JP5099551B2 - Nanoparticle component measuring apparatus and method - Google Patents

Nanoparticle component measuring apparatus and method Download PDF

Info

Publication number
JP5099551B2
JP5099551B2 JP2008069656A JP2008069656A JP5099551B2 JP 5099551 B2 JP5099551 B2 JP 5099551B2 JP 2008069656 A JP2008069656 A JP 2008069656A JP 2008069656 A JP2008069656 A JP 2008069656A JP 5099551 B2 JP5099551 B2 JP 5099551B2
Authority
JP
Japan
Prior art keywords
nanoparticles
nanoparticle
electric field
measuring
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008069656A
Other languages
Japanese (ja)
Other versions
JP2009222660A (en
Inventor
祥啓 出口
伸幸 田中
昌東 津崎
潔 田邊
伸治 小林
暁洋 伏見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
National Institute for Environmental Studies
Mitsubishi Heavy Industries Ltd
Original Assignee
Central Research Institute of Electric Power Industry
National Institute for Environmental Studies
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, National Institute for Environmental Studies, Mitsubishi Heavy Industries Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP2008069656A priority Critical patent/JP5099551B2/en
Publication of JP2009222660A publication Critical patent/JP2009222660A/en
Application granted granted Critical
Publication of JP5099551B2 publication Critical patent/JP5099551B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、例えば車両から排出される排ガス中のナノ単位の微量成分を計測するナノ粒子成分計測装置及び方法に関する。 The present invention relates to a nanoparticle component measuring apparatus and method for measuring a nano-unit trace component in, for example, exhaust gas discharged from a vehicle.

近年、大気汚染の問題は計測技術の進展により、複雑なメカニズムが徐々に明らかとなってきている。例えば、分析技術では有害大気汚染物質を代表とする微量化学物質の分析が可能となり、シミュレーションを用いた大気中拡散や光化学反応などのメカニズム解明に貢献している。これらの結果として、大気汚染が様々な化学物質である一次汚染物質と共に、光化学反応を介した二次汚染物質、二次粒子として拡散していることが判明してきている。   In recent years, the complicated mechanism of the problem of air pollution has gradually become clear with the progress of measurement technology. For example, analysis technology enables analysis of trace chemical substances typified by harmful air pollutants, contributing to the elucidation of mechanisms such as atmospheric diffusion and photochemical reactions using simulation. As a result, it has been found that air pollution is diffused as secondary pollutants and secondary particles through photochemical reaction together with primary pollutants which are various chemical substances.

また、これらの既存の大気汚染に加え、粒子状物質の中で、50nm以下のナノ単位の極めて微小な粒子(以下、「ナノ粒子」という)が計測可能となってきており、ナノ粒子による環境問題や健康障害も懸念されている。   In addition to these existing air pollution, it has become possible to measure very small particles (hereinafter referred to as “nanoparticles”) of nanometers of 50 nm or less in particulate matter. Problems and health problems are also a concern.

上記環境汚染対策としてPRTR(Pollutant Release and Transfer Register:環境汚染物質排出移動登録制度)制度などがあるが、全体像の把握や将来に懸念される新たな環境汚染などの抑制には、さらなる排出原因・メカニズムの特定が不可欠である。   Although there is a PRTR (Pollutant Release and Transfer Register) system as a measure against environmental pollution, there are additional causes of emissions in order to understand the overall picture and to control new environmental pollution that is of concern in the future.・ Identification of the mechanism is essential.

しかしながら、微量成分の分析が困難なこともあり、全体像の解明には至っていないのが現状である。特に、大気汚染に関しては、その形態変化を捕らえることが難しく、極微小量環境物質の直接・多元素・多成分が同時計測出来る分析技術が切望されている。
また、将来のナノテクノロジー産業などにより生成される粒子サイズレベルの環境汚染も懸念されており、極微小量環境物質の直接・多元素・多成分計測技術は、国民の安全、安心を確保するためのキー技術となっている。
However, analysis of trace components is difficult, and the current situation is that the whole picture has not yet been elucidated. In particular, regarding air pollution, it is difficult to capture changes in its form, and there is an urgent need for an analytical technique capable of simultaneously measuring direct, multi-element, and multi-components of extremely small quantities of environmental substances.
In addition, there is concern about environmental pollution at the particle size level generated by the future nanotechnology industry, etc., and direct, multi-element, multi-component measurement technology for extremely small amounts of environmental substances is necessary to ensure the safety and security of the public. It has become a key technology.

ところで、近年の化学成分組成計測では、計測対象を構成する全体の成分分布を把握すると共に、重要な計測化学種に対し、高感度な分析が求められている。
これは、計測対象を構成する成分に関して「平均的な分析感度」と特定な成分に対する「選択的な分析感度」の互いに矛盾する分析特性を求めることになり、従来の分析手法では、達成できなかった課題である。また、元素組成分析では、計測対象を元素レベルに分解・計測する必要があり、化学成分組成計測との両立は困難であった。そのため、多元素・多成分を計測するためには、GC−MS(Gas Chromatography-Mass Spectrometry)、ICP−MS(Inductively Coupled Plasma-Mass Spectrometry)、蛍光X線分析などの複数の分析手法を用いる必要があり、前処理などを含め、多大な分析コスト、分析時間を必要としていた。
By the way, in recent chemical component composition measurement, high-sensitivity analysis is required for important measurement chemical species as well as grasping the entire component distribution constituting the measurement target.
This requires analysis characteristics that contradict each other between the “average analysis sensitivity” for the components that make up the measurement target and the “selective analysis sensitivity” for specific components, which cannot be achieved with conventional analysis methods. It is a problem. In elemental composition analysis, it is necessary to decompose and measure the measurement target at the elemental level, and it has been difficult to achieve compatibility with chemical component composition measurement. Therefore, in order to measure multi-elements and multi-components, it is necessary to use a plurality of analytical methods such as GC-MS (Gas Chromatography-Mass Spectrometry), ICP-MS (Inductively Coupled Plasma-Mass Spectrometry), and fluorescent X-ray analysis. There was a lot of analysis cost and analysis time including pre-processing.

そこで、排ガス中のナノ粒子の化学成分をレーザイオン化することにより測定する方法の提案がある(特許文献1)。   Therefore, there is a proposal of a method for measuring by chemical ionization of nanoparticles in exhaust gas by laser ionization (Patent Document 1).

この特許文献1にかかる排ガス中のナノ粒子を計測するナノ粒子成分計測装置の一例を図11に示す。
図11に示すように、ナノ粒子成分計測装置100は、計測ガス101中のナノ粒子成分を分級する静電分級器102と、前記静電分級器102により分級したナノ粒子の粒子数を計測する粒子数計測装置103と、分級したナノ粒子を加熱するヒータ105と加熱されたナノ粒子をレーザイオン化するレーザ装置107を備えたレーザイオン化飛行時間型質量分析装置(質量分析装置)106とを具備するものであり、例えばディーゼルエンジンから排出されるナノ粒子を分級し、多環芳香族炭化水素(PAH)を高感度で計測するようにしている。
An example of a nanoparticle component measuring apparatus for measuring nanoparticles in exhaust gas according to Patent Document 1 is shown in FIG.
As shown in FIG. 11, the nanoparticle component measuring apparatus 100 measures the number of nanoparticles classified by the electrostatic classifier 102 and the electrostatic classifier 102 that classifies the nanoparticle components in the measurement gas 101. A particle number measuring device 103, a heater 105 for heating the classified nanoparticles, and a laser ionization time-of-flight mass spectrometer (mass spectrometer) 106 including a laser device 107 for laser ionizing the heated nanoparticles are provided. For example, nanoparticles discharged from a diesel engine are classified, and polycyclic aromatic hydrocarbons (PAH) are measured with high sensitivity.

特開2004−219250号公報JP 2004-219250 A

そこで、分析コストの低減及び微量成分のリアルタイム計測ができると共に、ナノ粒子組成が精度良く且つ高感度に計測できるナノ粒子成分計測装置の出現が切望されている。   Therefore, the appearance of a nanoparticle component measuring apparatus capable of reducing the analysis cost and measuring a trace component in real time and measuring the nanoparticle composition with high accuracy and high sensitivity is eagerly desired.

本発明は、前記問題に鑑み、ナノ粒子組成が精度良く且つ高感度に計測できるナノ粒子成分計測装置及び方法を提供することを課題とする。 This invention makes it a subject to provide the nanoparticle component measuring device and method which can measure a nanoparticle composition accurately and with high sensitivity in view of the said problem.

上述した課題を解決するための本発明の第1の発明は、排ガス中のナノ粒子を計測するナノ粒子成分計測装置であって、計測ガス中のナノ粒子成分を分級する静電分級器と、前記静電分級器により帯電したナノ粒子を濃縮する帯電粒子濃縮部と、前記濃縮したナノ粒子の成分を計測する計測装置とを具備してなると共に、前記帯電粒子濃縮部が、細い径筒と太い径筒とからなる外筒と、前記太い径筒の内部に設けた内筒と、前記外筒の細い径筒の内部に配され、前記ナノ粒子に第1の電場を形成する第1の電極と、前記内筒の細い径筒の外部に配され、前記第1の電場により集中したナノ粒子をさらに濃縮する第1の電場よりも高い電圧の第2の電場を形成する第2の電極24とからなることを特徴とするナノ粒子成分計測装置にある。 1st invention of this invention for solving the subject mentioned above is a nanoparticle component measuring device which measures the nanoparticle in exhaust gas, Comprising: The electrostatic classifier which classifies the nanoparticle component in measurement gas, the electrostatic classifier charged particle concentration part for concentrating the charged nanoparticles by said such and and a measuring device for measuring the components of the concentrated nanoparticles Rutotomoni, said charged particle concentrator unit, a narrow-diameter cylinder And an outer cylinder composed of a thick diameter cylinder, an inner cylinder provided inside the thick diameter cylinder, and a thin diameter cylinder of the outer cylinder, the first forming an electric field on the nanoparticles. And a second electric field that is arranged outside the narrow diameter inner cylinder and forms a second electric field having a higher voltage than the first electric field for further concentrating the nanoparticles concentrated by the first electric field. The nanoparticle component measuring device is characterized by comprising an electrode 24 .

第2の発明は、排ガス中のナノ粒子を計測するナノ粒子成分計測装置であって、計測ガス中のナノ粒子成分を分級する静電分級器と、前記静電分級器により帯電したナノ粒子を濃縮する帯電粒子濃縮部と、前記濃縮したナノ粒子の成分を計測する計測装置とを具備してなると共に、前記帯電粒子濃縮部が、細い導入口を有する外筒と、該外筒の内部に設けた内筒と、前記外筒の内部に配され、前記ナノ粒子に第1の電場を形成する第1の電極と、前記内筒の入口近傍外周に設けられ、前記第1の電場により集中したナノ粒子をさらに濃縮する第1の電場よりも高い電圧の第2の電場を形成する第2の電極とからなることを特徴とするナノ粒子成分計測装置にある。 A second invention is a nanoparticle component measuring device for measuring nanoparticles in exhaust gas, wherein the electrostatic classifier classifies the nanoparticle components in the measurement gas, and the nanoparticles charged by the electrostatic classifier. A charged particle concentrating unit for concentration and a measuring device for measuring the components of the concentrated nanoparticles; and the charged particle concentrating unit includes an outer cylinder having a thin inlet, and an inside of the outer cylinder. An inner cylinder provided; a first electrode disposed within the outer cylinder and forming a first electric field on the nanoparticles; and provided at an outer periphery in the vicinity of an inlet of the inner cylinder, and concentrated by the first electric field. And a second electrode that forms a second electric field having a higher voltage than the first electric field for further concentrating the nanoparticles.

第3の発明は、排ガス中のナノ粒子を計測するナノ粒子成分計測装置であって、計測ガス中のナノ粒子成分を分級する静電分級器と、前記静電分級器により帯電したナノ粒子を濃縮する帯電粒子濃縮部と、前記濃縮したナノ粒子の成分を計測する計測装置とを具備してなると共に、前記帯電粒子濃縮部が、外筒と、該外筒の内部に設けた内筒と、前記内筒の入口内部に配され、前記ナノ粒子に第1の電場を形成する網状の第1の電極と、前記内筒の入口近傍外周に設けられ、前記第1の電場により集中したナノ粒子をさらに濃縮する第1の電場よりも高い電圧の第2の電場を形成する第2の電極とからなることを特徴とするナノ粒子成分計測装置にある。  A third invention is a nanoparticle component measuring apparatus for measuring nanoparticles in exhaust gas, wherein the electrostatic classifier classifies the nanoparticle components in the measurement gas, and the nanoparticles charged by the electrostatic classifier. A charged particle concentrating unit for concentrating, and a measuring device for measuring the components of the concentrated nanoparticles; and the charged particle concentrating unit includes an outer cylinder, and an inner cylinder provided inside the outer cylinder; A net-like first electrode disposed inside the inlet of the inner cylinder and forming a first electric field on the nanoparticles, and a nano-particle provided on the outer periphery near the inlet of the inner cylinder and concentrated by the first electric field. The nanoparticle component measuring apparatus includes a second electrode that forms a second electric field having a higher voltage than the first electric field for further concentrating the particles.

の発明は、第1乃至3のいずれか一つの発明において、前記帯電粒子濃縮部の後流側に、1nm以上のナノ粒子を捕集するフィルタと、該フィルタを加熱する加熱装置とを有することを特徴とするナノ粒子成分計測装置にある。 According to a fourth invention, in any one of the first to third inventions, a filter that collects nanoparticles of 1 nm or more on the downstream side of the charged particle concentrating unit, and a heating device that heats the filter It is in the nanoparticle component measuring device characterized by having.

の発明は、第の発明において、前記フィルタが2以上並列して設けられ、流路を切替えつつナノ粒子を連続して計測してなることを特徴とするナノ粒子成分計測装置にある。 A fifth invention is the nanoparticle component measuring device according to the fourth invention, wherein two or more filters are provided in parallel, and the nanoparticles are continuously measured while switching the flow path. .

の発明は、第の発明において、前記並列したフィルタを迂回する流路を有し、リアルタイムでナノ粒子を連続して計測してなることを特徴とするナノ粒子成分計測装置にある。 A sixth invention is the nanoparticle component measuring device according to the fifth invention, wherein the nanoparticle component measuring device has a flow path that bypasses the parallel filters and continuously measures nanoparticles in real time.

第7の発明は、第4乃至6のいずれか一つのナノ粒子成分計測装置を用いて、排ガス中のナノ粒子を計測するナノ粒子成分計測方法であって、前記帯電粒子濃縮部において、排ガス中のガス成分を相対的に減少させつつナノ粒子を濃縮し、濃縮したナノ粒子を前記フィルタにより捕集すると共に、捕集したナノ粒子を加熱して気化させ、前記計測装置でナノ粒子の成分を計測することを特徴とするナノ粒子成分計測方法にある。 7th invention is the nanoparticle component measuring method which measures the nanoparticle in exhaust gas using any one nanoparticle component measuring apparatus of the 4th thru | or 6, Comprising: In the charged particle concentration part, The nanoparticles are concentrated while relatively reducing the gas component of the gas, and the concentrated nanoparticles are collected by the filter, and the collected nanoparticles are heated and vaporized. It is in the nanoparticle component measuring method characterized by measuring.

本発明によれば、ナノ粒子を濃縮して計測することとなるので、ナノ粒子組成が精度良く且つ高感度に計測できる。   According to the present invention, since the nanoparticles are concentrated and measured, the nanoparticle composition can be measured with high accuracy and high sensitivity.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

本発明による本実施例に係るナノ粒子成分計測装置について、図面を参照して説明する。
図1は、実施例に係るナノ粒子成分計測装置図である。図2は帯電粒子濃縮部の概略図である。図1及び図2に示すように、本実施例に係るナノ粒子成分計測装置10Aは、計測ガス11である排ガス中のナノ粒子を計測するナノ粒子成分計測装置であって、計測ガス11中のナノ粒子成分を分級する静電分級器12と、前記静電分級器12により帯電したナノ粒子を濃縮する帯電粒子濃縮部14(14−1〜14−3)と、前記濃縮したナノ粒子の成分を計測する質量分析装置16とを具備してなり、前記帯電粒子濃縮部14が、前記ナノ粒子に第1の電場を形成する第1の電極22と、第1の電場により集中したナノ粒子をさらに濃縮する第1の電場よりも高い電圧の第2の電場を形成する第2の電極24とを具備してなるものである。
なお、図1中、符号13はナノ粒子の粒子数を計測する粒子数計測装置である。
A nanoparticle component measuring apparatus according to this embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram of a nanoparticle component measurement apparatus according to an embodiment. FIG. 2 is a schematic view of the charged particle concentration unit. As shown in FIGS. 1 and 2, the nanoparticle component measurement apparatus 10 </ b> A according to the present embodiment is a nanoparticle component measurement apparatus that measures nanoparticles in exhaust gas that is a measurement gas 11. An electrostatic classifier 12 for classifying nanoparticle components, a charged particle concentrator 14 (14-1 to 14-3) for concentrating nanoparticles charged by the electrostatic classifier 12, and components of the concentrated nanoparticles The charged particle concentrating unit 14 includes a first electrode 22 that forms a first electric field on the nanoparticles, and nanoparticles concentrated by the first electric field. And a second electrode 24 for forming a second electric field having a higher voltage than the first electric field to be concentrated.
In FIG. 1, reference numeral 13 denotes a particle number measuring device that measures the number of nanoparticles.

図2に示すように、本実施例の第1の帯電粒子濃縮部14−1は、細い径筒21−1と太い径筒21−2とからなる外筒21と、太い径筒21−2の内部に設けた内筒23とからなり、外筒21の細い径筒21−1の内部に配された第1の電極22と、内筒23の細い径筒23−1の外部に配された第2の電極24とを具備するものである。   As shown in FIG. 2, the first charged particle concentrating unit 14-1 of the present embodiment includes an outer cylinder 21 composed of a thin diameter cylinder 21-1 and a thick diameter cylinder 21-2, and a thick diameter cylinder 21-2. The first electrode 22 disposed inside the thin diameter cylinder 21-1 of the outer cylinder 21 and the outside of the narrow diameter cylinder 23-1 of the inner cylinder 23. And a second electrode 24.

ここで、外筒21の細い径筒21−1は直径が10mm程度であり、内筒23の細い径筒23−1は直径が1mm程度である。
そして、第1の電極22に500V程度の電圧をかけると共に第2の電極24に1KV程度の電圧をかけることにより、静電分級器12で帯電したナノ粒子が内部の電場により中央部に集中し、濃縮物25として濃縮することとなる。本実施例の濃縮率は約100倍程度となる。
Here, the thin diameter cylinder 21-1 of the outer cylinder 21 has a diameter of about 10 mm, and the thin diameter cylinder 23-1 of the inner cylinder 23 has a diameter of about 1 mm.
Then, by applying a voltage of about 500 V to the first electrode 22 and a voltage of about 1 KV to the second electrode 24, the nanoparticles charged by the electrostatic classifier 12 are concentrated in the central portion by the internal electric field. Then, the concentrate 25 is concentrated. The concentration rate of this example is about 100 times.

このように、静電分級器12で分級したナノ粒子を質量分析装置16の真空チャンバに導入し、レーザ装置17からレーザ光を照射することで、ナノ粒子成分をイオン化し、質量分析するに際し、前記静電分級器12から取り出されるナノ粒子が帯電していることを利用して、静電分級器12の後流側に帯電粒子濃縮部14を設けることにより、濃縮率を100倍程度とすることができ、装置の検出感度の向上を図るようにしている。   In this way, when the nanoparticles classified by the electrostatic classifier 12 are introduced into the vacuum chamber of the mass spectrometer 16 and irradiated with laser light from the laser apparatus 17, the nanoparticle components are ionized and subjected to mass analysis. By utilizing the fact that the nanoparticles taken out from the electrostatic classifier 12 are charged, by providing the charged particle concentrating portion 14 on the downstream side of the electrostatic classifier 12, the concentration rate is about 100 times. It is possible to improve the detection sensitivity of the apparatus.

また、図3に他の帯電粒子濃縮部の一例を示す。図3に示すように、本実施例の第2の帯電粒子濃縮部14−2は、細い導入口21aを有する外筒21と、該外筒21の内部に設けた内筒23とからなり、外筒21の内部に配された第1の電極22と、内筒23の入口近傍外周に設けた第2の電極24とを具備するものである。
本実施例では、導入するナノ粒子を含んだガスが細い導入口21aから導入されるので、濃縮物25が拡がることがなく、そのまま内筒23に導入され、濃縮が効率よく行われる。
FIG. 3 shows an example of another charged particle concentrating unit. As shown in FIG. 3, the second charged particle concentration unit 14-2 of the present embodiment includes an outer cylinder 21 having a thin inlet 21 a and an inner cylinder 23 provided in the outer cylinder 21. A first electrode 22 disposed inside the outer cylinder 21 and a second electrode 24 provided on the outer periphery in the vicinity of the inlet of the inner cylinder 23 are provided.
In the present embodiment, since the gas containing the nanoparticles to be introduced is introduced from the thin inlet 21a, the concentrate 25 does not spread but is introduced into the inner cylinder 23 as it is, so that the concentration is performed efficiently.

また、図4に他の帯電粒子濃縮部の一例を示す。図4に示すように、本実施例の第3の帯電粒子濃縮部14−3は、外筒21と、該外筒21の内部に設けた内筒23とからなり、前記内筒23の入口内部に配された網状の第1の電極22と、内筒23の入口近傍外周に設けた第2の電極24とを具備するものである。
本実施例では、導入するナノ粒子を含んだガスが外筒の入口から導入されるが、内筒23内部に設けた第1の電極22で電界分布が高くなるので、近寄ることができず、外筒の壁面周囲に分けられ、次いで第2の電極24により濃縮が行われ、濃縮物25が外筒21の下端部に設けた濃縮管26から排出され、濃縮が効率よく行われる。
FIG. 4 shows an example of another charged particle concentrating unit. As shown in FIG. 4, the third charged particle concentrating unit 14-3 of the present embodiment includes an outer cylinder 21 and an inner cylinder 23 provided inside the outer cylinder 21, and an inlet of the inner cylinder 23. A net-like first electrode 22 disposed inside and a second electrode 24 provided on the outer periphery in the vicinity of the inlet of the inner cylinder 23 are provided.
In the present embodiment, the gas containing the nanoparticles to be introduced is introduced from the inlet of the outer cylinder, but the electric field distribution becomes high at the first electrode 22 provided inside the inner cylinder 23, so it cannot be approached, It is divided around the wall surface of the outer cylinder, then concentrated by the second electrode 24, and the concentrate 25 is discharged from the concentration tube 26 provided at the lower end of the outer cylinder 21, so that the concentration is performed efficiently.

このように本発明によれば、帯電粒子濃縮部14(14−1〜14−3)を設けることにより、ナノ粒子の濃縮が可能となり、感度の高い質量分析を行うことができる。   As described above, according to the present invention, by providing the charged particle concentrating unit 14 (14-1 to 14-3), it is possible to concentrate the nanoparticles and perform mass spectrometry with high sensitivity.

図9はそのナノ粒子の分析結果の一例を示し、図10はその部分拡大図である。
図9及び図10に示すように、フルオレン(分子数:166.2)、アントラセン(分子数:178.2)、ベンゾ(a)ピレン(分子数:252.3)、ベンゾ(e)ピレン(分子数:252.3)、ベンゾ(k)フルオランテン(分子数:252.3)、ベンゾ(ghi)ペリレン(分子数:276.3)等の多環芳香族炭化水素(PAH)を高感度で計測することができることが判明した。
FIG. 9 shows an example of the analysis result of the nanoparticles, and FIG. 10 is a partially enlarged view thereof.
As shown in FIGS. 9 and 10, fluorene (molecular number: 166.2), anthracene (molecular number: 178.2), benzo (a) pyrene (molecular number: 252.3), benzo (e) pyrene ( Highly sensitive to polycyclic aromatic hydrocarbons (PAH) such as molecular number: 252.3), benzo (k) fluoranthene (molecular number: 252.3), benzo (ghi) perylene (molecular number: 276.3) It was found that it can be measured.

このように、ナノサイズのナノ粒子は微量である他、質量分析部での成分のガス化が完全に行なわれない場合もあり、従来の装置では高感度計測が困難であったが、静電分級器から取り出される粒子が帯電していることを利用し、静電分級器後方に帯電粒子濃縮部14の濃縮機構を設けるようにしているので、計測感度の向上を図ることができる。   Thus, in addition to the minute amount of nano-sized nanoparticles, gasification of components in the mass spectrometer may not be performed completely, and high-sensitivity measurement was difficult with conventional devices. Since the concentration mechanism of the charged particle concentrating unit 14 is provided behind the electrostatic classifier using the fact that the particles taken out from the classifier are charged, the measurement sensitivity can be improved.

本発明による実施例に係るナノ粒子成分計測装置について、図面を参照して説明する。
図5は、本実施例に係るナノ粒子成分計測装置図である。図5に示すように、本実施例に係るナノ粒子成分計測装置10Bは、図1の計測装置10Aにおいて、帯電粒子濃縮部14の後流側に、1nm以上のナノ粒子を捕集するフィルタ31と、該フィルタ31を加熱する加熱装置であるヒータ15とを設けるようにしている。
A nanoparticle component measuring apparatus according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 5 is a diagram of a nanoparticle component measurement apparatus according to the present embodiment. As shown in FIG. 5, the nanoparticle component measurement apparatus 10B according to the present embodiment is a filter 31 that collects nanoparticles of 1 nm or more on the downstream side of the charged particle concentration unit 14 in the measurement apparatus 10A of FIG. And a heater 15 which is a heating device for heating the filter 31 is provided.

図6はフィルタ31の概略図である。フィルタはメッシュ状の1nm以上のナノ粒子を捕集可能なステンレス製としている。   FIG. 6 is a schematic diagram of the filter 31. The filter is made of stainless steel that can collect mesh-like nanoparticles of 1 nm or more.

前記フィルタ31は、ガスを導入するに際し、ヒータ15で加熱することにより、ガス中のナノ粒子成分を完全に気化させて質量分析装置16内に導入するようにしている。
すなわち、従来ではナノ粒子の一部が完全に気化せずにそのまま質量分析装置16に導入する場合があり、計測が不完全であったものが、フィルタ31を通過するナノ粒子をヒータ15で加熱(例えば200℃)することで、完全に気化させることができ、ナノ粒子の全量の計測が可能となり、ナノ粒子計測の確実性が向上することとなる。
When the gas is introduced, the filter 31 is heated by the heater 15 so that the nanoparticle component in the gas is completely vaporized and introduced into the mass spectrometer 16.
In other words, in the past, some of the nanoparticles may be directly introduced into the mass spectrometer 16 without being completely vaporized, and the incomplete measurement is performed by heating the nanoparticles passing through the filter 31 with the heater 15. By vaporizing (for example, 200 ° C.), it is possible to completely vaporize, and the total amount of nanoparticles can be measured, and the reliability of nanoparticle measurement is improved.

また、フィルタ31の他の使用方法としては、分級した計測ガスを常温で所定時間フィルタ31に流しつづけ(例えば5分程度)、フィルタにナノ粒子成分を捕集した後にヒータで加熱(例えば200℃)して気化させることにより、捕集したナノ粒子を完全に気化させることができる。この結果、濃縮により濃度が増大すると共に、それを完全に気化させることでナノ粒子の計測感度が大幅に向上する。   As another method of using the filter 31, the classified measurement gas is allowed to flow through the filter 31 at room temperature for a predetermined time (for example, about 5 minutes), and the nanoparticle component is collected on the filter and heated with a heater (for example, 200 ° C.). ) To vaporize, the collected nanoparticles can be completely vaporized. As a result, the concentration increases by concentration, and the measurement sensitivity of the nanoparticles is greatly improved by completely evaporating the concentration.

このように、ナノサイズのナノ粒子は微量である他、質量分析部での成分のガス化が完全に行なわれない場合もあり、従来の装置では高感度計測が困難であったが、静電分級器から取り出される粒子が帯電していることを利用し、静電分級器後方に帯電粒子濃縮部14の濃縮機構を設けると共に、真空チャンバー導入前に1nm以上の粒子を捕集可能なフィルタ31を設置し、完全に気化させるようにすることで質量分析装置16の検出感度の向上を図ることができることとなる。   Thus, in addition to the minute amount of nano-sized nanoparticles, gasification of components in the mass spectrometer may not be performed completely, and high-sensitivity measurement was difficult with conventional devices. Utilizing the fact that the particles taken out from the classifier are charged, a filter 31 capable of collecting a particle of 1 nm or more before introducing the vacuum chamber while providing a concentration mechanism of the charged particle concentration unit 14 behind the electrostatic classifier. It is possible to improve the detection sensitivity of the mass spectrometer 16 by installing and completely evaporating.

本発明による実施例に係るナノ粒子成分計測装置について、図面を参照して説明する。
図7は、本実施例に係るナノ粒子成分計測装置図である。図7に示すように、本実施例に係るナノ粒子成分計測装置10Cは、図5の計測装置10Bにおいて、帯電粒子濃縮部14の後流側に、1nm以上のナノ粒子を捕集する複数のフィルタ31A、31B、31Cを並列して設け、該フィルタ31A〜31Cを加熱する複数のヒータ15A〜15Cを設けるようにしている。
A nanoparticle component measuring apparatus according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 7 is a diagram of a nanoparticle component measurement apparatus according to the present embodiment. As shown in FIG. 7, the nanoparticle component measurement apparatus 10C according to the present embodiment includes a plurality of nanoparticles that collect nanoparticles of 1 nm or more on the downstream side of the charged particle concentration unit 14 in the measurement apparatus 10B of FIG. Filters 31A, 31B, and 31C are provided in parallel, and a plurality of heaters 15A to 15C that heat the filters 31A to 31C are provided.

そして、各流路の切替弁30a〜30hを切替えることで、連続しての計測が可能となる。
すなわち、先ず、帯電粒子濃縮部14で濃縮されたナノ粒子を第1のフィルタ31Aで計測する場合には、切替弁30a、30b、30e及び30hを解放してガスを流し、その他の弁は閉じておく。そして、常温で5分計測ガスを第1フィルタ30Aに流し、その後加熱を5分行い、分析する。次いで、第2のフィルタ31Bで計測するように切替弁を切替える。そして、計測が終了した第1のフィルタ31Aにはパージガスにより洗浄して次ぎの計測に備える。第1〜第3のフィルタ31A〜31Cを順番に切替えることで例えば10〜20分ごとの任意の範囲での連続した計測が可能となる。
And continuous measurement is attained by switching the switching valves 30a-30h of each flow path.
That is, first, when the nanoparticles concentrated by the charged particle concentrating unit 14 are measured by the first filter 31A, the switching valves 30a, 30b, 30e, and 30h are released to flow gas, and the other valves are closed. Keep it. Then, the measurement gas is allowed to flow through the first filter 30A for 5 minutes at room temperature, and then heated for 5 minutes for analysis. Next, the switching valve is switched so that measurement is performed by the second filter 31B. Then, the first filter 31A that has been measured is cleaned with a purge gas to prepare for the next measurement. By sequentially switching the first to third filters 31A to 31C, for example, continuous measurement in an arbitrary range every 10 to 20 minutes is possible.

本発明による実施例に係るナノ粒子成分計測装置について、図面を参照して説明する。
図8は、本実施例に係るナノ粒子成分計測装置図である。図8に示すように、本実施例に係るナノ粒子成分計測装置10Dは、図7の計測装置10Cにおいて、並列したフィルタ31A〜31Cを迂回するヒータを有する迂回流路32を設けたものであり、必要に応じて切替弁30i、30jを開いてリアルタイムでナノ粒子を連続して計測することとしている。
A nanoparticle component measuring apparatus according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 8 is a diagram of a nanoparticle component measurement apparatus according to the present embodiment. As shown in FIG. 8, the nanoparticle component measurement apparatus 10D according to the present embodiment is provided with a bypass channel 32 having a heater that bypasses the parallel filters 31A to 31C in the measurement apparatus 10C of FIG. 7. If necessary, the switching valves 30i and 30j are opened to continuously measure nanoparticles in real time.

図7のようなフィルタで所定時間捕集する場合には、時間遅れの計測となるが、現時点での排ガス濃度を常に計測しているような場合には、本実施例のような迂回流路32を設けることで、簡易濃縮機能での計測とリアルタイムでの計測とを並行して行うことができる。   In the case of collecting for a predetermined time with a filter as shown in FIG. 7, the time delay is measured. However, in the case where the exhaust gas concentration at the present time is always measured, the bypass channel as in this embodiment is used. By providing 32, measurement with the simple concentration function and measurement in real time can be performed in parallel.

以上のように、本発明に係るナノ粒子成分計測装置は、分析コストの低減を図り、微量成分の感度の向上を図ることができる。   As described above, the nanoparticle component measurement apparatus according to the present invention can reduce the analysis cost and improve the sensitivity of a trace component.

実施例1に係るナノ粒子成分計測装置の概略図である。1 is a schematic diagram of a nanoparticle component measurement apparatus according to Example 1. FIG. 帯電粒子濃縮部の概略図である。It is the schematic of a charged particle concentration part. 他の帯電粒子濃縮部の概略図である。It is the schematic of another charged particle concentration part. 他の帯電粒子濃縮部の概略図である。It is the schematic of another charged particle concentration part. 実施例2に係るナノ粒子成分計測装置の概略図である。3 is a schematic diagram of a nanoparticle component measurement apparatus according to Example 2. FIG. フィルタの概略図である。It is the schematic of a filter. 実施例3に係るナノ粒子成分計測装置の概略図である。6 is a schematic view of a nanoparticle component measurement apparatus according to Example 3. FIG. 実施例4に係るナノ粒子成分計測装置の概略図である。It is the schematic of the nanoparticle component measuring device which concerns on Example 4. FIG. ナノ粒子の分析結果の一例の測定図である。It is a measurement figure of an example of the analysis result of a nanoparticle. 図9の部分拡大図である。FIG. 10 is a partially enlarged view of FIG. 9. 従来のナノ粒子成分計測装置の概略図である。It is the schematic of the conventional nanoparticle component measuring apparatus.

10A〜10C ナノ粒子成分計測装置
11 計測ガス
12 静電分級器
13 粒子数計測装置
14(14−1〜14−3) 帯電粒子濃縮部
15 ヒータ
16 質量分析装置
21 外筒
22 第1の電極
23 内筒
24 第2の電極
25 濃縮物
10A to 10C Nanoparticle component measuring device 11 Measuring gas 12 Electrostatic classifier 13 Particle number measuring device 14 (14-1 to 14-3) Charged particle concentrator 15 Heater 16 Mass spectrometer 21 Outer cylinder 22 First electrode 23 Inner cylinder 24 Second electrode 25 Concentrate

Claims (7)

排ガス中のナノ粒子を計測するナノ粒子成分計測装置であって、
計測ガス中のナノ粒子成分を分級する静電分級器と、
前記静電分級器により帯電したナノ粒子を濃縮する帯電粒子濃縮部と、
前記濃縮したナノ粒子の成分を計測する計測装置とを具備してなると共に、
前記帯電粒子濃縮部が、
細い径筒と太い径筒とからなる外筒と、
前記太い径筒の内部に設けた内筒と、
前記外筒の細い径筒の内部に配され、前記ナノ粒子に第1の電場を形成する第1の電極と、
前記内筒の細い径筒の外部に配され、前記第1の電場により集中したナノ粒子をさらに濃縮する第1の電場よりも高い電圧の第2の電場を形成する第2の電極24とからなることを特徴とするナノ粒子成分計測装置。
A nanoparticle component measuring device for measuring nanoparticles in exhaust gas,
An electrostatic classifier that classifies the nanoparticle components in the measurement gas;
A charged particle concentrating unit for concentrating nanoparticles charged by the electrostatic classifier;
Rutotomoni such by and a measuring device for measuring the components of the nanoparticles the concentrated,
The charged particle concentrating part is
An outer cylinder composed of a thin diameter cylinder and a thick diameter cylinder;
An inner cylinder provided inside the thick-diameter cylinder;
A first electrode disposed in a thin diameter cylinder of the outer cylinder and forming a first electric field on the nanoparticles;
A second electrode 24 arranged outside the narrow cylinder of the inner cylinder and forming a second electric field having a higher voltage than the first electric field for further concentrating the nanoparticles concentrated by the first electric field. The nanoparticle component measuring device characterized by comprising.
排ガス中のナノ粒子を計測するナノ粒子成分計測装置であって、A nanoparticle component measuring device for measuring nanoparticles in exhaust gas,
計測ガス中のナノ粒子成分を分級する静電分級器と、  An electrostatic classifier that classifies the nanoparticle components in the measurement gas;
前記静電分級器により帯電したナノ粒子を濃縮する帯電粒子濃縮部と、  A charged particle concentrating unit for concentrating nanoparticles charged by the electrostatic classifier;
前記濃縮したナノ粒子の成分を計測する計測装置とを具備してなると共に、  Comprising a measuring device for measuring the components of the concentrated nanoparticles,
前記帯電粒子濃縮部が、  The charged particle concentrating part is
細い導入口を有する外筒と、  An outer cylinder having a thin inlet,
該外筒の内部に設けた内筒と、  An inner cylinder provided inside the outer cylinder;
前記外筒の内部に配され、前記ナノ粒子に第1の電場を形成する第1の電極と、  A first electrode disposed inside the outer cylinder and forming a first electric field on the nanoparticles;
前記内筒の入口近傍外周に設けられ、前記第1の電場により集中したナノ粒子をさらに濃縮する第1の電場よりも高い電圧の第2の電場を形成する第2の電極とからなることを特徴とするナノ粒子成分計測装置。  A second electrode that is provided near the inlet of the inner cylinder and that forms a second electric field having a higher voltage than the first electric field for further concentrating the nanoparticles concentrated by the first electric field. A nanoparticle component measuring device.
排ガス中のナノ粒子を計測するナノ粒子成分計測装置であって、A nanoparticle component measuring device for measuring nanoparticles in exhaust gas,
計測ガス中のナノ粒子成分を分級する静電分級器と、  An electrostatic classifier that classifies the nanoparticle components in the measurement gas;
前記静電分級器により帯電したナノ粒子を濃縮する帯電粒子濃縮部と、  A charged particle concentrating unit for concentrating nanoparticles charged by the electrostatic classifier;
前記濃縮したナノ粒子の成分を計測する計測装置とを具備してなると共に、  Comprising a measuring device for measuring the components of the concentrated nanoparticles,
前記帯電粒子濃縮部が、  The charged particle concentrating part is
外筒と、  An outer cylinder,
該外筒の内部に設けた内筒と、  An inner cylinder provided inside the outer cylinder;
前記内筒の入口内部に配され、前記ナノ粒子に第1の電場を形成する網状の第1の電極と、  A net-like first electrode disposed inside the inlet of the inner cylinder and forming a first electric field on the nanoparticles;
前記内筒の入口近傍外周に設けられ、前記第1の電場により集中したナノ粒子をさらに濃縮する第1の電場よりも高い電圧の第2の電場を形成する第2の電極とからなることを特徴とするナノ粒子成分計測装置。  A second electrode that is provided near the inlet of the inner cylinder and that forms a second electric field having a higher voltage than the first electric field for further concentrating the nanoparticles concentrated by the first electric field. A nanoparticle component measuring device.
請求項1乃至3のいずれか一つにおいて、
前記帯電粒子濃縮部の後流側に、1nm以上のナノ粒子を捕集するフィルタと、該フィルタを加熱する加熱装置とを有することを特徴とするナノ粒子成分計測装置。
In any one of Claims 1 thru | or 3 ,
A nanoparticle component measuring device comprising a filter that collects nanoparticles of 1 nm or more and a heating device that heats the filter on the downstream side of the charged particle concentrating unit.
請求項において、
前記フィルタが2以上並列して設けられ、流路を切替えつつナノ粒子を連続して計測してなることを特徴とするナノ粒子成分計測装置。
In claim 4 ,
A nanoparticle component measuring apparatus, wherein two or more filters are provided in parallel, and the nanoparticles are continuously measured while switching the flow path.
請求項において、
前記並列したフィルタを迂回する流路を有し、リアルタイムでナノ粒子を連続して計測してなることを特徴とするナノ粒子成分計測装置。
In claim 5 ,
A nanoparticle component measuring apparatus having a flow path that bypasses the parallel filters and continuously measuring nanoparticles in real time.
請求項4乃至6のいずれか一つのナノ粒子成分計測装置を用いて、排ガス中のナノ粒子を計測するナノ粒子成分計測方法であって、A nanoparticle component measurement method for measuring nanoparticles in exhaust gas using the nanoparticle component measurement device according to any one of claims 4 to 6,
前記帯電粒子濃縮部において、排ガス中のガス成分を相対的に減少させつつナノ粒子を濃縮し、  In the charged particle concentration unit, the nanoparticles are concentrated while relatively reducing the gas component in the exhaust gas,
濃縮したナノ粒子を前記フィルタにより捕集すると共に、捕集したナノ粒子を加熱して気化させ、前記計測装置でナノ粒子の成分を計測することを特徴とするナノ粒子成分計測方法。  A method for measuring a nanoparticle component, comprising collecting the concentrated nanoparticle by the filter, heating and vaporizing the collected nanoparticle, and measuring the component of the nanoparticle with the measuring device.
JP2008069656A 2008-03-18 2008-03-18 Nanoparticle component measuring apparatus and method Expired - Fee Related JP5099551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008069656A JP5099551B2 (en) 2008-03-18 2008-03-18 Nanoparticle component measuring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008069656A JP5099551B2 (en) 2008-03-18 2008-03-18 Nanoparticle component measuring apparatus and method

Publications (2)

Publication Number Publication Date
JP2009222660A JP2009222660A (en) 2009-10-01
JP5099551B2 true JP5099551B2 (en) 2012-12-19

Family

ID=41239591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008069656A Expired - Fee Related JP5099551B2 (en) 2008-03-18 2008-03-18 Nanoparticle component measuring apparatus and method

Country Status (1)

Country Link
JP (1) JP5099551B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5795284B2 (en) * 2012-05-22 2015-10-14 株式会社堀場製作所 Exhaust gas analyzer
KR101605251B1 (en) 2014-07-25 2016-03-22 한국기계연구원 Apparatus for growing heterogeneous nano particle and method for growing heterogeneous nano particle
KR101605252B1 (en) 2014-07-25 2016-03-22 한국기계연구원 Appratus for growing nano particle and mehtod for growing nano particle
JP2017133925A (en) * 2016-01-27 2017-08-03 富士電機株式会社 Particle analyzer
JP6686558B2 (en) * 2016-03-09 2020-04-22 富士電機株式会社 Particle analyzer and particle analysis method
JP6686557B2 (en) * 2016-03-09 2020-04-22 富士電機株式会社 Particle measuring device and particle measuring method
JP6686586B2 (en) * 2016-03-18 2020-04-22 富士電機株式会社 Particle component analyzer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09288052A (en) * 1996-04-24 1997-11-04 Hitachi Ltd Fractionating apparatus
JPH11108832A (en) * 1997-09-30 1999-04-23 Mitsubishi Electric Corp Diagnosis of constitutional material in turbine generator
JP2002367559A (en) * 2001-06-06 2002-12-20 Mitsubishi Heavy Ind Ltd Detection apparatus for organic trace component
JP4178110B2 (en) * 2001-11-07 2008-11-12 株式会社日立ハイテクノロジーズ Mass spectrometer
JP3891902B2 (en) * 2002-08-12 2007-03-14 三菱重工業株式会社 Organic trace component detector
JP2004219250A (en) * 2003-01-15 2004-08-05 Central Res Inst Of Electric Power Ind Method for measuring chemical component in particle
JP3985960B2 (en) * 2003-07-02 2007-10-03 独立行政法人交通安全環境研究所 Fine particle measuring apparatus and measuring method in exhaust gas
JP4442506B2 (en) * 2005-04-27 2010-03-31 株式会社島津製作所 Nano particle classifier
JP4611155B2 (en) * 2005-09-01 2011-01-12 三菱重工業株式会社 Electric mobility classifier and particle component measurement system
JP2007248114A (en) * 2006-03-14 2007-09-27 Hitachi High-Tech Control Systems Corp Gas analyzer

Also Published As

Publication number Publication date
JP2009222660A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5099551B2 (en) Nanoparticle component measuring apparatus and method
Sullivan et al. Recent advances in our understanding of atmospheric chemistry and climate made possible by on-line aerosol analysis instrumentation
Pandey et al. Measurement techniques for mercury species in ambient air
JP5506128B2 (en) Method and apparatus for measuring the number concentration and average diameter of aerosol particles
JP2010513895A (en) Gas pre-concentrator for measuring device
US7208030B2 (en) Suspended particulate analyzer
US8771402B2 (en) Membrane based apparatus for measurement of volatile particles
Li et al. Composition of ultrafine particles in urban Beijing: Measurement using a thermal desorption chemical ionization mass spectrometer
Suriyawong et al. Charged fraction and electrostatic collection of ultrafine and submicrometer particles formed during O2–CO2 coal combustion
Puanngam et al. A cold plasma dielectric barrier discharge atomic emission detector for atmospheric mercury
Aubriet et al. Potential of laser mass spectrometry for the analysis of environmental dust particles—A review
JP4442506B2 (en) Nano particle classifier
JP6495277B2 (en) Method for detecting aerosol and portable ion mobility spectrometer
Švehla et al. Simple approaches to on-line and off-line speciation analysis of mercury in flue gases with detection by atomic absorption spectrometry: A pilot study
Fang et al. Localized collection of airborne analytes: a transport driven approach to improve the response time of existing gas sensor designs
JP2010513898A (en) Detection device
JP2019056602A (en) Device and method for detecting molecules
Badami et al. Design, optimization, and evaluation of a wet electrostatic precipitator (ESP) for aerosol collection
Liang et al. Mercury and other trace elements removal characteristics of DC and pulse-energized electrostatic precipitator
US20200333218A1 (en) Real-time vapour extracting device
Justino et al. Sampling and characterization of nanoaerosols in different environments
Laitinen et al. Carbon clusters in 50 nm urban air aerosol particles quantified by laser desorption–ionization aerosol mass spectrometer
CN109900777B (en) Device for rapidly analyzing gas components of combustion products of materials on line and application
Wang et al. Rapid detection of mercury and iodine using laser breakdown time-of-flight mass spectrometry
Li et al. Aerosol charging using pen-type UV lamps

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5099551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees