JP4442506B2 - Nano particle classifier - Google Patents
Nano particle classifier Download PDFInfo
- Publication number
- JP4442506B2 JP4442506B2 JP2005129640A JP2005129640A JP4442506B2 JP 4442506 B2 JP4442506 B2 JP 4442506B2 JP 2005129640 A JP2005129640 A JP 2005129640A JP 2005129640 A JP2005129640 A JP 2005129640A JP 4442506 B2 JP4442506 B2 JP 4442506B2
- Authority
- JP
- Japan
- Prior art keywords
- sheath gas
- aerosol
- gas flow
- classification
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Sampling And Sample Adjustment (AREA)
- Electrostatic Separation (AREA)
Description
本発明は、環境エアロゾルの研究分野で、各種ガス中に含まれるエアロゾルの成分を捕集するために適用されるエアロゾル捕集装置に係り、特にエアロゾルに含まれる微粒子を分級して捕集するための装置であって、粒子径ごとに詳細な分析を行うための試料を提供する装置に関するものである。 The present invention relates to an aerosol collection device applied to collect aerosol components contained in various gases in the field of environmental aerosol research, and in particular to classify and collect fine particles contained in aerosols. The present invention relates to an apparatus for providing a sample for performing detailed analysis for each particle diameter.
エアロゾルとは分散媒体がガスで、分散質が液体または固体であるコロイドを示す。分散質が液体の場合には、エアロゾルは、霧、もや、雲等となり、分散質が固体の場合には、ちり、煙等となる。このエアロゾルの構成成分の測定は、環境状態の評価や健康影響などの研究分野において重要な意味を持つ(特許文献1参照。)。 Aerosol refers to a colloid in which the dispersion medium is a gas and the dispersoid is a liquid or a solid. When the dispersoid is a liquid, the aerosol is fog, haze, clouds, or the like, and when the dispersoid is a solid, the aerosol is dust or smoke. The measurement of the components of the aerosol is important in research fields such as evaluation of environmental conditions and health effects (see Patent Document 1).
エアロゾルの構成成分の研究としては、例えば大気汚染測定がある。近年の大気汚染や環境汚染の原因となる車の排気ガスや工業プラントの排煙には、硫黄化合物(SOx,H2S等)、窒素化合物(NOx,NH3等)、炭化水素等が含まれ、これらは化学反応や光化学反応によって硫酸塩や硝酸塩となり、大気中の水蒸気を吸収して液体状のエアロゾルとなる。 As a study of aerosol constituents, for example, there is air pollution measurement. Sulfur compounds (SO x , H 2 S, etc.), nitrogen compounds (NO x , NH 3, etc.), hydrocarbons, etc., for vehicle exhaust gas and industrial plant flue gas that cause recent air pollution and environmental pollution These are converted into sulfates and nitrates by chemical reactions and photochemical reactions, and absorb water vapor in the atmosphere to form liquid aerosols.
測定方法としては、エアロゾルをLVS(Low Volume Sample)などによりフィルタに捕集した後、溶媒にとかしてLC(液体クロマトグラフィ)で分析する方法や、試料を加熱して有機物を揮発させ、その後揮発物に酸素を加えたガス中でさらに高温に加熱して酸化させ、揮発性有機化合物の総量を定量する方法がある。 As a measurement method, aerosol is collected on a filter using LVS (Low Volume Sample), etc., and then dissolved in a solvent and analyzed by LC (liquid chromatography). There is a method in which the total amount of volatile organic compounds is quantified by heating to a higher temperature in a gas to which oxygen is added and oxidizing.
微分型電気移動度測定器(DMA(Differential mobility analyzer))(特許文献2,3参照。)は、微粒子の粒径を効率的かつ広範囲にわたって測定できる装置であることが知られており、エアロゾルを分級することが可能である。
DMAにおいては、分級用電界を目的の粒子径に対応した電圧に固定し、シースガスを流しながら特定の粒子を分級して捕集するため、異なる粒子を続けて捕集する場合は、対象粒子径に対応する電圧を順次変更して捕集する必要があった。そのため、エアロゾルの粒子径分布が変動する場合は、粒子径間の関係が不明なまま捕集してしまう。粒子径分布が変動する場合であっても、繰り返し捕集すれば粒子径間の関係を得ることができるが、そのときは時間に関して平均的な試料を作成することしかできない。 In the DMA, the electric field for classification is fixed at a voltage corresponding to the target particle diameter, and specific particles are classified and collected while flowing the sheath gas. It was necessary to change the voltage corresponding to to sequentially collect. Therefore, when the particle size distribution of the aerosol fluctuates, it is collected without knowing the relationship between the particle sizes. Even if the particle size distribution fluctuates, the relationship between the particle sizes can be obtained by repeated collection, but at that time, only an average sample with respect to time can be prepared.
粒子径が変動する場合や粒子濃度が低い場合、順次捕集する方法では分級されない粒子を無駄に捨てることとなり、複数の粒子径について捕集を行なうには、粒子径の分布の場合の数に比例した時間を要すことになる。
本発明は、エアロゾルに含まれる粒子を粒子径ごとに分級して捕集することを目的とする。
If the particle size fluctuates or the particle concentration is low, particles that are not classified by the method of sequential collection will be wasted, and in order to collect more than one particle size, the number in the case of particle size distribution is used. Proportional time is required.
An object of the present invention is to classify and collect particles contained in an aerosol for each particle size.
本発明のナノ粒子分級捕集装置は、上方から下方に向かって垂直方向にシースガスを流すシースガス流路に平行に設置され、荷電されたエアロゾルをシースガス流路に噴出するためのエアゾロル導入口を備えた第1平面部と、シースガス流路を挟んで第1平面部に平行に配置され、シースガス側に導電性平板を備えた第2平面部とを有し、上記両平面部間にシースガスの流れに直交する直流電界をかけることによってエアロゾルを粒子径ごとに平板に分級するナノ粒子分級捕集装置において、
上記平板はエアロゾルを粒子径ごとに分級して捕集する捕集電極として着脱可能に取り付けられ、エアロゾル導入口は水平方向のスリット状に形成されている。
The nanoparticle classification / collection device of the present invention is provided in parallel with a sheath gas flow channel for flowing a sheath gas in a vertical direction from the upper side to the lower side, and includes an aerosol inlet for ejecting a charged aerosol into the sheath gas flow channel. A first plane portion and a second plane portion arranged in parallel to the first plane portion with the sheath gas flow path interposed therebetween and having a conductive flat plate on the sheath gas side, and the flow of the sheath gas between the two plane portions. In the nanoparticle classification collection device that classifies aerosol into flat plates for each particle size by applying a direct current electric field orthogonal to
The flat plate is detachably attached as a collecting electrode for classifying and collecting the aerosol according to particle size, and the aerosol inlet is formed in a horizontal slit shape.
捕集電極に微小粒子を粒子径に分級して捕集することにより、粒子径の分級操作を順次行なうことなく、効率的にナノ粒子を粒子径ごとに分級して捕集をすることができる。 By collecting and collecting fine particles to a particle size on the collection electrode, it is possible to efficiently classify and collect nanoparticles by particle size without sequentially performing the particle size classification operation. .
以下に図面を参照して本発明の実施形態を説明する。
図1(A)は一実施例のナノ粒子分級捕集装置の斜視図を透視図として表したもの、(B)は捕集電極をナノ粒子分級捕集装置の内側から示した平面図である。
本発明のナノ粒子分級捕集装置1は、一定の間隔Lで互いに平行で、ともに垂直方向に設置された第1平面部3及び第2平面部5と、両平面部3,5を固定する外殻部7とによってシースガス流路9を囲むように形成されている。平面部3および平面部5の形状は、ともに矩形になされている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1A is a perspective view of a perspective view of a nanoparticle classification and collection device of one embodiment, and FIG. 1B is a plan view showing a collection electrode from the inside of the nanoparticle classification and collection device. .
The nanoparticle classifying / collecting
平面部3は、荷電装置11によって荷電されたエアロゾルをシースガス流路9に噴出するためのエアゾロル導入口13を上方に備えている。
エアロゾル導入口13は、分級部であるシースガス流路9でエアロゾルを層流として流すためにシースガス流路に面する開口形状が水平方向に延びるスリット23となっている。スリット23の幅は、例えば20mm〜100mm程度がよい。
平面部5は、シースガス流路9を挟んで平面部3に対向に配置され、エアロゾルを粒子径毎に分級し捕集するための導電性平板としての捕集電極15をシースガス流路9側に備えている。捕集電極15は平面部5に着脱可能に取り付けられている。捕集電極15としては、例えば、グラファイトを板状に固めたものを用いることができる。
The
The
The
シースガス流路9の上流である外殻部7の上部にはシースガス導入口17が設けられており、シースガス流路9の下流である外殻部7の下部には排気口19が設けられている。
シースガス導入口17の装置内部側には、導入されるシースガスを均一な流れにするための整流フィルタ21が設けられており、さらに、シースガス導入口17の装置外部側には、シースガス導入口17にシースガスを導入するシースガス配管が設けられている(図示は略す。)。シースガスとしては窒素などを用いることができる。
A sheath
A rectifying
平面部3と捕集電極15のシースガス流路9側の面は共に導電体で構成され、それぞれ他の部分から絶縁されており、この両面間には直流電圧電源25が接続され、プラスあるいはマイナスの電圧がかけられる。電圧としては例えば、10〜10000Vが適当である。捕集電極15にプラスの電圧がかけられた場合はマイナスの極性をもつ微粒子が捕集電極15に捕集され、マイナスの電圧がかけられた場合はプラスの極性をもつ微粒子が捕集電極15に捕集される。
Both the
次に、図1に示すナノ粒子分級捕集装置において、エアロゾルの分級及び捕集の動作を説明する。
シースガスはシースガス導入口17よりナノ粒子分級捕集装置内に導入され、整流フィルタ21を通過した後、シースガス流路9を層流状態で通過し排気口19より排気される。一方、エアロゾルは荷電装置11を通過することで荷電エアロゾルとして搬送され、エアロゾル導入口13よりナノ粒子分級捕集装置に導入され、スリット23により層流となって装置内部へ噴出される。
Next, the operation of aerosol classification and collection in the nanoparticle classification and collection apparatus shown in FIG. 1 will be described.
The sheath gas is introduced into the nanoparticle classification and collection device through the sheath
ナノ粒子分級捕集装置内ではシースガスの流れに垂直な方向に電界が印加されているために、噴出されたエアロゾルはシースガス流路9に沿って下方に搬送されつつ、その荷電数と粒径に依存した電気移動度に応じた軌跡を描きながら平面部3から平面部5の方向に傾斜する。このとき、直流電圧電源25の電圧を調節することで、捕集電極15での粒径分布の広がりを調製することができる。
荷電エアロゾルの粒子サイズが小さいものに対しては、シースガスによる下方向の傾度が小さいため、スリット23から小さい傾斜で捕集電極15に到達する。一方、荷電エアロゾルの粒子サイズが大きいものに対しては、シースガスによる下方向の傾度がその体積等に比例して大きくなるため、スリット23から下方向に大きい傾斜で捕集電極15に到達する。
Since the electric field is applied in a direction perpendicular to the flow of the sheath gas in the nanoparticle classification and collection device, the ejected aerosol is transported downward along the sheath
For charged aerosol particles having a small particle size, since the downward gradient by the sheath gas is small, the particles reach the collecting
このナノ粒子分級捕集装置を用いると、これまでの粒子径の分級操作を順次行なうことなく、捕集電極15上に効率的にナノ粒子を粒子径ごとに分級して捕集をすることができる。
その後、質量分析装置などの検出装置でそれぞれの粒子成分を検出する。
By using this nanoparticle classification and collection device, it is possible to efficiently classify and collect nanoparticles on the
Thereafter, each particle component is detected by a detection device such as a mass spectrometer.
本発明はこれらに限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変更が可能である。 The present invention is not limited to these, and various modifications can be made within the scope of the present invention described in the claims.
環境エアロゾルの研究分野で、各種ガス中に含まれるエアロゾルの成分を捕集するために適用されるエアロゾル捕集装置に利用することができる。 In the field of environmental aerosol research, the present invention can be used for an aerosol collecting device that is applied to collect aerosol components contained in various gases.
1 ナノ粒子分級捕集装置
3,5 平面部
7 外殻部
9 シースガス流路
11 荷電装置
13 エアロゾル導入口
15 捕集電極
17 シースガス導入口
19 排気口
21 整流フィルタ
23 スリット
25 直流電圧電源
DESCRIPTION OF
Claims (1)
前記シースガス流路を挟んで前記第1平面部に平行に配置され、前記シースガス側に導電性平板を備えた第2平面部と、を有し、
前記両平面部間にシースガスの流れに直交する直流電界をかけることによって前記エアロゾルを粒子径ごとに前記平板に分級するナノ粒子分級捕集装置において、
前記平板はエアロゾルを粒子径ごとに分級して捕集する捕集電極として着脱可能に取り付けられ、
前記エアロゾル導入口は水平方向のスリット状に形成されていることを特徴とするナノ粒子分級捕集装置。 A first plane portion provided in parallel with a sheath gas flow channel for flowing a sheath gas in a vertical direction from the upper side to the lower side and having an aerosol inlet for ejecting charged aerosol to the sheath gas flow channel;
A second plane part disposed in parallel to the first plane part across the sheath gas flow path, and having a conductive flat plate on the sheath gas side,
In the nanoparticle classification collection device that classifies the aerosol into the flat plate for each particle diameter by applying a direct current electric field orthogonal to the flow of the sheath gas between the two flat portions,
The flat plate is detachably attached as a collecting electrode that classifies and collects aerosols by particle size,
The aerosol classification and collection device, wherein the aerosol inlet is formed in a horizontal slit shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005129640A JP4442506B2 (en) | 2005-04-27 | 2005-04-27 | Nano particle classifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005129640A JP4442506B2 (en) | 2005-04-27 | 2005-04-27 | Nano particle classifier |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006308370A JP2006308370A (en) | 2006-11-09 |
JP4442506B2 true JP4442506B2 (en) | 2010-03-31 |
Family
ID=37475434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005129640A Expired - Fee Related JP4442506B2 (en) | 2005-04-27 | 2005-04-27 | Nano particle classifier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4442506B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220165883A (en) * | 2021-06-08 | 2022-12-16 | (주)엔아이디에스 | SAMPLER OF AIRBORNE MICRO-ORGANISMS, AND REAL TIME DETECTION DEVICE AND REAL TIME REMOTE MONITORING IoT SYSTEM OF AIRBORNE MICRO-ORGANISMS HAVING THIS SAME |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5099551B2 (en) * | 2008-03-18 | 2012-12-19 | 一般財団法人電力中央研究所 | Nanoparticle component measuring apparatus and method |
KR101040444B1 (en) * | 2008-09-04 | 2011-06-09 | 연세대학교 산학협력단 | multi-channel diffusion charger for real-time size distribution measurment of sub-micrometer particles and method for real-time size distribution measurment of sub-micrometer particles using the same |
JP5652851B2 (en) * | 2010-02-02 | 2015-01-14 | 独立行政法人理化学研究所 | Differential electric mobility classifier, particle measurement system, and particle sorting system |
DE102012215830A1 (en) * | 2011-09-07 | 2013-03-07 | Rion Co. Ltd. | A particle size distribution measuring apparatus and method of measuring a particle size distribution |
CN106940282A (en) * | 2012-06-06 | 2017-07-11 | 株式会社岛津制作所 | Sample producing device and film of nanoparticles film formation device that particle concentration is evenly distributed |
CN104677690B (en) * | 2015-02-15 | 2017-11-17 | 南京信息工程大学 | A kind of atmospheric aerosol automatic acquisition device |
CN109709006B (en) * | 2019-01-21 | 2023-10-10 | 中国科学院合肥物质科学研究院 | Temperature-resistant superfine particulate particle size grading detection device and detection method thereof |
CN114307876A (en) * | 2021-12-06 | 2022-04-12 | 青岛众瑞智能仪器股份有限公司 | Monodisperse aerosol generating system |
-
2005
- 2005-04-27 JP JP2005129640A patent/JP4442506B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220165883A (en) * | 2021-06-08 | 2022-12-16 | (주)엔아이디에스 | SAMPLER OF AIRBORNE MICRO-ORGANISMS, AND REAL TIME DETECTION DEVICE AND REAL TIME REMOTE MONITORING IoT SYSTEM OF AIRBORNE MICRO-ORGANISMS HAVING THIS SAME |
KR102539558B1 (en) * | 2021-06-08 | 2023-06-05 | (주)엔아이디에스 | SAMPLER OF AIRBORNE MICRO-ORGANISMS, AND REAL TIME DETECTION DEVICE AND REAL TIME REMOTE MONITORING IoT SYSTEM OF AIRBORNE MICRO-ORGANISMS HAVING THIS SAME |
Also Published As
Publication number | Publication date |
---|---|
JP2006308370A (en) | 2006-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4442506B2 (en) | Nano particle classifier | |
JP4959975B2 (en) | Collection device, bioconcentration device, and method for collecting and concentrating biological factors | |
CN100523779C (en) | System for detecting harmful nano-particles in air | |
US20170004958A1 (en) | Sensor apparatus and method for use with gas ionization systems | |
WO2014202771A2 (en) | A method and apparatus for dilution of aerosols | |
Leith et al. | Development of a transfer function for a personal, thermophoretic nanoparticle sampler | |
Dinh et al. | Particle precipitation by bipolar corona discharge ion winds | |
Tu et al. | Experimental and numerical study of particle deposition on perforated plates in a hybrid electrostatic filter precipitator | |
Flagan | Opposed migration aerosol classifier (OMAC) | |
Ali et al. | Experimental study of cross-flow wet electrostatic precipitator | |
Saiyasitpanich et al. | Collection of ultrafine diesel particulate matter (DPM) in cylindrical single-stage wet electrostatic precipitators | |
Flagan | Continuous-flow differential mobility analysis of nanoparticles and biomolecules | |
Vishnyakov et al. | Charge distribution of welding fume particles after charging by corona ionizer | |
Riehle | Basic and theoretical operation of ESPs | |
Arouca et al. | Effect of sampling in the evaluation of particle size distribution in nanoaerosols | |
Munyeza et al. | Characterisation of particle collection and transmission in a polydimethylsiloxane based denuder sampler | |
Zhou et al. | Enhanced size-dependent efficiency of removal of ultrafine particles: New solution of two-stage electrostatic precipitator with thermophoresis | |
Mei et al. | A cost-effective differential mobility analyzer (cDMA) for multiple DMA column applications | |
Yin et al. | Size-fractionated electrochemical quantification for compact monitoring of fine particulate matter | |
JP6466454B2 (en) | Electrokinetic device that uses a removable electrode to capture an assayable agent in a dielectric fluid | |
US20070059224A1 (en) | Virtual sorbent bed systems and methods of using same | |
JP4066989B2 (en) | Aerosol analyzer | |
Yang et al. | Correlations between Particle Collection Behaviors and Electrohydrodynamics Flow Characteristics in Electrostatic Precipitators | |
Song et al. | Airborne nanoparticle analysis mini-system using a parallel-type inertial impaction technique for real-time monitoring size distribution and effective density | |
Jing et al. | Development of a compact electrostatic nanoparticle sampler for offline aerosol characterization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070606 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091222 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100104 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4442506 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130122 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140122 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |