JP5102975B2 - Catalytic chemical treatment apparatus and catalytic chemical treatment method - Google Patents

Catalytic chemical treatment apparatus and catalytic chemical treatment method Download PDF

Info

Publication number
JP5102975B2
JP5102975B2 JP2006133629A JP2006133629A JP5102975B2 JP 5102975 B2 JP5102975 B2 JP 5102975B2 JP 2006133629 A JP2006133629 A JP 2006133629A JP 2006133629 A JP2006133629 A JP 2006133629A JP 5102975 B2 JP5102975 B2 JP 5102975B2
Authority
JP
Japan
Prior art keywords
substrate
chemical treatment
catalytic chemical
film
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006133629A
Other languages
Japanese (ja)
Other versions
JP2007305845A (en
Inventor
牧子 北添
徹志 藤長
現示 酒田
博巳 伊藤
伸 浅利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2006133629A priority Critical patent/JP5102975B2/en
Publication of JP2007305845A publication Critical patent/JP2007305845A/en
Application granted granted Critical
Publication of JP5102975B2 publication Critical patent/JP5102975B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、触媒化学処理装置および触媒化学処理方法に関するものである。   The present invention relates to a catalytic chemical treatment apparatus and a catalytic chemical treatment method.

高温加熱した高融点金属触媒線(触媒体)の表面での原料ガスの接触熱分解反応を利用する成膜プロセスとしてCat−CVD法(触媒化学気相成膜法)があるが、触媒線による原料ガスの分解はCVDプロセスだけではなく薄膜や基板の表面処理/改質プロセスにも利用可能である。例えば、Cat−CVDまたは他方式の成膜法で得られた薄膜、もしくは基板自体をNHを接触分解した雰囲気中で窒化する事や、Hを接触分解した雰囲気中での水素付加、あるいはSiエッチング等が知られている。しかしながら、実際のところ、単に触媒線によって原料ガスを分解するだけでは実用的な窒化量や十分なプロセス速度が得られない事が多い。 There is a Cat-CVD method (catalytic chemical vapor deposition method) as a film forming process that utilizes a catalytic pyrolysis reaction of a raw material gas on the surface of a refractory metal catalyst wire (catalyst body) heated at a high temperature. The decomposition of the source gas can be used not only for the CVD process but also for the surface treatment / modification process of thin films and substrates. For example, a thin film obtained by Cat-CVD or another type of film forming method, or the substrate itself is nitrided in an atmosphere in which NH 3 is catalytically decomposed, hydrogen is added in an atmosphere in which H 2 is catalytically decomposed, or Si etching and the like are known. However, in practice, it is often impossible to obtain a practical nitridation amount or a sufficient process speed by simply decomposing the raw material gas with a catalyst wire.

一般に、Cat−CVD法に限らず、CVD法にて成膜した薄膜中には原料ガス分子中の軽元素が相当量混入/含有されており、これが膜物性やこの膜を使用するデバイスの特性に少なからぬ影響を与える。低基板温度、かつ比較的高い圧力で成膜するのが一般的であるプラズマCVD−SiN膜の場合には、この傾向が強く、原子数濃度で1パーセント以上にも及ぶHが含有される事もある。この混入Hを、ポストアニール(成膜後改質熱処理)によって膜外に放出する事が必要であるため、成膜条件だけでなくポストアニールの実施とその条件も膜物性の制御に重要である。   In general, not only the Cat-CVD method but also a thin film formed by the CVD method contains a considerable amount of light elements in the source gas molecules, which is a property of the film and characteristics of the device using this film. Has a considerable impact on In the case of a plasma CVD-SiN film which is generally formed at a low substrate temperature and a relatively high pressure, this tendency is strong, and H containing up to 1% or more in atomic concentration is contained. There is also. Since it is necessary to release this mixed H to the outside of the film by post-annealing (post-deposition reforming heat treatment), not only the film-forming conditions but also the post-annealing and the conditions are important for controlling the film properties. .

ポストアニールによるSiN膜中H量の制御がデバイス特性向上に非常に大きな効果を与える最近の重要な例として、Si−LSIにおける65nmノード以降対応の「歪みSiトランジスタ」形成用SiNライナ層がある(例えば、非特許文献1参照)。この場合、典型的にはプラズマCVD−SiN膜を使用し、ポストアニールによって膜中H量を低減させ、ライナ層の発生応力を増大させるのであるが、ポストアニール温度をある程度以上にしてライナSiN層中Hの結合解離/放出を促進させると、一方で、温度が高すぎる場合に下層トランジスタが熱的に損傷して特性が損なわれるという問題がある。そこで、下層トランジスタの特性が劣化しない低温でも混入Hの放出効果が十分得られ、所定の応力を発生させられる1つの手法として ポストアニール中の基板へのUV照射が採用される場合がある(例えば、非特許文献2参照)。   As a recent important example in which the control of the amount of H in the SiN film by post-annealing has a very large effect on improving the device characteristics, there is a SiN liner layer for forming a “strained Si transistor” corresponding to the 65 nm node and beyond in Si-LSI ( For example, refer nonpatent literature 1). In this case, a plasma CVD-SiN film is typically used, and the amount of H in the film is reduced by post-annealing to increase the stress generated in the liner layer. When bond dissociation / release of medium H is promoted, on the other hand, when the temperature is too high, there is a problem that the lower layer transistor is thermally damaged and the characteristics are impaired. Therefore, there is a case where UV irradiation to the substrate during post-annealing is adopted as one method that can sufficiently obtain the effect of releasing mixed H even at a low temperature at which the characteristics of the lower layer transistor do not deteriorate (for example, to generate a predetermined stress) (for example, Non-patent document 2).

SiNの光学的バンドギャップエネルギー(〜4.9eV)よりも大きなエネルギーを持つ波長(〜<254nm)のUV光を照射すると、SiN膜はこれを吸収して光化学的に励起され、膜を構成する各原子の結合力が低下した状態になり、低いポストアニール温度の時でも解離してHが放出される様になる。   When UV light having a wavelength (~ <254 nm) having an energy larger than the optical band gap energy (~ 4.9 eV) of SiN is irradiated, the SiN film absorbs this and is photochemically excited to form the film. The bond strength of each atom is reduced, and H is released by dissociation even at a low post-annealing temperature.

しかしながら、ここで、UV照射によってポストアニール温度の低温化が実現されても問題はまだ残るのである。ポストアニールによって放出させられる前の混入HはSi−H結合やN−H結合などを形成しながら膜中に存在しているが、一面ではこの状態は膜中のSiやNの未結合手(ダングリングボンド)をHによって終端/不活性化、ひいては絶縁体としてのSiN膜の特性確保に寄与している事と等価である。したがって、H放出後に残されたSiやNの未結合手(ダングリングボンド)を新たに再構成、すなわち補完的なNやSiと再結合させないとSiN膜の絶縁体としての特性が劣化する事になるが、ポストアニール温度を低下させた場合には、この再構成過程の進行が不十分になり易いという問題がある。   However, the problem still remains even if the post-annealing temperature is lowered by UV irradiation. The mixed H before being released by post-annealing exists in the film while forming Si-H bonds, NH bonds, etc., but on one side, this state is a dangling bond of Si or N in the film ( This is equivalent to terminating / inactivating dangling bonds) by H, and thus contributing to securing the characteristics of the SiN film as an insulator. Therefore, if the Si or N dangling bonds (dangling bonds) left after the H release are newly reconstructed, that is, unless they are recombined with complementary N or Si, the characteristics of the SiN film as an insulator will deteriorate. However, when the post-annealing temperature is lowered, there is a problem that the progress of the reconstruction process tends to be insufficient.

そのため、上記の混入Hが放出された後に発生するSiやNの未結合手の不活性化や安定化のための再構成が、低いポストアニール温度下でも促進され、アニール後の特性劣化を効果的に防止できるようにする事が求められている。
March 2005, NIKKEI NICRODEVUCES(P43)) May 2005 NIKKEI NICRODEVUCES(P57,P60)
Therefore, the reconfiguration for deactivation and stabilization of the Si and N dangling bonds generated after the mixed H is released is promoted even at a low post-annealing temperature, and the characteristic deterioration after annealing is effective. It is required to be able to prevent it.
(March 2005, NIKKEI NICRODEVUCES (P43)) May 2005 NIKKEI NICRODEVUCES (P57, P60)

本発明の課題は、従来技術の上記問題点を解決し、被処理基体に対して実用的な処理プロセス速度や処理効果を得る事が可能な触媒化学処理装置および触媒化学処理方法を提供する事にある。   An object of the present invention is to provide a catalytic chemical processing apparatus and a catalytic chemical processing method capable of solving the above-mentioned problems of the prior art and obtaining a practical processing speed and processing effect for a substrate to be processed. It is in.

本発明者らは、触媒化学処理装置に、タングステン等の触媒体を処理室内に配設する従来の構成に加えて、処理中の被処理基体への光照射を可能とする光源を処理装置外または処理装置内に配設すること、該光源として、処理中の基体あるいはその表面にある膜に吸収されてこれらを固体光化学的に励起可能とするような波長、一般的には紫外(UV)光域の波長の光を放射するものを用いて、触媒体との接触により生成する活性な反応種(フリーラジカル)を、UV照射励起されている基体に供給可能な構成とすることにより、実用的な窒化量や十分な処理プロセス速度などを得ることができることに気がつき、本発明を完成させるに至った。   In addition to the conventional configuration in which a catalyst body such as tungsten is disposed in the processing chamber, the present inventors have provided a light source that enables light irradiation to the substrate to be processed outside the processing apparatus. Or disposed in a processing apparatus, and as the light source, a wavelength that is absorbed by a substrate being processed or a film on the surface thereof and can excite them solidly photochemically, generally ultraviolet (UV) Using a device that emits light with a wavelength in the light range, it is possible to supply active reactive species (free radicals) generated by contact with the catalyst body to the substrate that is excited by UV irradiation. The present inventors have realized that a sufficient amount of nitridation and a sufficient processing speed can be obtained, and the present invention has been completed.

本発明の触媒化学処理装置は、被処理基体を載置可能な基体ステージと、該被処理基体の主面に平行に対向配置された触媒体と、この触媒体に通電して加熱する触媒体加熱用電源と、処理用の反応ガスを導入するガス導入系と、排気手段とを備えた触媒化学処理装置において、前記被処理基体に吸収される波長の光をこの被処理基体に向けて放射する光源を収納する収納容器を当該触媒化学処理装置内または当該触媒化学処理装置外に配置し、この収納容器内にパージガスを導入するパージガス導入口とこのパージガス導入口から導入されたパージガスを収納容器から排出する排気口とを設け、前記触媒体加熱用電源は、前記触媒体の両端に低電位及び高電位を印加し、この低電位が接地電位に対して正又は負の電位となるように前記触媒体にバイアス電圧を印加する触媒体電位設定用電源を更に備えたことを特徴とする。 The catalytic chemical treatment apparatus of the present invention comprises a substrate stage on which a substrate to be treated can be placed, a catalyst body arranged in parallel and opposed to the main surface of the substrate to be treated, and a catalyst body that energizes and heats this catalyst body In a catalytic chemical treatment apparatus including a heating power source, a gas introduction system for introducing a reaction gas for treatment, and an exhaust means, light having a wavelength absorbed by the substrate to be treated is emitted toward the substrate to be treated. A storage container for storing the light source is disposed in the catalytic chemical processing apparatus or outside the catalytic chemical processing apparatus, and a purge gas introduction port for introducing purge gas into the storage container and a purge gas introduced from the purge gas introduction port are stored in the storage container The catalyst body heating power source applies a low potential and a high potential to both ends of the catalyst body so that the low potential is a positive or negative potential with respect to the ground potential. The catalyst body And further comprising a catalyst body potential setting power source for applying a bias voltage.

また、上記触媒化学処理装置において、被処理基体は、該光源から放射される放射波長のUV光を吸収する光学的バンドギャップエネルギーを有するもの、例えば、プラズマCVD法、LPCVD法または触媒CVD法により成膜されたSiN膜であり、該光源は、SiN膜の光学的バンドギャップエネルギー(〜4.9eV)より大きい光子エネルギーを有する放射波長(例えば、254nm及び185nm)のUV光を透過させる管材で構成された低圧水銀灯であること、そしてこの装置は、SiN膜の脱水素および同時ポスト窒化(ポストアニール)を実施するために使用されるものであることを特徴とする。   In the catalytic chemical treatment apparatus, the substrate to be treated has an optical band gap energy that absorbs UV light having a radiation wavelength emitted from the light source, for example, a plasma CVD method, an LPCVD method, or a catalytic CVD method. The light source is a tube material that transmits UV light having a radiation wavelength (for example, 254 nm and 185 nm) having a photon energy larger than the optical band gap energy (˜4.9 eV) of the SiN film. It is a low-pressure mercury lamp constructed, and this apparatus is characterized in that it is used for performing dehydrogenation and simultaneous post-nitridation (post-annealing) of the SiN film.

さらに、上記触媒化学処理装置において、被処理基体はH膜であること、そしてこの装置は被処理基体のポスト窒化を行うために使用されるものであることを特徴とする。 Further, in the catalytic chemical treatment apparatus, the substrate to be treated is an H f O x film, and this device is used for post-nitriding the substrate to be treated.

さらにまた、上記触媒化学処理装置において、被処理基体は、成膜時に有機不純物の混入したH膜または成膜時に有機不純物の混入した窒化金属膜であること、そしてこの装置は、被処理基体内の有機不純物を除去するために使用されるものであることを特徴とする。 Furthermore, in the catalytic chemical treatment apparatus, the substrate to be treated is a H f O x film mixed with organic impurities during film formation or a metal nitride film mixed with organic impurities during film formation. It is used for removing organic impurities in the processing substrate.

本発明の触媒化学処理方法は、被処理基体を触媒化学処理装置内に搬送し、処理用の反応ガスの分解温度にまで加熱された触媒体にこの反応ガスを接触させ、光源を収納する収納容器内をパージガスでパージしながら、この光源から前記被処理基体に吸収される波長の光を前記触媒体を通過せしめて前記被処理基体の表面に向かって照射し、前記触媒体から発生する反応高活性なフリーラジカルを、前記光源から供給される光を吸収して固体光化学的に励起されている状態の前記被処理基体の表面に供給し、前記被処理基体表面を処理するものにおいて、前記触媒体の両端に低電位及び高電位を印加し、この低電位が接地電位に対して正または負の電位となるように前記触媒体にバイアス電圧を印加し、前記触媒体からの熱電子放出および光電子放出を制御して前記被処理基体の表面を処理することを特徴とする。 In the catalytic chemical treatment method of the present invention, the substrate to be treated is transported into the catalytic chemical treatment apparatus, the reaction gas is brought into contact with the catalyst body heated to the decomposition temperature of the reaction gas for treatment, and the light source is accommodated. While purging the interior of the container with a purge gas, a reaction generated from the catalyst body by irradiating light having a wavelength absorbed by the substrate to be processed from the light source through the catalyst body and irradiating the surface of the substrate to be processed. a highly active free radicals, in which absorbs light supplied from the light source is supplied to the surface of the substrate to be processed in a state of being solid photochemically excited, for processing the target substrate surface, wherein A low potential and a high potential are applied to both ends of the catalyst body, a bias voltage is applied to the catalyst body so that the low potential is a positive or negative potential with respect to the ground potential, and thermionic emission from the catalyst body is performed. And light And controls the child release characterized by treating the surface of the substrate to be processed.

上記触媒化学処理方法において、該被処理基体として、該光源から放射される放射波長のUV光を吸収する光学的バンドギャップエネルギーを有するもの、例えば、プラズマCVD法、LPCVD法または触媒CVD法により成膜されたSiN膜を用い、該処理用反応ガスとして、NH、HまたはNHとHとの混合ガスを用い、そして該光源からの放射光として、該SiN膜の光学的バンドギャップエネルギーより大きい光子エネルギーを有する放射波長(例えば、254nm及び185nm)のUV光を透過させる管材で構成された低圧水銀灯からの放射光を用い、該SiN膜の脱水素および同時ポスト窒化を行って表面を処理することを特徴とする。 In the catalytic chemical treatment method, the substrate to be treated has an optical band gap energy that absorbs UV light having a radiation wavelength emitted from the light source, for example, a plasma CVD method, an LPCVD method, or a catalytic CVD method. An SiN film is used, NH 3 , H 2 or a mixed gas of NH 3 and H 2 is used as the processing reaction gas, and the optical band gap of the SiN film is used as emitted light from the light source. The surface of the SiN film is dehydrogenated and co-post-nitrided using radiation from a low-pressure mercury lamp composed of a tube that transmits UV light having a radiation wavelength (for example, 254 nm and 185 nm) having a photon energy greater than the energy. It is characterized by processing.

上記被処理基体としてSiN膜を用いる場合には、処理時の基体温度を450℃以下に設定し、該SiN膜の脱水素と共にポスト窒化を行うことを特徴とする。基体温度を450℃以下としたのは、この被処理基体の耐熱性を考慮したためである。基体温度の下限は、基体の表面処理(脱水素および同時ポスト窒化処理)が行える温度であれば特に制限はなく、例えば室温程度、好ましくは80℃程度である。   When a SiN film is used as the substrate to be processed, the substrate temperature during processing is set to 450 ° C. or lower, and post-nitridation is performed together with dehydrogenation of the SiN film. The reason why the substrate temperature is set to 450 ° C. or lower is that the heat resistance of the substrate to be processed is taken into consideration. The lower limit of the substrate temperature is not particularly limited as long as the substrate surface treatment (dehydrogenation and simultaneous post-nitridation treatment) can be performed, and is, for example, about room temperature, preferably about 80 ° C.

上記被処理基体としてH膜を用いる場合には、処理時の基体温度を500℃以下に設定し、該H膜のポスト窒化を行うことを特徴とする。基体温度を500℃以下としたのは、この被処理基体の耐熱性を考慮したためである。基体温度の下限は、基体の表面処理(ポスト窒化処理)が行える温度であれば特に制限はなく、例えば室温程度、好ましくは80℃程度である。 When an H f O x film is used as the substrate to be processed, the substrate temperature at the time of processing is set to 500 ° C. or lower, and post-nitriding of the H f O x film is performed. The reason why the substrate temperature is set to 500 ° C. or less is that the heat resistance of the substrate to be processed is taken into consideration. The lower limit of the substrate temperature is not particularly limited as long as the substrate surface treatment (post nitriding treatment) can be performed, and is, for example, about room temperature, preferably about 80 ° C.

上記被処理基体として、成膜時に有機不純物の混入したH膜または成膜時に有機不純物の混入したTaN、ZrN、VN、TiN及びWNから選ばれた窒化金属膜を用いる場合には、処理時の基体温度を450℃以下に設定し、該被処理基体中の有機不純物を除去することを特徴とする。基体温度を450℃以下としたのは、この被処理基体の耐熱性を考慮したためである。基体温度の下限は、基体中の有機不純物除去が行える温度であれば特に制限はなく、例えば室温程度、好ましくは80℃程度である。この有機不純物除去の場合には、処理用反応ガスとしてHガスを用いる。 When the substrate to be treated is a H f O x film mixed with organic impurities during film formation or a metal nitride film selected from TaN, ZrN, VN, TiN and WN mixed with organic impurities during film formation, The substrate temperature during processing is set to 450 ° C. or lower, and organic impurities in the substrate to be processed are removed. The reason why the substrate temperature is set to 450 ° C. or lower is that the heat resistance of the substrate to be processed is taken into consideration. The lower limit of the substrate temperature is not particularly limited as long as the organic impurities in the substrate can be removed, and is, for example, about room temperature, preferably about 80 ° C. In the case of this organic impurity removal, H 2 gas is used as a processing reaction gas.

本発明によれば、被処理基体に対して実用的な処理プロセス速度や処理効果を得る事が可能な触媒化学処理装置および触媒化学処理方法を提供する事ができるという効果を奏する。   According to the present invention, there is an effect that it is possible to provide a catalytic chemical processing apparatus and a catalytic chemical processing method capable of obtaining a practical processing speed and processing effect for a substrate to be processed.

本発明の触媒化学処理装置およびこの装置を用いた触媒化学処理方法によれば、例えば、この処理装置とは別室構成のCat−CVD室において得られたCat−CVD−SiN膜や、LPCVDやプラズマCVDなどの他方式の外部成膜装置によって得られたSiN膜などの成膜後改質熱処理(ポストアニール)プロセスへの適用が可能となった。   According to the catalytic chemical processing apparatus of the present invention and the catalytic chemical processing method using this apparatus, for example, a Cat-CVD-SiN film obtained in a Cat-CVD chamber having a separate chamber configuration from this processing apparatus, LPCVD, or plasma Application to post-deposition reforming heat treatment (post-annealing) processes such as SiN films obtained by other types of external film forming apparatuses such as CVD has become possible.

まず、本発明に係る触媒化学処理装置の実施の形態について説明し、その後で本発明と背景技術とを詳細に対比させて本発明についてさらに説明する。   First, an embodiment of the catalytic chemical treatment apparatus according to the present invention will be described, and then the present invention will be further described by comparing the present invention with the background art in detail.

本発明の一実施の形態によれば、図1に示すように、触媒化学処理装置1内には、被処理基体Sを支持し、加熱するための基体加熱サセプタ2としての基体ステージが設置され、このサセプタ2に対向して合成石英製の低圧水銀灯(λ=2537Å、〜5eV:λ=1849Å、〜6eV)等の光源3が処理装置1外に配設されている。この光源3は、被処理基体Sに吸収される波長の光を放射できるものである。処理装置1の上部には、光源3との間に、光源から放射される光を処理装置内へ入射するための入射窓4(合成石英製)が設けられており、そして光源の収納容器自体が、光源からの光を反射する材料から構成されて反射板5としての機能を有していても、また、容器内壁にそのような材料からなる反射板を設けても良い。光源3から放射される光(例えば、UV光)は、入射窓4を経て、主輝線放射波長:254nmおよび185nmのUV光を処理装置1内に照射されるように構成されている。低圧水銀灯の場合、上記放射波長の他に、例えば313および366nmなどの輝線放射波長のUV光も放射するが、これらの波長も本発明の触媒化学処理に利用できる。   According to an embodiment of the present invention, as shown in FIG. 1, a substrate stage as a substrate heating susceptor 2 for supporting and heating a substrate to be processed S is installed in the catalytic chemical treatment apparatus 1. Opposite to the susceptor 2, a light source 3 such as a synthetic quartz low pressure mercury lamp (λ = 2537 Å, ˜5 eV: λ = 1849 Å, ˜6 eV) is disposed outside the processing apparatus 1. The light source 3 can emit light having a wavelength absorbed by the substrate to be processed S. An upper part of the processing apparatus 1 is provided with an incident window 4 (made of synthetic quartz) for allowing light emitted from the light source to enter the processing apparatus between the light source 3 and the light source container itself. However, it may be made of a material that reflects light from the light source and has a function as the reflector 5, or a reflector made of such a material may be provided on the inner wall of the container. Light (for example, UV light) emitted from the light source 3 is configured to be irradiated into the processing apparatus 1 with UV light having main emission line wavelengths of 254 nm and 185 nm through the incident window 4. In the case of a low-pressure mercury lamp, in addition to the above emission wavelength, UV light having emission line emission wavelengths such as 313 and 366 nm is also emitted. These wavelengths can also be used for the catalytic chemical treatment of the present invention.

この処理装置1内には、通常1mm未満の径を有するタングステンなどの高融点金属の細線で構成されている網目またはスダレ状などの形態の触媒体6が、被処理基体Sの主面に対して略平行になるように設置されており、この触媒体には、触媒体通電加熱用電源7(DC定電流源など)が接続されている。   In the processing apparatus 1, a catalyst body 6 in the form of a mesh or a saddle shape, which is formed of fine wires of a refractory metal such as tungsten, usually having a diameter of less than 1 mm, is formed on the main surface of the substrate S to be processed. The catalyst body is connected to a power source 7 for heating and heating the catalyst body (DC constant current source or the like).

この処理装置1には反応ガス導入口8が設けられており、また、光源3の収納容器にはN等のパージガス導入口9が設けられている。 The processing apparatus 1 is provided with a reaction gas introduction port 8, and the storage container of the light source 3 is provided with a purge gas introduction port 9 such as N 2 .

上記処理装置を用いて本発明の触媒化学処理方法を実施する場合、例えば、反応ガスとしてNHまたはHまたはNHとHとの混合ガスを使用し、この反応ガスを処理装置1の側壁に設けた反応ガス導入口8から処理装置内へ導入し、所定の温度に加熱された触媒体6と接触させて分解せしめ、発生する反応高活性なフリーラジカルを、光源から供給されるUV光を吸収して固体光化学的に励起されている状態の被処理基体Sの表面に供給し、基体表面の窒化処理(Catポスト窒化処理(ポストアニール))または水素処理(Cat水素処理)を、500℃以下の低温、好ましくは室温〜500℃、より好ましくは80〜500℃にて、UV光照射下で行なう。UV光は通常触媒体越しに被処理基体に照射される。 When carrying out the catalytic chemical treatment method of the present invention using the above-described treatment apparatus, for example, NH 3 or H 2 or a mixed gas of NH 3 and H 2 is used as a reaction gas, and this reaction gas is used as the treatment apparatus 1. UV that is introduced from the reaction gas inlet 8 provided on the side wall into the processing apparatus, is brought into contact with the catalyst body 6 heated to a predetermined temperature and decomposed, and the generated highly reactive free radicals are supplied from the light source. Supplying the surface of the substrate to be processed S in a state of absorbing light and being excited by solid photochemistry, nitriding treatment (Cat post nitriding treatment (post annealing)) or hydrogen treatment (Cat hydrogen treatment) of the substrate surface, The reaction is performed at a low temperature of 500 ° C. or lower, preferably room temperature to 500 ° C., more preferably 80 to 500 ° C. under UV light irradiation. The UV light is usually applied to the substrate to be processed through the catalyst body.

本発明に係わる触媒化学処理装置の別の実施の形態を図2に示す。図2において、図1の触媒化学処理装置と同じ構成要素については同じ参照符号を付け、詳細な説明は省略する。図2に示す処理装置1は、通電加熱中の触媒体6にバイアス電圧を印加するための触媒体電位設定用電源(DC電源など)10を備えている。図2では、対接地で正電位を印加した場合の例を示すものであるが、触媒体に接地に対して負の電位を印加するように構成しても良い。被処理基体SにUV光が照射される際に同時に触媒体6にもUV光が照射されるので、触媒体から熱電子や光電子が放出されるが、このような正または負のバイアス電位を触媒体に印加することにより、その放出を制御することができ、処理装置内で意図せぬ放電発生が起こるのを防止する事ができる。   FIG. 2 shows another embodiment of the catalytic chemical treatment apparatus according to the present invention. 2, the same components as those in the catalytic chemical treatment apparatus of FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted. The processing apparatus 1 shown in FIG. 2 includes a catalyst body potential setting power source (DC power source or the like) 10 for applying a bias voltage to the catalyst body 6 during energization heating. Although FIG. 2 shows an example in which a positive potential is applied with respect to ground, a negative potential with respect to ground may be applied to the catalyst body. Since the catalyst body 6 is simultaneously irradiated with UV light when the substrate to be processed S is irradiated with UV light, thermoelectrons and photoelectrons are emitted from the catalyst body, and such a positive or negative bias potential is applied. By applying it to the catalyst body, its release can be controlled and unintentional discharge can be prevented from occurring in the processing apparatus.

次に、本発明と背景技術との関連について説明する。   Next, the relationship between the present invention and the background art will be described.

上記背景技術の項で述べたように、一般に、Cat−CVDに限らずCVD法にて成膜した薄膜中には原料ガス分子中の軽元素、例えばSiN成膜の原料ガスとしてSiH、NHを使用する場合には、H元素が相当量混入/含有されていて膜物性やこの膜を使用するデバイスの特性に少なからぬ影響を与える。とりわけ、400℃程度以下の低基板温度、かつ安定なプラズマを発生させるために数Torr程度と比較的高い圧力で成膜するのが一般的なプラズマCVD−SiN膜では、この傾向が強く、原子数濃度で1パーセント以上にも及ぶHが含有される事もある。この混入Hについては、適当な温度でのポストアニールによってSiN膜中での結合を分解せしめて膜外に放出することが必要であるため、成膜条件だけでなくポストアニールの実施とその処理条件も膜物性の制御には重要である。 As described in the background section above, in general, light elements in source gas molecules, for example, SiH 4 , NH as source gases for SiN film formation, are not limited to Cat-CVD but are formed by a CVD method. When 3 is used, a considerable amount of H element is mixed / contained, which has a considerable influence on the film physical properties and the characteristics of the device using this film. In particular, this tendency is strong in a plasma CVD-SiN film which is generally formed at a low substrate temperature of about 400 ° C. or less and a relatively high pressure of about several Torr in order to generate a stable plasma. There may be a case where H as much as 1 percent or more is contained at several concentrations. For this mixed H, it is necessary to decompose the bond in the SiN film by post-annealing at an appropriate temperature and release it outside the film. Is also important for the control of film properties.

ポストアニールによるSiN膜中H量の制御がデバイス特性向上に非常に大きな効果を生む最近の重要な例として、Si−LSIにおける65nmノード以降対応の「歪みSiトランジスタ」形成用SiNライナ層がある。これは、トランジスタ直上でこれを全面被覆するライナ層の発生応力を増大させる事で直下の基板(チャネル)Si結晶に格子歪みを発生させチャネル移動度を向上させるプロセスの鍵となるライナSiN層に、ポストアニールによって膜中H量を低減させ応力増大させた膜、典型的にはプラズマCVD−SiN膜を使用するものである。   As a recent important example in which the control of the amount of H in the SiN film by post-annealing has a great effect on improving the device characteristics, there is a SiN liner layer for forming a “strained Si transistor” corresponding to the 65 nm node and beyond in Si-LSI. This is because the stress generated in the liner layer covering the entire surface directly above the transistor is increased, thereby generating lattice distortion in the substrate (channel) Si crystal directly below the liner SiN layer which is the key to the process of improving channel mobility. A film in which the amount of H in the film is reduced by post-annealing and the stress is increased, typically a plasma CVD-SiN film is used.

このプロセスにおいては、所定の応力発生を得るために ポストアニール温度をある程度以上にしてライナSiN層中Hの結合解離/放出を促進する必要があるが、一方で、この温度が高すぎると下層トランジスタが熱的に損傷して特性が損なわれるという問題がある。そこで、下層トランジスタの特性が劣化しない500℃程度以下の低温、好ましくは室温〜500℃、より好ましくは80〜500℃でも混入Hの放出効果が十分得られ、所定の応力を発生させられる1つの手法として ポストアニール中の基板へのUV照射が採用される場合がある。   In this process, in order to obtain a predetermined stress generation, it is necessary to promote the bond dissociation / release of H in the liner SiN layer by setting the post-annealing temperature to a certain level or more. However, there is a problem that the characteristics are damaged due to thermal damage. Therefore, the effect of releasing mixed H can be sufficiently obtained even at a low temperature of about 500 ° C. or less, preferably room temperature to 500 ° C., more preferably 80 to 500 ° C., at which the characteristics of the lower layer transistor do not deteriorate. As a method, UV irradiation to the substrate during post-annealing may be employed.

SiNの光学的バンドギャップエネルギーは〜4.9eVであるが、これよりも大きなエネルギーを持つ波長(〜<254nm)のUV光を照射すると、SiN膜はこれを吸収して光化学的に励起され、膜を構成する各原子の結合力が低下した状態になる。SiN膜中の代表的な化学結合であるSi−N結合のほかに、混入Hが関わる付随的な結合であるSi−H結合、N−H結合も不安定な状態になり、元来、結合エネルギーが小さいこれらの結合は低いポストアニール温度の時でも解離してHが放出される様になるのである。   The optical band gap energy of SiN is ˜4.9 eV, but when irradiated with UV light of a wavelength (˜ <254 nm) having a larger energy than this, the SiN film absorbs this and is photochemically excited, The bonding force of each atom constituting the film is reduced. In addition to Si—N bonds, which are typical chemical bonds in SiN films, Si—H bonds and N—H bonds, which are incidental bonds involving mixed H, also become unstable and are inherently bonded. These bonds with low energy dissociate even at a low post-annealing temperature, and H is released.

しかしながら、ここで、UV照射によってポストアニール温度の低温化が実現されても問題はまだ残るのである。ポストアニールによって放出させられる前の混入Hは上述の様にSi−H結合、N−H結合などを形成しながら膜中に存在しているが、一面ではこの状態は膜中のSiやNの未結合手(ダングリングボンド)をHによって終端/不活性化、ひいては絶縁体としてのSiN膜の特性確保に寄与している事と等価である。したがって、H放出後に残されたSiやNの未結合手(ダングリングボンド)を新たに再構成、すなわち補完的なNやSiと再結合させないとSiN膜の絶縁体としての特性が劣化する事になるが、ポストアニール温度を低下させた場合にはこの再構成過程の進行が不十分になり易いという問題がある。   However, the problem still remains even if the post-annealing temperature is lowered by UV irradiation. The mixed H before being released by the post-annealing is present in the film while forming Si—H bonds, NH bonds, etc. as described above, but on one side, this state is due to Si and N in the film. This is equivalent to the fact that dangling bonds (dangling bonds) are terminated / inactivated by H and thus contribute to securing the characteristics of the SiN film as an insulator. Therefore, if the Si or N dangling bonds (dangling bonds) left after the H release are newly reconstructed, that is, unless they are recombined with complementary N or Si, the characteristics of the SiN film as an insulator will deteriorate. However, when the post-annealing temperature is lowered, there is a problem that the progress of the reconstruction process tends to be insufficient.

本発明は、従来法における上記二律背反的な問題を解決するためにもなされたものである。本発明による構成を有する触媒化学処理装置によれば、UV光照射によって固体光化学的に励起/活性化されているSiN膜に、同時に、NHが触媒体で接触分解された高活性な窒化性フリーラジカルが気相から供給されるため、上記の混入Hが放出された後に発生するSiやNの未結合手の不活性化や安定化のための再構成が、低いポストアニール温度下でも促進され、アニール後の特性劣化を効果的に防止できる。 The present invention has also been made to solve the above-mentioned contradictory problem in the conventional method. According to the catalytic chemical treatment apparatus having the configuration according to the present invention, a highly active nitriding property in which NH 3 is simultaneously catalytically decomposed by a catalyst body on a SiN film excited / activated by solid-state photochemistry by UV light irradiation. Since free radicals are supplied from the gas phase, the reconfiguration for deactivation and stabilization of the dangling bonds of Si and N generated after the mixed H is released is promoted even at low post-annealing temperatures. Therefore, it is possible to effectively prevent deterioration of characteristics after annealing.

上記のような状態は、従来から知られている、NHが触媒体で接触分解されて得られた窒化性フリーラジカルによる基体(薄膜)窒化の効果を、被処理基体(薄膜)にUV光を照射して励起し、固体光化学的に活性化させる事で促進している事になる。 The state as described above is the effect of nitriding a substrate (thin film) by a nitriding free radical obtained by catalytic decomposition of NH 3 with a catalyst body, which is conventionally known. It is promoted by irradiating and irradiating and activating by solid photochemical activation.

上記では、プラズマCVD−SiN膜の様に、特にH含有量が多くなりやすいSiN膜からのH除去時の特性安定化ポスト窒化への効果を例として説明したが、処理対象となるSiN膜は、Cat−CVD−SiNや高温のLPCVD−SiNの様に、H含有量がプラズマCVD−SiNより少なくなり易い、あるいはほとんど全く含有しない事が経験的に知られているSiN膜であっても良い。また、H除去を目的とする時のみならず、成膜直後(as-depo.時)にSi過剰な組成になってしまったSiN膜の化学量論組成化のための「ポスト窒化」を目的とする場合においても有効な事はいうまでもない。   In the above description, the effect on the characteristic stabilization post-nitridation at the time of removing H from a SiN film, which is likely to have a high H content, as in the case of a plasma CVD-SiN film, has been described as an example. It may be a SiN film that has been empirically known to contain less H content than plasma CVD-SiN, or not at all, such as Cat-CVD-SiN and high-temperature LPCVD-SiN. . In addition, not only for the purpose of removing H, but also for “post nitridation” for the stoichiometric composition of SiN film that has become Si-excess composition immediately after film formation (as-depo.) Needless to say, this is also effective.

Si過剰SiNの化学量論組成化のためには、「ポスト窒化」だけでなく、「過剰Siの引き抜き」も考えられるが、触媒体により接触分解したHガスは該過剰Siを水素化し、気相シリルラジカル(SiH(1≦n≦4))としてSiN膜外に放出させる「過剰Si引き抜き」を発生させる作用が強い事が知られている。 For stoichiometric composition of Si-rich SiN, not only “post-nitridation” but also “extraction of excess Si” can be considered, but the H 2 gas catalytically decomposed by the catalyst body hydrogenates the excess Si, It is known that it has a strong action of generating “excess Si extraction” that is released out of the SiN film as a gas phase silyl radical (SiH n (1 ≦ n ≦ 4)).

したがって、上記のSi過剰SiNの化学量論組成化の目的には、原料ガスとしてNHだけでなくH、またはNHとHとの混合ガスを使用するプロセスでも良い。 Therefore, for the purpose of the stoichiometric composition of the Si-rich SiN, a process using not only NH 3 but also H 2 or a mixed gas of NH 3 and H 2 as a source gas may be used.

更に、本発明の装置構成による処理対象となる材料は、上述の脱水素やポスト窒化されるSiN膜に限ったものではなく、照射UV光を吸収する光学的バンドギャップエネルギーを有するものであれば特に限定しない。例えば、デバイス製造プロセス上で意義の大きい例として、   Furthermore, the material to be processed by the apparatus configuration of the present invention is not limited to the above-described SiN film to be dehydrogenated or post-nitrided, as long as it has an optical band gap energy that absorbs irradiated UV light. There is no particular limitation. For example, as a significant example in the device manufacturing process,

(1)高誘電率(High−k)ゲート誘電体膜としてのH膜(光学的バンドギャップエネルギー:5.8eV)などのポスト窒化や、 (1) Post nitriding such as H f O x film (optical band gap energy: 5.8 eV) as a high dielectric constant (High-k) gate dielectric film,

(2)MOCVD(Metal Organic CVD)やMOALD(Metal Organic Atomic Layer Deposition)によって成膜される事でas−depo.膜中にC(有機物)が残留しやすいH、TaNなどからのC(有機物)除去、すなわち、触媒体により接触分解されたHによる膜中有機物除去などがある。 (2) The film is formed by MOCVD (Metal Organic CVD) or MOALD (Metal Organic Atomic Layer Deposition). Removal of C n H x (organic matter) from H f O x , TaN x, etc. in which C n H x (organic matter) is likely to remain in the film, that is, removal of organic matter in the film by H 2 that is catalytically decomposed by the catalyst There is.

尚、これまで述べてきた触媒体では、通常、タングステンなどの様な高融点金属を1700〜2000℃程度の高温に加熱した状態で反応ガスの接触分解(触媒分解)を行なう事が多い。この時の触媒体からは、同時に相当量の熱電子が放出されている事がすでに判明している。   In the catalyst body described so far, the reaction gas is usually catalytically decomposed (catalytic decomposition) in a state where a high melting point metal such as tungsten is heated to a high temperature of about 1700 to 2000 ° C. It has already been found that a considerable amount of thermoelectrons are emitted from the catalyst body at this time.

本発明による装置構成では、真空準位付近にまで熱励起されている内部電子が多い状態の触媒体にUV光が照射されるため、実効的な光電子放出の障壁高さが大幅に低下していると推察される。このため大量の光電子放出が重畳されるため触媒化学処理装置内で意図せぬ放電が発生する事がある。   In the apparatus configuration according to the present invention, since the UV light is irradiated to the catalyst body in which many internal electrons are thermally excited to near the vacuum level, the effective photoelectron emission barrier height is greatly reduced. It is assumed that For this reason, since a large amount of photoelectron emission is superimposed, an unintended discharge may occur in the catalytic chemical treatment apparatus.

このような放電を防止して荷電粒子の関与しない純粋なラジカルプロセスにする事を目的として、触媒体に対接地で適当な極性、通常は正のバイアス電位を印加しても良い。   For the purpose of preventing such discharge and making it a pure radical process in which charged particles are not involved, an appropriate polarity, usually a positive bias potential, may be applied to the catalyst body at grounding.

また、全く逆に、触媒体からの放出光電子および放出熱電子を増加/加速する負電位を印加して放電発生を助長/促進させプラズマアシストプロセス化しても良い。   Conversely, a negative potential that increases / accelerates photoelectrons and thermoelectrons emitted from the catalyst body may be applied to promote / promote the generation of a discharge to form a plasma assist process.

従来の生産用装置では、UV光を利用する処理装置を成膜プロセスにも適用する場合、基体上のみならずUV光入射窓上にも成膜(着膜)が発生して、UV光を吸収する膜種の時にはプロセス進行に伴って入射窓のUV光透過量が減少し、プロセスが自動停止するため生産用装置としては実用的でない。   In a conventional production apparatus, when a processing apparatus using UV light is applied to a film forming process, film formation (deposition) occurs not only on a substrate but also on a UV light incident window, and UV light is emitted. When absorbing film types, the amount of UV light transmitted through the entrance window decreases with the progress of the process, and the process automatically stops, making it impractical as a production apparatus.

しかるに、本発明による装置構成においてもUV光を利用しているが、本発明の処理装置は、別室または別装置で成膜された薄膜のポスト窒化やH処理などの非成膜(非着膜)性の処理プロセスに限定して用いる事が好ましい。そのため、上記のようなプロセスの自動停止などの問題は全くなく、実用装置として使用可能である。勿論、UV光を吸収しない膜種の場合には、成膜プロセスにも適用可能である。 However, although the apparatus configuration according to the present invention also uses UV light, the processing apparatus of the present invention does not form a film such as post-nitridation or H 2 processing of a thin film formed in a separate chamber or apparatus. It is preferable to use it limited to a film) treatment process. Therefore, there is no problem such as the automatic stop of the process as described above, and it can be used as a practical device. Of course, in the case of a film type that does not absorb UV light, it can also be applied to a film forming process.

本発明によれば、被処理基体に対して実用的な処理プロセス速度や処理効果を得る事が可能な触媒化学処理装置および触媒化学処理方法を提供することができるので、本発明は、成膜後に膜の改質熱処理などの必要な技術分野で利用可能である。   According to the present invention, it is possible to provide a catalytic chemical processing apparatus and a catalytic chemical processing method capable of obtaining a practical processing process speed and processing effect for a substrate to be processed. Later, it can be used in necessary technical fields such as film reforming heat treatment.

本発明の一実施の形態に係る触媒化学処理装置の構成を模式的に示す構成図。The block diagram which shows typically the structure of the catalytic chemical treatment apparatus which concerns on one embodiment of this invention. 本発明の別の実施の形態に係る触媒化学処理装置の構成を模式的に示す構成図。The block diagram which shows typically the structure of the catalytic chemical treatment apparatus which concerns on another embodiment of this invention.

符号の説明Explanation of symbols

1 触媒化学処理装置 2 基体加熱サセプタ
3 光源 4 入射窓
5 反射板 6 触媒体
7 触媒体通電加熱用電源 8 反応ガス導入口
9 パージガス導入口 10 触媒体電位設定用電源
S 被処理基体
DESCRIPTION OF SYMBOLS 1 Catalytic chemical processing apparatus 2 Substrate heating susceptor 3 Light source 4 Incident window 5 Reflector plate 6 Catalytic body 7 Power supply for catalyst body heating 8 Reactive gas inlet 9 Purge gas inlet 10 Power supply for setting catalyst body potential S Processed substrate

Claims (12)

被処理基体を載置可能な基体ステージと、該被処理基体の主面に平行に対向配置された触媒体と、この触媒体に通電して加熱する触媒体加熱用電源と、処理用の反応ガスを導入するガス導入系と、排気手段とを備えた触媒化学処理装置において、
前記被処理基体に吸収される波長の光をこの被処理基体に向けて放射する光源を収納する収納容器を当該触媒化学処理装置内または当該触媒化学処理装置外に配置し、この収納容器内にパージガスを導入するパージガス導入口とこのパージガス導入口から導入されたパージガスを収納容器から排出する排気口とを設け、
前記触媒体加熱用電源は、前記触媒体の両端に低電位及び高電位を印加し、この低電位が接地電位に対して正又は負の電位となるように前記触媒体にバイアス電圧を印加する触媒体電位設定用電源を更に備えたことを特徴とする触媒化学処理装置。
A substrate stage on which a substrate to be treated can be placed, a catalyst body disposed in parallel and opposed to the main surface of the substrate to be treated, a power source for heating a catalyst body that heats the catalyst body by energization, and a reaction for treatment In a catalytic chemical treatment apparatus provided with a gas introduction system for introducing gas and an exhaust means,
A storage container for storing a light source that emits light having a wavelength absorbed by the substrate to be processed toward the substrate to be processed is disposed inside the catalyst chemical treatment apparatus or outside the catalyst chemical treatment apparatus, A purge gas inlet for introducing purge gas and an exhaust outlet for discharging the purge gas introduced from the purge gas inlet from the storage container are provided.
The power source for heating the catalyst body applies a low potential and a high potential to both ends of the catalyst body, and applies a bias voltage to the catalyst body so that the low potential is a positive or negative potential with respect to the ground potential. A catalytic chemical treatment apparatus, further comprising a power source for setting a catalyst body potential.
前記被処理基体が、前記光源から放射される放射波長のUV光を吸収する光学的バンドギャップエネルギーを有すものであることを特徴とする請求項1記載の触媒化学処理装置。   2. The catalytic chemical treatment apparatus according to claim 1, wherein the substrate to be treated has an optical band gap energy that absorbs UV light having a radiation wavelength emitted from the light source. 前記被処理基体が、プラズマCVD法、LPCVD法または触媒CVD法により成膜されたSiN膜であり、前記光源が、前記SiN膜の光学的バンドギャップエネルギーより大きい光子エネルギーを有する放射波長のUV光を透過させる管材で構成された低圧水銀灯であり、当該触媒化学処理装置は、前記SiN膜の脱水素および同時ポスト窒化を実施するために使用される装置であることを特徴とする請求項1または2記載の触媒化学処理装置。   The substrate to be processed is a SiN film formed by plasma CVD, LPCVD or catalytic CVD, and the light source has UV light having a radiation wavelength having a photon energy larger than the optical band gap energy of the SiN film. The low-pressure mercury lamp composed of a tube material that permeates water, and the catalytic chemical treatment device is a device used to perform dehydrogenation and simultaneous post-nitridation of the SiN film. 3. The catalytic chemical treatment apparatus according to 2. 前記被処理基体がH膜であり、当該触媒化学処理装置は、前記被処理基体のポスト窒化を行うために使用される装置であることを特徴とする請求項1または2記載の触媒化学処理装置。 3. The catalyst according to claim 1, wherein the substrate to be treated is an H f O x film, and the catalytic chemical treatment apparatus is an apparatus used for performing post-nitriding of the substrate to be treated. Chemical processing equipment. 前記被処理基体が、成膜時に有機不純物の混入したH膜または成膜時に有機不純物の混入した窒化金属膜であり、当該触媒化学処理装置は、前記被処理基体内の有機不純物を除去するために使用される装置であることを特徴とする請求項1または2記載の触媒化学処理装置。 The substrate to be treated is a H f O x film mixed with organic impurities at the time of film formation or a metal nitride film mixed with organic impurities at the time of film formation, and the catalytic chemical treatment apparatus removes organic impurities in the substrate to be treated. The catalytic chemical treatment apparatus according to claim 1 or 2 , wherein the catalytic chemical treatment apparatus is used for removal. 被処理基体を触媒化学処理装置の処理室内に搬送し、処理用の反応ガスの分解温度にまで加熱された触媒体にこの反応ガスを接触させ、光源を収納する収納容器内をパージガスでパージしながら、この光源から前記被処理基体に吸収される波長の光を前記触媒体を通過せしめて前記被処理基体の表面に向かって照射し、前記触媒体から発生する反応高活性なフリーラジカルを、前記光源から供給される光を吸収して固体光化学的に励起されている状態の前記被処理基体の表面に供給し、前記被処理基体の表面を処理する触媒化学処理方法において、
前記触媒体の両端に低電位及び高電位を印加し、この低電位が接地電位に対して正または負の電位となるように前記触媒体にバイアス電圧を印加し、前記触媒体からの熱電子放出および光電子放出を制御して前記被処理基体の表面を処理することを特徴とする触媒化学処理方法。
The substrate to be processed is transported into the processing chamber of the catalytic chemical processing apparatus, the reaction gas is brought into contact with the catalyst body heated to the decomposition temperature of the processing reaction gas, and the inside of the storage container for storing the light source is purged with a purge gas. However, the light having a wavelength absorbed by the substrate to be treated is irradiated from the light source to the surface of the substrate to be treated after passing through the catalyst body, and the reaction-active free radicals generated from the catalyst body are irradiated. In the catalytic chemical processing method of absorbing the light supplied from the light source and supplying it to the surface of the substrate to be processed in a state of being solid photochemically excited, and processing the surface of the substrate to be processed,
A low potential and a high potential are applied to both ends of the catalyst body, a bias voltage is applied to the catalyst body so that the low potential is a positive or negative potential with respect to a ground potential, and the thermoelectrons from the catalyst body A catalytic chemical treatment method, wherein the surface of the substrate to be treated is treated by controlling emission and photoelectron emission.
前記被処理基体として、前記光源から放射される放射波長のUV光を吸収する光学的バンドギャップエネルギーを有すものを用いることを特徴とする請求項6記載の触媒化学処理方法。   7. The catalytic chemical treatment method according to claim 6, wherein the substrate to be treated has an optical band gap energy that absorbs UV light having a radiation wavelength emitted from the light source. 前記被処理基体として、プラズマCVD法、LPCVD法または触媒CVD法により成膜されたSiN膜を用い、前記反応ガスとして、NH、HまたはNHとHとの混合ガスを用い、そして前記光源からの放射光として、前記SiN膜の光学的バンドギャップエネルギーより大きい光子エネルギーを有する放射波長のUV光を透過させる管材で構成された低圧水銀灯からの放射光を用い、前記SiN膜の脱水素および同時ポスト窒化を行って表面を処理することを特徴とする請求項6または7記載の触媒化学処理方法。 A SiN film formed by plasma CVD, LPCVD or catalytic CVD is used as the substrate to be processed, NH 3 , H 2 or a mixed gas of NH 3 and H 2 is used as the reaction gas, and As the radiation from the light source, radiation from a low-pressure mercury lamp composed of a tube material that transmits UV light having a radiation wavelength having a photon energy larger than the optical band gap energy of the SiN film is used, and the dehydration of the SiN film is performed. The catalytic chemical treatment method according to claim 6 or 7, wherein the surface is treated by performing elementary and simultaneous post-nitridation. 処理時の基体温度を450℃以下に設定し、前記SiN膜の脱水素と共にポスト窒化を行うことを特徴とする請求項8記載の触媒化学処理方法。   9. The catalytic chemical treatment method according to claim 8, wherein the substrate temperature during the treatment is set to 450 ° C. or lower, and post-nitridation is performed together with dehydrogenation of the SiN film. 前記被処理基体としてH膜を用い、処理時の基体温度を500℃以下に設定し、前記H膜のポスト窒化を行って表面を処理することを特徴とする請求項6または7記載の触媒化学処理方法。 7. A H f O x film is used as the substrate to be processed, the substrate temperature at the time of processing is set to 500 ° C. or less, and the surface is treated by post-nitriding the H f O x film. Or the catalytic chemical treatment method according to 7. 前記被処理基体として、成膜時に有機不純物の混入したH膜または成膜時に有機不純物の混入したTaN、ZrN、VN、TiN及びWNから選ばれた窒化金属膜を用い、処理時の基体温度を450℃以下に設定し、前記被処理基体中の有機不純物を除去することを特徴とする請求項6または7記載の触媒化学処理方法。 As the substrate to be processed, a H f O x film mixed with organic impurities during film formation or a metal nitride film selected from TaN, ZrN, VN, TiN and WN mixed with organic impurities during film formation is used. 8. The catalytic chemical treatment method according to claim 6, wherein the substrate temperature is set to 450 ° C. or less, and organic impurities in the substrate to be treated are removed. 前記反応ガスとしてHガスを用いることを特徴とする請求項11記載の触媒化学処理方法。
The catalytic chemical treatment method according to claim 11, wherein H 2 gas is used as the reaction gas.
JP2006133629A 2006-05-12 2006-05-12 Catalytic chemical treatment apparatus and catalytic chemical treatment method Expired - Fee Related JP5102975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006133629A JP5102975B2 (en) 2006-05-12 2006-05-12 Catalytic chemical treatment apparatus and catalytic chemical treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006133629A JP5102975B2 (en) 2006-05-12 2006-05-12 Catalytic chemical treatment apparatus and catalytic chemical treatment method

Publications (2)

Publication Number Publication Date
JP2007305845A JP2007305845A (en) 2007-11-22
JP5102975B2 true JP5102975B2 (en) 2012-12-19

Family

ID=38839510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006133629A Expired - Fee Related JP5102975B2 (en) 2006-05-12 2006-05-12 Catalytic chemical treatment apparatus and catalytic chemical treatment method

Country Status (1)

Country Link
JP (1) JP5102975B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5362511B2 (en) * 2009-10-02 2013-12-11 株式会社アルバック Catalytic chemical vapor deposition system
US11129665B2 (en) 2015-12-02 2021-09-28 Apyx Medical Corporation Mixing cold plasma beam jets with atmopshere
US10918433B2 (en) 2016-09-27 2021-02-16 Apyx Medical Corporation Devices, systems and methods for enhancing physiological effectiveness of medical cold plasma discharges
JP6954524B2 (en) * 2017-03-10 2021-10-27 昭和電工株式会社 Thin film manufacturing method, magnetic disk manufacturing method, and nanoimprint mold manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3258121B2 (en) * 1993-03-30 2002-02-18 株式会社東芝 CVD equipment
JP3386576B2 (en) * 1993-06-30 2003-03-17 株式会社東芝 Amorphous semiconductor film and semiconductor device using the same
JP4299393B2 (en) * 1999-01-20 2009-07-22 富士通マイクロエレクトロニクス株式会社 Manufacturing method of semiconductor device
JP2000223421A (en) * 1999-01-29 2000-08-11 Sony Corp Film growth method and its device
JP2005310927A (en) * 2004-04-20 2005-11-04 Toshiba Corp Method of forming high-quality silicon nitride film by ultraviolet-ray irradiation

Also Published As

Publication number Publication date
JP2007305845A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP4546519B2 (en) Manufacturing method of semiconductor device
JP4449226B2 (en) Metal oxide film modification method, metal oxide film formation method, and heat treatment apparatus
US8168269B2 (en) Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool
US7645709B2 (en) Methods for low temperature oxidation of a semiconductor device
US5412246A (en) Low temperature plasma oxidation process
US20080289650A1 (en) Low-temperature cleaning of native oxide
JP2010050425A (en) Method for manufacturing semiconductor device, and substrate processing apparatus
JPH1116900A (en) Formation of insulation film of semiconductor substrate surface and its formation device
JP5102975B2 (en) Catalytic chemical treatment apparatus and catalytic chemical treatment method
JP2008053561A (en) Oxide film forming method and apparatus therefor
CN110199380B (en) Method for producing insulating layers on silicon carbide
JPH0496226A (en) Manufacture of semiconductor device
JP2000114257A (en) Manufacture of semiconductor device
JPH05343391A (en) Manufacture of semiconductor device
JP3313635B2 (en) Method for removing contaminated metal and method for treating bound product
WO2021060092A1 (en) Film forming method and film forming apparatus
US20220178031A1 (en) Film formation method and film formation device
JPH11111713A (en) Improvement of insulating film and manufacture of semi conductor device
JP2002064097A (en) Manufacturing method of semiconductor device
JP2006216774A (en) Method of forming insulating film
JP4291193B2 (en) Optical processing apparatus and processing apparatus
JP2010050252A (en) Nitriding method for base material surface by hot wiring method
JPH0978245A (en) Formation of thin film
JPH08203889A (en) Fabrication of semiconductor device
JPS60182127A (en) Photoexcitation reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5102975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees