JP5099533B2 - Soil improvement material - Google Patents

Soil improvement material Download PDF

Info

Publication number
JP5099533B2
JP5099533B2 JP2005233910A JP2005233910A JP5099533B2 JP 5099533 B2 JP5099533 B2 JP 5099533B2 JP 2005233910 A JP2005233910 A JP 2005233910A JP 2005233910 A JP2005233910 A JP 2005233910A JP 5099533 B2 JP5099533 B2 JP 5099533B2
Authority
JP
Japan
Prior art keywords
soil
gypsum
improvement material
soil improvement
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005233910A
Other languages
Japanese (ja)
Other versions
JP2007045983A (en
Inventor
浩 吉井
清治 辻野
廣一 森光
成雄 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Eco Systems Co Ltd
Original Assignee
Dowa Eco Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Eco Systems Co Ltd filed Critical Dowa Eco Systems Co Ltd
Priority to JP2005233910A priority Critical patent/JP5099533B2/en
Publication of JP2007045983A publication Critical patent/JP2007045983A/en
Application granted granted Critical
Publication of JP5099533B2 publication Critical patent/JP5099533B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は含水率が高く固化処理が必要でかつ重金属イオンが含有される土壌の改良に有用な土壌改良材に関する。   The present invention relates to a soil conditioner that has a high moisture content and requires a solidification treatment and is useful for improving soil containing heavy metal ions.

建設汚泥や地下水により地盤が軟弱な状態にある土壌を固化する必要がある用途では、土壌固化材として安価なセメント系材料の使用が主流である。一方、重金属で汚染された土壌を浄化処理する方法の一つとして、不溶化処理方法がある。この方法においては、当該土壌中の水へ重金属の溶出量を低減させることができる。たとえば重金属不溶化材として硫酸カリウム、硫酸ナトリウム、硫化カルシウム、リン酸ナトリウム等を注入する方法などが行われている。従来の不溶化処理方法においては、掘削した土を汚染土壌としてそのまま処理することが多かった。最近、土を掘削することなく原位置で不溶化処理する方法が開示され、実施されている例もある(例えば、非特許文献1参照)。   In applications where it is necessary to solidify the soil whose ground is soft due to construction sludge or groundwater, the use of inexpensive cement-based materials is the mainstream. On the other hand, there is an insolubilization method as one of methods for purifying soil contaminated with heavy metals. In this method, the amount of elution of heavy metals into the water in the soil can be reduced. For example, a method of injecting potassium sulfate, sodium sulfate, calcium sulfide, sodium phosphate or the like as a heavy metal insolubilizing material is performed. In the conventional insolubilization method, the excavated soil is often treated as contaminated soil as it is. Recently, a method for insolubilizing in situ without excavating soil has been disclosed and practiced (see, for example, Non-Patent Document 1).

ところで、軟弱な状態にある土壌の固化や土壌の強度低下を防止することを目的に、セメント等の地盤改良材によって土壌を補強しようとすると、この補強部分がセメントを使用することによってアルカリ性を呈することとなる。このように土壌にヒ素が含有されている場合には、土壌がアルカリ性になることによって、ヒ素が土壌に溶出することなる。この結果、たとえば環境基準等に定める土壌への溶出量の基準の上限を超え、処理した土壌が汚染土壌となってしまうという問題も生じてくる。一方、PbやAs等の水に難溶な化合物を生成するような不溶化処理を行った場合に、アルカリ性の処理剤を併用することによって当該化合物が可溶となってしまい、その不溶化処理の効果は低減することになってしまうといった問題も惹起する。   By the way, when trying to reinforce the soil with a ground improvement material such as cement for the purpose of preventing the solidification of the soil in a soft state or the strength of the soil from decreasing, this reinforcing portion exhibits alkalinity by using cement. It will be. Thus, when arsenic is contained in the soil, the arsenic is eluted into the soil when the soil becomes alkaline. As a result, there arises a problem that, for example, the upper limit of the amount of elution into the soil defined in the environmental standards is exceeded, and the treated soil becomes contaminated soil. On the other hand, when an insolubilization treatment that produces a poorly soluble compound such as Pb or As is performed, the compound becomes soluble by using an alkaline treatment agent in combination, and the effect of the insolubilization treatment Causes a problem that it will be reduced.

従来の土壌固化材および重金属不溶化材は、それぞれ別個独立に用いられてきており、言い換えれば、それぞれの用途でそれぞれの効果を奏してきた。たとえば、それぞれ別々に土壌に添加する方法や、両者を混合して添加する等の方法が用いられていた。しかしながらこのような方法では、土壌固化と重金属不溶化の両方の効果を奏するものとする場合には、工程数が増え非効率となり、同時に経済的に見合うものとはならないなどの問題があった。これまで土壌固化材と重金属不溶化材の両方の効果を併せ持った材料はこれまで存在していない。
工藤健一及び高橋和夫著、土木学会誌、第87巻、2002年、p.48−50
Conventional soil solidifying materials and heavy metal insolubilizing materials have been used separately and independently, in other words, have had their respective effects in their respective uses. For example, the method of adding to soil separately, respectively, and the method of mixing both and adding were used. However, in such a method, when the effects of both solidification of the soil and insolubilization of heavy metal are achieved, the number of steps increases, resulting in inefficiency, and at the same time, there is a problem that it is not economically suitable. Until now, there has been no material that combines the effects of both soil solidifying material and heavy metal insolubilizing material.
Kenichi Kudo and Kazuo Takahashi, Journal of Japan Society of Civil Engineers, Vol. 87, 2002, p. 48-50

本発明はかかる課題に鑑みてなされたものであり、土壌固化材として中性の石膏の吸水効果を利用して土壌を固化させると同時に、土壌の粉体pHが高くなることを防ぐことにより重金属が再溶出する弊害を抑制し、重金属吸着材による不溶化効果を最大限高めることを目的とし、さらに水分を含む土壌であっても、掘削することなくその位置で不溶化処理と土壌固化処理を同時に行うことができるという効果を有する新規な土壌改良材を提供することを目的とする。本発明の土壌改良材を用いれば、土壌固化と重金属不溶化の両方を行う必要のある処理方法において、土壌固化と重金属不溶化の両方の目的を効率的に達成することができる。   The present invention has been made in view of such problems, and solidifies the soil by utilizing the water-absorbing effect of neutral gypsum as a soil-solidifying material, and at the same time prevents heavy soil from increasing the powder pH of the soil. Is intended to suppress the harmful effects of re-elution and to maximize the insolubilization effect of heavy metal adsorbents, and even in soil containing moisture, insolubilization treatment and soil solidification treatment are simultaneously performed without drilling It aims at providing the novel soil improvement material which has the effect that it can be performed. If the soil improvement material of this invention is used, in the processing method which needs to perform both soil solidification and heavy metal insolubilization, the objective of both soil solidification and heavy metal insolubilization can be achieved efficiently.

課題を解決するための手段及び発明の実施の形態Means for Solving the Problem and Embodiment of the Invention

本発明は、石膏と鉄酸化物とを含む粉体であって、比表面積が10〜100m/gであり、粉体pHが6.0〜9.0であることを特徴とする土壌改良材を提供する。
本発明の土壌改良材は、石膏と鉄酸化物とを含む粉体である。
The present invention is a powder containing gypsum and iron oxide, having a specific surface area of 10 to 100 m 2 / g and a powder pH of 6.0 to 9.0. Providing materials.
The soil improvement material of the present invention is a powder containing gypsum and iron oxide.

本発明において、石膏として半水石膏及び/または無水石膏を主成分とするものを用いる。石膏として吸水性に優れた半水石膏及び/または無水石膏を主成分とするものを用いることで、たとえば建設汚泥や地下水により地盤が軟弱な状態にある土壌を効率的に吸水して固化することができる。   In the present invention, gypsum is mainly composed of hemihydrate gypsum and / or anhydrous gypsum. Using gypsum that is mainly composed of hemihydrate gypsum and / or anhydrous gypsum with excellent water absorption, for example, to efficiently absorb and solidify soil in a soft ground due to construction sludge and groundwater. Can do.

本発明において鉄酸化物は、たとえば以下に一例を挙げて述べる製造方法によって、石膏を含むものとすることができる。鉄酸化物としては、以下の述べる製造方法によって得られるものが好ましい。この製造方法により得られる鉄酸化物は、X線回折分析では明確なピークが認められないものの、その製造条件からアモルファスな水和酸化鉄及び/または水酸化第二鉄であると当業者であれば合理的に推定できるものである。   In the present invention, the iron oxide may contain gypsum, for example, by the production method described below with an example. As the iron oxide, those obtained by the production method described below are preferable. Those skilled in the art will recognize that the iron oxide obtained by this production method is amorphous hydrated iron oxide and / or ferric hydroxide, although no clear peak is observed by X-ray diffraction analysis. Can be reasonably estimated.

本発明の土壌改良材において鉄酸化物は、前記石膏に対し前記鉄酸化物をFeに換算した重量比で0.05〜0.5:1の範囲で含むことが好ましい。この範囲内の土壌改良材は、土壌固化と重金属不溶化の両方の用途に対して、そのまま用いることができる。鉄酸化物の重量比が高くなると石膏成分が少なくなるため、固化材として使用したときの効果が小さくなる。一方、鉄酸化物の重量比が低いと重金属不溶化材としての効果が小さくなってしまうのである。 Iron oxide in the soil conditioner of the present invention, a weight ratio with respect to the gypsum was converted the iron oxide Fe 2 O 3 0.05~0.5: it is preferred to include in the 1 range. The soil improvement material in this range can be used as it is for both soil solidification and heavy metal insolubilization. When the weight ratio of the iron oxide is high, the gypsum component is reduced, so that the effect when used as a solidifying material is reduced. On the other hand, when the weight ratio of iron oxide is low, the effect as a heavy metal insolubilizing material is reduced.

本発明の土壌改良材の好ましい比表面積は、10〜100m/gである。
土壌改良材の粉体の比表面積が10m/g未満である場合、土壌中の重金属の吸着や吸水効果が不十分となる。また、土壌改良材の粉体の比表面積が100m/gを超えるものである場合には、土壌中の重金属の吸着や吸水効果は飽和してしまうことになる。
The preferable specific surface area of the soil improvement material of this invention is 10-100 m < 2 > / g.
When the specific surface area of the powder of the soil improving material is less than 10 m 2 / g, the adsorption of heavy metals in the soil and the water absorption effect are insufficient. Moreover, when the specific surface area of the powder of a soil improvement material exceeds 100 m < 2 > / g, the adsorption | suction and water absorption effect of heavy metal in soil will be saturated.

本発明の土壌改良材の粉体pHは、6.0〜9.0である。
土壌改良材の粉体pHが6.0未満である場合、重金属が水に可溶な状態となってしまう。また、土壌改良材の粉体pHが9.0を超えると、一旦吸着した重金属が可溶状態となる恐れがでてくる。さらに、たとえば排水に関する環境基準値のpHが5.8〜8.6であることを考慮すれば、本発明の土壌改良材の粉体pHが6.0〜9.0の範囲がより好ましいことがわかる。
The powder pH of the soil improvement material of the present invention is 6.0 to 9.0.
When the powder pH of the soil improving material is less than 6.0, the heavy metal becomes soluble in water. Moreover, if the powder pH of the soil conditioner exceeds 9.0, the heavy metal once adsorbed may be in a soluble state. Furthermore, considering that, for example, the pH of the environmental standard value for drainage is 5.8 to 8.6, the powder pH of the soil improvement material of the present invention is more preferably in the range of 6.0 to 9.0. I understand.

本発明の土壌改良材の形態は、重金属イオンの吸着効果が高いという観点から微粒子、すなわち粉体であることが好ましい。またこの観点から、本発明の土壌改良材の平均粒径は、20μm以下であることが好ましい。すなわち、土壌改良材の吸水材としての効果は、半水石膏または無水石膏の含有量に比例すること、および単位石膏含有量当たりの固化効果を上げるという観点から、平均粒径を20μm以下とすることが好ましく、10μm以下とすることがさらに好ましい。   The form of the soil improvement material of the present invention is preferably a fine particle, that is, a powder from the viewpoint that the effect of heavy metal ion adsorption is high. From this viewpoint, the average particle size of the soil improvement material of the present invention is preferably 20 μm or less. That is, the average particle size is set to 20 μm or less from the viewpoint that the effect of the soil improvement material as a water-absorbing material is proportional to the content of hemihydrate gypsum or anhydrous gypsum and increases the solidification effect per unit gypsum content. The thickness is preferably 10 μm or less.

このような本発明土壌改良材の粒径の範囲について、本発明の半水石膏含有量63%で粒径が10μmの土壌改良材と、他社の半水石膏含有量86%で粒径が37μmの土壌改良材とを比較した。この結果、実施例と比較例に示すように両者の固化材の最適添加率は同等であった。このことから、微粒子とした方が土壌改良材の固化効果が大きいことを見出し確認した。なお、固化材の最適添加率は、被試験土壌をガラス管に詰め、ガラス管を上に引き上げた時に残った土壌がそのまま自立しているかどうかを目視で判断した。   Regarding the range of the particle size of the soil improvement material of the present invention, the soil improvement material of the present invention having a hemihydrate gypsum content of 63% and a particle size of 10 μm, and the competitor's hemihydrate gypsum content of 86% and a particle size of 37 μm. The soil amendment material was compared. As a result, as shown in Examples and Comparative Examples, the optimum addition ratios of the two solidification materials were the same. From this, it was found and confirmed that fine particles have a greater effect of solidifying the soil improvement material. The optimum addition rate of the solidifying material was determined by visual observation whether the soil to be tested was packed in a glass tube and the soil left when the glass tube was pulled up was left as it was.

本発明の土壌改良材において、前記石膏に対し前記鉄酸化物をFeに換算した重量比で0.05〜0.5:1の範囲で含むのが好ましい。この範囲内であれば、土壌固化と重金属不溶化の両方の用途に対して、本発明の土壌改良材をそのまま使用することができる。鉄酸化物の重量比が高くなると石膏成分が少なくなるため、固化材として使用したときの効果が小さくなる。一方、鉄酸化物の重量比が低いと、重金属不溶化材としての効果が小さくなる。 In soil conditioner of the present invention, in a weight ratio in terms of the iron oxide to said gypsum Fe 2 O 3 0.05~0.5: preferably contains at 1. If it is in this range, the soil improvement material of this invention can be used as it is for both the use of soil solidification and heavy metal insolubilization. When the weight ratio of the iron oxide is high, the gypsum component is reduced, so that the effect when used as a solidifying material is reduced. On the other hand, when the weight ratio of iron oxide is low, the effect as a heavy metal insolubilizing material is reduced.

本発明の土壌改良材は、Ca以外のアルカリ土類金属含有量を酸化物として0.1〜4重量%をさらに含んでもよい。このCa以外の好適なアルカリ土類金属としては、たとえばMg、Sr及びBaなどをあげることができる。より好ましくはMgである。前記アルカリ土類金属をさらに含有させることにより、マグネタイトの生成が抑えられ微細な水和酸化鉄及び/または水酸化第二鉄を生成する。この微細な水和酸化鉄及び/または水酸化第二鉄を含む本発明の土壌改良材は、特に重金属に対する優れた吸着効果を奏する。Ca以外のアルカリ土類金属含有量を酸化物として、0.1重量%未満をさらに含む土壌改良材の場合には、比表面積の小さなマグネタイトが生成するため土壌改良材の比表面積が10m/g未満となってしまい、重金属不溶化の効果が低下する。また、Ca以外のアルカリ土類金属含有量を酸化物として、4重量%を超えてさらに含む土壌改良材の場合、不純物としての影響が出てくることとなり、相対的に土壌改良材中の石膏と鉄酸化物の含有比率が減少してしまい、土壌改良材としての吸着固化効果を奏することができなくなる。 The soil improvement material of this invention may further contain 0.1 to 4 weight% by making alkaline-earth metal content other than Ca into an oxide. Examples of suitable alkaline earth metals other than Ca include Mg, Sr and Ba. More preferably, it is Mg. By further containing the alkaline earth metal, the production of magnetite is suppressed and fine hydrated iron oxide and / or ferric hydroxide is produced. The soil improvement material of the present invention containing this fine hydrated iron oxide and / or ferric hydroxide exhibits particularly excellent adsorption effect on heavy metals. In the case of a soil improvement material further containing less than 0.1% by weight with an alkaline earth metal content other than Ca as an oxide, a magnetite with a small specific surface area is generated, so the specific surface area of the soil improvement material is 10 m 2 / It becomes less than g, and the effect of heavy metal insolubilization falls. In addition, in the case of a soil improvement material further containing more than 4% by weight with an alkaline earth metal content other than Ca as an oxide, the effect as an impurity will come out, relatively gypsum in the soil improvement material And the content ratio of iron oxides decreases, and it becomes impossible to exhibit the effect of adsorption and solidification as a soil improvement material.

本発明の土壌改良材は、重金属の不溶化に優れた効果を奏する。この理由として、当該鉄酸化物、特に水和酸化鉄及び/または水酸化第二鉄が有する水酸基に重金属イオンが吸着して不溶化することによるものと考えられる。本発明の土壌改良材が吸着して不溶化する重金属イオンは、たとえばAs、Se、Cd、Pb、Cr(六価)、Hg等をあげることができる。したがって、汚染土壌を、たとえば土壌対策基本法に基づく環境基準に沿ったものに改良することもできるのである。   The soil improvement material of this invention has the effect excellent in insolubilization of a heavy metal. The reason for this is thought to be that heavy metal ions are adsorbed and insolubilized by the hydroxyl group of the iron oxide, particularly hydrated iron oxide and / or ferric hydroxide. Examples of heavy metal ions that are adsorbed and insolubilized by the soil improvement material of the present invention include As, Se, Cd, Pb, Cr (hexavalent), Hg, and the like. Therefore, the contaminated soil can be improved, for example, in accordance with environmental standards based on the Basic Law for Soil Countermeasures.

製造方法の一例
本発明の土壌改良材は、典型的には以下の方法により製造することができる。
鉄分を含有した廃硫酸、たとえば硫酸法酸化チタンの製造工程で発生する廃硫酸は、イルメナイト鉱石の蒸解反応に利用した後の高濃度の硫酸とFe、Mn、Ti、Si、Al等を含有する溶液であるが、この内の硫酸分などを炭酸カルシウムと水酸化マグネシウムを含むアルカリを用いて、pH2.0〜5.0の条件下で中和処理をする。このことにより石膏が生成される。
An example of a manufacturing method The soil improvement material of this invention can be typically manufactured with the following method.
Waste sulfuric acid containing iron, for example, waste sulfuric acid generated in the manufacturing process of sulfuric acid-type titanium oxide, contains high-concentration sulfuric acid and Fe, Mn, Ti, Si, Al, etc. after use in the digestion reaction of ilmenite ore Although it is a solution, the sulfuric acid content etc. of this are neutralized under the conditions of pH 2.0-5.0 using the alkali containing calcium carbonate and magnesium hydroxide. This produces gypsum.

前記の中和処理工程で生成した石膏を取り除いた後、石膏分離液を得る。この石膏分離液は、硫酸鉄と硫酸マグネシウムを含む。この石膏分離液を、水酸化カルシウムで、35〜45℃の温度、pH7.0〜9.0の条件下で中和する。石膏と鉄酸化物の沈殿物をスラリーの状態で生成させる。このスラリー状の沈殿物は、石膏分として約50〜70%含み、その粉体にした場合の平均粒径は、20μm以下である。その後前記スラリーを引き続きエアー攪拌酸化して、石膏と微粒化された鉄酸化物を含むスラリーを得る。得られた石膏と鉄酸化物を含むスラリーをろ過洗浄し、乾燥及び焼成を行うことによって、本発明の土壌改良材を得ることができる。微粒化された鉄酸化物は、主成分が水和酸化鉄及び/または水酸化第二鉄であると推定された。   After removing the gypsum generated in the neutralization treatment step, a gypsum separation liquid is obtained. This gypsum separation liquid contains iron sulfate and magnesium sulfate. The gypsum separation liquid is neutralized with calcium hydroxide under conditions of 35 to 45 ° C. and pH 7.0 to 9.0. A gypsum and iron oxide precipitate is formed in a slurry state. This slurry-like precipitate contains about 50 to 70% as a gypsum content, and the average particle size when it is made into a powder is 20 μm or less. Thereafter, the slurry is subsequently oxidized with air stirring to obtain a slurry containing gypsum and atomized iron oxide. The slurry containing the gypsum and iron oxide obtained is filtered and washed, dried and fired, whereby the soil improving material of the present invention can be obtained. The main component of the atomized iron oxide was estimated to be hydrated iron oxide and / or ferric hydroxide.

前記廃硫酸は、土壌改良材の単価に制限があり、それに対応する安価な原料を用いる必要がある場合には、硫酸法酸化チタンの製造工程で発生する廃硫酸を利用すると経済的に有利で好ましい。   When the waste sulfuric acid has a limitation on the unit price of the soil improvement material and it is necessary to use a corresponding inexpensive raw material, it is economically advantageous to use the waste sulfuric acid generated in the production process of sulfuric acid method titanium oxide. preferable.

上記処理工程で得られる石膏分離液中の硫酸鉄を当量のアルカリ、たとえば水酸化カルシウムで中和するため、通常は重金属吸着には不利な比表面積の小さなマグネタイト粒子が生成物に混入してくるが、中和反応液にはマグネシウムイオンが存在するためマグネタイトの生成は認められない。また、アルカリで中和した後の酸化は水和酸化鉄及び/または水酸化第二鉄を主成分とする微粒子の鉄酸化物を生成させるため強力にエアレーション、たとえば後述のようにFeの酸化速度が0.01〜0.40g/L/minとなるようなエアーレーションすることが好ましい。   Since iron sulfate in the gypsum separation liquid obtained in the above treatment step is neutralized with an equivalent amount of alkali, such as calcium hydroxide, magnetite particles having a small specific surface area, which is usually unfavorable for heavy metal adsorption, are mixed into the product. However, since magnesium ions are present in the neutralization reaction solution, the formation of magnetite is not recognized. In addition, the oxidation after neutralization with alkali strongly generates aeration to form fine iron oxides mainly composed of hydrated iron oxide and / or ferric hydroxide, for example, the oxidation rate of Fe as described later. Is preferably aerated so as to be 0.01 to 0.40 g / L / min.

石膏分離液は、Fe濃度が9〜11g/L、中和に必要な水酸化カルシウムスラリーはFeに対して1.0〜2.2倍当量であり、中和時の温度は35〜45℃、pHを7.0〜9.0の範囲内で制御することで石膏と水酸化第一鉄沈殿物を生成させる。土壌改良材の粉体pHは水酸化カルシウムスラリーのFeに対する当量倍率で決まり、上記範囲に設定すれば粉体pHは6.0〜9.0の範囲内で制御することができる。   The gypsum separation liquid has an Fe concentration of 9 to 11 g / L, the calcium hydroxide slurry required for neutralization is 1.0 to 2.2 times equivalent to Fe, and the temperature during neutralization is 35 to 45 ° C. By controlling the pH within the range of 7.0 to 9.0, gypsum and ferrous hydroxide precipitate are generated. The powder pH of the soil improvement material is determined by the equivalent ratio with respect to Fe of the calcium hydroxide slurry, and the powder pH can be controlled within the range of 6.0 to 9.0 when set in the above range.

中和に引き続いて行う攪拌酸化は、Feの酸化速度が0.01〜0.40g/L/minとなるような速度で、エアーを吹き込んで攪拌酸化することができる。
石膏と鉄酸化物を含むスラリーから石膏分を分離して得られた鉄酸化物の組成は、結晶性が非常に弱いものであり、X線回折による分析での回折ピークは認められなかった。透過型電子顕微鏡写真観察においても結晶性のものは認められず、アモルファス状の極微細粒子の集合体であり、BET比表面積は150〜200m/gであることを確認した。
The stirring oxidation performed after the neutralization can be performed by stirring and oxidizing by blowing air at such a rate that the oxidation rate of Fe becomes 0.01 to 0.40 g / L / min.
The composition of the iron oxide obtained by separating the gypsum component from the slurry containing gypsum and iron oxide had very low crystallinity, and no diffraction peak was found in the analysis by X-ray diffraction. Even in transmission electron micrograph observation, no crystalline material was observed, and it was confirmed to be an aggregate of amorphous ultrafine particles having a BET specific surface area of 150 to 200 m 2 / g.

生成する石膏の粒径は、最初の石膏分離液を水酸化カルシウムで中和する際の温度と攪拌強度で決定される。石膏の溶解度が最も高い40℃で中和すると、最も微細な石膏を生成する。このとき得られる石膏が好ましい。また攪拌エアーをある程度多くした方が微粒子が生成しやすくなる。   The particle size of the gypsum produced is determined by the temperature and stirring strength when neutralizing the initial gypsum separation liquid with calcium hydroxide. Neutralization at 40 ° C., the highest solubility of gypsum, produces the finest gypsum. The gypsum obtained at this time is preferred. Further, if the stirring air is increased to some extent, fine particles are more easily generated.

生成した石膏と鉄酸化物を含むスラリーをろ過洗浄し、110℃の温度で乾燥し、その後続いて250〜300℃の温度で焼成する。この焼成は、大気中であっても、不活性ガスの存在下で行ってもよい。乾燥後得られる石膏は2水塩であり、その後続いて250℃以上で焼成することにより、より大きな吸水効果を持つ半水石膏あるいは無水石膏に変えることができる。   The resulting slurry containing gypsum and iron oxide is filtered and washed, dried at a temperature of 110 ° C., and subsequently fired at a temperature of 250 to 300 ° C. This firing may be performed in the air or in the presence of an inert gas. The gypsum obtained after drying is a dihydrate, and can be changed to hemihydrate gypsum or anhydrous gypsum having a greater water absorption effect by subsequent baking at 250 ° C. or higher.

以下に、各特性の測定方法について説明する。
(粉体pH)
JIS K 5101−17−1:2004に従い、試料5.0gをはかり取り、スクリュー栓付き三角フラスコ200mlに移す。蒸留水100mlを加えて加熱し、沸騰後ゆるやかに5分間煮沸する。室温まで冷却後、減量に相当する水を加えて補い混合し、ガラス電極を装着したpHメーターで直ちにpHを測定する。
(比表面積)
乾燥試料約0.3gを計量して測定セルに移し入れる。150℃×20分の脱気処理後、島津−マイクロメリティクス製流動式比表面積測定装置フローソーブ2300型にて、B.E.T.一点法(低圧法)により比表面積測定を行う。
(石膏平均粒径)
光学顕微鏡(KEYENCE製デジタルHDマイクロスコープWH−7000)を用い、1000倍の倍率にて試料中石膏粒子の形状観察、及び300個の粒子について長軸径の測定を行い、平均粒径を算出した。
(鉄酸化物Fe含有量)
JIS K 5109:1999に従い、試料0.3gをはかり取り、コニカルビーカー300mlに移す。濃塩酸15mlを加え加熱して溶解させる。塩化第一スズ溶液を加えた後急冷し、塩化第二水銀飽和溶液10mlと混酸を加えた後、0.1N二クロム酸カリウム溶液で滴定する。
(Pb溶出量とAs溶出量の測定)
土壌汚染対策法に定めるJISK0102の54と、JISK0102の61に従って実施した。
Below, the measuring method of each characteristic is demonstrated.
(Powder pH)
In accordance with JIS K 5101-17-1: 2004, 5.0 g of a sample is weighed and transferred to a 200 ml Erlenmeyer flask with a screw stopper. Add 100 ml of distilled water and heat, boil gently for 5 minutes after boiling. After cooling to room temperature, water corresponding to the weight loss is added to make up for mixing, and the pH is immediately measured with a pH meter equipped with a glass electrode.
(Specific surface area)
About 0.3 g of dry sample is weighed and transferred to the measuring cell. After deaeration treatment at 150 ° C. for 20 minutes, B.F. E. T.A. The specific surface area is measured by a one-point method (low pressure method).
(Gypsum average particle size)
Using an optical microscope (Digital HD microscope WH-7000 manufactured by KEYENCE), the shape of the gypsum particles in the sample was observed at a magnification of 1000 times, and the major axis diameter was measured for 300 particles, and the average particle size was calculated. .
(Iron oxide Fe 2 O 3 content)
According to JIS K 5109: 1999, 0.3 g of a sample is weighed and transferred to a 300 ml conical beaker. Add 15 ml of concentrated hydrochloric acid and dissolve by heating. After adding the stannous chloride solution, it is rapidly cooled, and after adding 10 ml of a saturated mercuric chloride solution and a mixed acid, it is titrated with a 0.1 N potassium dichromate solution.
(Measurement of Pb elution amount and As elution amount)
This was carried out in accordance with JISK0102 54 and JISK0102 61 stipulated in the Soil Contamination Countermeasures Law.

以下、本発明の効果を示す実施例について説明するが、以下の実施例は単に例示のために示すものであり、発明の範囲がこれらによって制限されるものではない。
(実施例1)
[土壌改良材の製造]
硫酸法酸化チタンの製造工程で発生する廃硫酸を炭酸カルシウムと水酸化マグネシウムを含むアルカリとして、宇部マテリアルズ製HTスラリーを用いて、pH2.5〜4.0で中和処理し、更に石膏成分を取り除いた後のFeとMgを含む溶液を40℃に昇温し、水酸化カルシウムでpH7〜9で中和して水酸化第一鉄と石膏(2水塩)を生成させ、空気を4時間通気して水和酸化鉄あるいは水酸化第二鉄を生成させた。この石膏と水酸化第二鉄を含有するスラリーをろ過、洗浄後、ケーキを円柱状に成型して270℃に設定したバンドドライヤーに送入し、乾燥に引き続き低温焼成を行って石膏を半水石膏に変化させた。生成した土壌改良材は比表面積が72m/g、pH8.0で、含有する半水石膏の平均粒径が10μmであり、石膏に対し鉄酸化物をFeに換算した重量比で0.33:1の比率で含むものであった。またアルカリ土類金属の酸化物としてMgOを3.2wt%含有するものであった。
[土壌改良材の評価]
表−1に示したように、Pb含有量が2200mg/kg、As含有量が250mg/kgで、Pb溶出量が0.044mg/l、As溶出量が0.08mg/lで重金属含有量と溶出量が環境基準をオーバーしている汚染土壌に対し、本発明の土壌改良材を50g/kg添加混合し溶出量を測定した結果、Pb溶出量が0.005mg/l未満、As溶出量が0.008mg/lまで低下し、土壌溶出量の環境基準の0.01mg/lをクリアーした。また、含有水分が多いために汚泥状となった汚染土壌に対して、本発明の土壌改良材を固化材最適添加率であった50g/kgを添加混合した結果、ハンドリング性が大きく改善され、その後の土壌浄化処理のための場外運び出しが可能となった。
(比較例1)
実施例1に示す重金属汚染土壌に換え、従来使用されている重金属不溶化材としてポリ鉄10ml/kgと炭酸カルシウム50g/kgを土壌に添加したものは、As溶出量が0.006mg/lまで低下したが、Pb溶出量が0.013mg/lで環境基準を満たすことができなかった。
(比較例2)
実施例1に示す重金属汚染土壌に換え、重金属不溶化材としてポリ鉄10ml/kgとセメント50g/kgを土壌に添加したものは、Pb溶出量が0.001mg/lで環境基準を満たしたが、セメントにより溶出pHが10.4まで上昇してアルカリ側となったため、As溶出量が0.28mg/lまで増加し、大幅に基準をオーバーした。
Hereinafter, examples showing the effects of the present invention will be described. However, the following examples are provided for illustrative purposes only, and the scope of the invention is not limited by these examples.
(Example 1)
[Manufacture of soil amendments]
Waste sulfuric acid generated in the manufacturing process of sulfuric acid method titanium oxide is neutralized at pH 2.5-4.0 using HT slurry made by Ube Materials as alkali containing calcium carbonate and magnesium hydroxide, and further gypsum component The solution containing Fe and Mg after removing the iron is heated to 40 ° C. and neutralized with calcium hydroxide at pH 7-9 to produce ferrous hydroxide and gypsum (dihydrate). Aerated for a period of time to produce hydrated iron oxide or ferric hydroxide. This slurry containing gypsum and ferric hydroxide is filtered and washed, then the cake is molded into a cylindrical shape and sent to a band dryer set at 270 ° C., followed by drying at low temperature, and the gypsum is semi-watered. Changed to gypsum. The generated soil improvement material has a specific surface area of 72 m 2 / g, pH 8.0, and the average particle size of the hemihydrate gypsum contained is 10 μm, and the weight ratio of iron oxide converted to Fe 2 O 3 with respect to gypsum. It was included at a ratio of 0.33: 1. Further, it contained 3.2 wt% of MgO as an alkaline earth metal oxide.
[Evaluation of soil conditioner]
As shown in Table 1, the Pb content is 2200 mg / kg, the As content is 250 mg / kg, the Pb elution amount is 0.044 mg / l, the As elution amount is 0.08 mg / l, and the heavy metal content is As a result of adding 50 g / kg of the soil improvement material of the present invention to the contaminated soil whose elution amount exceeded the environmental standard, and measuring the elution amount, the Pb elution amount was less than 0.005 mg / l, and the As elution amount was It decreased to 0.008 mg / l, and cleared the environmental standard of 0.01 mg / l of soil elution. Moreover, as a result of adding and mixing 50 g / kg, which was the optimum addition rate of the solidifying material, the soil improvement material of the present invention was added to the contaminated soil that became sludge due to the high water content, handling properties were greatly improved, It was possible to carry it off-site for subsequent soil purification treatment.
(Comparative Example 1)
In place of heavy metal-contaminated soil shown in Example 1, 10 ml / kg of polyiron and 50 g / kg of calcium carbonate added to the soil as conventionally used heavy metal insolubilizers, the As elution amount decreased to 0.006 mg / l. However, the Pb elution amount was 0.013 mg / l, and environmental standards could not be satisfied.
(Comparative Example 2)
In place of heavy metal-contaminated soil shown in Example 1, 10 ml / kg of polyiron and 50 g / kg of cement as a heavy metal insolubilized material were added to the soil, and the Pb elution amount was 0.001 mg / l. Since the elution pH was raised to 10.4 by cement and became alkaline, the As elution amount increased to 0.28 mg / l, significantly exceeding the standard.

Figure 0005099533
Figure 0005099533

[発明の効果]
以上説明したように、本発明の土壌改良材は、石膏と鉄酸化物とを含有し、比表面積が10〜100m/g、粉体pHが6〜9であることを特徴とする土壌改良材である。本発明の土壌改良材を用いることにより、土壌固化処理と重金属不溶化処理の両方の効果を達成することができる。また、このような土壌固化処理と重金属不溶化処理とを行う必要がある場合には、本発明の土壌改良材を用いることにより、双方の処理材の混合工程が不要となり、全体の工程を簡略化することができる。結果として、土壌処理に要するコストも低減できるという利点がある。
[Effect of the invention]
As described above, the soil improvement material of the present invention contains gypsum and iron oxide, has a specific surface area of 10 to 100 m 2 / g, and a powder pH of 6 to 9, It is a material. By using the soil improving material of the present invention, the effects of both the soil solidification treatment and the heavy metal insolubilization treatment can be achieved. Moreover, when it is necessary to perform such soil solidification treatment and heavy metal insolubilization treatment, the use of the soil improvement material of the present invention eliminates the need for the mixing step of both treatment materials, and simplifies the overall process. can do. As a result, there is an advantage that the cost required for soil treatment can be reduced.

Claims (6)

石膏と鉄酸化物とを含み、比表面積が10〜100m/gであり、粉体pHが6〜9であることを特徴とする土壌改良材であって、Ca以外のアルカリ土類金属を、土壌改良材全体の重量を100重量%として、酸化物の形態で0.1〜4重量%さらに含んでなることを特徴とする前記土壌改良材A soil conditioner comprising gypsum and iron oxide, having a specific surface area of 10 to 100 m 2 / g and a powder pH of 6 to 9, comprising an alkaline earth metal other than Ca The soil conditioner further comprises 0.1 to 4% by weight in the form of an oxide, with the total weight of the soil conditioner being 100% by weight . 前記石膏が半水石膏及び/または無水石膏を主成分とするものであることを特徴とする請求項1に記載の土壌改良材。 The soil improvement material according to claim 1, wherein the gypsum is mainly composed of hemihydrate gypsum and / or anhydrous gypsum. 酸化物と石膏の比が、当該鉄酸化物をFeに換算した重量比で鉄酸化物:石膏=0.05〜0.5:1であることを特徴とする請求項1または2に記載の土壌改良材。 The ratio of iron oxides and gypsum, iron oxides the iron oxide in a weight ratio in terms of Fe 2 O 3: Gypsum = 0.05-0.5: claim 1 or characterized in that it is a 1 2. The soil improvement material according to 2. 石膏の平均粒径が20μm以下であることを特徴とする請求項1〜3のいずれかに記載の土壌改良材。 The soil improvement material according to any one of claims 1 to 3, wherein the average particle size of gypsum is 20 µm or less. 硫酸法酸化チタン製造工程から排出される廃硫酸を原料とすることを特徴とする請求項1〜のいずれかに記載の土壌改良材。 The soil improvement material according to any one of claims 1 to 4 , wherein waste sulfuric acid discharged from a sulfuric acid method titanium oxide production process is used as a raw material. 鉄酸化物のBET比表面積が150〜200mIron oxide has a BET specific surface area of 150 to 200 m 2 /gであることを特徴とする請求項1〜5のいずれかに記載の土壌改良材。It is / g, The soil improvement material in any one of Claims 1-5 characterized by the above-mentioned.
JP2005233910A 2005-08-12 2005-08-12 Soil improvement material Active JP5099533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005233910A JP5099533B2 (en) 2005-08-12 2005-08-12 Soil improvement material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005233910A JP5099533B2 (en) 2005-08-12 2005-08-12 Soil improvement material

Publications (2)

Publication Number Publication Date
JP2007045983A JP2007045983A (en) 2007-02-22
JP5099533B2 true JP5099533B2 (en) 2012-12-19

Family

ID=37849081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005233910A Active JP5099533B2 (en) 2005-08-12 2005-08-12 Soil improvement material

Country Status (1)

Country Link
JP (1) JP5099533B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101145320B1 (en) 2010-08-17 2012-05-14 유한회사 영신 Tractor having wheel and caterpiller
WO2017110964A1 (en) * 2015-12-25 2017-06-29 株式会社神戸製鋼所 Insolubilization material and insolubilization method for arsenic

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335317A (en) * 2000-03-21 2001-12-04 Ishihara Sangyo Kaisha Ltd Flaked laminating calcined gypsum and its production method
TWI229000B (en) * 2001-09-28 2005-03-11 Nat Inst Of Advanced Ind Scien Deodorizer, process for producing the same, and method of deodorization
JP4076510B2 (en) * 2003-02-05 2008-04-16 石原産業株式会社 Environmental purification method
JP2004277608A (en) * 2003-03-17 2004-10-07 Ishihara Sangyo Kaisha Ltd Soil conditioner and manufacturing method therefor
JP2006061853A (en) * 2004-08-27 2006-03-09 Titan Kogyo Kk Iron oxide powder for cleaning soil and ground-water, containing organohalogen compound

Also Published As

Publication number Publication date
JP2007045983A (en) 2007-02-22

Similar Documents

Publication Publication Date Title
JP4076510B2 (en) Environmental purification method
JP4990865B2 (en) Solidified insolubilizer for soil and soil treatment method
JP6787142B2 (en) Heavy metal pollution control material and heavy metal pollution control method using the pollution control material
JP4870423B2 (en) Heavy metal treatment material and heavy metal treatment method using the same
CN109665566A (en) A kind of preparation method and sewage water treatment method of magnetic nano ferroferric oxide
JP2002326081A (en) Method for making contaminated soil harmless
JP5683066B2 (en) Cement-based solidified material using dry sludge powder and method for producing the same
CN113070023A (en) Heavy metal adsorption material and preparation method and application thereof
CN104973626A (en) Method used for preparing high-purity ammonium metavanadate from sodium vanadate solution
KR100808904B1 (en) A ceramic ball having porosity
JP5099533B2 (en) Soil improvement material
JP6089792B2 (en) Steelmaking slag treatment method
CN113000011B (en) Heavy metal adsorption material and preparation method and application thereof
JP5768293B2 (en) Method for producing soil-solidifying material using fluorine-containing inorganic waste, obtained soil-solidifying material, and method for solidifying soft soil using the soil-solidifying material
Hongo et al. Synthesis of Ca-Al layered double hydroxide from concrete sludge and evaluation of its chromate removal ability
KR102255659B1 (en) Nanoparticles containing iron-manganese oxide, composition for adsortioning heavy metal comprising the same, and method for manufacturing the same
WO2013147034A1 (en) Insolubilizing agent for specific toxic substances, method for insolubilizing specific toxic substances using same, and soil improvement method
JP4100562B2 (en) Spinel complex oxide fired body and method for producing the same
JP4209223B2 (en) Hexavalent chromium elution suppression method
Wang et al. Preparation of nano red mud gels using red mud for the encapsulation and stabilization of arsenic in arsenic-bearing gypsum sludge
JP6028652B2 (en) Method for producing fluorine ion adsorbent and fluorine ion adsorbent
JP5032755B2 (en) Soil treatment material and soil purification method using the same
JP2010260030A (en) Adsorbent for adsorbing contaminating component and method for producing the adsorbent
JP4462853B2 (en) Neutral solidifying material for hydrous soil, soil heavy metal elution control method and dehydration method using the same
WO2017179122A1 (en) Cement additive and cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110830

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120822

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5099533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250