JP2004219250A - Method for measuring chemical component in particle - Google Patents

Method for measuring chemical component in particle Download PDF

Info

Publication number
JP2004219250A
JP2004219250A JP2003006945A JP2003006945A JP2004219250A JP 2004219250 A JP2004219250 A JP 2004219250A JP 2003006945 A JP2003006945 A JP 2003006945A JP 2003006945 A JP2003006945 A JP 2003006945A JP 2004219250 A JP2004219250 A JP 2004219250A
Authority
JP
Japan
Prior art keywords
particles
chemical components
chemical
particle size
chemical component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003006945A
Other languages
Japanese (ja)
Inventor
Nobuyuki Tanaka
伸幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2003006945A priority Critical patent/JP2004219250A/en
Publication of JP2004219250A publication Critical patent/JP2004219250A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To detect chemical components contained in nano particles whose amount of existence in the atmosphere and an exhaust gas is extremely small, to accurately identify or determine the quantity of the chemical components to be measured without being affected by coexisting chemical components, and to remarkably simplify complicated pretreatment operation having a possibility that the chemical component of the object to be measured contained in a sample is lost. <P>SOLUTION: In this method, the property that the electric mobility of charged corpuscles depends on particle size, is utilized for electrostatically classifying only particles whose particle size is specific in the sample, the classified particles having the specific particle size are irradiated with laser beams having a specific wavelength corresponding to the excitation energy of the chemical component set to be a measuremt object for selectively exciting only the chemical component to be measured, and is further ionized. The chemical components contained in a particle having a specific particle diameter that is classified is identified or quantified from the time of flight until it reaches a detector 14, and its current. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、粒子中の化学成分測定方法に関する。さらに詳述すると、本発明は試料に含まれる粒子とくにナノ粒子をその他の粒径粒子から分離し、当該粒子に含まれる化学成分を測定するのに好適な粒子中の化学成分測定方法の改良に関する。
【0002】
【従来の技術】
大気中や排ガス中にはさまざまな粒径の粒子が存在している。このうち、粒径1μm未満の微小粒子、特に粒径100nm未満のいわゆるナノ粒子は、主として化石燃料の燃焼に伴い排出される。このうちナノ粒子は、大気中における重量濃度は極めて低いものの、個数濃度は非常に高く、表面積も広い。微小粒子、とりわけナノ粒子は呼吸によって人体に取り込まれたのち、肺胞を通過し、さらに体内深部へと輸送され、最終的に一部は細胞内に侵入し、遺伝子に直接悪影響を及ぼす恐れがある。このように遺伝子に対し直接かつ甚大な影響を及ぼす可能性がある点においてナノ粒子はその他の粒径の粒子とは決定的に異なる。加えて、微小粒子に含まれる化学成分の違いは健康への影響に大きく関係する。それゆえ、粒子に含まれる化学成分を粒径ごとに測定することは健康に対する影響を評価する上で重要となっている。
【0003】
このように粒子に含まれる化学成分を分析する場合は、粒子をその他の粒径粒子から分離した上でそこに含まれる化学成分を分析することが一般的である(例えば、特許文献1,2参照)。粒子をその他の粒径粒子から分離する手法としては例えばインパクタ方式がある(例えば、特許文献3参照)。インパクタ方式により他の粒径粒子から分離した粒子に含まれる化学成分の分析は、例えばガスクロマトグラフ質量分析計を用いて行われる。
【0004】
また、粒子のうち特にナノ粒子に含まれる化学成分を測定するための装置として、静電分級装置と四重極型質量分析計とを接続した装置がある。この装置は、試料に含まれるナノ粒子を静電分級装置により分級し、分級したナノ粒子を四重極型質量分析計に直接導入しイオン化してナノ粒子中の化学成分を測定するものである。
【0005】
【特許文献1】
特開平10−288601号公報
【特許文献2】
特開平10−288602号公報
【特許文献3】
特開平8−327509号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上述したインパクタ方式とガスクロマトグラフ質量分析計とを用いる方法では、ガスクロマトグラフ質量分析計の感度がナノ粒子中に存在する化学成分を測定するほどには高くないことから、大気中や排ガス中の存在量が極めて少ないナノ粒子に含まれる化学成分を検出し測定することが極めて困難であった。
【0007】
また、インパクタ方式を用いる場合には、採取した試料を分析するのに先立ち、抽出、分画などの前処理を施す必要がある。この前処理操作は煩雑で長時間を要する上、試料に含まれる測定対象の化学成分が損失するあるいは対象化学成分の測定を妨害する成分が混入する可能性があった。加えて、インパクタ方式では粒径約30nmを下回るナノ粒子は採取できないという欠点があった。
【0008】
また、静電分級装置と四重極型質量分析計を接続した装置を用いて化学成分を測定する場合には、分級したナノ粒子が四重極型質量分析計に直接導入され、ナノ粒子に含まれる全ての化学成分が同時にイオン化されたのちに検出器に導入される。このため、同時にイオン化された化学成分の化学構造などが類似する場合、共存する化学成分の影響を受けてしまい測定対象とする化学成分の正確な同定や定量ができない可能性が高かった。
【0009】
そこで、本発明は大気中や排ガス中における存在量が極めて少ないナノ粒子に含まれる化学成分を検出することが可能であり、尚かつ共存する化学成分の影響を受けずに測定対象とする化学成分の正確な同定または定量が可能な粒子中の化学成分測定方法を提供することを目的とする。併せて、煩雑である上、試料に含まれる測定対象の化学成分を損失する可能性がある前処理操作を大幅に簡略化した粒子中の化学成分測定方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
