KR102255659B1 - Nanoparticles containing iron-manganese oxide, composition for adsortioning heavy metal comprising the same, and method for manufacturing the same - Google Patents

Nanoparticles containing iron-manganese oxide, composition for adsortioning heavy metal comprising the same, and method for manufacturing the same Download PDF

Info

Publication number
KR102255659B1
KR102255659B1 KR1020190089456A KR20190089456A KR102255659B1 KR 102255659 B1 KR102255659 B1 KR 102255659B1 KR 1020190089456 A KR1020190089456 A KR 1020190089456A KR 20190089456 A KR20190089456 A KR 20190089456A KR 102255659 B1 KR102255659 B1 KR 102255659B1
Authority
KR
South Korea
Prior art keywords
iron
manganese oxide
containing nanoparticles
nanoparticles
hydrate
Prior art date
Application number
KR1020190089456A
Other languages
Korean (ko)
Other versions
KR20210012192A (en
Inventor
이재영
오민아
오승진
Original Assignee
서울시립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울시립대학교 산학협력단 filed Critical 서울시립대학교 산학협력단
Priority to KR1020190089456A priority Critical patent/KR102255659B1/en
Publication of KR20210012192A publication Critical patent/KR20210012192A/en
Application granted granted Critical
Publication of KR102255659B1 publication Critical patent/KR102255659B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

본 명세서에는 철-망간 산화물 함유 나노 입자, 이를 포함하는 중금속 흡착용 조성물 및 상기 나노 입자의 제조방법이 개시된다. 본 발명의 일 측면인 철-망간 산화물 함유 나노 입자는, 중금속 흡착 효율이 우수하고 산화력이 우수하여, 소량만을 사용하여도 토양에 존재하는 중금속을 다량 제거할 수 있다. 또한, 본 발명의 일 측면인 상기 나노 입자의 제조 방법은 높은 수율로 상기 나노 입자를 제조할 수 있고, 균일한 성능을 갖는 나노 입자를 대량으로 제조할 수 있다.The present specification discloses iron-manganese oxide-containing nanoparticles, a composition for adsorbing heavy metals including the same, and a method of preparing the nanoparticles. The iron-manganese oxide-containing nanoparticles, which are an aspect of the present invention, have excellent heavy metal adsorption efficiency and excellent oxidizing power, so that a large amount of heavy metals present in the soil can be removed even if only a small amount is used. In addition, the method of manufacturing the nanoparticles, which is an aspect of the present invention, can manufacture the nanoparticles with a high yield, and can manufacture nanoparticles having uniform performance in large quantities.

Description

철-망간 산화물 함유 나노 입자, 이를 포함하는 중금속 흡착용 조성물 및 나노 입자의 제조방법{NANOPARTICLES CONTAINING IRON-MANGANESE OXIDE, COMPOSITION FOR ADSORTIONING HEAVY METAL COMPRISING THE SAME, AND METHOD FOR MANUFACTURING THE SAME}Iron-manganese oxide-containing nanoparticles, a composition for adsorbing heavy metals containing the same, and a method of manufacturing nanoparticles {NANOPARTICLES CONTAINING IRON-MANGANESE OXIDE, COMPOSITION FOR ADSORTIONING HEAVY METAL COMPRISING THE SAME, AND METHOD FOR MANUFACTURING THE SAME}

본 명세서에는 철-망간 산화물 함유 나노 입자, 이를 포함하는 중금속 흡착용 조성물 및 상기 나노 입자의 제조방법이 개시된다.The present specification discloses iron-manganese oxide-containing nanoparticles, a composition for adsorbing heavy metals including the same, and a method of preparing the nanoparticles.

중금속은 비소, 안티모니, 납, 수은, 카드뮴, 크로뮴, 주석, 아연, 바륨, 비스무트, 니켈 등비중 4 이상의 무거운 금속원소를 의미한다. 중금속은 대부분이 자원의 개발 및 폐기, 도시화 및 산업화 등 인간의 활동에 의해 토양에 유입되며, 동식물 및 지하수 등의 경로를 통해 사람에게 노출되고 있다. 중금속은 체내에 유입되면 축적되어 잘 배출되지 않으며, 소량만으로도 중추신경계·심혈관계·생식기관 및 혈액학적 체계 등을 손상시켜, 인체에 심각한 질환을 일으키게 된다. Heavy metal refers to a heavy metal element having a specific gravity of 4 or more, such as arsenic, antimony, lead, mercury, cadmium, chromium, tin, zinc, barium, bismuth, and nickel. Most of heavy metals are introduced into the soil through human activities such as resource development and disposal, urbanization and industrialization, and are exposed to humans through paths such as animals, plants and groundwater. When heavy metals enter the body, they accumulate and are not well discharged, and even a small amount damages the central nervous system, cardiovascular system, reproductive organs, and hematological systems, causing serious diseases in the human body.

중금속으로 오염된 토양을 복원하는 방법으로는, 산을 이용하여 토양을 세척하는 토양세척법, 아임계수를 이용하는 정화처리법 등이 사용되고 있다.As a method of restoring soil contaminated with heavy metals, a soil washing method using acid to wash the soil, a purification treatment method using subcritical water, and the like are used.

토양세척법은 염산과 같은 강한 산성 용액으로 토양을 세척하여 중금속을 추출 분리하는 방법이다. 오염토양의 부피를 줄일 수 있으며 처리 후에 토양을 재이용할 수 있다는 장점으로 인하여 비교적 보편화된 정화방법으로 평가되고 있다. 그러나, 이 방법은 고비용이 소요되고, 후단에 중화 및 응집 침전 등 대규모의 수처리 시설을 갖추어야 하므로 비경제적일 뿐만 아니라 비환경적이라는 단점이 있다. The soil washing method is a method of extracting and separating heavy metals by washing the soil with a strong acidic solution such as hydrochloric acid. Due to the advantage of reducing the volume of contaminated soil and being able to reuse the soil after treatment, it is evaluated as a relatively common purification method. However, this method is expensive and requires a large-scale water treatment facility such as neutralization and coagulation and precipitation at the rear stage, so it is not only uneconomical but also non-environmental.

아임계수를 이용한 정화처리법은 오염토양이 투입된 반응용기 내부를 일정 온도 및 압력 조건으로 가열하여 아임계수(Subcritical water) 상태로 만들어 줌으로써 오염토양으로부터 중금속을 추출 분리하는 방법을 의미한다. 이 방법은 중금속과 토양의 결합 형태 중에서 유기물 결합형, 광물격자 결합형와 같이 중금속과 토양 입자가 강하게 결합되어 일반 산세척법으로 정화하기 어려운 경우에도 적용 가능하다는 장점이 있다. 그러나, 고온 고압의 상태를 유지하여야 하므로 처리 단가가 높을 뿐만 아니라, 연속적인 오염토양 처리가 불가능하고 배치 타입만 가능하기 때문에 대규모의 오염토양을 신속하게 처리하지 못한다는 단점을 지니고 있다.The purification treatment method using subcritical water refers to a method of extracting and separating heavy metals from contaminated soil by heating the inside of a reaction vessel into which contaminated soil is put into a state of subcritical water by heating the inside of the reaction vessel into a state of subcritical water. This method has the advantage of being applicable even in cases where it is difficult to purify with a general pickling method because heavy metals and soil particles are strongly combined, such as an organic material-coupled type and a mineral grid-coupled type, among the combined types of heavy metals and soil. However, since it is necessary to maintain a state of high temperature and high pressure, not only the treatment unit cost is high, but also the continuous treatment of contaminated soil is not possible, and since only batch type is possible, large-scale contaminated soil cannot be quickly processed.

또한, 한국 특허 제10-1586686호에서는 망간 치환된 철수산화물을 이용한 수처리 방법을 제시하고 있는데, 기존의 중금속 처리 방법에 비하여 효과가 미미하고, 토양환경에는 적용이 어렵다는 단점이 지적되었다.In addition, Korean Patent No. 10-1586686 proposes a water treatment method using iron hydroxide substituted with manganese, but it is pointed out that the effect is insignificant compared to the existing heavy metal treatment method, and it is difficult to apply it to the soil environment.

이에, 간단하면서도 효과적으로 토양으로부터 중금속을 제거하는 방법의 연구가 절실한 상황이다.Therefore, there is an urgent need for a simple and effective method of removing heavy metals from soil.

KR 10-1586686 B1KR 10-1586686 B1

일 측면에서, 본 발명의 목적은 간단하고 효율적으로 토양 내 중금속을 제거하는 것이다.In one aspect, the object of the present invention is to remove heavy metals in soil simply and efficiently.

일 측면에서, 본 발명의 목적은 중금속 흡착력 및 산화력이 우수한 나노 입자를 제공하는 것이다.In one aspect, an object of the present invention is to provide nanoparticles having excellent heavy metal adsorption and oxidation power.

일 측면에서, 본 발명의 목적은 짧은 시간 내에 철-망간 산화물 함유 나노 입자를 제조하는 것이다.In one aspect, an object of the present invention is to prepare iron-manganese oxide-containing nanoparticles within a short time.

일 측면에서, 본 발명의 목적은 높은 수율로 철-망간 산화물 함유 나노 입자를 제조하는 것이다.In one aspect, an object of the present invention is to prepare iron-manganese oxide-containing nanoparticles in high yield.

상기 목적을 달성하기 위하여, 본 발명은 일 측면에서, i) 130~150m2/g의 비표면적,In order to achieve the above object, the present invention in one aspect, i) a specific surface area of 130 ~ 150m 2 /g,

ii) 18~26 nm의 평균 공극 직경, 및 iii) 0.001~0.01cm3/g의 평균 공극률의 특성을포함하는 철-망간 산화물 함유 나노 입자를 제공한다.ii) an average pore diameter of 18 to 26 nm, and iii) an average porosity of 0.001 to 0.01 cm 3 /g to provide iron-manganese oxide-containing nanoparticles.

또한, 본 발명은 상기와 같은 측면에서, 철 수화물 및 망간 수화물을 혼합하는 단계를 포함하는, 철-망간 산화물 함유 나노 입자의 제조방법을 제공한다.In addition, the present invention provides a method for producing iron-manganese oxide-containing nanoparticles, including the step of mixing iron hydrate and manganese hydrate in the same aspect as described above.

본 발명의 일 측면인 철-망간 산화물 함유 나노 입자는, 중금속 흡착 효율이 우수하고 산화력이 우수하여, 소량만을 사용하여도 토양에 존재하는 중금속을 다량 제거할 수 있다. 또한, 본 발명의 일 측면인 상기 나노 입자의 제조 방법은 높은 수율로 상기 나노 입자를 제조할 수 있고, 균일한 성능을 갖는 나노 입자를 대량으로 제조할 수 있다.The iron-manganese oxide-containing nanoparticles, which are an aspect of the present invention, have excellent heavy metal adsorption efficiency and excellent oxidizing power, so that a large amount of heavy metals present in the soil can be removed even if only a small amount is used. In addition, the method of manufacturing the nanoparticles, which is an aspect of the present invention, can manufacture the nanoparticles with a high yield, and can manufacture nanoparticles having uniform performance in large quantities.

도 1은 X-선 회절 분석 결과를 보이는 도이다.
도 2는 X-선 형광 분석 결과를 보이는 도이다.
도 3은 미국 ASTM 시험법 D3663에 기초한 BET 분석 결과이다.
도 4은 TEM-EDS 분석 결과를 보이는 도이다(4a:100nm, 4b:50nm, 4c:20nm, 4d:10nm).
도 5는 중금속 흡착력 테스트 결과를 보이는 도이다.
1 is a diagram showing the results of X-ray diffraction analysis.
2 is a diagram showing the results of X-ray fluorescence analysis.
3 is a BET analysis result based on the US ASTM test method D3663.
4 is a diagram showing the results of TEM-EDS analysis (4a:100nm, 4b:50nm, 4c:20nm, 4d:10nm).
5 is a diagram showing a result of a heavy metal adsorption force test.

이하에서, 각 구성을 보다 상세히 설명하나, 이는 하나의 예시에 불과할 뿐, 본 발명의 권리범위가 다음 내용에 의해 제한되지 아니한다.Hereinafter, each configuration will be described in more detail, but this is only an example, and the scope of the present invention is not limited by the following content.

일 측면에서, 본 발명은, 망간 수화물 함유 나노 입자로서, 상기 철-망간 산화물 함유 나노 입자는, 하기의 특징을 포함하는, 철-망간 산화물 함유 나노 입자이다:In one aspect, the present invention is a manganese hydrate containing nanoparticles, wherein the iron-manganese oxide containing nanoparticles are iron-manganese oxide containing nanoparticles comprising the following characteristics:

i) 130~150m2/g의 비표면적; ii) 18~26 nm의 평균 공극 직경; 및 iii) 0.001~0.01cm3/g의 평균 공극률.i) a specific surface area of 130-150 m 2 /g; ii) an average pore diameter of 18-26 nm; And iii) an average porosity of 0.001-0.01 cm 3 /g.

일 측면에서. 상기 비표면적은, BET(Brunauer,Emmett,Teller)법에 의하여 측정된 비표면적을 포함할 수 있다.In one aspect. The specific surface area may include a specific surface area measured by a Brunauer, Emmet, Teller (BET) method.

상기 비표면적은, 130~150m2/g, 바람직하게는 135~140m2/g, 더욱 바람직하게는 135~145m2/g, 또는 더욱 바람직하게는 138~145m2/g일 수 있다.The specific surface area may be 130 to 150 m 2 /g, preferably 135 to 140 m 2 /g, more preferably 135 to 145 m 2 /g, or more preferably 138 to 145 m 2 /g.

또한, 상기 입자의 평균 공극 직경은 18~26nm 일 수 있다. 상기 평균 공극 직경은, 임의의 입자에 존재하는 임의의 공극의 최단축과 최장축을 제외하고, 임의의 두 지점에서 측정한 직경의 평균 값을 의미할 수 있다. 상기 입자의 평균 공극 직경은, 18~26 nm, 또는 19~24nm, 또는 20~24nm 또는 21~23 nm 일 수 있다.In addition, the average pore diameter of the particles may be 18 ~ 26nm. The average pore diameter may mean an average value of diameters measured at two arbitrary points, excluding the shortest axis and the longest axis of an arbitrary pore present in an arbitrary particle. The average pore diameter of the particles may be 18 to 26 nm, or 19 to 24 nm, or 20 to 24 nm or 21 to 23 nm.

또한, 상기 평균 공극률은 0.001~0.01cm3/g, 또는 0.003~0.01cm3/g, 또는 0.004~0.08cm3/g일 수 있고, 일 구현예에서 0.006cm3/g일 수 있다.In addition, the average porosity may be 0.001 to 0.01cm 3 /g, or 0.003 to 0.01cm 3 /g, or 0.004 to 0.08cm 3 /g, and in one embodiment may be 0.006cm 3 /g.

또한, 상기 나노 입자의 평균 직경은, 25~50 nm 일 수 있다. 상기 평균 직경은, 임의의 나노 입자의 최단축과 최장축을 제외하고, 임의의 두 지점에서 측정한 직경의 평균값을 의미할 수 있다. 예컨대, 상기 나노 입자의 평균 직경은, 25~50nm, 또는30~50nm, 또는 30~50nm, 또는 35~50nm, 또는 38~50 nm, 또는 38~45nm 일 수 있다.In addition, the average diameter of the nanoparticles may be 25 to 50 nm. The average diameter may mean an average value of diameters measured at two arbitrary points, excluding the shortest axis and the longest axis of any nanoparticles. For example, the average diameter of the nanoparticles may be 25 to 50 nm, or 30 to 50 nm, or 30 to 50 nm, or 35 to 50 nm, or 38 to 50 nm, or 38 to 45 nm.

상기 나노 입자가 상기 조건을 만족할 때, 가장 극대화된 중금속 흡착력과, 중금속 산화력을 나타낼 수 있다. When the nanoparticles satisfy the above conditions, the most maximized heavy metal adsorption power and heavy metal oxidation power may be exhibited.

상기 철-망간 산화물 함유 나노 입자는, 산화망간(MnO)과 산화철III(Fe2O3)을 18~25: 82~75의 몰비율로 포함할 수 있고, 바람직하게는 18~23: 82~77, 더욱 바람직하게는 20~23: 80~~77, 더욱 바람직하게는 20~22: 80~78의 몰비율로 포함할 수 있으며, 일 구현예에서 21.7: 77.3의 비율로 포함할 수 있다.The iron-manganese oxide-containing nanoparticles may contain manganese oxide (MnO) and iron oxide III (Fe 2 O 3 ) in a molar ratio of 18 to 25: 82 to 75, preferably 18 to 23: 82 to 77, more preferably 20 to 23: 80 to 77, more preferably 20 to 22: may be included in a molar ratio of 80 to 78, and in one embodiment may be included in a ratio of 21.7: 77.3.

상기 철-망간 산화물 함유 나노 입자의 분자식은 MnFe2O4 일 수 있다.The molecular formula of the iron-manganese oxide-containing nanoparticles may be MnFe 2 O 4.

일 측면에서, 본 발명은, 상기 철-망간 산화물 함유 나노 입자를 포함하는 중금속 흡착용 조성물이다.In one aspect, the present invention is a heavy metal adsorption composition comprising the iron-manganese oxide-containing nanoparticles.

일 구현예에서, 상기 조성물은 토양 내 중극속 흡착용일 수 있다.In one embodiment, the composition may be for adsorption in a medium pole in the soil.

상기 중금속은, 비소, 납, 크롬 및 구리 중 하나 이상을 포함할 수 있으나, 이에 제한되는 것은 아니다.The heavy metal may include one or more of arsenic, lead, chromium, and copper, but is not limited thereto.

또한, 일 측면에서, 본 발명은 철-망간 산화물 함유 나노 입자의 제조방법으로, 상기 방법은, 철 수화물 및 망간 수화물을 혼합하는 단계를 포함하는, 철-망간 산화물 함유 나노 입자의 제조방법이다.In addition, in one aspect, the present invention is a method of manufacturing iron-manganese oxide-containing nanoparticles, the method comprising mixing iron hydrate and manganese hydrate, iron-manganese oxide-containing nanoparticles.

상기와 같은 측면에서, 상기 혼합하는 단계는, 철 수화물과 금속 수산화물을 혼합하는 제1 혼합 단계; 및 상기 철 수화물과 금속 수산화물의 혼합물에 망간 수화물을 혼합하는 제2혼합 단계; 및 상기 철 수화물, 금속 수산화물 및 망간 수화물의 혼합물에, 과산화수소 및 금속 수산화물을 혼합하는 제3혼합 단계를 포함할 수 있다.In the above aspect, the mixing may include a first mixing step of mixing iron hydrate and metal hydroxide; And a second mixing step of mixing manganese hydrate with the mixture of iron hydrate and metal hydroxide. And a third mixing step of mixing hydrogen peroxide and metal hydroxide with the mixture of iron hydrate, metal hydroxide and manganese hydrate.

상기 혼합 단계에서, 사용되는 철 수화물과 망간 수화물에서, 상기 철 수화물의 철과, 망간 수화물의 금속의 몰비는 약 1:4~7일 수 있고, 바람직하게는 1:4~6일 수 있다.In the mixing step, in the iron hydrate and manganese hydrate used, the molar ratio of the iron of the iron hydrate and the metal of the manganese hydrate may be about 1:4-7, preferably 1:4-6.

또한, 상기 철 수화물과 망간 수화물의 부피비율은, 1:0.3~7일 수 있고, 바람직하게, 1:0.4~0.6일 수 있다.In addition, the volume ratio of the iron hydrate and manganese hydrate may be 1:0.3-7, preferably, 1:0.4 ~ 0.6.

또한, 상기 철 수화물과 금속 수산화물의 혼합물의 pH는 10~13일 수 있다.In addition, the pH of the mixture of the iron hydrate and the metal hydroxide may be 10 to 13.

상기 금속 수산화물은, 수산화나트륨, 수산화칼륨, 수산화칼슘, 수산화마그네슘 및 수산화철로 구성된 군으로부터 선택된 하나 이상을 포함할 수 있으나, 이에 제한되는 것은 아니다. The metal hydroxide may include at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, and iron hydroxide, but is not limited thereto.

일 구현예에서, 상기 금속 수산화물은 수산화나트륨일 수 있다.In one embodiment, the metal hydroxide may be sodium hydroxide.

일 구현예에서, 상기 제조방법은 아래와 같다:In one embodiment, the manufacturing method is as follows:

철 수화물인 FeCl24H2O 1L에 1M NaOH 용액 약 5~8 mL 를 첨가하여 용액의 pH를 10~13으로 조정하고, 약 20~40분간 자석 교반한 후, 상기 혼합물에 망간 수화물 MnCl24H2O를 0.4~0.6L 첨가하여 약 15~25분간 자석 교반할 수 있다. 이 후 6% H2O2와 NaOH가 혼합된 용액 0.4~0.6L를 더 첨가한 후 약 5~15분간 자석 교반할 수 있다. 그 후 상등액을 분리하고, 남은 침전물을 증류수로 세척한 후 동결건조하여 수득할 수 있다.To 1 L of iron hydrate FeCl 2 4H 2 O, add about 5 to 8 mL of a 1M NaOH solution to adjust the pH of the solution to 10 to 13, stir magnetically for about 20 to 40 minutes, and then add manganese hydrate MnCl 2 4H 2 O can be magnetically stirred for about 15-25 minutes by adding 0.4~0.6L. After that, after adding 0.4 to 0.6 L of a 6% H 2 O 2 and NaOH mixed solution, magnetic stirring may be performed for about 5 to 15 minutes. Thereafter, the supernatant may be separated, and the remaining precipitate may be washed with distilled water and then freeze-dried to obtain.

이하, 제조예, 실시예 및 실험예에 기초하여 본 발명을 더욱 상세히 설명하지만, 이로 인해 발명의 권리범위가 제한되지 아니한다.Hereinafter, the present invention will be described in more detail based on Preparation Examples, Examples and Experimental Examples, but the scope of the present invention is not limited thereto.

[제조예] 철-망간 함유 나노 입자 제조[Preparation Example] Preparation of iron-manganese-containing nanoparticles

철 산화물 시약은 FeCl2·4H2O을 사용하였으며, 망간 수화물 시약은 MnCl2·4H2O을 사용하였다. 철과 망간의 몰비를 1 : 5 로 설정(철의 몰 농도가 0.02 M로 제조, 망간의 몰 농도를 0.1M로 설정하였음)하였으며 철, 망간 수화물 합성용액을 각 1 L 씩 제조하여 실험에 사용하였다. 구체적으로, 철 산화물 용액 1 L에 1 M NaOH 용액 약 6.5 mL 을 첨가하여, 용액의 pH를 10 ~ 13 범위로 조정하며 30분간 자석교반하여 반응시켰다. 그 후, 상기 용액에 망간 수화물 용액을 500 mL 첨가하여 20분간 자석교반 시켰다. 그 후, 6 % H2O2 와 NaOH가 혼합된 용액 500 mL를 더 첨가하여 10분 동안 자석교반 시킨 후, 용액의 상등액을 분리하고, 남은 침전물을 증류수로 3회 세척한 후 동결 건조 실시하여, 나노 입자를 수득하였다. FeCl 2 ·4H 2 O was used as an iron oxide reagent , and MnCl 2 ·4H 2 O was used as a manganese hydrate reagent. The molar ratio of iron and manganese was set to 1: 5 (the molar concentration of iron was prepared as 0.02 M and the molar concentration of manganese was set to 0.1 M), and 1 L of iron and manganese hydrate synthesis solution was prepared and used in the experiment. I did. Specifically, about 6.5 mL of a 1 M NaOH solution was added to 1 L of an iron oxide solution, and the pH of the solution was adjusted to a range of 10 to 13, and the reaction was performed by magnetic stirring for 30 minutes. Then, 500 mL of a manganese hydrate solution was added to the solution, followed by magnetic stirring for 20 minutes. After that, 500 mL of a 6% H 2 O 2 and NaOH solution was further added and magnetically stirred for 10 minutes, the supernatant of the solution was separated, and the remaining precipitate was washed 3 times with distilled water and freeze-dried. , To obtain nanoparticles.

수득한 나노 입자에 대해 X-선 회절 분석(XRD)하였다. X-선 회절 분석은 Rigaku Miniflex II를 이용하여 Cu target, 스캔구간 2~60˚, scan speed 2˚/min, 0.02˚/step, step 당 1초의 조건으로 측정하였다. 그 결과 나노 입자는, MnFe2O4라는 페라이트 계열의 철-망간 산화물로 분석되었다(도 1)The obtained nanoparticles were subjected to X-ray diffraction analysis (XRD). X-ray diffraction analysis was performed using a Rigaku Miniflex II under the conditions of Cu target, scan section 2~60˚, scan speed 2˚/min, 0.02˚/step, and 1 second per step. As a result, the nanoparticles were analyzed as ferrite-based iron-manganese oxide called MnFe 2 O 4 (FIG. 1 ).

또한, Rigaku 사의 ZSX Primus ±를 이용하여 X-선 형광 분석(XRF) 결과, 상기 입자 내에는 MnO가 21.7 %, Fe2O3가 77.3 %함유되어 있음을 알 수 있었다(도 2). In addition, as a result of X-ray fluorescence analysis (XRF) using ZSX Primus ± manufactured by Rigaku, it was found that 21.7% of MnO and 77.3% of Fe 2 O 3 were contained in the particles (FIG. 2 ).

또한, BELSORP사의 MINI-±로, 미국 ASTM 시험법 D3663에 기초하여 BET 분석을 한 결과, 상기 입자의 BET 표면적은 142.20 ㎡/g, 평균 공극 크기는 22 nm, 평균 공극률은 0.006 ㎤/g이고, 입자의 평균크기는 42 nm로 나타났다(도 3)In addition, as a result of BET analysis with BELSORP's MINI-±, based on the US ASTM test method D3663, the BET surface area of the particles is 142.20 m 2 /g, the average pore size is 22 nm, the average porosity is 0.006 cm 3 /g, The average size of the particles was 42 nm (Fig. 3).

또한, 상기 입자에 대하여 TEM-EDS 분석을 한 결과, 각진 다각형 또는 구형의 입자형태를 확인할 수 있었다(도 4).In addition, as a result of TEM-EDS analysis on the particles, it was possible to confirm the shape of an angular polygonal or spherical particle (Fig. 4).

[실험예 1] 중금속 흡착력 테스트[Experimental Example 1] Heavy metal adsorption test

나노물질의 중금속 흡착능 실험은 동결건조 이전 단계인 나노물질 혼탁액을 이용하여 진행하였다. 50 mL Palcon Tube에 나노 물질 혼탁액과 오염수를 혼합한 후 1시간 교반을 실시하였다. 그 후, 원심분리기를 이용하여 침전물과 상등액을 분리한 후 상등액을 취하여 전처리 후 ICP 분석을 실시하였다. Case 1, 5는 대조군으로서 기기의 QA/QC를 위해 사용되었으며, Case 2, 3, 4에 대하여 각 실험군의 오염농도 대비 나노물질 적용 전/후에 따른 중금속 흡착량을 확인하였다.The experiment on the adsorption capacity of nanomaterials to heavy metals was carried out using a nanomaterial turbid solution prior to lyophilization. After mixing the nanomaterial turbid solution and contaminated water in a 50 mL Palcon Tube, the mixture was stirred for 1 hour. Then, after separating the precipitate and the supernatant using a centrifuge, the supernatant was taken and pretreated, followed by ICP analysis. Cases 1 and 5 were used for the QA/QC of the device as a control group, and for Cases 2, 3, and 4, the amount of heavy metal adsorption before/after application of nanomaterials compared to the contamination concentration of each experimental group was confirmed.

Case 1
(대조군)
Case 1
(Control)
Case 2Case 2 Case 3Case 3 Case 4Case 4 Case 5
(대조군)
Case 5
(Control)
오염농도
(mg/L)
Pollution concentration
(mg/L)
00 55 1010 1515 2020
나노물질 투입량 (mL)Nano substance input amount (mL) 5050 37.537.5 2525 12.512.5 00 인공오염수 투입량 (mL)Artificial contaminated water input amount (mL) 00 12.512.5 2525 37.537.5 5050

그 결과, 납, 비소, 크롬, 구리에 대해서는 우수한 흡착력을 나타내었으나, 아연과 니켈에 대해서는 낮은 흡착력을 나타내었다(도 5).As a result, it showed excellent adsorption power for lead, arsenic, chromium, and copper, but low adsorption power for zinc and nickel (FIG. 5).

Claims (10)

철-망간 산화물 함유 나노 입자로서,
상기 철-망간 산화물 함유 나노 입자는, 중금속 흡착용이고,
상기 철-망간 산화물 함유 나노 입자는, 하기의 특징을 포함하는, 철-망간 산화물 함유 나노 입자:
i) 135~150m2/g의 비표면적;
ii) 19~26 nm의 평균 공극 직경; 및
iii) 0.003~0.01cm3/g의 평균 공극률.
As iron-manganese oxide-containing nanoparticles,
The iron-manganese oxide-containing nanoparticles are for adsorption of heavy metals,
The iron-manganese oxide-containing nanoparticles, including the following features, iron-manganese oxide-containing nanoparticles:
i) a specific surface area of 135-150 m 2 /g;
ii) an average pore diameter of 19-26 nm; And
iii) Average porosity of 0.003-0.01cm 3 /g.
제1항에 있어서,
상기 철-망간 산화물 함유 나노 입자의 평균 직경은 35~50nm인, 철-망간 산화물 함유 나노 입자.
The method of claim 1,
The iron-manganese oxide-containing nanoparticles have an average diameter of 35 to 50 nm, iron-manganese oxide-containing nanoparticles.
제1항에 있어서.
상기 철-망간 산화물 함유 나노 입자는,
산화망간(MnO)과 산화철III(Fe2O3)을 18~25: 82~75의 몰비율로 포함하는, 철-망간 산화물 함유 나노 입자.
The method of claim 1.
The iron-manganese oxide-containing nanoparticles,
Iron-manganese oxide-containing nanoparticles containing manganese oxide (MnO) and iron oxide III (Fe 2 O 3) in a molar ratio of 18-25: 82-75.
제1항 내지 제3항 중 어느 한 항의 철-망간 산화물 함유 나노 입자를 포함하는, 중금속 흡착용 조성물.Claims 1 to 3, comprising the iron-manganese oxide-containing nanoparticles of any one of, heavy metal adsorption composition. 제4항에 있어서,
상기 조성물은, 토양 내 중금속 흡착용인, 중금속 흡착용 조성물.
The method of claim 4,
The composition is for adsorption of heavy metals in soil, a composition for adsorption of heavy metals.
제4항에 있어서,
상기 중금속은, 비소, 납, 크롬 및 구리 중 하나 이상을 포함하는, 중금속 흡착용 조성물.
The method of claim 4,
The heavy metal, containing at least one of arsenic, lead, chromium and copper, heavy metal adsorption composition.
제1항 내지 제3항 중 어느 한 항의 철-망간 산화물 함유 나노 입자의 제조방법으로,
상기 방법은,
철 수화물 및 망간 수화물을 혼합하는 단계를 포함하는, 철-망간 산화물 함유 나노 입자의 제조방법.
The method for producing iron-manganese oxide-containing nanoparticles of any one of claims 1 to 3,
The above method,
A method for producing iron-manganese oxide-containing nanoparticles comprising the step of mixing iron hydrate and manganese hydrate.
제7항에 있어서,
상기 혼합하는 단계는,
철 수화물과 금속 수산화물을 혼합하는 제1 혼합 단계; 및
상기 철 수화물과 금속 수산화물의 혼합물에 망간 수화물을 혼합하는 제2혼합 단계; 및
상기 철 수화물, 금속 수산화물 및 망간 수화물의 혼합물에, 과산화수소 및 금속수산화물을 혼합하는 제3혼합 단계를 포함하는, 철-망간 산화물 함유 나노 입자의 제조방법.
The method of claim 7,
The mixing step,
A first mixing step of mixing iron hydrate and metal hydroxide; And
A second mixing step of mixing manganese hydrate with the mixture of iron hydrate and metal hydroxide; And
A method for producing iron-manganese oxide-containing nanoparticles comprising a third mixing step of mixing hydrogen peroxide and metal hydroxide in the mixture of iron hydrate, metal hydroxide and manganese hydrate.
제8항에 있어서,
상기 철 수화물과 금속 수산화물의 혼합물의 pH는 10~13인, 철-망간 산화물 함유 나노 입자의 제조방법.
The method of claim 8,
The pH of the mixture of the iron hydrate and the metal hydroxide is 10 to 13, the method for producing iron-manganese oxide-containing nanoparticles.
제8항에 있어서,
상기 금속 수산화물은,
수산화나트륨, 수산화칼륨, 수산화칼슘, 수산화마그네슘 및 수산화철로 구성된 군으로부터 선택된 하나 이상을 포함하는, 철-망간 산화물 함유 나노 입자의 제조방법.
The method of claim 8,
The metal hydroxide,
A method for producing iron-manganese oxide-containing nanoparticles comprising at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide and iron hydroxide.
KR1020190089456A 2019-07-24 2019-07-24 Nanoparticles containing iron-manganese oxide, composition for adsortioning heavy metal comprising the same, and method for manufacturing the same KR102255659B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190089456A KR102255659B1 (en) 2019-07-24 2019-07-24 Nanoparticles containing iron-manganese oxide, composition for adsortioning heavy metal comprising the same, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190089456A KR102255659B1 (en) 2019-07-24 2019-07-24 Nanoparticles containing iron-manganese oxide, composition for adsortioning heavy metal comprising the same, and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20210012192A KR20210012192A (en) 2021-02-03
KR102255659B1 true KR102255659B1 (en) 2021-05-25

Family

ID=74571857

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190089456A KR102255659B1 (en) 2019-07-24 2019-07-24 Nanoparticles containing iron-manganese oxide, composition for adsortioning heavy metal comprising the same, and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR102255659B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113277565B (en) * 2021-06-17 2023-09-15 中冶南方都市环保工程技术股份有限公司 Preparation method and application method of heavy metal curing agent
CN117509740A (en) * 2023-11-03 2024-02-06 江门市科恒实业股份有限公司 Copper-iron-manganese precursor for sodium ion battery and positive electrode material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005046728A (en) 2003-07-29 2005-02-24 Japan Science & Technology Agency Elimination process and system for arsenic in aqueous solution
WO2018045790A1 (en) * 2016-09-09 2018-03-15 南京大学 Mesoporous manganese ferrite fenton-like catalyst, preparation method therefor, and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101586686B1 (en) 2014-01-15 2016-01-20 한국지질자원연구원 Mn-substituted -FeOOH Synthesis method for the same and Water treatment method using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005046728A (en) 2003-07-29 2005-02-24 Japan Science & Technology Agency Elimination process and system for arsenic in aqueous solution
WO2018045790A1 (en) * 2016-09-09 2018-03-15 南京大学 Mesoporous manganese ferrite fenton-like catalyst, preparation method therefor, and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. ANAL. AT. SPECTROM. 2012 27 1743*
MOLEKUL VOL.13 NO.2 NOVEMBER 2018 123-132

Also Published As

Publication number Publication date
KR20210012192A (en) 2021-02-03

Similar Documents

Publication Publication Date Title
Qiu et al. Preferable phosphate sequestration by nano-La (III)(hydr) oxides modified wheat straw with excellent properties in regeneration
Siddiqui et al. Promising prospects of nanomaterials for arsenic water remediation: A comprehensive review
Wang et al. Enhanced antimonate (Sb (V)) removal from aqueous solution by La-doped magnetic biochars
Khan et al. Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution
Guo et al. Synthesis of Fe3O4 magnetic nanoparticles coated with cationic surfactants and their applications in Sb (V) removal from water
Afridi et al. Effect of phosphate concentration, anions, heavy metals, and organic matter on phosphate adsorption from wastewater using anodized iron oxide nanoflakes
Tangsir et al. Water defluoridation using Al2O3 nanoparticles synthesized by flame spray pyrolysis (FSP) method
Sereshti et al. Removal of phosphate and nitrate ions aqueous using strontium magnetic graphene oxide nanocomposite: Isotherms, kinetics, and thermodynamics studies
Nejadshafiee et al. Intelligent-activated carbon prepared from pistachio shells precursor for effective adsorption of heavy metals from industrial waste of copper mine
Huang et al. Strong metal-support interaction between carbon nanotubes and Mn-Fe spinel oxide in boosting peroxymonosulfate activation: Underneath mechanisms and application
Olyaie et al. Development of a cost-effective technique to remove the arsenic contamination from aqueous solutions by calcium peroxide nanoparticles
Fan et al. Removal of arsenic from simulation wastewater using nano-iron/oyster shell composites
Bhatia et al. Application of nanoadsorbents for removal of lead from water
Benis et al. Selenium removal from water using adsorbents: A critical review
Xi et al. Performance and mechanism of arsenic removal in waste acid by combination of CuSO4 and zero-valent iron
Beigzadeh et al. Fast and efficient removal of silver (I) from aqueous solutions using aloe vera shell ash supported Ni0. 5Zn0. 5Fe2O4 magnetic nanoparticles
KR102255659B1 (en) Nanoparticles containing iron-manganese oxide, composition for adsortioning heavy metal comprising the same, and method for manufacturing the same
Wang et al. Pollutant degradation behaviors in a heterogeneous Fenton system through Fe/S-doped aerogel
Sharma et al. Nanoengineered iron oxide-based sorbents for separation of various water pollutants: current status, opportunities and future outlook
Dutta et al. Sustainable magnetically retrievable nanoadsorbents for selective removal of heavy metal ions from different charged wastewaters
Shen et al. Recent advances in the application of magnetic Fe3O4 nanomaterials for the removal of emerging contaminants
Zeng et al. Efficient removal of arsenite by a composite of amino modified silica supported MnO2/Fe–Al hydroxide (SNMFA) prepared from biotite
KR20190134335A (en) Heavy Metal Absorbent having Nano Zero Valent Iron and Used Coffee Grounds, and Manufacturing Method thereof
Li et al. Hydrogel 3D network derived and in-situ magnetized Fe@ C for activation of peroxymonosulfate to degrade ciprofloxacin
Wu et al. Graphene-supported iron-based composites: A review of applications to wastewater treatment

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant