into the cold water pipe 50 constituting the cold water passage 12 in a direction orthogonal to the flow direction of the cold water C, so that the cold water passage 12 extends upstream and downstream. A partition wall 51 is provided on the side, and a valve port 22 of the pressure valve 20 is formed in the partition wall 51. In the pressure valve 20, a valve body 20 a that opens and closes the valve port 22 is pressed against the valve port 22 by the spring force of the compression coil spring 40. The compression coil spring 40 is interposed between the valve body 20 a and the spring receiving member 36, and the adjustment screw 41 abutting on the spring receiving member 36 is advanced and retracted toward the partition wall 51, whereby the compression coil spring 40 is springed. By changing the force, the valve opening pressure, that is, the pressure difference between the upstream side and the downstream side of the partition wall 51 when the valve body portion 20a opens the valve port 22 can be adjusted to a predetermined value.

また、前記冷水配管50には、仕切り壁51に対し上流側の近傍箇所から上流側導入通路18を形成する上流側導入管52が分岐されており、この上流側導入管52の先端は、図1の調節弁17に接続されている。この調節弁17は、加熱流体通路13に配設されて、後述するオリフィス16の上流側と下流側との間に発生する差圧に応じて開度が調整されることにより熱交換器11への加熱流体Sの供給量を調節するものである。つぎに、この調節弁17の具体的構造について、図3を参照しながら説明する。   The cold water pipe 50 is branched from an upstream introduction pipe 52 that forms the upstream introduction passage 18 from a location near the upstream side with respect to the partition wall 51. The tip of the upstream introduction pipe 52 is illustrated in FIG. 1 control valve 17. The adjusting valve 17 is disposed in the heating fluid passage 13 and is adjusted to an opening degree according to a differential pressure generated between an upstream side and a downstream side of an orifice 16 described later to the heat exchanger 11. The supply amount of the heating fluid S is adjusted. Next, a specific structure of the control valve 17 will be described with reference to FIG.

図3は調節弁17の閉弁状態を示したもので、調節弁17は、上部に加熱流体通路13が形成されたケーシング25内に、鉛直方向に配置された弁駆動部材である弁棒26が摺動自在に支持されており、この弁棒26の一端部(下端部)に、調節弁17の駆動部27が設けられているとともに、弁棒26の他端(上端)に、加熱流体通路13を開閉するボール弁からなる弁体部28が配置されている。この弁体部28は、弁体部28とケーシング25との間に介装された圧縮コイルばね29のばね力を受けて、弁棒26の上端または弁座25aに押し付けられる。弁棒26が弁座25aに押し付けられて調節弁17が閉弁し加熱流体通路13を閉塞する。   FIG. 3 shows a closed state of the regulating valve 17. The regulating valve 17 is a valve rod 26 which is a valve driving member arranged in a vertical direction in a casing 25 in which the heated fluid passage 13 is formed in the upper part. Is supported at one end (lower end) of the valve stem 26, and a driving fluid 27 is provided at the other end (upper end) of the valve stem 26. A valve body 28 composed of a ball valve that opens and closes the passage 13 is disposed. The valve body portion 28 is pressed against the upper end of the valve stem 26 or the valve seat 25 a by receiving the spring force of the compression coil spring 29 interposed between the valve body portion 28 and the casing 25. The valve rod 26 is pressed against the valve seat 25a, the control valve 17 is closed, and the heating fluid passage 13 is closed.

前記駆動部27は、弁棒26の下端に設けられた円板状の受け部材26aと、この受け部材26aに重ね合わせ状態で固着されて周縁部がケーシング25に固定されたダイヤフラム30と、このダイヤフラム30により上下に仕切られた下流側導入室39および上流側導入室38と、この上流側導入室38と下流側導入室39を互いに連通するオリフィス16とを有しており、上流側導入室38と下流側導入室39の差圧、つまりオリフィス16の上流側の圧力と下流側の圧力との差圧を受けて、弁棒26を軸方向に駆動して弁体部28を前記軸方向に移動させることにより、弁開度を調節する。上流側導入室38には、圧力弁20の上流側の冷水Cが上流側導入通路18を通って導入され、下流側導入室39は、図1の下流側導出通路19を形成する下流側導出管53を介して温度制御弁45の冷水流入室46に向けて冷水Cを導出する。   The drive unit 27 includes a disc-shaped receiving member 26a provided at the lower end of the valve rod 26, a diaphragm 30 fixed to the receiving member 26a in a superposed state and having a peripheral edge fixed to the casing 25, and A downstream side introduction chamber 39 and an upstream side introduction chamber 38 that are partitioned vertically by a diaphragm 30, and an orifice 16 that connects the upstream side introduction chamber 38 and the downstream side introduction chamber 39 to each other. 38, the valve body 26 is driven in the axial direction by receiving the differential pressure between the valve 38 and the downstream introduction chamber 39, that is, the differential pressure between the upstream pressure and the downstream pressure of the orifice 16. The valve opening is adjusted by moving to. Cold water C on the upstream side of the pressure valve 20 is introduced into the upstream introduction chamber 38 through the upstream introduction passage 18, and the downstream introduction chamber 39 forms a downstream lead that forms the downstream lead passage 19 in FIG. 1. Cold water C is led out toward the cold water inflow chamber 46 of the temperature control valve 45 through the pipe 53.

前記オリフィス16は、ダイヤフラム30の挿通孔を貫通して受け部材26aのねじ孔にねじ込み固定されたねじ部材43の中心部に軸方向に形成された小径の貫通孔によって形成されている。ねじ部材43の外周にはブッシュ44が配置されており、ねじ部材43の締結によりダイヤフラム30が圧潰するのを防止している。なお、オリフィス16は、この実施形態において、ねじ部材43を軸方向に貫通する小孔としたが、二点鎖線で示すように、ケーシング25に上流側導入室38および下流側導入室39を互いに連通するよう形成した小孔を設けるようにしてもよい。   The orifice 16 is formed by a small-diameter through hole formed in the axial direction at the center of a screw member 43 that passes through the insertion hole of the diaphragm 30 and is screwed into the screw hole of the receiving member 26a. A bush 44 is disposed on the outer periphery of the screw member 43 to prevent the diaphragm 30 from being crushed by fastening the screw member 43. In this embodiment, the orifice 16 is a small hole that penetrates the screw member 43 in the axial direction. However, as shown by a two-dot chain line, the upstream introduction chamber 38 and the downstream introduction chamber 39 are connected to the casing 25. You may make it provide the small hole formed so that it might connect.

弁棒26とケーシング25との摺動面部位にはOリング42が取り付けられて、気密性および液密性が確保されており、これにより、図1の上流側導入室38からオリフィス16を通って下流側導入室39に導入された冷水Cが加熱流体通路13に侵入しないように配慮されている。なお、図1に明示するように、この実施形態では弁棒26と弁体部28とが別体となった場合を例示しているが、これら弁棒26と弁体部28が一体的に形成されたものであってもよい。   An O-ring 42 is attached to the sliding surface portion between the valve stem 26 and the casing 25 to ensure air tightness and liquid tightness. As a result, the upstream side introduction chamber 38 in FIG. Therefore, it is considered that the cold water C introduced into the downstream introduction chamber 39 does not enter the heating fluid passage 13. As clearly shown in FIG. 1, in this embodiment, the case where the valve stem 26 and the valve body portion 28 are separated is illustrated, but the valve stem 26 and the valve body portion 28 are integrally formed. It may be formed.

この加熱システム10には、圧力弁20および熱交換器11をバイパスして冷水Cが流れるバイバス経路21が構成されており、このバイパス経路21は、上流側導入通路18を形成する上流側導入管52、上流側導入室38、オリフィス16、下流側導入室39および下流側導出通路19を形成する下流側導出管53により構成されている。したがって、調節弁17は、冷水Cが前記バイパス経路21を通って流れることによりオリフィス16の上流側の圧力が下流側の圧力よりも大きくなったときに、その上流側と下流側との差圧によりダイヤフラム30が上方に変形されるのに伴って、弁棒26が軸方向上方に駆動されて弁体部28が開弁状態となる。   The heating system 10 includes a bypass path 21 through which the cold water C flows, bypassing the pressure valve 20 and the heat exchanger 11, and the bypass path 21 forms an upstream introduction pipe that forms the upstream introduction path 18. 52, an upstream introduction chamber 38, an orifice 16, a downstream introduction chamber 39, and a downstream outlet pipe 53 that forms a downstream outlet passage 19. Therefore, when the pressure on the upstream side of the orifice 16 becomes larger than the pressure on the downstream side due to the flow of the cold water C through the bypass passage 21, the regulating valve 17 has a differential pressure between the upstream side and the downstream side. Accordingly, as the diaphragm 30 is deformed upward, the valve rod 26 is driven upward in the axial direction, and the valve body 28 is opened.

また、前記温水導出通路14における熱交換器11の近傍箇所には温度制御弁45が設けられている。この温度制御弁45は、前記冷水流入室46と区画壁48によって区画された温水流入室55を有し、この温水流入室55が温水導出通路14に接続されている。区画壁48には弁口47が貫通して形成されており、温水流入室55内には、弁口47を開閉する弁体57と、熱交換器11から導出された熱水Mの温度を検知して作動し、熱水Mの温度が所定温度、例えば90℃以上に上昇したときに、膨張して常開の弁体57を駆動して弁口47を閉止する感温駆動体58とが設けられている。感温駆動体58としては、周知のバイメタル式、サーモワックス式などの温度センサが組み込まれたものを使用できる。また、温度制御弁45は、感温駆動体58による閉弁温度(前記所定温度)を調節する手動の調節部材59を備えている。したがって、温度制御弁45は、熱水Mの温度が90℃未満の定常時に開弁状態を保持して、バイパス経路21の下流側導出管53を通って冷水流入室46に流入する冷水Cを、弁口47から温水流入室55内に導入して、温水導出通路14を流れる熱水Mに混合させる。この冷水流入室46に流入する冷水Cは、少量であって、給湯口弁(カラン)24から取り出す温水M1の温度を大きく変化させる程の影響を与えるものではない。   Further, a temperature control valve 45 is provided in the vicinity of the heat exchanger 11 in the hot water outlet passage 14. The temperature control valve 45 has a hot water inflow chamber 55 defined by the cold water inflow chamber 46 and the partition wall 48, and the hot water inflow chamber 55 is connected to the hot water outlet passage 14. A valve wall 47 is formed through the partition wall 48, and the temperature of the hot water M led out from the heat exchanger 11 and the valve body 57 that opens and closes the valve port 47 are set in the hot water inflow chamber 55. A temperature-sensitive driving body 58 that detects and operates and expands to drive the normally open valve body 57 and close the valve port 47 when the temperature of the hot water M rises to a predetermined temperature, for example, 90 ° C. or more; Is provided. As the temperature-sensitive driver 58, a known bimetal type or thermo wax type temperature sensor incorporated can be used. Further, the temperature control valve 45 includes a manual adjustment member 59 that adjusts the valve closing temperature (the predetermined temperature) by the temperature-sensitive driver 58. Therefore, the temperature control valve 45 keeps the valve open state at a steady time when the temperature of the hot water M is less than 90 ° C., and flows the cold water C flowing into the cold water inflow chamber 46 through the downstream outlet pipe 53 of the bypass path 21. Then, it is introduced into the hot water inflow chamber 55 from the valve port 47 and mixed with the hot water M flowing through the hot water outlet passage 14. The chilled water C flowing into the chilled water inflow chamber 46 is a small amount and does not affect the temperature of the hot water M <b> 1 taken out from the hot water supply port valve (curran) 24.

さらに、温水導出通路14における温度制御弁45と給湯出口となる給湯口弁24との間の箇所には湯水混合弁23が設けられており、この湯水混合弁23は、熱交換器11からの熱水Mに給水源WAからの冷水Cを混合して、取り出すべき温水M1を所望の温度に調節する。   Further, a hot water mixing valve 23 is provided at a location between the temperature control valve 45 and the hot water outlet valve 24 serving as a hot water outlet in the hot water outlet passage 14, and the hot water mixing valve 23 is connected to the heat exchanger 11 from the heat exchanger 11. The hot water M is mixed with the cold water C from the water supply source WA, and the hot water M1 to be taken out is adjusted to a desired temperature.

また、冷水通路12から分岐して前記湯水混合弁23に至る冷水バイパス通路37および冷水通路12における上流側導入通路18の接続点よりも上流側の箇所には、逆止弁31,32がそれぞれ配設されている。復水排出通路15には、加熱流体Sである蒸気をトラップして復水のみを排出する蒸気トラップ33が配設されている。冷水通路12における圧力弁20と熱交換器11との間の箇所から分岐した冷水排出通路34には、給湯口弁24からの温水M1の取り出しが停止されたときに熱交換器11内の熱水Mの圧力が上昇し過ぎるのを防止する逃し弁35が配設されている。   Further, check valves 31 and 32 are provided at locations upstream of the connection point of the upstream side introduction passage 18 in the cold water passage 12 and the cold water bypass passage 37 that branches from the cold water passage 12 to the hot water mixing valve 23, respectively. It is arranged. The condensate discharge passage 15 is provided with a steam trap 33 that traps the steam that is the heating fluid S and discharges only the condensate. In the cold water discharge passage 34 branched from the location between the pressure valve 20 and the heat exchanger 11 in the cold water passage 12, the heat in the heat exchanger 11 is removed when the extraction of the hot water M1 from the hot water supply valve 24 is stopped. A relief valve 35 is provided to prevent the pressure of the water M from rising too much.

つぎに、前記加熱システム10の作用について説明する。図1の給湯口弁24が閉じられた温水M1の不使用時には、冷水通路12内およびバイパス経路21内を冷水Cが流れないので、バイパス経路21におけるオリフィス16を挟んで上流側導入室38と下流側導入室39の差圧がゼロとなる。そのため、図3に示すように、調節弁17は、弁体部28が圧縮コイルばね29のばね力により弁座25aに押し付けられて閉弁状態に保持され、加熱流体通路13が閉塞されて加熱流体Sの図1に示す熱交換器11への供給が停止される。すなわち、この加熱システム10では、給湯口弁24の閉弁による冷水通路12内の冷水Cの流動停止をオリフィス16の上流側と下流側との差圧がゼロとなるのに基づき機械的に検知して、調節弁17を閉弁状態に保持する。したがって、従来の加熱システムのように温度センサで感知した温水の温度情報に基づき調節弁を常にフィードバック制御する場合とは異なり、給湯口弁24が開かれない限り、つまり温水M1が使用されない限り、熱交換器60へ加熱流体Sが供給されることがないので、加熱流体Sの無駄な消費を防止することができる。   Next, the operation of the heating system 10 will be described. Since the cold water C does not flow in the cold water passage 12 and the bypass passage 21 when the hot water M1 in which the hot water supply valve 24 in FIG. 1 is closed is not used, the upstream introduction chamber 38 and the bypass passage 21 sandwich the orifice 16. The differential pressure in the downstream introduction chamber 39 becomes zero. Therefore, as shown in FIG. 3, in the adjusting valve 17, the valve body portion 28 is pressed against the valve seat 25 a by the spring force of the compression coil spring 29 and held in the closed state, and the heating fluid passage 13 is closed and heated. Supply of the fluid S to the heat exchanger 11 shown in FIG. 1 is stopped. That is, in this heating system 10, the stoppage of the flow of the cold water C in the cold water passage 12 due to the closing of the hot water supply valve 24 is mechanically detected based on the fact that the differential pressure between the upstream side and the downstream side of the orifice 16 becomes zero. Then, the control valve 17 is held in the closed state. Therefore, unlike the case where the control valve is always feedback controlled based on the temperature information of the hot water sensed by the temperature sensor as in the conventional heating system, unless the hot water supply valve 24 is opened, that is, unless the hot water M1 is used, Since the heating fluid S is not supplied to the heat exchanger 60, wasteful consumption of the heating fluid S can be prevented.

給湯口弁24が開かれると、給水源WAからの冷水Cが、冷水通路12から分岐して温度制御弁45の冷水流入室46に至るバイパス経路21に流れる。この冷水Cがバイパス経路21のオリフィス16を通過するとき、ベンチュリ効果によって、オリフィス16に対し下流側導入室39の圧力が上流側導入室38の圧力よりも低下する。この両導入室38,39間に生じる差圧により、図4に示すように、ダイヤフラム30が上方に変形されて受け部材26aを押し上げるので、それに伴って、弁駆動部材である弁棒26が軸方向上方に移動する。これにより、弁体部28が圧縮コイルばね29のばね力に抗し上方に駆動され、調節弁17が開弁状態となり、加熱流体Sが加熱流体通路13を通って熱交換器11に供給される。   When the hot water supply valve 24 is opened, the cold water C from the water supply source WA branches from the cold water passage 12 and flows into the bypass passage 21 reaching the cold water inflow chamber 46 of the temperature control valve 45. When the cold water C passes through the orifice 16 of the bypass passage 21, the pressure in the downstream introduction chamber 39 is lower than the pressure in the upstream introduction chamber 38 with respect to the orifice 16 due to the venturi effect. Due to the differential pressure generated between the two introduction chambers 38 and 39, as shown in FIG. 4, the diaphragm 30 is deformed upward to push up the receiving member 26a. Accordingly, the valve stem 26 as a valve driving member is pivoted. Move upward in the direction. As a result, the valve body 28 is driven upward against the spring force of the compression coil spring 29, the regulating valve 17 is opened, and the heating fluid S is supplied to the heat exchanger 11 through the heating fluid passage 13. The

このように加熱流体Sが熱交換器11に供給されるとともに、熱交換器11で生成された熱水Mが常開の温度制御弁45および湯水混合弁23を経て給湯口弁24から温水M1となって取り出され始めると、これに伴い冷水通路12における仕切り壁51の下流側の圧力が低下するので、仕切り壁51の上流側の圧力と下流側の圧力との差圧が増大し、この差圧が圧力弁20の圧縮コイルばね40のばね力とバランスする所定値(圧力)以上となったときに、圧力弁20が開弁して、大径の弁口22を通過した大量の冷水Cが熱交換器11に供給される。このとき、圧力弁20の上流側の大きな圧力が上流側導入室38に作用して、調節弁17が大きな開度に調節され、加熱流体Sの供給量が増大する。熱交換器11内で冷水Cが加熱流体WSにより加熱されて、熱水Mが生成される。   Thus, the heating fluid S is supplied to the heat exchanger 11, and the hot water M generated in the heat exchanger 11 passes through the normally open temperature control valve 45 and the hot water mixing valve 23 from the hot water supply valve 24 to the hot water M1. Accordingly, the pressure on the downstream side of the partition wall 51 in the cold water passage 12 decreases accordingly, so that the differential pressure between the pressure on the upstream side of the partition wall 51 and the pressure on the downstream side increases. When the differential pressure becomes equal to or greater than a predetermined value (pressure) that balances the spring force of the compression coil spring 40 of the pressure valve 20, a large amount of cold water that has opened the pressure valve 20 and has passed through the large-diameter valve port 22. C is supplied to the heat exchanger 11. At this time, a large pressure on the upstream side of the pressure valve 20 acts on the upstream introduction chamber 38, the control valve 17 is adjusted to a large opening, and the supply amount of the heating fluid S increases. The cold water C is heated by the heating fluid WS in the heat exchanger 11 to generate hot water M.

そののち、圧力弁20の弁口22を通過して熱交換器11に供給される冷水Cの流量が増減するのに対応してバイパス経路21に流れる冷水Cの流量も増減し、これに対応して上流側導入室38と下流側導入室39との間の差圧が変化して調節弁17の開度が調整される。すなわち、調節弁17の開度は、オリフィス16の上流側と下流側の差圧に応じて調整されて、加熱流体Sの熱交換器11への供給量が冷水Cの供給量に対応するよう調節される。加熱流体通路13を通って熱交換器11に導かれた加熱流体Sと圧力弁20を通って熱交換器11に導かれた冷水Cとの間の熱交換により生成され、さらに湯水混合弁23で温度調節された温水M1が、給湯口弁24から取り出される。   After that, the flow rate of the cold water C flowing through the bypass path 21 increases and decreases in response to the increase and decrease in the flow rate of the cold water C that passes through the valve port 22 of the pressure valve 20 and is supplied to the heat exchanger 11. As a result, the differential pressure between the upstream side introduction chamber 38 and the downstream side introduction chamber 39 changes, and the opening degree of the control valve 17 is adjusted. That is, the opening degree of the control valve 17 is adjusted according to the differential pressure between the upstream side and the downstream side of the orifice 16 so that the supply amount of the heating fluid S to the heat exchanger 11 corresponds to the supply amount of the cold water C. Adjusted. It is generated by heat exchange between the heating fluid S guided to the heat exchanger 11 through the heating fluid passage 13 and the cold water C guided to the heat exchanger 11 through the pressure valve 20, and further the hot water mixing valve 23. The hot water M <b> 1 whose temperature has been adjusted is taken out from the hot water supply valve 24.

上述のように、この加熱システム10では、温水使用時に、調節弁17に設けたオリフィス16の上流側と下流側との間に生じる差圧により応答性良く調節弁17を開閉させるとともに、圧力弁20を開弁させて大量の冷水Cを熱交換器11に供給するようにしているので、調節弁17による熱水Mの温度調整の応答性の向上と大量の熱水Mの確保の相反する二つの課題を同時に解決している。   As described above, in the heating system 10, when using hot water, the control valve 17 is opened and closed with good responsiveness by the differential pressure generated between the upstream side and the downstream side of the orifice 16 provided in the control valve 17, and the pressure valve 20 is opened so that a large amount of cold water C is supplied to the heat exchanger 11. Therefore, there is a contradiction between improving the responsiveness of temperature adjustment of the hot water M by the control valve 17 and securing a large amount of hot water M. It solves two issues at the same time.

この実施形態の加熱システム10は、従来の加熱システムのように感知した温水温度に基づいて調節弁をフィードバック制御する複雑な機構に代えて、オリフィス16の上流側と下流側との間に生じる差圧に応じて調節弁17の開度を可変することにより熱交換器11への加熱流体Sの供給量を調節する簡単な構成としているので、コストダウンを図ることができる。それに加えて、従来の加熱システムにおける温度センサによる温水温度の感知遅れや加熱流体の供給量変化に対する温水の温度変化の遅れなどに起因する温水の不測の温度変化が生じないので、湯水混合弁23を経て常に所定温度の温水M1を安定して生成することができる。   The heating system 10 of this embodiment is different from the complicated mechanism that feedback-controls the control valve based on the sensed hot water temperature as in the conventional heating system, and the difference generated between the upstream side and the downstream side of the orifice 16. Since the amount of heating fluid S supplied to the heat exchanger 11 is adjusted by changing the opening of the control valve 17 in accordance with the pressure, the cost can be reduced. In addition, since there is no unexpected temperature change of hot water due to a delay in sensing the temperature of the hot water by the temperature sensor in the conventional heating system or a delay in the temperature change of the hot water relative to the change in the supply amount of the heated fluid, the hot and cold mixing valve 23 Through the process, the hot water M1 having a predetermined temperature can always be stably generated.

また、この加熱システム10では、一般にゴムなどの耐熱性の低い素材からなるダイヤフラム30が、バイパス経路21を通って流れる冷水Cにより冷却されるので、加熱流体Sからの伝熱によるダイヤフラム30の熱劣化が防止されて、調節弁17の弁動作が安定化するとともに、ダイヤフラム30の寿命が長くなる。   Further, in this heating system 10, the diaphragm 30, which is generally made of a material having low heat resistance such as rubber, is cooled by the cold water C flowing through the bypass path 21, so that the heat of the diaphragm 30 due to heat transfer from the heating fluid S Deterioration is prevented, the valve operation of the control valve 17 is stabilized, and the life of the diaphragm 30 is extended.

さらに、この加熱システム10は、熱水Mの温度が90℃以下の定常時において、上述のようにオリフィス16の上流側と下流側との差圧に応じて調節弁17の開度を制御して熱交換器11への加熱流体Sの供給量を調節しているが、例えば、夏期などにおいて熱水Mの温度が所定値(例えば90℃)以上の異常な高温になった場合に、温度制御弁45の感温駆動体58が弁体57を弁口47に押し付けることにより、温度制御弁45が常開状態から閉弁状態に移行して、バイパス経路21を通じて冷水Cが温度制御弁45の冷水流入室46から温水導出通路14内に流入するのを阻止する。これにより、冷水Cがオリフィス16を通過しなくなってオリフィ16の上流側と下流側との差圧がなくなるから、調節弁17が閉弁して熱交換器11への加熱流体Sの供給を停止する結果、熱交換器11からの熱水Mの温度が低下する。したがって、温度制御弁45の下流に設けられた湯水混合弁23での冷水混合による温度調節が困難となるのを防止できる。   Further, the heating system 10 controls the opening degree of the control valve 17 in accordance with the differential pressure between the upstream side and the downstream side of the orifice 16 as described above in a steady state where the temperature of the hot water M is 90 ° C. or less. The amount of the heated fluid S supplied to the heat exchanger 11 is adjusted, for example, when the temperature of the hot water M becomes an abnormally high temperature of a predetermined value (for example, 90 ° C.) or more in the summer, etc. When the temperature-sensitive drive body 58 of the control valve 45 presses the valve body 57 against the valve port 47, the temperature control valve 45 shifts from the normally open state to the valve closed state, and the cold water C flows through the bypass path 21. From flowing into the hot water outlet passage 14 from the cold water inlet chamber 46. As a result, the cold water C does not pass through the orifice 16 and there is no differential pressure between the upstream side and the downstream side of the orifice 16, so the control valve 17 is closed and the supply of the heating fluid S to the heat exchanger 11 is stopped. As a result, the temperature of the hot water M from the heat exchanger 11 decreases. Therefore, it is possible to prevent the temperature adjustment by the cold water mixing at the hot water mixing valve 23 provided downstream of the temperature control valve 45 from becoming difficult.

また、温度制御弁45は、温水導出通路14に接続された温水流入室55と、冷水流入室46と温水流入室55とを区画する区画壁48と、この区画壁48に設けた弁口47を開閉する弁体57と、温水流入室55内の熱水Mの温度に基づいて弁体57を駆動する感温駆動体58とを備えた構成となっているので、温度制御弁45が簡単な構造となる。   The temperature control valve 45 includes a hot water inflow chamber 55 connected to the hot water outlet passage 14, a partition wall 48 that partitions the cold water inflow chamber 46 and the hot water inflow chamber 55, and a valve port 47 provided in the partition wall 48. The temperature control valve 45 is simple because the valve body 57 that opens and closes the valve body 57 and the temperature sensitive drive body 58 that drives the valve body 57 based on the temperature of the hot water M in the hot water inflow chamber 55 are provided. Structure.

さらに、温水導出通路14における温度制御弁45の下流側に湯水混合弁23が設けられているから、熱水温度が急激に所定値以上となったとき、温度制御弁45の温度感知遅れによる閉弁遅れがあっても、湯水混合弁23で冷水Cが熱水Mに混合されることで、熱水Mの温度が低下するので、前記所定値以上の高温の温水M1が給湯口弁24から外部に取り出されるおそれがない。   Further, since the hot water mixing valve 23 is provided in the hot water outlet passage 14 on the downstream side of the temperature control valve 45, when the hot water temperature suddenly exceeds a predetermined value, the temperature control valve 45 is closed due to a temperature sensing delay. Even if there is a valve delay, the temperature of the hot water M is reduced by the cold water C being mixed with the hot water M by the hot water / mixing valve 23, so that the hot water M 1 having a temperature higher than the predetermined value is discharged from the hot water supply valve 24. There is no risk of being taken out.

本発明の一実施形態に係る加熱システムを示す系統図である。It is a systematic diagram showing the heating system concerning one embodiment of the present invention. 同上の加熱システムにおける圧力弁の近傍を示す縦断面図である。It is a longitudinal cross-sectional view which shows the vicinity of the pressure valve in a heating system same as the above. 同上の加熱システムにおける調節弁の閉弁状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the valve closing state of the control valve in a heating system same as the above. 同上の調節弁の開弁状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the valve opening state of a control valve same as the above. 従来の加熱システムの系統図である。It is a systematic diagram of the conventional heating system.

符号の説明Explanation of symbols

10 加熱システム
11 熱交換器
12 冷水通路
13 加熱流体通路
14 温水導出通路
16 オリフィス
17 調節弁
18 上流側導入通路
20 圧力弁
23 湯水混合弁
26 弁棒(弁駆動部材)
27 駆動部
28 弁体部
30 ダイヤフラム
38 上流側導入室
39 下流側導入室
45 温度制御弁
46 冷水流入室
47 弁口
48 区画壁
55 温水流入室
57 弁体
58 感温駆動体
S 加熱流体
C 冷水
M 温水(熱水)
M1 温水
VA 加熱流体供給源
WA 給水源
DESCRIPTION OF SYMBOLS 10 Heating system 11 Heat exchanger 12 Cold water passage 13 Heating fluid passage 14 Hot water outlet passage 16 Orifice 17 Control valve 18 Upstream introduction passage 20 Pressure valve 23 Hot water mixing valve 26 Valve rod (valve drive member)
DESCRIPTION OF SYMBOLS 27 Drive part 28 Valve body part 30 Diaphragm 38 Upstream side introduction chamber 39 Downstream side introduction room 45 Temperature control valve 46 Cold water inflow chamber 47 Valve port 48 Partition wall 55 Hot water inflow chamber 57 Valve body 58 Temperature sensitive drive body S Heating fluid C Cold water M Hot water (hot water)
M1 Hot water VA Heating fluid supply source WA Water supply source

Claims (4)

加熱流体と冷水との間の熱交換により温水を生成する熱交換器と、
加熱流体供給源からの前記加熱流体を前記熱交換器に導く加熱流体通路と、
給水源からの冷水を前記熱交換器に導く冷水通路と、
前記冷水通路に設けられて、上流側の圧力が下流側の圧力よりも所定値以上大きくなったときに開弁する圧力弁と、
前記加熱流体通路に設けられて前記熱交換器への加熱流体の供給量を調節する調節弁と、
前記熱交換器から温水を導出する温水導出通路とを備え、
前記調節弁は、前記加熱流体通路を開閉する弁体部を駆動する駆動部が、上流側導入通路を介して前記圧力弁の上流側の冷水が導入される上流側導入室と、ダイヤフラムによって前記上流側導入室から仕切られた下流側導入室と、前記上流側導入室を前記下流側導入室に連通させるオリフィスと、前記ダイヤフラムの変形によって前記弁体部を駆動する弁駆動部材とを有し、
前記温水導出通路に、前記下流側導入室に接続された冷水流入室を有し、温水温度が所定値以上のとき閉弁して、前記下流側導入室からの冷水が前記冷水流入室を通って前記温水導出通路内に流入するのを停止させる温度制御弁が設けられている加熱システム。
A heat exchanger that generates hot water by heat exchange between the heating fluid and cold water;
A heating fluid passage for directing the heating fluid from a heating fluid supply to the heat exchanger;
A cold water passage for guiding cold water from a water supply source to the heat exchanger;
A pressure valve that is provided in the cold water passage and opens when the pressure on the upstream side is larger than the pressure on the downstream side by a predetermined value or more;
A regulating valve that is provided in the heating fluid passage and adjusts the amount of heating fluid supplied to the heat exchanger;
A hot water outlet passage for extracting hot water from the heat exchanger;
In the control valve, the drive unit that drives the valve body unit that opens and closes the heating fluid passage includes an upstream introduction chamber into which cold water on the upstream side of the pressure valve is introduced via the upstream introduction passage, and a diaphragm. A downstream introduction chamber partitioned from the upstream introduction chamber, an orifice for communicating the upstream introduction chamber with the downstream introduction chamber, and a valve drive member for driving the valve body portion by deformation of the diaphragm ,
The hot water outlet passage has a cold water inflow chamber connected to the downstream side introduction chamber, and closes when the hot water temperature is equal to or higher than a predetermined value, so that the cold water from the downstream side introduction chamber passes through the cold water inflow chamber. A heating system provided with a temperature control valve for stopping the flow into the hot water outlet passage.
請求項1において、前記温度制御弁はさらに、前記温水導出通路に接続された温水流入室と、前記冷水流入室と前記温水流入室とを区画する区画壁と、この区画壁に設けた弁口を開閉する弁体と、前記温水流入室内の温水の温度に基づいて前記弁体を駆動する感温駆動体とを備えた加熱システム。   2. The temperature control valve according to claim 1, further comprising a hot water inflow chamber connected to the hot water outlet passage, a partition wall partitioning the cold water inflow chamber and the hot water inflow chamber, and a valve port provided in the partition wall A heating system comprising a valve body that opens and closes and a temperature-sensitive drive body that drives the valve body based on the temperature of hot water in the hot water inflow chamber. 請求項1または2において、前記オリフィスが前記ダイヤフラムまたはこれを支持する調節弁のケーシングに設けられている加熱システム。   The heating system according to claim 1 or 2, wherein the orifice is provided in a casing of the diaphragm or a control valve that supports the diaphragm. 請求項2または3において、前記温水導出通路における前記温度制御弁の下流側に、温水と冷水を混合する湯水混合弁が設けられている加熱システム。   4. The heating system according to claim 2, wherein a hot and cold water mixing valve for mixing hot water and cold water is provided on the downstream side of the temperature control valve in the hot water outlet passage.
JP2006295135A 2006-10-31 2006-10-31 Heating system Active JP4943117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006295135A JP4943117B2 (en) 2006-10-31 2006-10-31 Heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006295135A JP4943117B2 (en) 2006-10-31 2006-10-31 Heating system

Publications (2)

Publication Number Publication Date
JP2008111597A JP2008111597A (en) 2008-05-15
JP4943117B2 true JP4943117B2 (en) 2012-05-30

Family

ID=39444197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006295135A Active JP4943117B2 (en) 2006-10-31 2006-10-31 Heating system

Country Status (1)

Country Link
JP (1) JP4943117B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2857774B1 (en) * 2012-05-25 2016-12-28 TLV Co., Ltd. Hot water generator
JP5427319B1 (en) * 2012-05-25 2014-02-26 株式会社テイエルブイ Hot water generator
CN109915624B (en) * 2019-01-31 2023-10-27 中山神田大气电器科技有限公司 Electric thermostatic valve with electricity-isolating wall function

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169158A (en) * 1974-12-11 1976-06-15 Nippon Telegraph & Telephone KEIDEN KIGUMI
JPH0794958B2 (en) * 1988-06-30 1995-10-11 株式会社本山製作所 Temperature control device for heat exchanger
JP2524465Y2 (en) * 1989-08-29 1997-01-29 日本イスエード株式会社 pulley

Also Published As

Publication number Publication date
JP2008111597A (en) 2008-05-15

Similar Documents

Publication Publication Date Title
JP4910163B2 (en) Constant temperature liquid circulation device and temperature control method in the device
US11629886B2 (en) Gas heater for water and a gas water heater
KR100721460B1 (en) Device for preventing initial hot water supplying in concentric tube type heat exchanger
US10883743B2 (en) Water heater with flow bypass
RU2495474C2 (en) Valve assembly
JP4943117B2 (en) Heating system
JP2007120380A (en) Engine cooling device
JP4954668B2 (en) Heating system
JP4943118B2 (en) Heating system
JP5103040B2 (en) Heating system
JP6912088B2 (en) Liquid temperature controller
KR101749125B1 (en) heating water suppling system and controlling method thereof
JP4889380B2 (en) Heating system
JP5103495B2 (en) Heating system
JP5463096B2 (en) Hot water generator and steam hot water supply system using the same
JP2011021328A (en) Hot water/water mixing device
JP6934869B2 (en) A heat exchange and thermostratification system for the fluid contained in the tank, as well as a hot water tank equipped with the system.
US7343928B2 (en) Regulator insert with hydraulic damping in outlet
JP3476619B2 (en) Expansion valve
RU2674805C1 (en) Discharge unit with single connection
JP7303554B2 (en) hot water system
JPH09287798A (en) Air conditioning unit and air conditioning system incorporating air conditioning unit
JP2009144998A (en) Cooling unit
JP2011153774A (en) Hot water storage type water heater
JP6590748B2 (en) Bathroom air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120229

R150 Certificate of patent or registration of utility model

Ref document number: 4943117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250