かかる目的を達成するため本願の発明者は、ナノ粒子に含まれる全ての化学成分を同時にイオン化させるのではなく特定の化学成分のみを選択的にイオン化する手法の実現を試みた。そして、静電分級技術とレーザーイオン化飛行時間型質量分析技術とに着目した結果、かかる手法が実現されうることを知見するに至った。ここで、「静電分級技術」とは微粒子を帯電させたのちに電気移動度分級器(DMA)により粒径毎に分級する技術を指し、「レーザーイオン化飛行時間型質量分析技術」とは、測定対象の化学成分の励起エネルギーに相当するレーザー光を照射することにより測定対象の化学成分のみを選択的に励起させ更にこれらをイオン化させる技術を指す。また、「電気移動度」は単位電界あたりの粒子の移動速度を指す。
【0011】
本願発明はかかる知見に基づくもので、請求項1記載の粒子中の化学成分測定方法は、帯電微粒子の電気移動度が粒径に依存する性質を利用して試料中における特定粒径の粒子のみを静電分級し、これら分級された特定粒径の粒子に対し測定対象とする化学成分の励起エネルギーに相当する特定波長のレーザー光を照射することにより当該測定対象とする化学成分のみを選択的に励起させ、さらにこれをイオン化させたのち、このイオン化された特定の化学成分が検出器に到達するまでの飛行時間および電流から分級された特定粒径の粒子に含まれる化学成分を同定しまたは定量することを特徴とするものである。
【0012】
通常、粒子に含まれる化学成分に対しては試料採取された後に前処理が施されるため、この前処理過程で試料の損失や外部からの汚染が発生する可能性がある。また、前処理を経て得られる分析用の試料は、その全量が分析装置に導入されるとは限らず、むしろ通常はそのごく一部が導入されるに過ぎない。これに対し、本発明においては、静電分級された粒子を分析装置に直接導入して分析を行うため前処理過程での損失や汚染のおそれがなく、採取した試料を全量分析することができる。したがって前処理を経る場合と比較して相対的に感度が高い。加えて、測定装置(具体的にはレーザーイオン化飛行時間型質量分析装置)自体の感度が一般に高いこと、化学成分のイオン化にあたって測定対象とする化学成分を選択できることが、ナノ粒子中の化学成分分析を可能にしている。したがって、インパクタ方式とガスクロマトグラフ質量分析計とを用いる方法では大気中や排ガス中の存在量が極めて少ないナノ粒子に含まれる化学成分を検出し測定することが極めて困難であったが、この測定方法によればナノ粒子に含まれる化学成分を検出し測定することが可能である。また、この化学成分測定方法は、静電分級方式を用いて特定粒径の粒子を採取することからインパクタ方式では採取が困難であった粒径30nm未満の粒子も容易に採取できる。
【0013】
しかも、この化学成分測定方法によれば、化学成分の測定にレーザーイオン化飛行時間型質量分析技術を用いることにより、分級された特定粒径の粒子に付着する複数の化学成分の中から、測定対象とする化学成分のみを選択的にイオン化して検出器に導入することができる。こうした場合、共存する化学成分の影響を受けることなく、測定対象とする化学成分のみを選択的に同定しまたは定量することが可能となる。
【0014】
加えて、静電分級技術を用いて試料中の特定粒径の粒子を分級し、分級した粒子をレーザーイオン化飛行時間型質量分析技術に直接導入することにより、煩雑かつ長時間を要する上、試料に含まれる測定対象の化学成分を損失する、あるいは対象化学成分の測定を妨害する成分が混入する可能性がある前処理操作を完全に省くことを可能としている。
【0015】
【発明の実施の形態】
以下、本発明の構成を図面に示す実施の形態の一例に基づいて詳細に説明する。
【0016】
図1〜図3に本発明の一実施形態を示す。本実施形態にかかる粒子中の化学成分測定方法は、帯電微粒子の電気移動度が粒径に依存する性質を利用して試料中における特定粒径の粒子のみを静電分級し、これら分級された特定粒径の粒子に対し測定対象とする化学成分の励起エネルギーに相当する特定波長のレーザー光を照射することにより当該測定対象とする化学成分のみを選択的に励起させ、さらにこれをイオン化させたのち、このイオン化された特定の化学成分が検出器14に到達するまでの飛行時間および電流から分級された特定粒径の粒子に含まれる化学成分を同定しまたは定量するものである。なお、測定対象となる化学成分は、粒子そのものが単一な成分となっている場合もあれば、すすのような粒子に付着している場合もある。本発明はいずれの化学成分とも測定することを可能としていることから、本明細書ではこのように状態の異なる場合がある化学成分をまとめて「粒子に含まれる化学成分」と表現している。
【0017】
本実施形態において特定粒径の粒子を静電分級するための装置(以下「静電分極装置」といい、符号1で表す)は、本体となる二重円筒型の粒子分級部2、シースガスボンベ3、シースガスを粒子分級部2の内部に導入する導入管4、試料採取口5、試料を粒子分級部2の外周部に導入するための外周部導入管6、および粒子分級部2を減圧状態に保つためのポンプ7からなる。特に図示していないが、粒子分級部2はさらに試料中の粒子を帯電させる手段、外筒2aと内筒2bとの間に直流電圧を印加する手段を有している。加えて、内筒2bの特定位置には特定粒径粒子のみを通過させるためのスリット8が設けられている(図2参照)。なお、粒子分級部2の後段に図示しない粒子数計測装置を接続してもよい。その場合、ポンプ7はこの粒子数計測装置の後段に接続される。
【0018】
粒子分級部2の後段にはレーザーイオン化飛行時間型質量分析装置9が設けられ、粒子分級部2は導入管17を介してこのレーザーイオン化飛行時間型質量分析装置9のイオン化室10に接続されている。レーザーイオン化飛行時間型質量分析装置9は、イオン化室10、イオン化室10に向けて照射されるレーザー11、イオン化した成分が飛行するフライトチューブ12、イオン化した成分を検出器14に導く反射板13、イオン化した成分を検出する検出器14、装置内部を真空状態に保つためのポンプ15、および検出器14の電気信号を記録する例えばコンピュータ等の記録部16からなる。なお、レーザーイオン化飛行時間型質量分析装置9において、記録部16を除く各部は必要に応じて加熱、保温、冷却機能が備え付けられる。
【0019】
上述した本発明の構成を用いて試料中のナノ粒子に含まれる化学成分を測定する場合の手順を説明する(図3参照)。
【0020】
まず、静電分級装置1の粒子分級部2およびレーザーイオン化飛行時間型質量分析装置9のフライトチューブ12は、要求される真空度を維持するべくそれぞれポンプ7,15によって真空引きされる(ステップ1)。続いて、静電分級装置1においてシースガスを流す(ステップ2)。静電分級装置1の粒子分級部2において、試料中の粒子への帯電、および外筒2aと内筒2b間への直流電圧の印加を行う(ステップ3)。そして静電分級装置1の試料採取口5より試料を吸引し、粒子分級部2に導入する(ステップ4)。理論上、静電分級装置1における分級粒子径は印加電圧に正比例する。したがって、印加電圧を変化させることにより任意の粒径の粒子を取り出すことができる。分級された任意の粒径の粒子は粒子分級部2からレーザーイオン化飛行時間型質量分析装置9のイオン化室10に導入される(ステップ5)。イオン化室10に導かれた粒子に測定対象の化学成分の励起エネルギーに等しいエネルギーのレーザー光を照射し、測定対象の化学成分のみを選択的に励起させる(ステップ6)。励起した化学成分にさらにレーザー光を照射し、イオン化する(ステップ7)。イオン化した化学成分(以下単に「イオン」ともいう)に、ある電圧を与えてフライトチューブ12に押し出す(ステップ8)。これにより、イオン化した化学成分はフライトチューブ12中を等速運動する(ステップ9)。このとき、エネルギー保存則により化学成分イオンの電位ポテンシャルとイオンの運動エネルギーは等しいことから、化学成分イオンの分子量はイオン飛行時間の二乗に比例するとの関係が導かれる(数式1)。つまり、レーザー光照射により発生したイオンは電位差Vにより加速され、等速運動領域つまりフライトチューブ12にて等速運動するのであり、このとき、エネルギー保存則によりイオンの電位ポテンシャルとイオンの運動エネルギーとが等しいことから数式1が成立する。この数式1より、試料の分子量はイオン飛行時間tの二乗に比例することがわかる。
【数1】

Figure 2004219250
なお、数式1において、zはイオン化数、mはイオン質量、Lはフライトチューブ12の長さ、tは飛行時間である。この数式1を用いれば、イオンが検出器14に到達するまでの飛行時間と、化学成分イオンが検出器14に到達することによって計測される電流とから、その化学成分を同定しまたは定量することが可能となる。フライトチューブ12中を等速運動する化学成分は反射板13に衝突したのちに検出器14に到達する(ステップ10)。このときの飛行時間および電流値を記録し、測定対象の化学成分を同定しまたは定量する(ステップ11)。
【0021】
本実施形態で説明したように微量化学成分の分析を行うには測定装置の感度が高いことが不可欠だが、複数の化学成分が混合した状態で前処理を経ないで分析装置に導入される場合にはこれに加えて測定装置が化学成分を選択的に測定する性能を持っている必要がある。本実施形態の場合、これら両方の性質(高い測定感度、化学成分を選択的に測定する性能)を兼ね備えたレーザーイオン化飛行時間型質量分析装置9を採用することにより両方の要求を満足させている。
【0022】
なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、本実施形態では静電分級装置1により分級された粒子は直接レーザーイオン化飛行時間型質量分析装置9のイオン化室10に導入されるが、この間に吸着剤などを挿入し、分級された粒子を濃縮してもよい。一般にナノ粒子の重量濃度自体は非常に低いためそこに含まれる化学成分も極めて少量であるが、このように粒子を濃縮した場合にはその分だけ化学成分の検出を行いやすくなる。また、一度濃縮した粒子(化学成分)を徐々に加熱することにより、沸点の低い成分から順にイオン化室10に導入することができる。こうした場合には、ナノ粒子中の化学成分測定を行うに際しての化学成分の選択性(化学成分の選択のし易さ)がさらに向上する可能性がある。
【0023】
また、測定対象とする化学成分の性質によって、各部分を加熱・保温・冷却することもできる。具体例を示すと、例えばイオン化室10、フライトチューブ12、反射板13、導入管17の各部分を加熱し、保温しあるいは冷却することにより、化学成分の管内壁への吸着、イオン化室10やフライトチューブ12内での揮発・分解・吸着などを制御することが可能となる。
【0024】
さらに、静電分級装置1とレーザーイオン化飛行時間型質量分析装置9の間の導入管17を分岐して、化学成分の一部を粒子数計測装置など種々の計測装置に導入して粒子数を計測することもできる。粒子数を計測すると、化学成分の粒径分布のみならず粒子数濃度も明らかにすることができることから、粒径分布と濃度分布とを比較することにより化学成分がある粒径に特異的に濃縮しているか否かを判断することが可能となる。
【0025】
【発明の効果】
以上の説明より明らかなように、本発明にかかる粒子中の化学成分測定方法によると、存在量が極めて少ないナノ粒子に含まれる化学成分の検出と測定が可能であるだけでなく、試料中の特定粒径の粒子のみを静電分級することからインパクタ方式では採取が困難であった粒径30nm未満の粒子も容易に採取することができる。
【0026】
しかも、レーザーイオン化飛行時間型質量分析技術を用いて化学成分の測定を行うこの化学成分測定方法によれば、分級された特定粒径の粒子に付着する複数の化学成分の中から測定対象とする化学成分のみを選択的にイオン化して検出器に導入することができる。このため、共存する化学成分の影響を受けることなく、測定対象とする化学成分のみを選択的にかつ正確に同定しまたは定量することができる。
【0027】
加えて、静電分級技術を用いて試料中の特定粒径の粒子を分級する本件の化学成分測定方法によれば、抽出、分画などの前処理操作を簡略することが可能となる。
【図面の簡単な説明】
【図1】本発明に係る粒子中の化学成分測定方法の一実施形態を示す図で、静電分極装置とレーザーイオン化飛行時間型質量分析装置の構成の概略を示している。
【図2】静電分級装置の粒子分級部の部分拡大図である。
【図3】試料中のナノ粒子に含まれる化学成分を測定する場合の手順を説明するチャートである。
【符号の説明】
14 検出器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring a chemical component in particles. More specifically, the present invention relates to an improvement in a method for measuring chemical components in particles, which is suitable for separating particles contained in a sample, particularly nanoparticles, from other particles, and measuring the chemical components contained in the particles. .
[0002]
[Prior art]
Particles of various particle sizes exist in the atmosphere and exhaust gas. Among them, fine particles having a particle size of less than 1 μm, particularly so-called nanoparticles having a particle size of less than 100 nm, are mainly emitted as fossil fuels burn. Of these, nanoparticles have a very low weight concentration in the atmosphere, but a very high number concentration and a large surface area. Microparticles, especially nanoparticles, are taken into the human body by respiration, pass through the alveoli, and are transported deep into the body, eventually penetrating some cells and potentially directly affecting genes. is there. Nanoparticles are critically different from particles of other sizes in that they can have a direct and profound effect on genes. In addition, differences in the chemical components contained in the microparticles are significantly related to health effects. Therefore, measuring the chemical components contained in the particles for each particle size has become important in evaluating the effect on health.
[0003]
When analyzing the chemical components contained in the particles as described above, it is common to separate the particles from the other particle size particles and then analyze the chemical components contained therein (for example, Patent Documents 1 and 2). reference). As a method for separating particles from other particle size particles, for example, there is an impactor method (for example, see Patent Document 3). The analysis of the chemical components contained in the particles separated from the other particle size particles by the impactor method is performed using, for example, a gas chromatograph mass spectrometer.
[0004]
In addition, as an apparatus for measuring a chemical component contained in nanoparticles among particles in particular, there is an apparatus in which an electrostatic classifier and a quadrupole mass spectrometer are connected. This device classifies nanoparticles contained in a sample with an electrostatic classifier, directly introduces the classified nanoparticles into a quadrupole mass spectrometer, ionizes them, and measures the chemical components in the nanoparticles. .
[0005]
[Patent Document 1]
JP-A-10-288601 [Patent Document 2]
JP-A-10-288602 [Patent Document 3]
JP-A-8-327509
[Problems to be solved by the invention]
However, in the method using the impactor method and the gas chromatograph mass spectrometer described above, the sensitivity of the gas chromatograph mass spectrometer is not high enough to measure the chemical components present in the nanoparticles, so that the gas chromatograph mass It has been extremely difficult to detect and measure the chemical components contained in the nanoparticles having a very low abundance.
[0007]
When the impactor method is used, it is necessary to perform preprocessing such as extraction and fractionation before analyzing the collected sample. This pretreatment operation is complicated and takes a long time, and there is a possibility that a chemical component to be measured contained in the sample is lost or a component that interferes with the measurement of the target chemical component is mixed. In addition, the impactor method has a drawback that nanoparticles having a particle size of less than about 30 nm cannot be collected.
[0008]
Also, when measuring chemical components using a device that connects an electrostatic classifier and a quadrupole mass spectrometer, the classified nanoparticles are directly introduced into the quadrupole mass spectrometer and All contained chemical components are introduced into the detector after being ionized simultaneously. For this reason, when the chemical structures of the chemical components ionized at the same time are similar, it is highly likely that the chemical components to be measured cannot be accurately identified or quantified because of the influence of the coexisting chemical components.
[0009]
Therefore, the present invention is capable of detecting chemical components contained in nanoparticles having a very small abundance in the atmosphere or exhaust gas, and furthermore, the chemical components to be measured without being affected by the coexisting chemical components. It is an object of the present invention to provide a method for measuring a chemical component in a particle, which enables accurate identification or quantification of a compound. In addition, it is another object of the present invention to provide a method for measuring chemical components in particles, which is complicated and greatly simplifies a pretreatment operation that may cause loss of a chemical component to be measured contained in a sample.
[0010]
[Means for Solving the Problems]
In order to achieve such an object, the inventor of the present application has attempted to realize a technique of selectively ionizing only specific chemical components instead of simultaneously ionizing all chemical components contained in the nanoparticles. Then, as a result of paying attention to the electrostatic classification technology and the laser ionization time-of-flight mass spectrometry technology, it has been found that such a method can be realized. Here, “electrostatic classification technology” refers to a technology in which fine particles are charged and then classified for each particle size by an electric mobility classifier (DMA), and “laser ionization time-of-flight mass spectrometry technology” It refers to a technique of irradiating a laser beam corresponding to the excitation energy of a chemical component to be measured to selectively excite only the chemical component to be measured and further ionizing them. “Electric mobility” refers to the moving speed of particles per unit electric field.
[0011]
The present invention is based on such knowledge, and the method for measuring a chemical component in particles according to claim 1 uses the property that the electric mobility of the charged fine particles depends on the particle size. Is electrostatically classified, and by selectively irradiating a laser beam having a specific wavelength corresponding to the excitation energy of the chemical component to be measured to the classified particles having a specific particle size, only the chemical component to be measured is selectively obtained. And then ionize it, and then identify the chemical components contained in the particles of a specific particle size classified from the time of flight and the current until the specific ionized chemical components reach the detector, or It is characterized by quantification.
[0012]
Usually, the chemical components contained in the particles are subjected to pretreatment after the sample is collected, and thus there is a possibility that loss of the sample or contamination from outside occurs during the pretreatment process. Further, the whole amount of the sample for analysis obtained through the pretreatment is not always introduced into the analyzer, but usually only a small part is introduced. In contrast, in the present invention, since the electrostatically classified particles are directly introduced into the analyzer for analysis, there is no risk of loss or contamination in the pretreatment process, and the entire amount of the collected sample can be analyzed. . Therefore, the sensitivity is relatively high as compared with the case where the pre-processing is performed. In addition, the fact that the measuring device (specifically, a laser ionization time-of-flight mass spectrometer) itself has high sensitivity in general and the ability to select the chemical component to be measured in the ionization of the chemical component is important for the analysis of chemical components in nanoparticles. Is possible. Therefore, in the method using the impactor method and the gas chromatograph mass spectrometer, it was extremely difficult to detect and measure the chemical components contained in the nanoparticles having a very small abundance in the atmosphere and exhaust gas. According to this, it is possible to detect and measure the chemical components contained in the nanoparticles. In this chemical component measuring method, particles having a specific particle size are collected by using an electrostatic classification method, so that particles having a particle size of less than 30 nm, which were difficult to collect by an impactor method, can be easily collected.
[0013]
In addition, according to this method for measuring chemical components, by using laser ionization time-of-flight mass spectrometry technology for the measurement of chemical components, the target of measurement can be selected from a plurality of chemical components attached to the classified particles having a specific particle size. Can be selectively ionized and introduced into the detector. In such a case, only the chemical component to be measured can be selectively identified or quantified without being affected by the coexisting chemical component.
[0014]
In addition, by classifying particles of a specific particle size in a sample using electrostatic classification technology, and directly introducing the classified particles to laser ionization time-of-flight mass spectrometry technology, the sample is complicated and takes a long time. It is possible to completely eliminate a pretreatment operation in which there is a possibility that a chemical component of the measurement target contained in the sample may be lost or a component that interferes with measurement of the target chemical component may be mixed.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the configuration of the present invention will be described in detail based on an example of an embodiment shown in the drawings.
[0016]
1 to 3 show one embodiment of the present invention. The method for measuring the chemical component in particles according to the present embodiment is to classify only particles having a specific particle size in a sample by using the property that the electric mobility of the charged fine particles depends on the particle size, and to classify the particles. By irradiating a laser beam of a specific wavelength corresponding to the excitation energy of the chemical component to be measured to particles of a specific particle size, only the chemical component to be measured was selectively excited and further ionized. Thereafter, the chemical components contained in the particles having the specific particle size classified based on the flight time and the electric current until the specific ionized chemical components reach the detector 14 are identified or quantified. The chemical component to be measured may be a single component of the particles themselves, or may be attached to particles such as soot. Since the present invention makes it possible to measure any of the chemical components, in this specification, the chemical components that may have different states are collectively expressed as "chemical components contained in particles".
[0017]
In the present embodiment, a device for electrostatic classification of particles having a specific particle size (hereinafter, referred to as an “electrostatic polarization device” and denoted by reference numeral 1) is a double cylindrical particle classification unit 2 serving as a main body, and a sheath gas cylinder. 3. Introducing tube 4, which introduces sheath gas into particle classification unit 2, sample collection port 5, outer peripheral introduction tube 6 for introducing a sample to the outer periphery of particle classification unit 2, and pressure reducing state of particle classification unit 2 Pump 7 for maintaining the pressure. Although not particularly shown, the particle classifying section 2 further has a means for charging particles in the sample and a means for applying a DC voltage between the outer cylinder 2a and the inner cylinder 2b. In addition, a slit 8 is provided at a specific position of the inner cylinder 2b to allow only particles of a specific particle size to pass therethrough (see FIG. 2). Note that a particle number measuring device (not shown) may be connected to the subsequent stage of the particle classification section 2. In that case, the pump 7 is connected to the subsequent stage of the particle counting device.
[0018]
A laser ionization time-of-flight mass spectrometer 9 is provided at the subsequent stage of the particle classifier 2, and the particle classifier 2 is connected to the ionization chamber 10 of the laser ionization time-of-flight mass spectrometer 9 via the introduction pipe 17. I have. The laser ionization time-of-flight mass spectrometer 9 includes an ionization chamber 10, a laser 11 radiated toward the ionization chamber 10, a flight tube 12 in which the ionized component flies, a reflector 13 for guiding the ionized component to a detector 14, It comprises a detector 14 for detecting ionized components, a pump 15 for keeping the inside of the apparatus in a vacuum state, and a recording unit 16 such as a computer for recording electric signals of the detector 14. In the laser ionization time-of-flight mass spectrometer 9, each part except the recording part 16 is provided with a heating, warming and cooling function as needed.
[0019]
A procedure for measuring a chemical component contained in a nanoparticle in a sample using the above-described configuration of the present invention will be described (see FIG. 3).
[0020]
First, the particle classifier 2 of the electrostatic classifier 1 and the flight tube 12 of the laser ionization time-of-flight mass spectrometer 9 are evacuated by the pumps 7 and 15 to maintain the required degree of vacuum (step 1). ). Subsequently, a sheath gas is flown in the electrostatic classification device 1 (Step 2). In the particle classification section 2 of the electrostatic classification device 1, charging of particles in the sample and application of a DC voltage between the outer cylinder 2a and the inner cylinder 2b are performed (Step 3). Then, the sample is sucked from the sample collection port 5 of the electrostatic classification device 1 and introduced into the particle classification section 2 (Step 4). Theoretically, the classification particle diameter in the electrostatic classification device 1 is directly proportional to the applied voltage. Therefore, particles having an arbitrary particle size can be taken out by changing the applied voltage. The classified particles having an arbitrary particle diameter are introduced into the ionization chamber 10 of the laser ionization time-of-flight mass spectrometer 9 from the particle classification section 2 (step 5). The particles guided to the ionization chamber 10 are irradiated with a laser beam having energy equal to the excitation energy of the chemical component to be measured to selectively excite only the chemical component to be measured (step 6). The excited chemical components are further irradiated with laser light to be ionized (step 7). A certain voltage is applied to the ionized chemical component (hereinafter, also simply referred to as “ion”) and pushed out to the flight tube 12 (step 8). Thereby, the ionized chemical component moves at a constant speed in the flight tube 12 (step 9). At this time, since the potential potential of the chemical component ion is equal to the kinetic energy of the ion according to the law of conservation of energy, a relationship is derived that the molecular weight of the chemical component ion is proportional to the square of the ion flight time (Equation 1). That is, the ions generated by the laser beam irradiation are accelerated by the potential difference V and move at a constant speed in the constant-velocity region, that is, in the flight tube 12. At this time, the potential potential of the ions and the kinetic energy of the ions are determined by the energy conservation law. Are equal to each other, Equation 1 is established. It can be seen from Equation 1 that the molecular weight of the sample is proportional to the square of the ion flight time t.
(Equation 1)
Figure 2004219250
In Equation 1, z is the ionization number, m is the ion mass, L is the length of the flight tube 12, and t is the flight time. Using this equation 1, it is possible to identify or quantify the chemical component from the time of flight until the ion reaches the detector 14 and the current measured when the chemical component ion reaches the detector 14. Becomes possible. The chemical component moving at a constant speed in the flight tube 12 reaches the detector 14 after colliding with the reflector 13 (step 10). At this time, the flight time and the current value are recorded, and the chemical component to be measured is identified or quantified (step 11).
[0021]
As described in this embodiment, it is indispensable that the sensitivity of the measuring device is high in order to analyze a trace amount of a chemical component, but when the chemical component is introduced into the analyzer without a pretreatment in a mixed state. In addition to this, it is necessary that the measuring device has a capability of selectively measuring a chemical component. In the case of the present embodiment, both requirements are satisfied by employing the laser ionization time-of-flight mass spectrometer 9 having both of these properties (high measurement sensitivity and performance of selectively measuring chemical components). .
[0022]
The above embodiment is an example of a preferred embodiment of the present invention, but the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention. For example, in the present embodiment, the particles classified by the electrostatic classification device 1 are directly introduced into the ionization chamber 10 of the laser ionization time-of-flight mass spectrometer 9, and an adsorbent or the like is inserted between the particles to classify the classified particles. May be concentrated. In general, since the weight concentration of nanoparticles is very low, the chemical components contained therein are also very small. However, when the particles are concentrated in this way, it becomes easier to detect the chemical components accordingly. Further, by gradually heating the particles (chemical components) once concentrated, the particles (chemical components) can be introduced into the ionization chamber 10 in order from the component having the lowest boiling point. In such a case, there is a possibility that the selectivity of the chemical components (easiness of selecting the chemical components) when measuring the chemical components in the nanoparticles may be further improved.
[0023]
Further, depending on the nature of the chemical component to be measured, each part can be heated, kept warm, and cooled. As a specific example, for example, by heating, keeping or cooling each part of the ionization chamber 10, the flight tube 12, the reflection plate 13, and the introduction pipe 17, the adsorption of the chemical component to the inner wall of the pipe, the ionization chamber 10 It is possible to control volatilization, decomposition, adsorption, and the like in the flight tube 12.
[0024]
Further, the introduction pipe 17 between the electrostatic classification device 1 and the laser ionization time-of-flight mass spectrometer 9 is branched, and a part of the chemical components is introduced into various measuring devices such as a particle counting device to reduce the number of particles. It can also be measured. By measuring the number of particles, it is possible to clarify not only the particle size distribution of the chemical component but also the particle number concentration, so by comparing the particle size distribution and the concentration distribution, the chemical component is specifically concentrated to a certain particle size. It is possible to determine whether or not it is.
[0025]
【The invention's effect】
As is clear from the above description, according to the method for measuring a chemical component in particles according to the present invention, not only can the detection and measurement of the chemical component contained in the nanoparticle having an extremely small abundance be possible, but also in the sample. Since only particles having a specific particle size are electrostatically classified, particles having a particle size of less than 30 nm, which were difficult to collect by the impactor method, can be easily collected.
[0026]
In addition, according to this chemical component measuring method of measuring chemical components using laser ionization time-of-flight mass spectrometry technology, a target to be measured is selected from a plurality of chemical components attached to the classified particles having a specific particle size. Only the chemical components can be selectively ionized and introduced into the detector. Therefore, only the chemical component to be measured can be selectively and accurately identified or quantified without being affected by the coexisting chemical component.
[0027]
In addition, according to the chemical component measuring method of the present invention in which particles having a specific particle size in a sample are classified by using an electrostatic classification technology, it is possible to simplify pretreatment operations such as extraction and fractionation.
[Brief description of the drawings]
FIG. 1 is a view showing one embodiment of a method for measuring a chemical component in particles according to the present invention, and schematically shows the configurations of an electrostatic polarizer and a laser ionization time-of-flight mass spectrometer.
FIG. 2 is a partially enlarged view of a particle classification section of the electrostatic classification device.
FIG. 3 is a chart illustrating a procedure for measuring a chemical component contained in nanoparticles in a sample.
[Explanation of symbols]
14 Detector

Claims (1)

帯電微粒子の電気移動度が粒径に依存する性質を利用して試料中における特定粒径の粒子のみを静電分級し、これら分級された特定粒径の粒子に対し測定対象とする化学成分の励起エネルギーに相当する特定波長のレーザー光を照射することにより当該測定対象とする化学成分のみを選択的に励起させ、さらにこれをイオン化させたのち、このイオン化された特定の化学成分が検出器に到達するまでの飛行時間および電流から前記分級された特定粒径の粒子に含まれる化学成分を同定しまたは定量することを特徴とする粒子中の化学成分測定方法。Utilizing the property that the electric mobility of the charged fine particles depends on the particle size, only the particles having a specific particle size in the sample are electrostatically classified, and the classified chemical particles having the specific particle size are subjected to measurement. By irradiating a laser beam of a specific wavelength corresponding to the excitation energy, only the chemical component to be measured is selectively excited, and further ionized, and then the ionized specific chemical component is transmitted to the detector. A method for measuring chemical components in particles, characterized by identifying or quantifying the chemical components contained in the classified particles having the specific particle diameter based on the flight time and electric current until arrival.
JP2003006945A 2003-01-15 2003-01-15 Method for measuring chemical component in particle Pending JP2004219250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006945A JP2004219250A (en) 2003-01-15 2003-01-15 Method for measuring chemical component in particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003006945A JP2004219250A (en) 2003-01-15 2003-01-15 Method for measuring chemical component in particle

Publications (1)

Publication Number Publication Date
JP2004219250A true JP2004219250A (en) 2004-08-05

Family

ID=32897176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006945A Pending JP2004219250A (en) 2003-01-15 2003-01-15 Method for measuring chemical component in particle

Country Status (1)

Country Link
JP (1) JP2004219250A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111756A (en) * 2006-10-31 2008-05-15 Mitsubishi Heavy Ind Ltd Fine particle component analyzer
JP2008111757A (en) * 2006-10-31 2008-05-15 Mitsubishi Heavy Ind Ltd Fine particle component analyzer
JP2009222660A (en) * 2008-03-18 2009-10-01 Central Res Inst Of Electric Power Ind Nanoparticle component measuring device
JP2009222659A (en) * 2008-03-18 2009-10-01 Central Res Inst Of Electric Power Ind Nanoparticle component measuring device and abnormality determining method and calibration method of nanoparticle component measuring device
KR101093715B1 (en) 2010-02-17 2011-12-19 한국기계연구원 Nano or micro particle dispersion?adhesion apparatus and method
CZ303756B6 (en) * 2010-12-08 2013-04-24 Technická univerzita v Liberci Method of and apparatus for measuring concentration of particles in exhaust gases
CN104897580A (en) * 2014-03-04 2015-09-09 刘学峰 Optical system and optical method for detecting atmospheric components through non-intuitive imaging

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111756A (en) * 2006-10-31 2008-05-15 Mitsubishi Heavy Ind Ltd Fine particle component analyzer
JP2008111757A (en) * 2006-10-31 2008-05-15 Mitsubishi Heavy Ind Ltd Fine particle component analyzer
JP2009222660A (en) * 2008-03-18 2009-10-01 Central Res Inst Of Electric Power Ind Nanoparticle component measuring device
JP2009222659A (en) * 2008-03-18 2009-10-01 Central Res Inst Of Electric Power Ind Nanoparticle component measuring device and abnormality determining method and calibration method of nanoparticle component measuring device
KR101093715B1 (en) 2010-02-17 2011-12-19 한국기계연구원 Nano or micro particle dispersion?adhesion apparatus and method
CZ303756B6 (en) * 2010-12-08 2013-04-24 Technická univerzita v Liberci Method of and apparatus for measuring concentration of particles in exhaust gases
CN104897580A (en) * 2014-03-04 2015-09-09 刘学峰 Optical system and optical method for detecting atmospheric components through non-intuitive imaging
CN104897580B (en) * 2014-03-04 2017-12-15 刘学峰 A kind of optical system and method for non-intuitive image checking Atmospheric components

Similar Documents

Publication Publication Date Title
US8134122B2 (en) Multi-modal particle detector
EP2176640B1 (en) Method and apparatus for real-time analysis of chemical, biological and explosive substances in the air
EP2402743A1 (en) Ion trap mobility spectrometer
US20140048699A1 (en) Method and system for simultaneously finding and measuring multiple analytes from complex samples
US20080309919A1 (en) Method and apparatus for sorting and analyzing particles in an aerosol with redundant particle analysis
US20110057096A1 (en) Method and apparatus to accurately discriminate gas phase ions with several filtering devices in tandem
US7838825B2 (en) Method and apparatus for incorporating electrostatic concentrators and/or ion mobility separators with Raman, IR, UV, XRF, LIF and LIBS spectroscopy and/or other spectroscopic techniques
US20220252545A1 (en) Methods and systems for detecting aerosol particles without using complex organic maldi matrices
JP6113908B2 (en) Molecular detection apparatus and method
KR101936838B1 (en) System, devices, and methods for sample analysis using mass spectrometry
US20050133710A1 (en) Method and apparatus for ion mobility spectrometry
CN106807941B (en) A kind of noble metal core-shell structure nanometer particle and its preparation and application
US8426808B2 (en) Method of mass spectrometry
JP2004219250A (en) Method for measuring chemical component in particle
US10811240B2 (en) Apparatus and method for analysing a chemical composition of aerosol particles
WO2014141994A1 (en) Particle analyzing method and particle analyzing device
Kong et al. The nano-scanning electrical mobility spectrometer (nSEMS) and its application to size distribution measurements of 1.5–25 nm particles
US7852469B1 (en) Particle detector
JP2008070187A (en) Mass spectrometry utilizing ionization by surface plasmon
Kleefsman et al. Bioaerosol analysis by single particle mass spectrometry
Frank et al. Single-particle aerosol mass spectrometry (SPAMS) for high-throughput and rapid analysis of biological aerosols and single cells
US20200341004A1 (en) Mass spectrometry methods for carcinoma assessments
US10529549B2 (en) Method for analyzing optical isomers using circularly polarized light and ion mobility analyzer
WO2023282061A1 (en) Microorganism mass spectrometry method
Bernius et al. Application of reversal electron attachment for ultrasensitive detection of thermal electron-attaching molecules: carbon tetrachloride and nitrobenzene

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041022

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A977 Report on retrieval

Effective date: 20090225

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090304

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090701