JP4611155B2 - Electric mobility classifier and particle component measurement system - Google Patents

Electric mobility classifier and particle component measurement system Download PDF

Info

Publication number
JP4611155B2
JP4611155B2 JP2005254044A JP2005254044A JP4611155B2 JP 4611155 B2 JP4611155 B2 JP 4611155B2 JP 2005254044 A JP2005254044 A JP 2005254044A JP 2005254044 A JP2005254044 A JP 2005254044A JP 4611155 B2 JP4611155 B2 JP 4611155B2
Authority
JP
Japan
Prior art keywords
electric mobility
classification
fine particles
classifying
classifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005254044A
Other languages
Japanese (ja)
Other versions
JP2007064893A (en
Inventor
祥啓 出口
伸幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Mitsubishi Heavy Industries Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Mitsubishi Heavy Industries Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP2005254044A priority Critical patent/JP4611155B2/en
Publication of JP2007064893A publication Critical patent/JP2007064893A/en
Application granted granted Critical
Publication of JP4611155B2 publication Critical patent/JP4611155B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明はガス中の微量元素成分を計測する電気移動度分級装置及び微粒子成分の計測システムに関する。   The present invention relates to an electric mobility classifier for measuring trace element components in a gas and a measurement system for fine particle components.

近年、半導体製造プロセスにおける粒子汚染の抑制、大気中における酸性雨やスモッグ等の発生機構の解明、および量子ナノ(nano)材料の開発等に関連して、大気等の雰囲気中に浮遊する粉塵やミスト等の微粒子が注目を集めている。
この微粒子成分の分析装置としては、質量分析装置等、測定試料である粒子状物質をイオン化させたのちに分析を行うものがある。このような質量分析装置としては、例えば、後記の特許文献1に記載されているような、飛行時間型質量分析計(TOFMS:Time−of−flight mass spectrometry)が知られている。
ところで、微粒子は量的に極微量なため、採取したガスを濃縮した後に化学分析により分析を行っているのが、微粒子の粒径毎に分級する必要があり、従来では微粒子に電荷をかけて、帯電した微粒子を電気移動度の違いを利用して粒径毎に分級して取り出す電気移動度分級装置が知られている(詳細については例えば非特許文献1参照)。
In recent years, in relation to the suppression of particle contamination in semiconductor manufacturing processes, the elucidation of the generation mechanism of acid rain and smog in the atmosphere, and the development of quantum nano materials, etc. Mist and other fine particles are attracting attention.
As an analysis apparatus for the fine particle component, there is an apparatus such as a mass spectrometer that performs analysis after ionizing a particulate material as a measurement sample. As such a mass spectrometer, a time-of-flight mass spectrometer (TOFMS: Time-of-flight mass spectrometry) as described in Patent Document 1 described below is known, for example.
By the way, since the fine particles are very small in quantity, the collected gas is concentrated and analyzed by chemical analysis. It is necessary to classify the fine particles according to the particle size of the fine particles. Conventionally, the fine particles are charged. There is known an electric mobility classifying device that classifies charged fine particles for each particle size by utilizing the difference in electric mobility (for example, refer to Non-Patent Document 1 for details).

この電気移動度分級装置を用いた粒子数の計測及び質量分析のシステムを図10に示す。図10に示すように、従来の計測システム100では、計測ガス101中の微粒子を帯電させる荷電装置102と、電荷が付与された後の荷電微粒子103を電気移動度の違いを利用して粒径毎に分級して取り出す電気移動度分級装置104と、該電気移動度分級装置104で分級した後の所定粒径の分級粒子103aの粒子数を計測する粒子数計測装置105と、所定粒径の微粒子をイオン化させたのちに分析を行う質量分析装置106とを具備するものである(特許文献1)。   FIG. 10 shows a particle number measurement and mass spectrometry system using this electric mobility classifier. As shown in FIG. 10, in the conventional measurement system 100, the particle size of the charging device 102 for charging the fine particles in the measurement gas 101 and the charged fine particles 103 after the charge is applied are determined using the difference in electric mobility. An electric mobility classifying device 104 classified and taken out every time, a particle number measuring device 105 for measuring the number of classified particles 103a having a predetermined particle size after classification by the electric mobility classifying device 104, and a predetermined particle size And a mass spectrometer 106 that performs analysis after ionizing fine particles (Patent Document 1).

図11に前記電気移動度分級装置の一例を示す。図11に示すように、電気移動度分級装置104は、帯電した荷電微粒子103を導入する分級装置本体112内に配設され、所定粒径の微粒子を分級粒子103aとして排出する環状スリット113を有すると共に高電圧源114に接続されてなるロッド115と、前記分級装置本体112内を循環するシースガス116と、分級された分級粒子103aを排出する分級管117とから構成されており、ここで分級された所定粒径の分級粒子103aを前述した粒子数計測装置105及び質量分析装置106に供給して分析している。   FIG. 11 shows an example of the electric mobility classifier. As shown in FIG. 11, the electric mobility classifier 104 is disposed in a classifier main body 112 for introducing charged charged fine particles 103, and has an annular slit 113 for discharging fine particles having a predetermined particle size as classified particles 103a. And a rod 115 connected to a high voltage source 114, a sheath gas 116 that circulates in the classification device main body 112, and a classification tube 117 that discharges the classified particles 103a. The classified particles 103a having a predetermined particle diameter are supplied to the particle number measuring device 105 and the mass spectrometer 106 described above for analysis.

特開平10−288602号公報JP-A-10-288602 E.O.Knutson and K.T.Whitby: “Aerosol Classification by Electric Mobility: Apparatus, Theory, and Applications”, J.Aerosol Sci. , 1975,Vol.6,pp.443−451E.O.Knutson and KT Whitby: “Aerosol Classification by Electric Mobility: Apparatus, Theory, and Applications”, J. Aerosol Sci., 1975 p.

しかしながら、図11に示すように、前記電気移動度分級装置104を用いて分級する際に、帯電された粒子の細かな微粒子が分級装置本体110内に配設されるロッド115に付着成分120として付着するという問題がある。この結果、該付着成分120からの気化したガス成分が不純物として、後流側における質量分析装置106に混入し、その成分評価の信頼性が低下するという問題がある。すなわち、付着成分120由来の揮発性成分が混入する結果、分析対象である分級粒子そのものに付着又は含有されている純粋な化学成分の同定及び定量が困難であるという問題がある。   However, as shown in FIG. 11, when classification is performed using the electric mobility classifier 104, fine particles of charged particles are attached to the rod 115 disposed in the classifier main body 110 as an adhesion component 120. There is a problem of sticking. As a result, there is a problem that the vaporized gas component from the adhering component 120 is mixed as an impurity into the mass spectrometer 106 on the downstream side, and the reliability of the component evaluation is lowered. That is, there is a problem that it is difficult to identify and quantify a pure chemical component adhering to or contained in the classified particles as an analysis target as a result of mixing of the volatile component derived from the adhering component 120.

よって、雰囲気中に浮遊する微粒子に付着又は含有されている化学成分のみを連続してしかも高感度で計測できる装置が望まれている。   Therefore, there is a demand for an apparatus that can continuously and highly sensitively measure only chemical components attached to or contained in fine particles floating in the atmosphere.

本発明は、このような事情に鑑みてなされたものであって、微粒子に付着又は含有する化学成分のみの分析を良好に行うことができる電気移動度分級装置及び微粒子成分の計測システムを提供することを課題とする。   The present invention has been made in view of such circumstances, and provides an electric mobility classification device and a fine particle component measurement system that can satisfactorily analyze only chemical components attached to or contained in fine particles. This is the issue.

上述した課題を解決するための本発明の第1の発明は、帯電した微粒子を電気移動度に応じて粒径毎に分級する電気移動度分級装置であって、帯電した微粒子を導入する第1の分級装置本体内に配設され、所定粒径の微粒子を排出する第1のスリットを有すると共に第1の高電圧源に接続されてなる第1のロッドと、第1の分級装置本体内を循環するシースガスと、分級された微粒子を排出する第1の分級管と、前記第1の分級管内に配設され、所定粒径の微粒子を排出すると共に第2の高電圧源に接続されてなる第2のスリットを有する第2のロッドと、分級された微粒子を排出する第2の分級管と、を具備することを特徴とする電気移動度分級装置にある。 A first invention of the present invention for solving the above-mentioned problem is an electric mobility classification device for classifying charged fine particles for each particle diameter according to the electric mobility, wherein the first introduces charged fine particles. A first rod disposed in the classifier main body, having a first slit for discharging fine particles having a predetermined particle diameter and connected to the first high voltage source, and the first classifier main body. Circulating sheath gas, a first classification tube for discharging classified fine particles, and a first classification tube disposed in the first classification tube for discharging fine particles having a predetermined particle diameter and connected to a second high voltage source. An electric mobility classification device comprising: a second rod having a second slit; and a second classification tube for discharging classified fine particles.

の発明は、第の発明において、第1又は第2の分級管の中心に第3の高電圧源に接続されてなる内筒を有することを特徴とする電気移動度分級装置にある。 The second aspect, in the first aspect, in the electric mobility classifier apparatus characterized by having an inner tube which in the center of the first or second classification tubes which are connected to the third high voltage source .

の発明は、第1又は2の発明において、前記微粒子成分は、ガス中の粒径が100nm以下のナノ粒子であることを特徴とする電気移動度分級装置にある。 According to a third aspect of the present invention, in the first or second aspect of the invention, the fine particle component is a nanoparticle having a particle size in a gas of 100 nm or less.

の発明は、第1乃至第のいずれか一つの電気移動度分級装置と、前記電気移動度分級装置から分級された微粒子の化学成分を分析する微粒子成分計測装置とを具備することを特徴とする微粒子成分の計測システムにある。 A fourth invention comprises any one of the first to third electric mobility classifiers and a fine particle component measuring device for analyzing chemical components of the fine particles classified from the electric mobility classifier. in the measurement system of the fine particle component shall be the features.

本発明の電気移動度分級装置によれば、分級する際における付着成分由来の気化物の影響を排除することができる。そして、この電気移動度分級装置を用いることにより、微粒子由来の揮発性有機化合物の分析が可能となる。   According to the electric mobility classification device of the present invention, it is possible to eliminate the influence of the vaporized material derived from the adhering component during classification. By using this electric mobility classifier, it is possible to analyze volatile organic compounds derived from fine particles.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

本発明による実施例1に係る電気移動度分級装置について、図面を参照して説明する。
図1は、実施例1に係る電気移動度分級装置を示す概略図である。図1に示すように、実施例1に係る電気移動度分級装置10Aは、図示しない荷電装置により電荷が付与された荷電微粒子11を含む測定ガス12中の当該荷電微粒子11を電気移動度に応じて粒径毎に分級する電気移動度分級装置であって、前記荷電微粒子11を導入する第1の分級装置本体13−1内に配設され、所定粒径の分級粒子11aを排出する第1の環状スリット14−1を有すると共に第1の高電圧源15−1に接続されてなる第1のロッド16−1と、第1の分級装置本体13−1内を循環するシースガス17と、分級された分級粒子11aを排出する第1の分級管18−1とからなる第1の電気移動度分級部19−1と、第1の電気移動度分級部19−1の第1の分級管18−1から連通管20を介して供給された分級粒子11aを導入する第2の分級装置本体13−2内に配設され、所定粒径の微粒子を排出する第2の環状スリット14−2を有すると共に高電圧源15−2に接続されてなる第2のロッド16−2と、第2の分級装置本体13−2内を循環するシースガス17と、分級された分級粒子11aを排出する第2の分級管18−2とからなる第2の電気移動度分級部19−2と、を具備するものである。
An electric mobility classification device according to a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram illustrating an electric mobility classification device according to a first embodiment. As illustrated in FIG. 1, the electric mobility classification device 10A according to the first embodiment applies the charged fine particles 11 in the measurement gas 12 including the charged fine particles 11 to which charges are applied by a charging device (not illustrated) according to the electric mobility. An electric mobility classifier that classifies the particles for each particle size, and is disposed in the first classifier main body 13-1 for introducing the charged fine particles 11, and discharges the classified particles 11a having a predetermined particle size. A first rod 16-1 having an annular slit 14-1 and connected to the first high voltage source 15-1, a sheath gas 17 circulating in the first classifier main body 13-1, and classification The first electric mobility classifying unit 19-1 including the first classifying tube 18-1 for discharging the classified particles 11a, and the first classifying tube 18 of the first electric mobility classifying unit 19-1. -1 through the communication pipe 20 for classification The second classifier main body 13-2 for introducing 11a has a second annular slit 14-2 for discharging fine particles having a predetermined particle diameter and is connected to a high voltage source 15-2. Second rod 16-2, a sheath gas 17 circulating in the second classifier main body 13-2, and a second classifying tube 18-2 for discharging the classified particles 11a. And a degree classification unit 19-2.

また、本実施例では環状スリットを用いて分級しているが、スリット形状は特に限定されるものではない。
また、本実施例では連通管20で第1の電気移動度分級部19−1と第2の電気移動度分級部19−2とを連結しているが、第1の分級管18−1を第2の分級装置本体13−2に直接連結するようにしてもよい。
In the present embodiment, classification is performed using an annular slit, but the slit shape is not particularly limited.
In the present embodiment, the first electric mobility classifying unit 19-1 and the second electric mobility classifying unit 19-2 are connected by the communication pipe 20, but the first classifying pipe 18-1 is connected to the first electric mobility classifying unit 19-2. You may make it connect with the 2nd classifier main body 13-2 directly.

前記装置において、前記荷電微粒子11を含む測定ガス12を第1の分級装置本体13−1内に導入すると、前記第1の高電圧源15−1からの所定の電圧をかけることで、その粒径により、第1の環状スリット14−1から第1の分級管18−1に分離される。
この際、付着成分120が第1のロッド16−1の周囲に付着するが、シースガス17に同伴された分級粒子11aは第2の分級装置本体13−2でさらにシースガスにより希釈されつつ分級されるので、付着成分からの揮発物の影響を最小限とすることができる。
なお、従来の分級粒子11aの数を計測するために、第1の分級管18−1から配管21が図示しない粒子数計測装置につながれている。
In the apparatus, when the measurement gas 12 containing the charged fine particles 11 is introduced into the first classifier main body 13-1, a predetermined voltage from the first high-voltage source 15-1 is applied, so that the particles The first classifying pipe 18-1 is separated from the first annular slit 14-1 by the diameter.
At this time, the adhering component 120 adheres to the periphery of the first rod 16-1, but the classified particles 11a entrained in the sheath gas 17 are further classified by the second classifier main body 13-2 while being further diluted with the sheath gas. Thus, the influence of volatiles from the adhered components can be minimized.
In addition, in order to measure the number of conventional classified particles 11a, the pipe 21 is connected to a particle number measuring device (not shown) from the first classifying tube 18-1.

ここで、第1の高電圧源15−1に印加する電圧と分級できる粒子の粒径(nm)との関係を図2に示す。図2に示すように、10〜100nmの任意の粒径を分級することができる。例えば20nm程度の粒子を分級する場合には、約50〜80Vの電圧を印加するようにすればよい。   Here, the relationship between the voltage applied to the first high voltage source 15-1 and the particle size (nm) of the particles that can be classified is shown in FIG. As shown in FIG. 2, an arbitrary particle size of 10 to 100 nm can be classified. For example, when particles of about 20 nm are classified, a voltage of about 50 to 80 V may be applied.

このように分級された分級粒子11aを2回の分級を行う結果、例えば粒子に付着している化学成分(例えばアントラセン)を分析する場合において、第1の分級部19−1の第1のロッド16−1の周囲に付着した付着成分120から気化した化学成分(例えばナフタレン)は不純物となるが、例えば第1の分級管18−1から供給される導入ガス量は約0.3Lであるのに対し、第2の分級部19−2において供給されるシースガス17の量は約3Lであるので、第2の分級部19−2において大量のシースガス17で分級することになり、ガス成分を極めて低減することができる。これにより、分級粒子11a由来の化学成分のみを計測することとなる。   As a result of classifying the classified particles 11a thus classified twice, for example, when analyzing a chemical component (for example, anthracene) adhering to the particles, the first rod of the first classification unit 19-1 Although the chemical component (for example, naphthalene) vaporized from the adhering component 120 attached around 16-1 becomes an impurity, for example, the amount of introduced gas supplied from the first classifying tube 18-1 is about 0.3L. On the other hand, since the amount of the sheath gas 17 supplied in the second classifying unit 19-2 is about 3 L, the second classifying unit 19-2 classifies with a large amount of the sheath gas 17, and the gas component is extremely reduced. Can be reduced. Thereby, only the chemical component derived from the classified particles 11a is measured.

また、第1の分級部19−1の分級精度を50nm±1nmとした場合において、第2の分級部19−2の分級精度を第1の分級部19−1と同一又はそれよりもやや悪い分級精度(例えば50nm±5nm)とすることで、第2の分級部19−2の第2のロッド16−2に付着する付着成分が軽減されることとなる。   In addition, when the classification accuracy of the first classification unit 19-1 is 50 nm ± 1 nm, the classification accuracy of the second classification unit 19-2 is the same as or slightly worse than that of the first classification unit 19-1. By setting the classification accuracy (for example, 50 nm ± 5 nm), the adhering component adhering to the second rod 16-2 of the second classifying unit 19-2 is reduced.

このように、従来の分級装置においては、粒子のみの数を計測していたので、付着成分が存在しても何等問題はなかったが、近年のように粒子に付着しているガス成分を分析する場合には、分級部を少なくとも2台設けるようにすることで、分析精度の向上を図ることができる。   In this way, in the conventional classifier, only the number of particles was measured, so there was no problem even if there were adhering components, but the gas components adhering to the particles were analyzed as in recent years. In this case, it is possible to improve the analysis accuracy by providing at least two classification units.

本発明による実施例2に係る電気移動度分級装置について、図面を参照して説明する。
図3は、実施例2に係る電気移動度分級装置を示す概略図である。なお、実施例1の装置に係る構成部材と同一の部材には同一符号を付してその説明は省略する。
図3に示すように、実施例2に係る電気移動度分級装置10Bは、第1の分級部19−1と第2の分級部19−2とを連通する前記連通管20の周囲に加熱部22を設けたものである。なお、第1及び第2の高電圧源15−1、15−2は省略している(以下同様。)。
前記加熱部22を設置することにより、分級された分級粒子11aに付着している測定対象成分以外の成分を除去することができる。
一例として計測対象の化学物質の脱離温度と回収率との関係を図4に示す。
例えば、分級粒子11a中の特定成分であるクリセンを分析する場合において、該クリセンよりも低揮発成分のフルオランテンを加熱部22において加熱(90℃)により除去することにより、特定の成分(クリセン)を残すことができる。
An electric mobility classification device according to a second embodiment of the present invention will be described with reference to the drawings.
FIG. 3 is a schematic diagram illustrating an electric mobility classification device according to the second embodiment. In addition, the same code | symbol is attached | subjected to the member same as the structural member which concerns on the apparatus of Example 1, and the description is abbreviate | omitted.
As shown in FIG. 3, the electric mobility classification apparatus 10B according to the second embodiment includes a heating unit around the communication pipe 20 that communicates the first classification unit 19-1 and the second classification unit 19-2. 22 is provided. The first and second high voltage sources 15-1 and 15-2 are omitted (the same applies hereinafter).
By installing the heating unit 22, components other than the component to be measured attached to the classified particles 11a can be removed.
As an example, FIG. 4 shows the relationship between the desorption temperature of the chemical substance to be measured and the recovery rate.
For example, when analyzing chrysene, which is a specific component in the classified particles 11a, the specific component (chrysene) is removed by removing fluoranthene having a lower volatility than chrysene by heating (90 ° C.) in the heating unit 22. Can leave.

このように、加熱部22を連通管20に設置することにより、第2の分級部19−2に導入される分級粒子11aに含有されている計測対象外の化学物質を除去することができ、分級粒子に当初から付着されているガス成分のみを分析する際の分析精度が向上する。
なお、第2の分級部19−2に供給するシースガス17を層流とすることにより、分離した計測対象成分の積極的な排出が可能となる。また、一度粒子の外部に揮発したガスについては、粒子への再付着は少ないものとなる。
Thus, by installing the heating unit 22 in the communication pipe 20, it is possible to remove non-measured chemical substances contained in the classified particles 11a introduced into the second classifying unit 19-2, The analysis accuracy when analyzing only the gas component adhering to the classified particles from the beginning is improved.
In addition, by making the sheath gas 17 supplied to the second classifying unit 19-2 into a laminar flow, the separated measurement target component can be positively discharged. In addition, the gas once volatilized outside the particle is less likely to reattach to the particle.

本発明による実施例3に係る電気移動度分級装置について、図面を参照して説明する。
図5は、実施例3に係る電気移動度分級装置を示す概略図である。図6はその要部拡大図である。なお、実施例1の装置に係る構成部材と同一の部材には同一符号を付してその説明は省略する。
図5及び図6に示すように、実施例3に係る電気移動度分級装置10Cは、第2の分級部19−2の第2の分級管18−2内の中心に第3の高電圧源15−3に接続されてなる内筒31を設けたものである。
なお、図中符号32はシースガス17の排出管である。
第2の分級管18−2の中心に内筒31を設けることにより、第2の分級管18−2内での微粒子の付着を防止すると共に、後流に設けた分析装置への粒子導入効率を高めるようにしている。
An electric mobility classification device according to a third embodiment of the present invention will be described with reference to the drawings.
FIG. 5 is a schematic diagram illustrating an electric mobility classifying device according to a third embodiment. FIG. 6 is an enlarged view of the main part. In addition, the same code | symbol is attached | subjected to the member same as the structural member which concerns on the apparatus of Example 1, and the description is abbreviate | omitted.
As shown in FIGS. 5 and 6, the electric mobility classification device 10C according to the third embodiment includes a third high voltage source at the center in the second classification tube 18-2 of the second classification unit 19-2. The inner cylinder 31 connected to 15-3 is provided.
In the figure, reference numeral 32 denotes a discharge pipe for the sheath gas 17.
By providing the inner cylinder 31 at the center of the second classifying tube 18-2, adhesion of fine particles in the second classifying tube 18-2 is prevented, and the efficiency of introducing particles into the analyzer provided in the downstream flow To increase.

前記内筒31に第3の高電圧源15−3から電圧を印加すると、分級粒子11aがその中心に錐もみ状態で集中することとなり、その濃縮効率が向上することとなる。
よって、電荷をかけて分級粒子のみを中心に集めることができ、分級粒子11aについて実施例1では105個/Nm3しか回収できないような場合において、さらに106個/Nm3の回収ができ、実施例1に較べて10倍の濃縮を行うことができる。
When a voltage is applied to the inner cylinder 31 from the third high voltage source 15-3, the classified particles 11a are concentrated in the center in a conical state, and the concentration efficiency is improved.
Therefore, it is possible to centralize the only grain fractions over charge, when the classification in Example 1 for the particles 11a 10 5 cells / Nm 3 only which can not be recovered, it is further 10 six / Nm 3 recovery As compared with Example 1, concentration can be performed 10 times.

また、内筒31と第2の分級管18−2との関係は、特に限定されるものではないが、図6に示すように、例えば内筒31の幅D1を第2の分級管18−2の幅D2の1/2程度となるように設定すればよい。また、第2の分級管18−2内に配設される内筒31の頂部31aの設置位置の長さLは、第2の環状スリット14−2の開口から下方側に内筒31の幅D1の5〜10倍の長さとなるようにすればよい。   Further, the relationship between the inner cylinder 31 and the second classifying pipe 18-2 is not particularly limited, but as shown in FIG. 6, for example, the width D1 of the inner cylinder 31 is set to the second classifying pipe 18-. What is necessary is just to set so that it may be about 1/2 of the width D2 of 2. The length L of the installation position of the top portion 31a of the inner cylinder 31 disposed in the second classifying pipe 18-2 is the width of the inner cylinder 31 downward from the opening of the second annular slit 14-2. What is necessary is just to make it become 5 to 10 times the length of D1.

これにより、分級粒子11aの濃縮効率が実施例1に較べて大幅に向上することとなる。よって、付着成分の影響の除去と共に、分級粒子の回収率を向上させることができ、後流側に設置する例えば質量分析装置における分析精度の向上に寄与する。   Thereby, the concentration efficiency of the classified particles 11a is significantly improved as compared with the first embodiment. Therefore, the effect of the adhering component can be removed and the recovery rate of classified particles can be improved, which contributes to the improvement of analysis accuracy in, for example, a mass spectrometer installed on the downstream side.

本発明による実施例4に係る電気移動度分級装置について、図面を参照して説明する。
図7は、実施例4に係る電気移動度分級装置を示す概略図である。なお、実施例1〜3の装置に係る構成部材と同一の部材には同一符号を付してその説明は省略する。
図7に示すように、実施例4に係る電気移動度分級装置10Dは、第1の分級部19−1の第1の分級管18−1内の中心にも第3の高電圧源15−3に接続されてなる内筒31を設けたものである。第1の分級管18−1の中心に内筒31を設けることにより、第1の分級管18−1内での微粒子の付着を防止することができ、第2の分級部19−2に供給する分級粒子11aの導入効率を高めるようにしている。
An electric mobility classification device according to Example 4 of the present invention will be described with reference to the drawings.
FIG. 7 is a schematic diagram illustrating an electric mobility classifying device according to a fourth embodiment. In addition, the same code | symbol is attached | subjected to the member same as the structural member which concerns on the apparatus of Examples 1-3, and the description is abbreviate | omitted.
As illustrated in FIG. 7, the electric mobility classification device 10D according to the fourth embodiment includes the third high voltage source 15-at the center in the first classification tube 18-1 of the first classification unit 19-1. 3 is provided with an inner cylinder 31 that is connected to 3. By providing the inner cylinder 31 at the center of the first classifying tube 18-1, adhesion of fine particles in the first classifying tube 18-1 can be prevented and supplied to the second classifying unit 19-2. The introduction efficiency of the classified particles 11a is increased.

よって、電荷をかけて分級粒子のみを中心に集めることができ、第1分級部19−1及び第2分級部19−2においてそれぞれ濃縮することとなるので、分級粒子11aについて実施例1では105個/Nm3しか回収できないような場合において、さらに107個/Nm3の回収ができ、実施例3に較べて10倍、実施例1に較べて100倍の濃縮を行うことができる。 Therefore, it is possible to collect only the classified particles by applying an electric charge and concentrate in the first classifying section 19-1 and the second classifying section 19-2, respectively. In the case where only 5 / Nm 3 can be recovered, 10 7 / Nm 3 can be further recovered, and the concentration can be 10 times that of Example 3 and 100 times that of Example 1.

本発明による実施例5に係る電気移動度分級装置について、図面を参照して説明する。
図8は、実施例5に係る電気移動度分級装置を示す概略図である。
図8に示すように、実施例5に係る電気移動度分級装置10Eは、帯電した微粒子を電気移動度に応じて粒径毎に分級する電気移動度分級装置であって、荷電粒子11を含む測定ガス12を導入する分級装置本体51内に配設され、所定粒径の微粒子を排出する第1の環状スリット52−1を有すると共に第1の高電圧源53−1に接続されてなる第1のロッド54−1と、分級装置本体51内を循環するシースガス17と、分級された分級粒子11aを排出する第1の分級管55−1と、前記第1の分級管55−1内に配設され、分級粒子11aを排出すると共に第2の高電圧源53−2に接続されてなる第2の環状スリット52−2を有する第2のロッド54−2と、分級粒子11aを排出する第2の分級管55−2とを具備するものである。
An electric mobility classifying device according to Embodiment 5 of the present invention will be described with reference to the drawings.
FIG. 8 is a schematic diagram illustrating an electric mobility classifying device according to a fifth embodiment.
As shown in FIG. 8, the electric mobility classification device 10E according to the fifth embodiment is an electric mobility classification device that classifies charged fine particles for each particle diameter according to the electric mobility, and includes charged particles 11. A first annular slit 52-1, which is disposed in a classifier main body 51 for introducing the measurement gas 12 and discharges fine particles having a predetermined particle diameter, is connected to a first high voltage source 53-1. 1 rod 54-1, a sheath gas 17 circulating in the classifier main body 51, a first classifying tube 55-1 for discharging the classified particles 11a, and the first classifying tube 55-1 A second rod 54-2 having a second annular slit 52-2 that is disposed and discharges the classified particles 11a and is connected to the second high voltage source 53-2, and discharges the classified particles 11a. With a second classifying tube 55-2 That.

実施例1の電気移動度分級装置10Aでは、2台の分級部19−1、19−2を別々に設けているが、本実施例では、分級装置本体51内に第2の環状スリット52−2を有する第2のロッド54−2を設置して、付着成分120の影響を軽減するようにしている。   In the electric mobility classification device 10A of the first embodiment, the two classification units 19-1 and 19-2 are separately provided. In the present embodiment, the second annular slit 52- is provided in the classification device main body 51. The 2nd rod 54-2 which has 2 is installed, and the influence of the adhesion component 120 is reduced.

前記装置において、前記荷電微粒子11を含む測定ガス12を分級装置本体51内に導入すると、前記第1の高電圧源53−1からの所定の電圧をかけることで、その粒径により、第1の環状スリット52−1から第1の分級管55−1に分離される。
この際、付着成分120が第1のロッド54−1の周囲に付着するが、シースガス17に同伴された分級粒子11aは第2の分級管55−2の第2の環状スリット52−2によりさらにシースガス17により希釈されつつ分級されるので、付着成分からの揮発物の影響を最小限とすることができる。
In the apparatus, when the measurement gas 12 containing the charged fine particles 11 is introduced into the classifier main body 51, a predetermined voltage is applied from the first high-voltage source 53-1, and the first particle size is changed according to the particle diameter. Is separated from the annular slit 52-1 into the first classifying tube 55-1.
At this time, the adhering component 120 adheres to the periphery of the first rod 54-1, but the classified particles 11a entrained in the sheath gas 17 are further separated by the second annular slit 52-2 of the second classifying tube 55-2. Since the classification is performed while being diluted by the sheath gas 17, the influence of volatile substances from the adhering components can be minimized.

本実施例では装置のコンパクト化を図ることができる。
第2の分級管55−2は少なくとも2以上とすることで希釈効率を向上させることができる。また、本実施例においても、前記した実施例3及び実施例4に示すような内筒を設置して回収効率を向上させるようにしてもよい。
In this embodiment, the apparatus can be made compact.
Dilution efficiency can be improved by setting the second classification tube 55-2 to at least two or more. Also in the present embodiment, an inner cylinder as shown in the third and fourth embodiments may be installed to improve the recovery efficiency.

本発明による実施例6に係る微粒子成分の計測システムについて、図面を参照して説明する。
図9は、実施例6に係る微粒子成分の計測システムを示す概略図である。
本実施例に係る微粒子成分の計測システム60では、前記実施例1の電気移動度分級装置10Aを分級装置として用いている。本計測システム60は、計測ガス12中の微粒子に電荷を付与する荷電装置61と、荷電微粒子11を所定粒径に分級する第1の分級部19−1と第2の分級部19−2からなる電気移動度分級装置10Aと、第1の分級部19−1で分級された前記分級粒子11aの数を計測する粒子数計測装置62と、第2の分級部19−2で分級された分級粒子11aをイオン化させたのちに分析を行う飛行時間型質量分析装置63とから構成されている。
A fine particle component measurement system according to Example 6 of the present invention will be described with reference to the drawings.
FIG. 9 is a schematic diagram illustrating a fine particle component measurement system according to a sixth embodiment.
In the particulate component measurement system 60 according to the present embodiment, the electric mobility classification device 10A of the first embodiment is used as a classification device. The measurement system 60 includes a charging device 61 that applies charges to the fine particles in the measurement gas 12, a first classification unit 19-1 that classifies the charged fine particles 11 into a predetermined particle size, and a second classification unit 19-2. The electric mobility classifying device 10A, the particle number measuring device 62 for measuring the number of the classified particles 11a classified by the first classifying unit 19-1, and the classifying by the second classifying unit 19-2. It comprises a time-of-flight mass spectrometer 63 that performs analysis after ionizing the particles 11a.

本計測システムにおいては、電気移動度分級装置10Aの第1の分級部19−1で分級された分級粒子11aを連通管20により第2の分級部19−2内に供給することで、さらにシースガス17で希釈しつつ分級することとなり、第2の分級部19−2で発生する付着成分由来の揮発ガスの影響を解消することができる。   In this measurement system, by supplying the classified particles 11a classified by the first classifying unit 19-1 of the electric mobility classifying apparatus 10A into the second classifying unit 19-2 through the communication pipe 20, the sheath gas is further added. Therefore, the influence of the volatile gas derived from the adhering component generated in the second classification unit 19-2 can be eliminated.

この結果、付着成分由来の揮発成分を排除することができ、計測対象の分級された粒子に付着又は含有している成分のみを飛行時間型質量分析装置63にて高精度に分析を行うことができる。   As a result, it is possible to eliminate the volatile component derived from the adhering component, and to analyze only the component adhering to or contained in the classified particles to be measured with the time-of-flight mass spectrometer 63 with high accuracy. it can.

以上のように、本発明に係る電気移動度分級装置は、浮遊微粒子の分析において、対象とする所定粒径の粒子本来の状態を分析することができ、例えば排ガス中のナノ粒子の組成解明に適用することができる。   As described above, the electromobility classification device according to the present invention can analyze the original state of a target particle having a predetermined particle size in the analysis of suspended fine particles, for example, for elucidation of the composition of nanoparticles in exhaust gas. Can be applied.

実施例1に係る電気移動度分級装置の概略図である。1 is a schematic diagram of an electric mobility classifying device according to Embodiment 1. FIG. 微粒子の分級の粒径と印加電圧との関係図である。It is a relationship figure of the particle diameter of classification of fine particles, and an applied voltage. 実施例2に係る電気移動度分級装置の概略図である。It is the schematic of the electric mobility classification apparatus which concerns on Example 2. FIG. 分析対象成分の脱離温度と回収率との関係図である。It is a relationship figure of the desorption temperature of an analysis object component, and a recovery rate. 実施例3に係る電気移動度分級装置の概略図である。6 is a schematic diagram of an electric mobility classification device according to Embodiment 3. FIG. 実施例3に係る電気移動度分級装置の要部概略図である。It is the principal part schematic of the electric mobility classification device which concerns on Example 3. FIG. 実施例4に係る電気移動度分級装置の概略図である。It is the schematic of the electric mobility classification apparatus which concerns on Example 4. FIG. 実施例5に係る電気移動度分級装置の概略図である。It is the schematic of the electric mobility classification apparatus which concerns on Example 5. FIG. 実施例6に係る計測システムの概略図である。10 is a schematic diagram of a measurement system according to Example 6. FIG. 従来技術に係る計測システムの概略図である。It is the schematic of the measurement system which concerns on a prior art. 従来技術に係る電気移動度分級装置の概略図である。It is the schematic of the electric mobility classification apparatus based on a prior art.

符号の説明Explanation of symbols

11 荷電微粒子
12 測定ガス
13−1 第1の分級装置本体
13−2 第2の分級装置本体
14−1 第1の環状スリット
14−2 第2の環状スリット
15−1〜15−3 第1〜第3の高電圧源
16−1 第1のロッド
16−2 第2のロッド
17 シースガス
18−1 第1の分級管
18−2 第2の分級管
19−1 第1の電気移動度分級部
19−2 第2の電気移動度分級部
20 連通管
DESCRIPTION OF SYMBOLS 11 Charged fine particle 12 Measurement gas 13-1 1st classification apparatus main body 13-2 2nd classification apparatus main body 14-1 1st cyclic | annular slit 14-2 2nd cyclic | annular slit 15-1 to 15-3 1st-1st 3rd high voltage source 16-1 1st rod 16-2 2nd rod 17 Sheath gas 18-1 1st classification tube 18-2 2nd classification tube 19-1 1st electric mobility classification part 19 -2 Second electric mobility classification unit 20 Communication pipe

Claims (4)

帯電した微粒子を電気移動度に応じて粒径毎に分級する電気移動度分級装置であって、
帯電した微粒子を導入する第1の分級装置本体内に配設され、所定粒径の微粒子を排出する第1のスリットを有すると共に第1の高電圧源に接続されてなる第1のロッドと、第1の分級装置本体内を循環するシースガスと、分級された微粒子を排出する第1の分級管と、
前記第1の分級管内に配設され、所定粒径の微粒子を排出すると共に第2の高電圧源に接続されてなる第2のスリットを有する第2のロッドと、
分級された微粒子を排出する第2の分級管と、
を具備することを特徴とする電気移動度分級装置。
An electric mobility classification device for classifying charged fine particles for each particle diameter according to electric mobility,
A first rod disposed in a first classifier main body for introducing charged fine particles, having a first slit for discharging fine particles having a predetermined particle diameter and connected to a first high voltage source; A sheath gas that circulates in the first classifier body, a first classifying tube that discharges the classified fine particles, and
A second rod disposed in the first classification tube and having a second slit for discharging fine particles having a predetermined particle diameter and connected to a second high voltage source;
A second classification tube for discharging the classified fine particles;
An electric mobility classification device comprising:
請求項において、
第1又は第2の分級管の中心に第3の高電圧源に接続されてなる内筒を有することを特徴とする電気移動度分級装置。
In claim 1 ,
An electric mobility classifier having an inner cylinder connected to a third high voltage source at the center of the first or second classifier tube.
請求項1又は2において、
前記微粒子成分は、ガス中の粒径が100nm以下のナノ粒子であることを特徴とする電気移動度分級装置。
In claim 1 or 2 ,
The fine particle component is a nanoparticle having a particle size in a gas of 100 nm or less.
請求項1乃至請求項のいずれか一つの電気移動度分級装置と、
前記電気移動度分級装置から分級された微粒子の化学成分を分析する微粒子成分計測装置とを具備することを特徴とする微粒子成分の計測システム。
An electric mobility classification device according to any one of claims 1 to 3 ,
Fine particle component of the measurement system that is characterized by comprising a particulate component measuring device analyzing chemical component of the classified particles from the electrical mobility classifier.
JP2005254044A 2005-09-01 2005-09-01 Electric mobility classifier and particle component measurement system Expired - Fee Related JP4611155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005254044A JP4611155B2 (en) 2005-09-01 2005-09-01 Electric mobility classifier and particle component measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005254044A JP4611155B2 (en) 2005-09-01 2005-09-01 Electric mobility classifier and particle component measurement system

Publications (2)

Publication Number Publication Date
JP2007064893A JP2007064893A (en) 2007-03-15
JP4611155B2 true JP4611155B2 (en) 2011-01-12

Family

ID=37927241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005254044A Expired - Fee Related JP4611155B2 (en) 2005-09-01 2005-09-01 Electric mobility classifier and particle component measurement system

Country Status (1)

Country Link
JP (1) JP4611155B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101540913B1 (en) * 2007-12-12 2015-07-31 코닌클리케 필립스 엔.브이. Device for characterizing a size distribution of electrically-charged airborne particles in an air flow
KR101540914B1 (en) * 2007-12-12 2015-07-31 코닌클리케 필립스 엔.브이. Device for characterizing a size distribution of electrically-charged airborne particles in an air flow
JP5010512B2 (en) * 2008-03-18 2012-08-29 一般財団法人電力中央研究所 Abnormality determination method of nanoparticle component measurement device, abnormality determination and calibration method of nanoparticle component measurement device
JP5099551B2 (en) * 2008-03-18 2012-12-19 一般財団法人電力中央研究所 Nanoparticle component measuring apparatus and method
JP5652851B2 (en) * 2010-02-02 2015-01-14 独立行政法人理化学研究所 Differential electric mobility classifier, particle measurement system, and particle sorting system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10288602A (en) * 1997-04-15 1998-10-27 Rikagaku Kenkyusho Fine particle analyzing device and its method
JP2000046720A (en) * 1998-07-28 2000-02-18 Rikagaku Kenkyusho Differential electrical-mobility measuring apparatus
JP2001239181A (en) * 2000-02-29 2001-09-04 Natl Inst Of Industrial Health Ministry Of Labour Fine particle classifying device and method therefor
JP2001276661A (en) * 2000-03-29 2001-10-09 Matsushita Research Institute Tokyo Inc Superfine particles classifying device
JP2006084303A (en) * 2004-09-15 2006-03-30 Shimadzu Corp Aerosol analyzer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10288602A (en) * 1997-04-15 1998-10-27 Rikagaku Kenkyusho Fine particle analyzing device and its method
JP2000046720A (en) * 1998-07-28 2000-02-18 Rikagaku Kenkyusho Differential electrical-mobility measuring apparatus
JP2001239181A (en) * 2000-02-29 2001-09-04 Natl Inst Of Industrial Health Ministry Of Labour Fine particle classifying device and method therefor
JP2001276661A (en) * 2000-03-29 2001-10-09 Matsushita Research Institute Tokyo Inc Superfine particles classifying device
JP2006084303A (en) * 2004-09-15 2006-03-30 Shimadzu Corp Aerosol analyzer

Also Published As

Publication number Publication date
JP2007064893A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
US9916972B2 (en) Method and device for ionizing particles of a sample gas flow
JP4611155B2 (en) Electric mobility classifier and particle component measurement system
Eichler et al. A novel inlet system for online chemical analysis of semi-volatile submicron particulate matter
US10799883B2 (en) Method for the selective purification of aerosols
EP2613140A1 (en) Device for preparing sample supplied to ion mobility sensor
Evans et al. Atomic spectrometry update: review of advances in atomic spectrometry and related techniques
CN105247653A (en) Method and device for ionizing particles of a sample gas flow
Wei et al. Exploring the upper limit of single-walled carbon nanotube purity by multiple-cycle aqueous two-phase separation
JP2006261116A (en) Nanospray ion source equipped with plurality of spray emitters
CN107921443B (en) Aerosol particle collecting device with nano particle concentration and particle size measuring device
US6892142B2 (en) Method of analyzing particles suspended in liquid and liquid-suspended particle analyzer for carrying out the method
Kapellios et al. Size and elemental composition of nanoparticles using ion mobility spectrometry with inductively coupled plasma mass spectrometry
US20150115147A1 (en) Drift tube ion mobility spectrometer for aerosol measurement
CN103926178A (en) Mechanism for classifying inhalable particles and measuring concentration as well as detection method thereof
JP2019529948A (en) Apparatus and method for analyzing chemical composition of aerosol particles
JP2019186190A (en) Analysis apparatus
JP3294228B2 (en) Particle measuring device, particle collecting device and particle analyzing device
Li et al. Online detection of airborne nanoparticle composition with mass spectrometry: Recent advances, challenges, and opportunities
US9239279B1 (en) Sequential differential mobility analyzer and method of using same
JP3487729B2 (en) Particle analyzer and method
Wang et al. Chemical composition of different size ultrafine particulate matter measured by nanoparticle chemical ionization mass spectrometer
WO2010143426A1 (en) Cyclone separator-type mass analysis system
CN103227096A (en) Method for analyzing and dissociating lipid molecules by laser-induced electron capture mass spectrum
US4769548A (en) Method for the quantitative and qualitative characterization of substances contained in a gaseous carrier medium
JP3435015B2 (en) Particle analyzer and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees