JP4889380B2 - Heating system - Google Patents

Heating system Download PDF

Info

Publication number
JP4889380B2
JP4889380B2 JP2006166904A JP2006166904A JP4889380B2 JP 4889380 B2 JP4889380 B2 JP 4889380B2 JP 2006166904 A JP2006166904 A JP 2006166904A JP 2006166904 A JP2006166904 A JP 2006166904A JP 4889380 B2 JP4889380 B2 JP 4889380B2
Authority
JP
Japan
Prior art keywords
heating fluid
valve
cold water
hot water
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006166904A
Other languages
Japanese (ja)
Other versions
JP2007333327A (en
Inventor
孝弘 岡崎
Original Assignee
株式会社ミヤワキ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミヤワキ filed Critical 株式会社ミヤワキ
Priority to JP2006166904A priority Critical patent/JP4889380B2/en
Publication of JP2007333327A publication Critical patent/JP2007333327A/en
Application granted granted Critical
Publication of JP4889380B2 publication Critical patent/JP4889380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば蒸気のような加熱流体で冷水を加熱することにより温水を生成する加熱システムに関する。   The present invention relates to a heating system that generates hot water by heating cold water with a heating fluid such as steam.

従来、冷水を蒸気で加熱することにより温水を生成する給湯装置が知られている。この給湯装置における加熱システムは、図6に示すように、熱交換器60によって蒸気のような加熱流体Sの熱で冷水Cを加熱することにより温水Mを生成するものであり、給水源WAからの冷水Cを前記熱交換器60に導く冷水配管61と、外部の加熱流体供給源VAに連結されてこの加熱流体供給源VAからの加熱流体Sを前記熱交換器60に導く加熱流体配管62と、熱交換器60での冷水Cと加熱流体Sとの熱交換により生成された温水Mを導出する温水配管63とを備えている。前記加熱流体配管62には加熱流体配管62内における加熱流体Sの通過量を調節する調節弁64が設けられ、前記温水配管63には熱交換器60の出口側近傍に温度センサ65が設けられている(例えば特許文献1参照)。
特開2006―112719号公報
Conventionally, a hot water supply apparatus that generates hot water by heating cold water with steam is known. As shown in FIG. 6, the heating system in this hot water supply apparatus generates hot water M by heating cold water C with heat of a heating fluid S such as steam by a heat exchanger 60, and is supplied from a water supply source WA. A cold water pipe 61 that leads the cold water C to the heat exchanger 60 and a heating fluid pipe 62 that is connected to an external heating fluid supply source VA and leads the heating fluid S from the heating fluid supply source VA to the heat exchanger 60. And a hot water pipe 63 for deriving the hot water M generated by heat exchange between the cold water C and the heating fluid S in the heat exchanger 60. The heating fluid pipe 62 is provided with a regulating valve 64 that adjusts the passage amount of the heating fluid S in the heating fluid pipe 62, and the hot water pipe 63 is provided with a temperature sensor 65 in the vicinity of the outlet side of the heat exchanger 60. (For example, refer to Patent Document 1).
JP 2006-127719 A

前記給湯装置によれば、給水源WAからの冷水Cと加熱流体供給源VAからの加熱流体Sとが熱交換器60で熱交換されることにより温水Mが生成され、この温水Mがカラン66の開弁により外部へ取り出される。前記熱交換器11を通った熱交換後の加熱流体Sは復水(ドレン)として排出通路67から外部へ排出される。また、この給湯装置では、熱交換器60で生成した温水Mの温度を温度センサ65で感知し、感知した温水Mの温度情報をフィードバック制御回路68により調節弁64へフィードバックし、温水Mの温度が高ければ蒸気調節弁64により熱交換器60への加熱流体Sの供給量を減少して温水Mの温度を下げ、温水Mの温度が低ければ調節弁64により加熱流体Sの供給量を増加して温水Mの温度を上昇させる。   According to the hot water supply device, the hot water M is generated by heat exchange between the cold water C from the water supply source WA and the heating fluid S from the heating fluid supply source VA in the heat exchanger 60. It is taken out by opening the valve. The heated fluid S after the heat exchange through the heat exchanger 11 is discharged from the discharge passage 67 to the outside as condensate (drain). In this hot water supply apparatus, the temperature of the hot water M generated by the heat exchanger 60 is detected by the temperature sensor 65, and the temperature information of the detected hot water M is fed back to the control valve 64 by the feedback control circuit 68. If the temperature is high, the supply amount of the heating fluid S to the heat exchanger 60 is decreased by the steam control valve 64 to lower the temperature of the hot water M, and if the temperature of the warm water M is low, the supply amount of the heating fluid S is increased by the control valve 64. Then, the temperature of the hot water M is raised.

ところが、前記給湯装置の場合、カラン66を閉弁しているとき、つまり、温水Mを使用していないときでも、熱交換器60で生成した温水Mの温度が温度センサ65で常に感知され、感知された温水Mの温度情報がフィードバック制御回路68により調節弁64にフィードバックされて温水Mの温度を常に一定に保つように熱交換器60へ加熱流体Sが供給されるので、温水不使用時においても、温水配管63の放熱によって温水Mの温度が低下すると、加熱流体Sの無駄な消費があった。また、温度センサ65の感知遅れ、または加熱流体Sの供給量変化に対する温水Mの温度変化の遅れによって、温水Mの温度が変化し、安定した温度の温水Mの生成が難しかった。   However, in the case of the hot water supply device, even when the curan 66 is closed, that is, when the hot water M is not used, the temperature of the hot water M generated by the heat exchanger 60 is always detected by the temperature sensor 65. The detected temperature information of the hot water M is fed back to the control valve 64 by the feedback control circuit 68 and the heating fluid S is supplied to the heat exchanger 60 so that the temperature of the hot water M is always kept constant. However, when the temperature of the hot water M decreases due to the heat radiation of the hot water pipe 63, the heating fluid S is wasted. In addition, the temperature of the hot water M changes due to a delay in sensing of the temperature sensor 65 or a change in temperature of the hot water M relative to a change in the supply amount of the heating fluid S, and it is difficult to generate the hot water M having a stable temperature.

そこで、本発明は、蒸気のような加熱流体が無駄に消費されることなく、常に安定した温度の温水を生成することができる加熱システムを提供することを目的とする。   Then, this invention aims at providing the heating system which can always produce | generate the hot water of the stable temperature, without heating fluids, such as a vapor | steam being wasted.

上記した目的を達成するために、本発明に係る加熱システムは、加熱流体と冷水との間の熱交換により温水を生成する熱交換器と、加熱流体供給源からの前記加熱流体を前記熱交換器に導く加熱流体通路と、給水源からの冷水を前記熱交換器に導く冷水通路と、前記冷水通路に設けたオリフィスと、前記加熱流体通路に設けられて前記オリフィスの上流側と下流側の差圧に応じて前記熱交換器への加熱流体の供給量を調節する調節弁とを備え、前記調節弁は、鉛直方向に延びる弁棒の下端に、前記差圧を受けて弁棒を軸方向に駆動する駆動部を有し、前記弁棒の上端に、前記加熱流体通路を開閉する弁体部を有し、前記駆動部は、前記オリフィスの上流側の冷水が導入される上流側導入室と、前記オリフィスの下流側の冷水が導入される下流側導入室と、前記両導入室間を仕切るダイヤフラムとを有する。ここで、温水Mとは、40ないし60℃程度の温湯のみならず、60℃以上の高温の温水をも含む。 In order to achieve the above-described object, a heating system according to the present invention includes a heat exchanger that generates hot water by heat exchange between a heating fluid and cold water, and the heat exchange from the heating fluid supply source. A heating fluid passage leading to the heater, a cooling water passage leading the cold water from the water supply source to the heat exchanger, an orifice provided in the cold water passage, and an upstream side and a downstream side of the orifice provided in the heating fluid passage. And a control valve that adjusts the supply amount of the heating fluid to the heat exchanger according to the differential pressure, and the control valve receives the differential pressure at the lower end of the valve stem that extends in the vertical direction and pivots the valve stem. A drive part that drives in the direction, and a valve body part that opens and closes the heating fluid passage at the upper end of the valve stem, and the drive part is introduced upstream by which cold water upstream of the orifice is introduced. Chamber and downstream where cold water downstream of the orifice is introduced With the introduction chamber, and a diaphragm partitioning the said two inlet chamber. Here, the hot water M includes not only hot water of about 40 to 60 ° C. but also hot water of 60 ° C. or higher.

この構成によれば、カランを閉弁して温水を使用していないときには、冷水通路内を冷水が流れておらず、前記冷水通路に設けられたオリフィスの上流側と下流側との間で差圧が発生しない。この場合、オリフィスの上流側と下流側の差圧に応じて熱交換器への加熱流体の供給量を調節する調節弁は閉弁しているので、前記調節弁によって熱交換器へ加熱流体が供給されないから、加熱流体が無駄に消費されることはない。一方、カランを開放して温水を使用しているときには、冷水通路内を冷水が熱交換器に向かって流れ、前記冷水通路に設けられたオリフィスの上流側と下流側との間で冷水の差圧が発生する。したがって、オリフィスの上流側と下流側の冷水の差圧に応じて熱交換器への加熱流体の供給量を調節する調節弁が開弁し、この調節弁によって熱交換器へ加熱流体が供給される。このとき、前記差圧の大小により前記調節弁の開度が調節される。このように、温水を使用していないときには加熱流体が消費されることがなく、温水を使用しているときにのみ加熱流体が消費され、しかも加熱流体の供給量がこの差圧に応じて制御されるので、加熱流体が効率的に使用される。また、温度検出の遅れがなくなり、常に安定した温度の温水が得られる。さらに、弁棒の両端に駆動部と弁体部が設けられているので、調節弁がコンパクトになる。また、弁棒の下部に冷水が導入されるので、弁棒の下部に蒸気を導入する場合と異なり、蒸気の熱が上昇して冷水を加熱膨脹させるおそれがない。 According to this configuration, when the hot water is not used by closing the currant, the cold water is not flowing in the cold water passage, and there is a difference between the upstream side and the downstream side of the orifice provided in the cold water passage. No pressure is generated. In this case, since the regulating valve that adjusts the supply amount of the heating fluid to the heat exchanger according to the differential pressure between the upstream side and the downstream side of the orifice is closed, the heating fluid is supplied to the heat exchanger by the regulating valve. Since it is not supplied, the heated fluid is not wasted. On the other hand, when hot water is used with the curan open, the cold water flows in the cold water passage toward the heat exchanger, and the difference between the cold water between the upstream side and the downstream side of the orifice provided in the cold water passage. Pressure is generated. Therefore, a control valve that adjusts the supply amount of the heating fluid to the heat exchanger according to the differential pressure of the cold water upstream and downstream of the orifice opens, and the heating fluid is supplied to the heat exchanger by this control valve. The At this time, the opening degree of the control valve is adjusted according to the magnitude of the differential pressure. Thus, the heating fluid is not consumed when hot water is not used, and the heating fluid is consumed only when hot water is used, and the supply amount of the heating fluid is controlled according to this differential pressure. Therefore, the heating fluid is used efficiently. Further, there is no delay in temperature detection, and hot water having a stable temperature can be obtained at all times. Furthermore, since the drive part and the valve body part are provided at both ends of the valve stem, the control valve becomes compact. Further, since cold water is introduced into the lower part of the valve stem, unlike the case where steam is introduced into the lower part of the valve stem, there is no possibility that the heat of the steam rises and the cold water is heated and expanded.

好ましくは、さらに、前記弁体部は前記弁棒の他端部により押圧されて弁棒の軸方向へ移動するボール弁からなる。このように、ボール弁を用いることで、弁体部の構造が簡単になる。   Preferably, the valve body portion further includes a ball valve which is pressed by the other end portion of the valve stem and moves in the axial direction of the valve stem. Thus, the structure of the valve element is simplified by using the ball valve.

本発明に係る加熱システムによれば、温水を使用していないときには加熱流体が消費されることがなく、温水を使用しているときにのみ加熱流体が消費され、しかも加熱流体の供給量がこの差圧に応じて制御されるので、加熱流体を効率的に使用することができる。 また、温水温度を検出するものではないので、温度検出の遅れがなくなり、常に安定した温度の温水が得られる。   According to the heating system of the present invention, the heating fluid is not consumed when hot water is not used, and the heating fluid is consumed only when hot water is used. Since it is controlled according to the differential pressure, the heating fluid can be used efficiently. In addition, since the temperature of the hot water is not detected, there is no delay in temperature detection, and hot water having a stable temperature is always obtained.

以下、本発明の好ましい実施形態について図面を参照しながら説明する。図1は本発明に係る加熱システムの系統図である。同図に示す加熱システム10は、蒸気のような加熱流体Sの熱で被加熱流体である冷水Cを加熱することにより温水Mを生成する熱交換器11を備えている。この熱交換器11としては、例えば複数のプレートを重ねて、その間に図示しない加熱流体の通路と被加熱流体である冷水の通路とを、前記プレートを介して交互に配置したプレート型熱交換器と呼ばれるものが、小形で熱交換容量が大きいので好ましい。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram of a heating system according to the present invention. The heating system 10 shown in the figure includes a heat exchanger 11 that generates hot water M by heating cold water C that is a fluid to be heated with heat of a heating fluid S such as steam. As the heat exchanger 11, for example, a plate type heat exchanger in which a plurality of plates are stacked and a passage of a heating fluid (not shown) and a passage of cold water as a fluid to be heated are alternately arranged via the plates. Is preferable because of its small size and large heat exchange capacity.

加熱システム10はさらに、給水源WAから供給される冷水Cを前記熱交換器11に導く冷水通路12と、加熱流体供給源VAから供給される蒸気のような加熱流体Sを前記熱交換器11に導く加熱流体通路13と、前記熱交換器11で生成された加熱後の被加熱流体である温水Mを導出する温水通路14と、前記熱交換器11を通った熱交換後の加熱流体Sを復水(ドレン)として排出する排出通路15とを有している。   The heating system 10 further includes a cold water passage 12 that leads the cold water C supplied from the water supply source WA to the heat exchanger 11 and a heating fluid S such as steam supplied from the heating fluid supply source VA to the heat exchanger 11. The heated fluid passage 13 that leads to the heated fluid passage 13, the warm water passage 14 that leads out the heated water M that is the heated fluid generated in the heat exchanger 11, and the heated fluid S after the heat exchange that has passed through the heat exchanger 11 And a discharge passage 15 for discharging the water as condensate (drain).

前記冷水通路12には、オリフィス16が設けられ、加熱流体通路14には熱交換器11への加熱流体Sの供給量を調節する調節弁17が配設されている。前記オリフィス16は、図2に示すように、例えば冷水通路12を構成する冷水配管50内に流れ方向と直交する方向に延びる立壁51を設け、この立壁51の中心部に小孔51aを設けて、上流側から下流側ヘ流れる冷水Cが前記立壁51の小孔51aを通過するときの流量を絞るようになっている。この立壁51を挟んで上流側の近傍から上流側導入路18を形成する上流側導入管52を分岐させ、前記立壁51を挟んで下流側の近傍から下流側導入路19を形成する下流側導入管53を分岐させ、前記上流側導入管52および下流側導入管53の先端をそれぞれ、図1の調節弁17に連結している。この調節弁17は、前記オリフィス16の上流側の圧力と下流側の圧力との差圧によって開弁して開度を調整できる構造となっており、温水Mを使用するときには、前記差圧が生じるので、この差圧に応じて、図1の熱交換器11への加熱流体Sの供給量が調節される。   The cold water passage 12 is provided with an orifice 16, and the heating fluid passage 14 is provided with a regulating valve 17 that adjusts the supply amount of the heating fluid S to the heat exchanger 11. As shown in FIG. 2, the orifice 16 is provided with a standing wall 51 extending in a direction perpendicular to the flow direction, for example, in a cold water pipe 50 constituting the cold water passage 12, and a small hole 51 a is provided in the center of the standing wall 51. The flow rate of the cold water C flowing from the upstream side to the downstream side passes through the small hole 51a of the standing wall 51 is reduced. The upstream introduction pipe 52 that forms the upstream introduction path 18 is branched from the vicinity of the upstream side with the standing wall 51 interposed therebetween, and the downstream introduction path that forms the downstream introduction path 19 from the vicinity of the downstream side with the standing wall 51 interposed therebetween. The pipe 53 is branched, and the ends of the upstream introduction pipe 52 and the downstream introduction pipe 53 are connected to the control valve 17 in FIG. The control valve 17 has a structure in which the opening degree can be adjusted by opening the differential pressure between the upstream pressure and the downstream pressure of the orifice 16. When the hot water M is used, the differential pressure is Therefore, the supply amount of the heating fluid S to the heat exchanger 11 in FIG. 1 is adjusted according to the differential pressure.

また、前記温水通路14の下流側には、温水通路14に導かれた温水Mを給湯出口となる給湯口弁(カラン)24に導く温水供給通路23が接続されている。なお、図示しないが、前記カラン24の手前には、前記温水Mが温水である場合、これに冷水Cを混合して低温の温水を生成する湯水混合弁を設けてもよい。   A hot water supply passage 23 is connected downstream of the hot water passage 14 to guide the hot water M guided to the hot water passage 14 to a hot water supply valve (curan) 24 serving as a hot water outlet. In addition, although not shown in figure, when the said hot water M is warm water before the said currant 24, you may provide the hot water mixing valve which mixes cold water C with this and produces | generates low temperature warm water.

次に、前記調節弁17の具体的構造について図3を参照しながら説明する。同図は調節弁17の閉弁状態を示している。同図に示すように、調節弁17は、上部に加熱流体通路13が形成されたケーシング25内に、鉛直方向に延びる弁棒26が摺動自在に支持されており、この弁棒26の一端(下端)に、前記オリフィス16の上流側の圧力と下流側の圧力との差圧を受けて弁棒26を軸方向に駆動する駆動部27が設けられ、前記弁棒26の他端(上端)に、加熱流体通路13を開閉するボール弁からなる弁体部28が配置されている。前記弁棒26とケーシング25との摺動面部位にはO−リング42が取り付けられ、気密性および水密性が確保され、下流側導入室19からの冷水Cが加熱流体通路13に侵入しないように配慮されている。なお、図2ないし図3に示す実施形態では弁棒26と弁体部28とは別体であるが、これら弁棒26と弁体部28が一体的に形成されたものであってもよい。 Next, a specific structure of the control valve 17 will be described with reference to FIG. The figure shows the closed state of the control valve 17. As shown in the figure, the control valve 17 has a valve rod 26 extending in the vertical direction slidably supported in a casing 25 having a heating fluid passage 13 formed in the upper portion. (the lower end), the drive unit 27 to the valve stem 26 receives a differential pressure between the pressure of the pressure and the downstream side of the upstream side of the orifice 16 is driven in the axial direction is provided, the other end of the valve stem 26 (the upper end ) Is provided with a valve body 28 composed of a ball valve for opening and closing the heating fluid passage 13. An O-ring 42 is attached to a sliding surface portion between the valve stem 26 and the casing 25 to ensure airtightness and watertightness so that the cold water C from the downstream introduction chamber 19 does not enter the heating fluid passage 13. Is considered. In the embodiment shown in FIGS. 2 to 3, the valve stem 26 and the valve body portion 28 are separate bodies, but the valve stem 26 and the valve body portion 28 may be integrally formed. .

前記駆動部27は、前記弁棒26の下端に設けられた円板状の受け部材26aと、この受け部材26aに固定されたダイヤフラム30とを有し、このダイヤフラム30により仕切られた下側に上流側導入路18から前記オリフィス16の上流側の冷水Cが導入される上流側導入室38が設けられ、ダイヤフラム30により仕切られた上側に下流側導入室19からオリフィス16の下流側の冷水Cが導入される下流側導入室39が設けられている。ボール弁28は、このボール弁28とケーシング25の間に介装されたばね29により、弁棒26の上端および弁座25aに向かって押圧されている。   The drive unit 27 includes a disk-shaped receiving member 26 a provided at the lower end of the valve rod 26, and a diaphragm 30 fixed to the receiving member 26 a, and the lower side partitioned by the diaphragm 30 An upstream introduction chamber 38 into which the cold water C upstream of the orifice 16 is introduced from the upstream introduction passage 18 is provided, and the cold water C downstream of the orifice 16 from the downstream introduction chamber 19 is provided on the upper side partitioned by the diaphragm 30. A downstream side introduction chamber 39 is provided. The ball valve 28 is pressed toward the upper end of the valve stem 26 and the valve seat 25 a by a spring 29 interposed between the ball valve 28 and the casing 25.

次に、上記構成の加熱システムの動作について説明する。まず、図1のカラン24を開いている温水Mの使用時、給水源WAからの冷水Cが冷水通路12に設けられたオリフィス16を通過して熱交換器11に入る。冷水Cがオリフィス16を通過するとき、ベンチュリ効果によって、冷水通路12におけるオリフィス16の下流側近傍の圧力が上流側近傍の圧力よりも小さくなる。これら両圧力が上流側導入室18および下流側導入室19を介して、図4に示す上流側導入室38、下流側導入室39に作用し、前記ダイヤフラム30が上方に変形して前記受け部材26aを上方に押し上げ、弁棒26が軸方向上方に駆動される。これによりボール弁28が上方に移動し、加熱流体通路13を開く。つまり、開弁状態となる。ここで、駆動部27を構成する上流側導入室38と下流側導入室39とが加熱流体通路13から離間した下方に配置されているので、加熱流体通路13を通過する加熱流体Sからの熱を受けて加熱膨脹することがなく、弁動作が安定する。この調節弁17は、導入室38,39間の差圧に応じて熱交換器11への加熱流体Sの供給量を調節して加熱流体Sを図1の熱交換器11に供給する。   Next, the operation of the heating system configured as described above will be described. First, when using the hot water M that opens the currant 24 in FIG. 1, the cold water C from the water supply source WA passes through the orifice 16 provided in the cold water passage 12 and enters the heat exchanger 11. When the cold water C passes through the orifice 16, the pressure in the vicinity of the downstream side of the orifice 16 in the cold water passage 12 becomes smaller than the pressure in the vicinity of the upstream side due to the venturi effect. These two pressures act on the upstream side introduction chamber 38 and the downstream side introduction chamber 39 shown in FIG. 4 via the upstream side introduction chamber 18 and the downstream side introduction chamber 19, and the diaphragm 30 is deformed upward to cause the receiving member. 26a is pushed upward, and the valve stem 26 is driven axially upward. As a result, the ball valve 28 moves upward to open the heating fluid passage 13. That is, the valve is opened. Here, since the upstream side introduction chamber 38 and the downstream side introduction chamber 39 that constitute the drive unit 27 are disposed below the heating fluid passage 13, the heat from the heating fluid S passing through the heating fluid passage 13. In response to this, the valve operation is stabilized without being heated and expanded. The adjustment valve 17 adjusts the supply amount of the heating fluid S to the heat exchanger 11 according to the differential pressure between the introduction chambers 38 and 39, and supplies the heating fluid S to the heat exchanger 11 in FIG.

温水Mを使用していない時には、冷水通路12内を冷水Cが流れていないので、オリフィス16を挟んで上流側と下流側とで差圧がゼロとなる。したがって、図3のばね29のばね力により、ボール弁28が弁座25aに押し付けられて閉弁し、加熱流体通路13を閉塞して熱交換器11への加熱流体Sの供給を停止させる。これにより、加熱流体Sの無駄な消費が抑えられる。また、温水温度を検出して作動するものではないから、温度検出の遅れがなくなり、常に安定した温度の温水が得られる。   When the hot water M is not used, since the cold water C does not flow in the cold water passage 12, the differential pressure between the upstream side and the downstream side across the orifice 16 becomes zero. Therefore, the ball valve 28 is pressed against the valve seat 25a by the spring force of the spring 29 in FIG. 3 to close the valve, thereby closing the heating fluid passage 13 and stopping the supply of the heating fluid S to the heat exchanger 11. Thereby, useless consumption of the heating fluid S is suppressed. Moreover, since it does not operate by detecting the temperature of the hot water, there is no delay in temperature detection, and hot water with a stable temperature can always be obtained.

次に、本発明によって得られる温水の流量と温度の関係について図5を参照しながら説明する。同図において、蒸気圧力が0.3MPa(ゲージ圧)の場合、実線で示すように、温水流量が2L/minから5L/minと増加するにつれて温水Mの温度も急激に増加して90℃近くまで上昇した。温水流量が7L/minのとき、ピーク100℃に達し、温水流量が7L/min以上になると、比例的に温度が低下する傾向がある。60℃以上の温水を使用したい場合、符号Aで示すように、その流量範囲は約4〜27L/minであって、広い使用範囲がある。また、40℃以上の温水を使用したい場合、符号Bで示すように、その流量範囲は約3〜35L/minと、使用範囲はきわめて広い。   Next, the relationship between the flow rate and temperature of hot water obtained by the present invention will be described with reference to FIG. In the figure, when the steam pressure is 0.3 MPa (gauge pressure), as shown by the solid line, the temperature of the hot water M increases rapidly as the flow rate of the hot water increases from 2 L / min to 5 L / min, and is close to 90 ° C. Rose to. When the hot water flow rate is 7 L / min, the peak reaches 100 ° C., and when the hot water flow rate is 7 L / min or more, the temperature tends to decrease proportionally. When it is desired to use hot water of 60 ° C. or higher, the flow rate range is about 4 to 27 L / min as shown by the symbol A, and there is a wide usage range. Further, when it is desired to use hot water of 40 ° C. or higher, the flow range is approximately 3 to 35 L / min, as shown by the symbol B, and the use range is extremely wide.

一方、蒸気圧力が0.1MPa(ゲージ圧)の場合、一点鎖線で示すように、温水流量が2L/minから増加するにつれて温水Mの温度も増加してピーク温度の80℃近くまで上昇するが、温水流量が14L/min以上になると、比例的に温度が低下している。温水の使用可能な流量範囲は蒸気圧力が0.3MPaの場合よりも狭い。   On the other hand, when the steam pressure is 0.1 MPa (gauge pressure), the temperature of the hot water M increases as the flow rate of the hot water increases from 2 L / min as shown by the alternate long and short dash line, and rises to nearly 80 ° C. of the peak temperature. When the hot water flow rate is 14 L / min or more, the temperature is reduced proportionally. The flow rate range in which hot water can be used is narrower than when the steam pressure is 0.3 MPa.

本発明に係る加熱システムの系統図である。It is a systematic diagram of the heating system which concerns on this invention. オリフィス近傍の縦断面図である。It is a longitudinal cross-sectional view of the vicinity of an orifice. 同加熱システムで使用する調節弁の閉弁状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the valve closing state of the control valve used with the heating system. 同加熱システムで使用する調節弁の開弁状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the valve opening state of the control valve used with the same heating system. オリフィスを挟んで上流側と下流側の差圧変化による温水温度と温水流量との関係と、温水の範囲使用を説明するグラフである。It is a graph explaining the relationship between the warm water temperature and the warm water flow rate by the differential pressure | voltage change of an upstream side and a downstream side across an orifice, and range use of warm water. 従来の加熱システムの系統図である。It is a systematic diagram of the conventional heating system.

符号の説明Explanation of symbols

10 加熱システム
11 熱交換器
12 冷水通路
13 加熱流体通路
14 温水通路
15 排出通路
16 オリフィス
17 調節弁
18 上流側導入室
19 下流側導入室
25 ケーシング
26 弁棒
27 駆動部
38 上流側導入室
39 下流側導入室
VA 加熱流体供給源
WA 給水源
S 加熱流体
C 冷水
DESCRIPTION OF SYMBOLS 10 Heating system 11 Heat exchanger 12 Chilled water passage 13 Heating fluid passage 14 Hot water passage 15 Discharge passage 16 Orifice 17 Control valve 18 Upstream side introduction chamber 19 Downstream side introduction chamber 25 Casing 26 Valve rod 27 Drive part 38 Upstream side introduction chamber 39 Downstream Side introduction chamber VA Heating fluid supply source WA Water supply source S Heating fluid C Cold water

Claims (2)

加熱流体と冷水との間の熱交換により温水を生成する熱交換器と、
加熱流体供給源からの前記加熱流体を前記熱交換器に導く加熱流体通路と、
給水源からの冷水を前記熱交換器に導く冷水通路と、
前記冷水通路に設けたオリフィスと、
前記加熱流体通路に設けられて前記オリフィスの上流側と下流側の差圧に応じて前記熱交換器への加熱流体の供給量を調節する調節弁と、
を備え、
前記調節弁は、鉛直方向に延びる弁棒の下端に、前記差圧を受けて弁棒を軸方向に駆動する駆動部を有し、前記弁棒の上端に、前記加熱流体通路を開閉する弁体部を有し、
前記駆動部は、
前記オリフィスの上流側の冷水が導入される上流側導入室と、
前記オリフィスの下流側の冷水が導入される下流側導入室と、
前記両導入室間を仕切るダイヤフラムと、
を有する加熱システム。
A heat exchanger that generates hot water by heat exchange between the heating fluid and cold water;
A heating fluid passage for directing the heating fluid from a heating fluid supply to the heat exchanger;
A cold water passage for guiding cold water from a water supply source to the heat exchanger;
An orifice provided in the cold water passage;
A regulating valve that is provided in the heating fluid passage and adjusts the amount of heating fluid supplied to the heat exchanger according to the differential pressure between the upstream side and the downstream side of the orifice;
With
The control valve has a drive unit that receives the differential pressure and drives the valve rod in the axial direction at a lower end of a valve rod that extends in a vertical direction, and opens and closes the heating fluid passage at the upper end of the valve rod. Has a body,
The drive unit is
An upstream introduction chamber into which cold water upstream of the orifice is introduced;
A downstream introduction chamber into which cold water downstream of the orifice is introduced;
A diaphragm for partitioning the introduction chambers;
Having a heating system.
請求項1において、前記弁体部は前記弁棒の他端部により押圧されて弁棒の軸方向へ移動するボール弁からなる加熱システム。 2. The heating system according to claim 1 , wherein the valve body portion is a ball valve that is pressed by the other end portion of the valve stem and moves in the axial direction of the valve stem.
JP2006166904A 2006-06-16 2006-06-16 Heating system Active JP4889380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006166904A JP4889380B2 (en) 2006-06-16 2006-06-16 Heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006166904A JP4889380B2 (en) 2006-06-16 2006-06-16 Heating system

Publications (2)

Publication Number Publication Date
JP2007333327A JP2007333327A (en) 2007-12-27
JP4889380B2 true JP4889380B2 (en) 2012-03-07

Family

ID=38932959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006166904A Active JP4889380B2 (en) 2006-06-16 2006-06-16 Heating system

Country Status (1)

Country Link
JP (1) JP4889380B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025394A (en) * 2008-07-16 2010-02-04 Tlv Co Ltd Hot water generating device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920941B2 (en) * 1976-03-12 1984-05-16 エリツク・モルベツチ Consumable water heating device
JPH0794958B2 (en) * 1988-06-30 1995-10-11 株式会社本山製作所 Temperature control device for heat exchanger
JPH08136046A (en) * 1994-11-01 1996-05-31 Paloma Ind Ltd Water heater

Also Published As

Publication number Publication date
JP2007333327A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP2018503048A (en) Hot water supply device equipped with a pressure reducing valve
KR20070053057A (en) Device for preventing initial hot water supplying in concentric tube type heat exchanger and its control method
JP4889380B2 (en) Heating system
WO2016062747A1 (en) Heat exchanger valve arrangement, heating system and method for operation a heating system
JP4954668B2 (en) Heating system
JP4943117B2 (en) Heating system
JP2006112719A (en) Steam hot water supply system
JP4304142B2 (en) Steam control valve, heat exchange apparatus and steam hot water system provided with the same
JP5103040B2 (en) Heating system
JP5103495B2 (en) Heating system
JP5564843B2 (en) Hot water mixing device
JP4943118B2 (en) Heating system
JP5463096B2 (en) Hot water generator and steam hot water supply system using the same
JP2015028364A (en) Motor drive control valve
RU2674805C1 (en) Discharge unit with single connection
JP2011163481A (en) Thermosensitive pressure regulator
KR20080059969A (en) Flow channel structure of heat exchanger of boiler
JP2008248961A (en) Hot and cold water mixing device
JP6320793B2 (en) Temperature control valve
JP6078704B2 (en) Flow rate detection unit and hot water supply system
JP2007183064A (en) Temperature control valve and heat exchanger provided with same
JP6334322B2 (en) Water heater
JP2007024330A (en) Hot water storage type water heater
JP2015090558A (en) Water temperature control device
JP2011069476A (en) Cold and hot water mixing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111213

R150 Certificate of patent or registration of utility model

Ref document number: 4889380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250