JP5099285B2 - Fuel supply device - Google Patents

Fuel supply device Download PDF

Info

Publication number
JP5099285B2
JP5099285B2 JP2005204226A JP2005204226A JP5099285B2 JP 5099285 B2 JP5099285 B2 JP 5099285B2 JP 2005204226 A JP2005204226 A JP 2005204226A JP 2005204226 A JP2005204226 A JP 2005204226A JP 5099285 B2 JP5099285 B2 JP 5099285B2
Authority
JP
Japan
Prior art keywords
pressure
regulating valve
pressure regulating
value
detecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005204226A
Other languages
Japanese (ja)
Other versions
JP2006140132A (en
Inventor
修 弓田
康之 飯田
信夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005204226A priority Critical patent/JP5099285B2/en
Publication of JP2006140132A publication Critical patent/JP2006140132A/en
Application granted granted Critical
Publication of JP5099285B2 publication Critical patent/JP5099285B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料供給装置に関し、特に、燃料の供給制御や残量表示の精度向上に有効な技術に関する。 The present invention relates to a fuel supply device, and more particularly to a technique effective for improving the accuracy of fuel supply control and remaining amount display.

近年、水素ガスと空気中の酸素との電気化学反応により発電を行う燃料電池を動力源とする燃料電池搭載車両の開発が行われている。この種の車両に搭載される水素タンクには、燃料電池への水素ガス供給の有無を制御する主止弁と、高圧に圧縮された水素ガスを減圧する調圧弁とが設けられており、水素タンクのタンク内圧力、主止弁の出口圧力、及び配管容積等に基づき、燃料(水素ガス)供給制御や水素タンクの残量表示が行われる。   In recent years, development of fuel cell-equipped vehicles using a fuel cell that generates power by an electrochemical reaction between hydrogen gas and oxygen in the air as a power source has been performed. A hydrogen tank mounted on this type of vehicle is provided with a main stop valve that controls whether or not hydrogen gas is supplied to the fuel cell, and a pressure regulating valve that depressurizes the hydrogen gas compressed to a high pressure. The fuel (hydrogen gas) supply control and the remaining amount display of the hydrogen tank are performed based on the tank internal pressure, the outlet pressure of the main stop valve, the piping volume, and the like.

一方、特許文献1には、水素タンクのタンク内圧力をタンク温度で補正する技術が開示されている。
特開2002−89793号公報
On the other hand, Patent Document 1 discloses a technique for correcting the tank internal pressure of the hydrogen tank with the tank temperature.
JP 2002-89793 A

ところで、上記水素タンクのタンク内圧力を測定する圧力センサ等のように、高圧側(調圧弁の上流に位置する)の圧力センサは精度が悪いという課題がある。   By the way, there is a problem that the pressure sensor on the high pressure side (located upstream of the pressure regulating valve), such as a pressure sensor for measuring the tank internal pressure of the hydrogen tank, has poor accuracy.

そこで、本発明は、調圧弁の上流に設けられた第1圧力検出手段が示す値の精度向上を図ることを目的とする。   Accordingly, an object of the present invention is to improve the accuracy of the value indicated by the first pressure detection means provided upstream of the pressure regulating valve.

本発明は、高圧燃料タンクと、該高圧燃料タンクから供給される燃料を消費する燃料消費装置と、前記高圧燃料タンクと前記燃料消費装置とを連通する配管と、該配管上に設けられた調圧弁と、該調圧弁よりも前記配管の下流に設けられた圧力検出手段と、を備え、前記調圧弁の一次圧がその調圧弁の調圧設定値以下となったときに、前記圧力検出手段の検出値に基づいて、前記調圧弁よりも上流側の圧力を検出する燃料供給装置である。
より具体的には、前記調圧弁の上流側に前記圧力検出手段よりも相対的に圧力検出精度の低い第2の圧力検出手段を備え、前記調圧弁の一次圧がその調圧弁の調圧設定値以下となったときには、前記圧力検出手段による検出値と前記第2の圧力検出手段による第2検出値との差圧を前記第2検出値から減算したものを前記調圧弁よりも上流側の圧力として検出するものである
この構成において、前記圧力検出手段よりも前記配管の下流に、前記調圧弁よりも調圧設定値の低い第2の調圧弁及び前記第2の圧力検出手段よりも相対的に圧力検出精度の高い第3の圧力検出手段がこの順に設けられ、前記調圧弁及び前記第2の調圧弁の一次圧がその第2の調圧弁の調圧設定値以下となったときには、前記第3の圧力検出手段の検出値に基づいて、前記調圧弁よりも上流側の圧力を検出するようしてもよい。この場合、前記調圧弁及び前記第2の調圧弁の一次圧がその第2の調圧弁の調圧設定値以下となったときには、前記第3の圧力検出手段による検出値と前記第2の圧力検出手段による第2検出値との差圧を前記第2検出値から減算したものを前記調圧弁よりも上流側の圧力として検出するようしてもよい。
The present invention includes a high-pressure fuel tank, a fuel consuming device that consumes fuel supplied from the high-pressure fuel tank, a pipe that communicates the high-pressure fuel tank and the fuel consuming apparatus, and a control provided on the pipe. A pressure valve, and a pressure detection means provided downstream of the pressure control valve, and the pressure detection means when a primary pressure of the pressure control valve becomes equal to or lower than a pressure regulation set value of the pressure regulation valve. The fuel supply device detects the pressure upstream of the pressure regulating valve based on the detected value.
More specifically, second pressure detection means having pressure detection accuracy relatively lower than that of the pressure detection means is provided upstream of the pressure regulation valve, and the primary pressure of the pressure regulation valve is set to regulate the pressure regulation valve. When the pressure is less than or equal to the value, a value obtained by subtracting the differential pressure between the detection value by the pressure detection means and the second detection value by the second pressure detection means from the second detection value is upstream of the pressure regulating valve. it is detected as a pressure.
In this configuration, the pressure detection accuracy is relatively higher than that of the second pressure regulating valve and the second pressure detecting means, which are lower in the pressure regulation set value than the pressure regulating valve, downstream of the pressure detecting means. Third pressure detecting means is provided in this order, and when the primary pressure of the pressure regulating valve and the second pressure regulating valve becomes equal to or lower than the pressure regulation set value of the second pressure regulating valve, the third pressure detecting means Based on the detected value, the pressure upstream of the pressure regulating valve may be detected. In this case, when the primary pressure of the pressure regulating valve and the second pressure regulating valve is equal to or lower than the pressure regulating set value of the second pressure regulating valve, the detected value by the third pressure detecting means and the second pressure You may make it detect what subtracted from the said 2nd detected value the differential pressure | voltage with the 2nd detected value by a detection means as a pressure upstream from the said pressure regulation valve.

このような構成によれば、調圧弁の一次圧がその調圧弁の調圧設定値以下となったときに、調圧弁上流よりも低圧の管路圧力を検出する圧力検出手段を用いて調圧弁上流側の圧力を検出するので、その検出精度は向上する。 According to such a configuration, when the primary pressure of the pressure regulating valve becomes equal to or lower than the pressure regulation value of the pressure regulating valve, the pressure regulating valve is used to detect the pipe pressure that is lower than the upstream side of the pressure regulating valve. Since the upstream pressure is detected, the detection accuracy is improved.

本発明によれば、調圧弁の一次圧がその調圧弁の調圧設定値以下となったときに、調圧弁よりも上流側の圧力をより精度の良い圧力検出手段を用いて検出するので、その検出精度が向上する。 According to the present invention, when the primary pressure of the pressure regulating valve becomes equal to or lower than the pressure regulation value of the pressure regulating valve, the pressure upstream of the pressure regulating valve is detected using a more accurate pressure detecting means. The detection accuracy is improved.

本発明によれば、高圧側に設けられた圧力検出手段の値を低圧側に設けられた圧力検出手段の値に基づき補正するので、高圧側に設けられた圧力検出手段によっても調圧弁上流の配管圧力を精度良く検出することが可能となり、その検出精度が向上する。 According to the present invention, it is corrected based on the value of the pressure detecting means provided the value of the pressure detecting means provided on the high pressure side to the low pressure side, also regulated by pressure detecting means provided on the high pressure side It becomes possible to accurately detect the pipe pressure upstream of the pressure valve, and the detection accuracy is improved.

次に本発明を実施するための好適な実施形態を、図面を参照しながら説明する。以下に説明する実施形態は、電気自動車等の移動体に搭載する燃料電池システムの燃料供給装置であるが、本発明の一形態に過ぎず、その他定置用の燃料電池システムにおける燃料供給装置にも適用可能である。   Next, preferred embodiments for carrying out the present invention will be described with reference to the drawings. The embodiment described below is a fuel supply device for a fuel cell system mounted on a moving body such as an electric vehicle. However, the embodiment is only one aspect of the present invention, and the fuel supply device for a stationary fuel cell system is also used. Applicable.

(第1の実施形態)
図1に第1の実施形態に係る燃料供給装置を備えた燃料電池システムのシステム構成図を示す。この図に示すように、当該燃料電池システムは、燃料電池スタック(燃料消費装置)10に燃料である水素ガスを供給するための系統(以下、燃料系1)、空気を供給するための系統2、及び燃料電池スタック10を冷却するための系統(不図示)を備えて構成されている。
(First embodiment)
FIG. 1 shows a system configuration diagram of a fuel cell system including a fuel supply device according to the first embodiment. As shown in this figure, the fuel cell system includes a fuel cell stack (fuel consuming device) 10 for supplying hydrogen gas as fuel (hereinafter referred to as fuel system 1), and a system 2 for supplying air. , And a system (not shown) for cooling the fuel cell stack 10.

燃料電池スタック10は、水素ガス、空気、冷却水の流路を有するセパレータと、一対のセパレータで挟み込まれたMEA(Membrane Electrode Assembly)とから構成されるセルとを複数積層したスタック構造を備えている。   The fuel cell stack 10 includes a stack structure in which a plurality of cells including a separator having a flow path of hydrogen gas, air, and cooling water and a MEA (Membrane Electrode Assembly) sandwiched between a pair of separators are stacked. Yes.

燃料電池スタック10に水素ガスを供給するための燃料系(燃料供給装置)1は、水素ガスの供給源から順に、複数(4本)の水素タンク(高圧燃料タンク)11、並設された水素タンク11と燃料電池スタック10とを連通する配管1a、主止弁SV1〜4、主止弁SV1〜4−調圧弁Reg1〜4間の管路圧力を検出する圧力センサ(第1圧力検出手段)P1〜4、調圧弁Reg1〜4、調圧弁Reg1〜4−調圧弁Reg5間の管路圧力を検出する圧力センサ(圧力検出手段、第2圧力検出手段)P5、調圧弁Reg5、調圧弁Reg5−調圧弁Reg6間の管路圧力を検出する圧力センサP6、調圧弁Reg6、調圧弁Reg6−燃料電池スタック10間の管路圧力を検出する圧力センサP7、及び制御部20等を備えている。   A fuel system (fuel supply device) 1 for supplying hydrogen gas to the fuel cell stack 10 includes a plurality (four) of hydrogen tanks (high-pressure fuel tanks) 11 and hydrogen arranged in order from the hydrogen gas supply source. Pressure sensor (first pressure detecting means) for detecting the pipe line pressure between the pipe 1a communicating with the tank 11 and the fuel cell stack 10, the main stop valves SV1 to 4, the main stop valves SV1 to 4 and the pressure regulating valves Reg1 to Reg4. P1-4, pressure regulating valves Reg1-4, pressure regulating valves Reg1-4—pressure sensors (pressure detecting means, second pressure detecting means) P5 for detecting the line pressure between pressure regulating valves Reg5, pressure regulating valve Reg5, pressure regulating valve Reg5- A pressure sensor P6 that detects a line pressure between the pressure regulating valves Reg6, a pressure regulating valve Reg6, a pressure sensor P7 that detects a line pressure between the pressure regulating valves Reg6 and the fuel cell stack 10, and a control unit 20 are provided.

水素タンク11は、高圧水素タンクであるが、高圧水素タンクに代えて、水素吸蔵合金を用いた水素タンク、改質ガスによる水素供給機構、液体水素タンクから水素を供給するタンク、液化ガス燃料を貯蔵するタンク等を適用可能である。また、タンク内に圧力が均一に負荷され、液面高さではなく、タンク内の圧力によって燃料の残量を外部から検知することのできる燃料貯蔵手段であることが好ましい。   The hydrogen tank 11 is a high-pressure hydrogen tank. Instead of the high-pressure hydrogen tank, a hydrogen tank using a hydrogen storage alloy, a hydrogen supply mechanism using a reformed gas, a tank for supplying hydrogen from a liquid hydrogen tank, a liquefied gas fuel A storage tank or the like is applicable. In addition, it is preferable that the fuel is a fuel storage means in which the pressure is uniformly loaded in the tank and the remaining amount of fuel can be detected from the outside not by the liquid level but by the pressure in the tank.

主止弁SV1〜4は、各水素タンク11からの水素ガス供給の有無を制御する。調圧弁Reg1〜4はタンク内圧力を所定の高圧(例えば、3Mpa)に減圧し、調圧弁Reg5はこの高圧に減圧された水素ガスを中圧(例えば、1Mpa)に減圧し、調圧弁Reg6はこの中圧に減圧された水素ガスを低圧(例えば、0.2MPa)に減圧する。   The main stop valves SV1 to SV4 control whether or not hydrogen gas is supplied from each hydrogen tank 11. The pressure regulating valves Reg1 to 4 reduce the internal pressure of the tank to a predetermined high pressure (for example, 3 Mpa), the pressure regulating valve Reg5 reduces the hydrogen gas reduced to the high pressure to a medium pressure (for example, 1 Mpa), and the pressure regulating valve Reg6 The hydrogen gas reduced to the intermediate pressure is reduced to a low pressure (for example, 0.2 MPa).

燃料電池スタック10に空気を供給する系統2は、図1では図示を省略しているが、外気を浄化して燃料電池システムに取り入れるエアクリーナ、取り入れられた空気を制御部20の制御に従って圧縮し供給する空気量や空気圧を変更するコンプレッサ、圧縮された空気に対し、空気オフガスと水分の交換を行って適度な湿度を加える加湿器等を備えており、燃料電池スタック10の冷却系は、ラジエタ、ファン、及び冷却ポンプを備えている。   The system 2 for supplying air to the fuel cell stack 10 is not shown in FIG. 1, but is an air cleaner that purifies the outside air and takes it into the fuel cell system, and compresses and supplies the taken-in air according to the control of the control unit 20. A compressor that changes the amount of air and air pressure, a humidifier that adds air to the compressed air by exchanging air off-gas and moisture, and the cooling system of the fuel cell stack 10 includes a radiator, A fan and a cooling pump are provided.

制御部20は、ECU等の公知のコンピュータシステムであり、コンプレッサ等各種補機類の駆動量を決定する制御信号を出力したり、燃料系1の各所に配設された圧力センサP1〜P7からの検出信号に基づき、各主止弁SV1〜4及び調圧弁Reg1〜6の開閉を制御する制御信号を出力する制御手段として機能する他、後に説明する手順(図2)によって、圧力センサP1〜4で検出したタンク内圧力(値)を圧力センサP5〜7で検出した管路圧力(値)にて補正する補正手段としても機能する。   The control unit 20 is a known computer system such as an ECU, and outputs a control signal for determining the driving amount of various auxiliary devices such as a compressor, or from pressure sensors P1 to P7 disposed at various points in the fuel system 1. In addition to functioning as a control means for outputting control signals for controlling the opening and closing of the main stop valves SV1 to SV4 and the pressure regulating valves Reg1 to 6 based on the detection signals of the pressure sensors P1 to P1 by the procedure described later (FIG. 2). It also functions as a correction means for correcting the tank internal pressure (value) detected at 4 with the pipeline pressure (value) detected by the pressure sensors P5 to P7.

次に、図2のフローチャートを参照しながら、この燃料電池システムで実施されるタンク内圧力の補正演算処理の一例について説明する。   Next, an example of a tank internal pressure correction calculation process performed in the fuel cell system will be described with reference to the flowchart of FIG.

この処理は、燃料電池システムの起動時や終了時の他、調圧弁Reg1〜4の一次圧が調圧値以下となったときに実行される。例えば起動時のように運転者がイグニッションキーをONにすると、制御部20は、圧力センサP1〜7、不図示のFC電流センサ、主止弁1〜4等からの出力信号を読み込み、圧力P5と、圧力P1〜P4を圧力P1_0〜P4_0としてメモリ等に記憶する(ステップS1)。このとき、主止弁SV1〜4は閉状態である。   This process is executed when the primary pressure of the pressure regulating valves Reg1 to Reg4 becomes equal to or lower than the pressure regulation value, at the time of starting and ending the fuel cell system. For example, when the driver turns on the ignition key as in the case of startup, the control unit 20 reads output signals from the pressure sensors P1 to 7, the FC current sensor (not shown), the main stop valves 1 to 4 and the like, and the pressure P5 Then, the pressures P1 to P4 are stored in the memory or the like as the pressures P1_0 to P4_0 (step S1). At this time, the main stop valves SV1 to SV4 are closed.

続くステップS2では、オフセット演算を行う。このオフセット演算処理では、ステップS1において圧力センサP1〜4で検出し記憶しておいた圧力P1_0〜4_0と、圧力センサP5で検出した圧力P5との差圧P1_0−P5、…、差圧P4_0−P5をオフセットP1_offset、…、P4_offsetとしてメモリ等に登録する。   In the subsequent step S2, an offset calculation is performed. In this offset calculation process, differential pressure P1_0-P5,..., Differential pressure P4_0− between the pressures P1_0 to 4_0 detected and stored by the pressure sensors P1 to P4 in step S1 and the pressure P5 detected by the pressure sensor P5. P5 is registered in the memory or the like as offsets P1_offset,..., P4_offset.

続くステップ3では、ステップS1で読み込んだ信号に基づき、後述のタンク圧力演算(ステップS11)を実施可能なタイミング(状態)であるかどうかを判定する。その判定結果が「NO」の場合は、以降の処理をスキップし、本処理の呼び出し元ルーチンにリターンする。一方、ステップS3の判定結果が「YES」の場合は、ステップS5に進み、異常判定を行う。   In the subsequent step 3, it is determined whether or not it is a timing (state) at which a tank pressure calculation (step S11) described later can be performed based on the signal read in step S1. If the determination result is “NO”, the subsequent processing is skipped, and the process returns to the calling routine of this processing. On the other hand, if the determination result in step S3 is “YES”, the process proceeds to step S5 to perform abnormality determination.

この異常判定は、圧力センサ1〜5からの信号を参照して行う。具体的に説明すると、本処理は、既述のオフセット演算(ステップS2)で求めたオフセットP1_offset、…、P4_offsetを用いて圧力センサP1〜4で検出した圧力P1〜P4を補正することによって、タンク内圧力を求めるものであるが、このオフセットP1_offset、…、P4_offsetが所定値よりも大きいときは、圧力センサP1〜5に異常が発生していると判断し(ステップS5:「NO」)、所定範囲内であれば異常なしと判断する(ステップS5:「YES」)。   This abnormality determination is performed with reference to signals from the pressure sensors 1 to 5. More specifically, this process is performed by correcting the pressures P1 to P4 detected by the pressure sensors P1 to P4 using the offsets P1_offset,..., P4_offset obtained by the offset calculation (step S2) described above, thereby The internal pressure is obtained. When the offsets P1_offset,..., P4_offset are larger than a predetermined value, it is determined that an abnormality has occurred in the pressure sensors P1 to P5 (step S5: “NO”). If it is within the range, it is determined that there is no abnormality (step S5: “YES”).

ステップS5の判断結果が「NO」の場合は、ステップS7に進み、警報を鳴らす、警告ランプを表示する等の異常出力を行い、本処理の呼び出し元ルーチンにリターンする。一方、ステップS5の判断結果が「YES」の場合は、ステップS11に進み、ステップS2で求めたオフセットP1_offset、…、P4_offsetを用いて、タンク内圧力を演算する。   If the determination result in step S5 is "NO", the process proceeds to step S7, where an abnormal output such as sounding an alarm or displaying a warning lamp is performed, and the process returns to the calling routine of this process. On the other hand, if the determination result in step S5 is “YES”, the process proceeds to step S11, and the tank internal pressure is calculated using the offsets P1_offset,..., P4_offset obtained in step S2.

つまり、システム起動時や、システム停止後に管路内の滞留水素を消費する等した時のように、主止弁SV1〜4−調圧弁Reg1〜4間の管路圧力が調圧弁Reg1〜4の調圧設定値以下になると、調圧弁Reg1〜4での絞りがなくなるため、調圧弁Reg1〜4の一次側管路圧力、言い換えれば、圧力センサP1〜4で検出される圧力P1〜4と、調圧弁Reg1〜4の二次側管路圧力、言い換えれば、圧力センサP5で検出される圧力P5とは同圧となる。   That is, the pipeline pressure between the main stop valves SV1 to SV4 to Reg1 to Reg4 is the same as that of the regulating valves Reg1 to 4, such as when the system is started up or when the hydrogen remaining in the pipeline is consumed after the system is stopped. When the pressure is less than or equal to the pressure setting value, the throttles at the pressure regulating valves Reg1 to Reg4 are lost, so the primary side line pressure of the pressure regulating valves Reg1 to Reg4, in other words, the pressures P1 to P4 detected by the pressure sensors P1 to The secondary side pipe pressure of the pressure regulating valves Reg1 to 4, in other words, the pressure P5 detected by the pressure sensor P5 is the same pressure.

本実施の形態では、既述した調圧弁Reg1〜5の減圧特性のとおり、調圧弁Reg1〜4の一次側管路に配設される圧力センサP1〜4に比して、調圧弁Reg5の一次側管路(調圧弁Reg1〜4の二次側管路)に配設される圧力センサP5の方が、より低圧用のものであるから、圧力検出精度は良い。このため、圧力P1〜4と圧力P5が同圧となるはずの上記タイミングで両者の間に差圧が生じていれば、その差圧は圧力センサP1〜4でタンク内圧力を検出した場合の実タンク内圧力に対する誤差に相当することになる。   In the present embodiment, as described in the pressure reducing characteristics of the pressure regulating valves Reg1 to Reg5, the primary pressure regulating valve Reg5 is larger than the pressure sensors P1 to P4 disposed in the primary pipes of the pressure regulating valves Reg1 to Reg4. Since the pressure sensor P5 disposed in the side pipe (secondary pipe of the pressure regulating valves Reg1 to 4) is for a lower pressure, the pressure detection accuracy is better. For this reason, if a pressure difference occurs between the pressures P1 to P4 and the pressure P5 at the above timing, the pressure difference between the pressures P1 to P4 is detected by the pressure sensors P1 to P4. This corresponds to an error with respect to the actual tank pressure.

よって、その誤差相当の上記オフセットP1_offset、…、P4_offsetを予め登録(学習)しておき(ステップS2)、このオフセットP1_offset、…、P4_offsetを圧力センサP1〜4の検出圧力から減算してこれをタンク内圧力とみなせば(ステップS11)、圧力センサP1〜4の検出圧力をそのままタンク内圧力とみなす場合に比して、タンク内圧力の検出精度が向上することになる。   Therefore, the offsets P1_offset,..., P4_offset corresponding to the error are registered (learned) in advance (step S2), and the offsets P1_offset,..., P4_offset are subtracted from the detected pressures of the pressure sensors P1 to P4. If it is regarded as the internal pressure (step S11), the detection accuracy of the tank internal pressure is improved as compared with the case where the pressure detected by the pressure sensors P1 to P4 is regarded as the tank internal pressure as it is.

なお、この図2に示すタンク内圧力の補正演算処理フローは、起動時や終了時だけでなく、所定の時間間隔で、あるいは特定イベントの発生時に随時実行してもよい。   2 may be executed not only at the time of starting and at the end, but also at a predetermined time interval or whenever a specific event occurs.

以上説明したとおり、本実施の形態では、圧力センサP1〜4で検出した圧力P1〜4をそのまま水素タンク11のタンク内圧力とみなすのではなく、例えばシステム起動時や終了時等のように調圧弁Reg1〜4の一次圧が調圧値以下になっているとき、つまり、調圧弁Reg1〜4の一次圧と二次圧とが同圧になっているときに、これら一次圧と二次圧を圧力センサP1〜5で検出して両者の差圧をオフセットP1_offset、…、P4_offsetとして記憶し、このオフセットP1_offset、…、P4_offsetを用いて圧力センサP1〜4で検出した圧力P1〜4を補正して水素タンク11のタンク内圧力とみなしている。   As described above, in the present embodiment, the pressures P1 to P4 detected by the pressure sensors P1 to P4 are not regarded as the in-tank pressure of the hydrogen tank 11 as they are, but are adjusted, for example, at the time of system startup or termination. When the primary pressures of the pressure valves Reg1 to Reg4 are equal to or lower than the pressure regulation value, that is, when the primary pressure and the secondary pressure of the pressure regulation valves Reg1 to Reg4 are equal, these primary pressure and secondary pressure. Is detected by the pressure sensors P1 to P5, and the differential pressure between the two is stored as an offset P1_offset,..., P4_offset, and the pressures P1 to P4 detected by the pressure sensors P1 to P4 are corrected using the offsets P1_offset,. This is regarded as the tank internal pressure of the hydrogen tank 11.

換言すれば、低圧では検出精度の劣る圧力センサP1〜4の検出圧力P1〜4を検出精度のより良い圧力センサP5の検出圧力P5にて補正して水素タンク11のタンク内圧力を求めているので、検出精度が向上し、燃料供給制御やタンク残量表示の精度も向上する。   In other words, the in-tank pressure of the hydrogen tank 11 is obtained by correcting the detection pressures P1 to P4 of the pressure sensors P1 to P4, which are inferior in detection accuracy at low pressure, with the detection pressure P5 of the pressure sensor P5 having better detection accuracy. Therefore, the detection accuracy is improved, and the accuracy of fuel supply control and tank remaining amount display is also improved.

特に、水素消費が進んでガス欠付近までタンク内圧力が低下した場合には、圧力センサP1〜4によるタンク内圧力の検出精度の低下が顕著となるため、従来はガス欠防止のために多めのマージンを見込んでタンク残量表示を行う必要があったところ、本実施の形態では、ガス欠付近での圧力精度が特に向上するため、かかるマージンを減少させて航続距離を延ばすことができる。   In particular, when the hydrogen consumption progresses and the tank internal pressure decreases to the vicinity of the gas shortage, the accuracy of detection of the pressure in the tank by the pressure sensors P1 to P4 decreases significantly. However, in this embodiment, since the pressure accuracy in the vicinity of the gas shortage is particularly improved, the margin can be reduced and the cruising distance can be extended.

(第2の実施形態)
なお、上記実施形態のオフセットP1_offset、…、P4_offsetは、起動時や終了時だけでなく、調圧弁Reg1〜4の一次圧が調圧値以下になっているとき、つまり、調圧弁Reg1〜4の一次圧と二次圧とが同圧になっているときであれば、いつでも更新(学習)可能である。例えば、図1において、圧力センサP5の検出圧力P5が調圧弁Reg5の調圧値以下である場合は、調圧弁Reg5の二次側(下流側)に配設された圧力センサ(第2圧力検出手段)P6の検出圧力P6を用いて、「オフセットP1_offset、…、P4_offset = Pn_0 − P6」とする。
(Second Embodiment)
Note that the offsets P1_offset,..., P4_offset in the above embodiment are not only at the time of starting or ending, but also when the primary pressure of the pressure regulating valves Reg1 to Reg4 is equal to or lower than the pressure regulating value, that is, the pressure regulating valves Reg1 to Reg4. If the primary pressure and the secondary pressure are the same pressure, they can be updated (learned) at any time. For example, in FIG. 1, when the detected pressure P5 of the pressure sensor P5 is equal to or lower than the pressure regulation value of the pressure regulating valve Reg5, the pressure sensor (second pressure sensing) disposed on the secondary side (downstream side) of the pressure regulating valve Reg5. Means) By using the detected pressure P6 of P6, “offset P1_offset,..., P4_offset = Pn_0−P6”.

かかる場合には、上記実施形態の場合よりも更に低圧用の圧力センサP6の検出結果を用いてオフセットP1_offset、…、P4_offsetを求めるのでその精度が向上し、水素タンク11の圧力検出精度も更に向上する。同様に、圧力センサP6の検出圧力P6が調圧弁Reg6の調圧値以下の場合は、調圧弁Reg6の二次側(下流側)に配設された圧力センサ(第2圧力検出手段)P7の検出圧力P7を用いて、「オフセットP1_offset、…、P4_offset = Pn_0 − P7」とすれば、水素タンク11の圧力検出精度は更に向上することとなる。   In such a case, since the offset P1_offset,..., P4_offset is obtained using the detection result of the low pressure sensor P6, the accuracy is improved and the pressure detection accuracy of the hydrogen tank 11 is further improved. To do. Similarly, when the detected pressure P6 of the pressure sensor P6 is equal to or less than the pressure regulation value of the pressure regulating valve Reg6, the pressure sensor (second pressure detecting means) P7 disposed on the secondary side (downstream side) of the pressure regulating valve Reg6. If the detected pressure P7 is used as “offset P1_offset,..., P4_offset = Pn_0−P7”, the pressure detection accuracy of the hydrogen tank 11 is further improved.

また、本発明は、上記実施形態(図1)のような、複数の水素タンク11に対してそれと同数の調圧弁Reg1〜4を備えた燃料供給装置への適用に限定されるわけではなく、例えば、図3に示すように、複数(同図では2つ)の水素タンク11に対して1つの調圧弁Reg1,Reg3を備えた燃料供給装置への適用も可能である。さらに、本発明の第1圧力検出手段は、調圧弁の上流に配設されるものであれば、高圧燃料タンクのタンク内圧を検出するものに限定されないことは勿論である。   Further, the present invention is not limited to the application to the fuel supply apparatus provided with the same number of pressure regulating valves Reg1 to Regulate the plurality of hydrogen tanks 11 as in the above embodiment (FIG. 1). For example, as shown in FIG. 3, the present invention can be applied to a fuel supply apparatus including a single pressure regulating valve Reg <b> 1, Reg <b> 3 for a plurality (two in the figure) of hydrogen tanks 11. Furthermore, as long as the 1st pressure detection means of this invention is arrange | positioned upstream of a pressure regulation valve, of course, it is not limited to what detects the tank internal pressure of a high pressure fuel tank.

参考例
次に、参考例について、図4,5を参照しながら説明する。
( Reference example )
Next , a reference example will be described with reference to FIGS.

参考例と上記第1及び第2の実施形態との主たる構成上の相違点は、本参考例に係る燃料供給装置では、図4に示すように図1,3における圧力センサP1〜P4を備えておらず、調圧弁Reg1〜4が例えば図5に示すようなポペット型のダイヤフラム式調圧弁40で構成されている点にある。なお、図4中のその他の構成要素については、図1と同一の構成を採用することが可能であるため、以下の説明では、同一の符号を付すと共にその説明を省略する。 The main structural difference between the present reference example and the first and second embodiments is that the fuel supply device according to the present reference example has the pressure sensors P1 to P4 in FIGS. 1 and 3 as shown in FIG. The pressure regulating valves Reg1 to Reg4 are configured by a poppet type diaphragm pressure regulating valve 40 as shown in FIG. 5, for example. The other components in FIG. 4 can adopt the same configuration as that in FIG. 1, and therefore, in the following description, the same reference numerals are given and the description thereof is omitted.

この調圧弁40は、その外殻をハウジング51により構成され、ハウジング51には、1次側の流入口52と2次側の流出口53とが形成されている。ハウジング51の内部空間は、弁体55が連結されたダイヤフラム56によって上下に仕切られており、これらよりも上側の空間は水素ガスが1次側から2次側へと流通可能な流路として構成され、下側の空間は大気圧開放された背圧室57として構成されている。   The pressure regulating valve 40 has an outer shell constituted by a housing 51, and a primary inflow port 52 and a secondary outflow port 53 are formed in the housing 51. The internal space of the housing 51 is partitioned up and down by a diaphragm 56 to which a valve body 55 is connected, and the space above these is configured as a flow path through which hydrogen gas can flow from the primary side to the secondary side. The lower space is configured as a back pressure chamber 57 opened to atmospheric pressure.

背圧室57には、弁体55を開弁方向(図4では上方向)に付勢する調圧スプリング58が配設されている。調圧スプリング58は、そのバネ定数などの性状が所定に設定されている。弁体55には、ステム59を介してポペット60が設けられており、ポペット60の側面はハウジング51に設けた弁座61に離接可能に構成されている。   The back pressure chamber 57 is provided with a pressure adjusting spring 58 that urges the valve body 55 in the valve opening direction (upward in FIG. 4). The pressure adjusting spring 58 has a predetermined property such as a spring constant. The valve body 55 is provided with a poppet 60 through a stem 59, and the side surface of the poppet 60 is configured to be detachable from a valve seat 61 provided in the housing 51.

ポペット60が弁座61から離間する弁体55が開いた状態では、1次側と2次側との間の流路は連通して、2次側への水素ガスの流れが許容される。一方、ポペット60が弁座61に当接する弁体55が閉じた状態では、1次側と2次側との間の流路は遮断され、2次側への水素ガスの流れが遮断される。   In a state where the valve body 55 in which the poppet 60 is separated from the valve seat 61 is opened, the flow path between the primary side and the secondary side is in communication and the flow of hydrogen gas to the secondary side is allowed. On the other hand, in a state where the valve element 55 in which the poppet 60 contacts the valve seat 61 is closed, the flow path between the primary side and the secondary side is blocked, and the flow of hydrogen gas to the secondary side is blocked. .

ポペット60の上面とハウジング51との間には、ポペット60を介して弁体55を閉弁方向(図4では下方向)に付勢する調圧バネ62が配設されている。調圧バネ62は、調圧スプリング58およびステム59と同軸に配設され、調圧スプリング58と同様にバネ定数などの性状が所定に設定されている。これら調圧バネ62と調圧スプリング58とから2次側の調圧値が設定される。   Between the upper surface of the poppet 60 and the housing 51, a pressure regulating spring 62 that urges the valve body 55 in the valve closing direction (downward in FIG. 4) via the poppet 60 is disposed. The pressure adjusting spring 62 is disposed coaxially with the pressure adjusting spring 58 and the stem 59, and the properties such as the spring constant are set to a predetermined value like the pressure adjusting spring 58. A pressure adjustment value on the secondary side is set from the pressure adjusting spring 62 and the pressure adjusting spring 58.

以上の構成からなる調圧弁40は、弁体55およびダイヤフラム56に、その上面側から作用する水素ガスの2次側圧力および調圧バネ62の付勢力と、その下面側から作用する大気圧および調圧スプリング58の付勢力とに応じて、弁体55の開度(ポペット60の位置)が調整されることにより、水素ガスの2次側圧力を調整する。   The pressure regulating valve 40 configured as described above has a secondary pressure of hydrogen gas that acts on the valve body 55 and the diaphragm 56 from the upper surface side, an urging force of the pressure regulating spring 62, an atmospheric pressure that acts from the lower surface side, and The secondary pressure of the hydrogen gas is adjusted by adjusting the opening degree of the valve body 55 (the position of the poppet 60) according to the urging force of the pressure adjusting spring 58.

このような調圧弁40が水素タンク11の直下に配設された燃料電池システムにおいては、当該調圧弁40よりも上流側に設けられた水素タンク11の異常(例えば、燃料漏れ)を、当該調圧弁40よりも下流側に設けられた圧力センサP5の検出圧力P5に基づいて、検出することが可能である。   In the fuel cell system in which such a pressure regulating valve 40 is disposed immediately below the hydrogen tank 11, an abnormality (for example, fuel leakage) in the hydrogen tank 11 provided on the upstream side of the pressure regulating valve 40 is detected. It is possible to detect based on the detected pressure P5 of the pressure sensor P5 provided on the downstream side of the pressure valve 40.

例えば水素タンク11に不具合等が発生し、タンク内圧が調圧弁40の2次側調圧値に比して低くなると、調圧弁40内においては、ダイヤフラム56の下面側(背圧室57側)に作用する大気圧および調圧スプリング58からの付勢力が、上面側に作用する水素ガスの2次側圧力および調圧バネ62からの付勢力に比して大きくなる。   For example, when a problem or the like occurs in the hydrogen tank 11 and the tank internal pressure becomes lower than the secondary side pressure regulation value of the pressure regulating valve 40, the lower surface side of the diaphragm 56 (back pressure chamber 57 side) in the pressure regulating valve 40. The biasing force from the atmospheric pressure and the pressure adjusting spring 58 acting on the pressure increases as compared with the secondary pressure of the hydrogen gas acting on the upper surface side and the biasing force from the pressure regulating spring 62.

すると、ポペット60が弁座61から離間して弁体55が大きく開くため、調圧弁40よりも下流側の配管1aにおける管路圧力の降下率(所定時間あたりの圧力降下量)が大きくなる。制御部20は、この圧力降下率が所定の閾値以上である場合に、水素タンク11に異常が発生していると判断(異常を検出)し、主止弁SV1〜4を閉じて水素タンク11と燃料電池スタック10との連通を遮断する。   Then, since the poppet 60 is separated from the valve seat 61 and the valve body 55 is greatly opened, the pipe pressure drop rate (pressure drop amount per predetermined time) in the pipe 1a on the downstream side of the pressure regulating valve 40 increases. When the pressure drop rate is equal to or greater than a predetermined threshold, the control unit 20 determines that an abnormality has occurred in the hydrogen tank 11 (detects an abnormality), closes the main stop valves SV1 to SV4, and closes the hydrogen tank 11. And communication with the fuel cell stack 10 are blocked.

これにより、水素タンク11からの無駄な燃料放出を抑制することができる。また、調圧弁40の2次圧が大気圧よりも高い場合には、この2次側からのガス放出を抑制することもできる。さらに、この参考例によれば、調圧弁40の下流側に配設された圧力センサP5の検出結果に基づいて、水素タンク11の異常を検出して主止弁SV1〜4を遮断することができるので、上記第1及び第2の実施形態のように水素タンク11内の圧力センサP1〜4を不要にできる。 Thereby, useless fuel discharge from the hydrogen tank 11 can be suppressed. Further, when the secondary pressure of the pressure regulating valve 40 is higher than the atmospheric pressure, the gas release from the secondary side can be suppressed. Furthermore, according to this reference example , based on the detection result of the pressure sensor P5 disposed on the downstream side of the pressure regulating valve 40, the abnormality of the hydrogen tank 11 can be detected to shut off the main stop valves SV1 to SV4. Therefore, the pressure sensors P1 to P4 in the hydrogen tank 11 can be made unnecessary as in the first and second embodiments.

本発明の第1の実施形態に係る燃料供給装置を備えた燃料電池システムのシステム構成を示すブロック図である。It is a block diagram which shows the system configuration | structure of the fuel cell system provided with the fuel supply apparatus which concerns on the 1st Embodiment of this invention. 同実施形態のシステム起動時におけるタンク内圧力の補正演算処理を説明するフローチャートである。It is a flowchart explaining the correction calculation process of the pressure in a tank at the time of system starting of the embodiment. 本発明の第2の実施形態に係る燃料供給装置を備えた燃料電池システムのシステム構成を示すブロック図である。It is a block diagram which shows the system configuration | structure of the fuel cell system provided with the fuel supply apparatus which concerns on the 2nd Embodiment of this invention. 参考例に係る燃料供給装置を備えた燃料電池システムのシステム構成を示すブロック図である。It is a block diagram which shows the system configuration | structure of the fuel cell system provided with the fuel supply apparatus which concerns on a reference example . 参考例に係る燃料供給装置に設けられた調圧弁の一構造例を示す断面図である。It is sectional drawing which shows one structural example of the pressure regulation valve provided in the fuel supply apparatus which concerns on the reference example .

符号の説明Explanation of symbols

1a…配管、10…燃料電池スタック(燃料消費装置)、11…水素タンク(高圧燃料タンク)、P1〜P4…圧力センサ(第1圧力検出手段)、P5〜P7…圧力センサ(圧力検出手段、第2圧力検出手段)、Reg1〜Reg6…調圧弁   DESCRIPTION OF SYMBOLS 1a ... Piping, 10 ... Fuel cell stack (fuel consumption apparatus), 11 ... Hydrogen tank (high pressure fuel tank), P1-P4 ... Pressure sensor (first pressure detection means), P5-P7 ... Pressure sensor (pressure detection means, Second pressure detecting means), Reg1 to Reg6, pressure regulating valve

Claims (2)

高圧燃料タンクと、該高圧燃料タンクから供給される燃料を消費する燃料消費装置と、前記高圧燃料タンクと前記燃料消費装置とを連通する配管と、該配管上に設けられた調圧弁と、該調圧弁よりも前記配管の下流に設けられた圧力検出手段と、前記調圧弁の上流側に前記圧力検出手段よりも相対的に圧力検出精度の低い第2の圧力検出手段とを備え、
前記調圧弁の一次圧がその調圧弁の調圧設定値以下となったときには、前記圧力検出手段による検出値と前記第2の圧力検出手段による第2検出値との差圧を前記第2検出値から減算したものを前記調圧弁よりも上流側の圧力として検出する、燃料供給装置。
A high-pressure fuel tank, a fuel consuming device that consumes fuel supplied from the high-pressure fuel tank, a pipe communicating the high-pressure fuel tank and the fuel consuming apparatus, a pressure regulating valve provided on the pipe, A pressure detecting means provided downstream of the piping from the pressure regulating valve; and a second pressure detecting means having a pressure detection accuracy relatively lower than the pressure detecting means upstream of the pressure regulating valve;
When the primary pressure of the pressure regulating valve becomes equal to or lower than the pressure regulation set value of the pressure regulating valve, the differential pressure between the detected value by the pressure detecting means and the second detected value by the second pressure detecting means is detected by the second detection. A fuel supply device that detects a value subtracted from a value as a pressure upstream of the pressure regulating valve.
前記圧力検出手段よりも前記配管の下流に、前記調圧弁よりも調圧設定値の低い第2の調圧弁及び前記第2の圧力検出手段よりも相対的に圧力検出精度の高い第3の圧力検出手段がこの順に設けられ、  A second pressure regulating valve having a pressure regulation setting value lower than that of the pressure regulating valve and a third pressure having a pressure detection accuracy relatively higher than that of the second pressure detecting means downstream of the pressure sensing means from the piping. Detection means are provided in this order,
前記調圧弁及び前記第2の調圧弁の一次圧がその第2の調圧弁の調圧設定値以下となったときには、前記第3の圧力検出手段による検出値と前記第2の圧力検出手段による第2検出値との差圧を前記第2検出値から減算したものを前記調圧弁よりも上流側の圧力として検出する、請求項1に記載の燃料供給装置。  When the primary pressure of the pressure regulating valve and the second pressure regulating valve is equal to or lower than the pressure regulating set value of the second pressure regulating valve, the detected value by the third pressure detecting means and the second pressure detecting means 2. The fuel supply device according to claim 1, wherein a pressure obtained by subtracting a differential pressure from a second detection value from the second detection value is detected as a pressure upstream of the pressure regulating valve.
JP2005204226A 2004-10-13 2005-07-13 Fuel supply device Expired - Fee Related JP5099285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005204226A JP5099285B2 (en) 2004-10-13 2005-07-13 Fuel supply device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004299299 2004-10-13
JP2004299299 2004-10-13
JP2005204226A JP5099285B2 (en) 2004-10-13 2005-07-13 Fuel supply device

Publications (2)

Publication Number Publication Date
JP2006140132A JP2006140132A (en) 2006-06-01
JP5099285B2 true JP5099285B2 (en) 2012-12-19

Family

ID=36620808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005204226A Expired - Fee Related JP5099285B2 (en) 2004-10-13 2005-07-13 Fuel supply device

Country Status (1)

Country Link
JP (1) JP5099285B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020108999A1 (en) * 2018-11-29 2020-06-04 Robert Bosch Gmbh Tank device for storing compressed fluids, comprising a sensor module arrangement

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5316834B2 (en) * 2007-10-04 2013-10-16 トヨタ自動車株式会社 Fuel cell system
JP5171423B2 (en) * 2008-06-19 2013-03-27 本田技研工業株式会社 Fuel cell system
JP5421553B2 (en) * 2008-06-19 2014-02-19 本田技研工業株式会社 High pressure gas supply system
JP5757074B2 (en) * 2010-08-20 2015-07-29 トヨタ自動車株式会社 Gas filling system and correction method
JP2013093141A (en) * 2011-10-24 2013-05-16 Toyota Motor Corp Fuel cell system, and error detection method and correction method for pressure sensor
JP6180990B2 (en) 2014-04-25 2017-08-16 本田技研工業株式会社 Gas monitoring system and gas monitoring method
JP2017079026A (en) 2015-10-22 2017-04-27 愛三工業株式会社 Pressure adjustment valve
JP6777007B2 (en) * 2017-05-12 2020-10-28 トヨタ自動車株式会社 Fuel cell system
JP7140734B2 (en) * 2019-10-03 2022-09-21 トヨタ自動車株式会社 Methods for estimating the internal pressure of gas supply systems and gas tanks
JP7146844B2 (en) * 2020-05-29 2022-10-04 本田技研工業株式会社 gas supply system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3783649B2 (en) * 2002-04-15 2006-06-07 日産自動車株式会社 Vehicle fuel gas supply device
JP3783650B2 (en) * 2002-04-18 2006-06-07 日産自動車株式会社 Gas fuel supply device
JP3864875B2 (en) * 2002-09-02 2007-01-10 日産自動車株式会社 Failure diagnosis system for supply on / off valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020108999A1 (en) * 2018-11-29 2020-06-04 Robert Bosch Gmbh Tank device for storing compressed fluids, comprising a sensor module arrangement
JP2022509958A (en) * 2018-11-29 2022-01-25 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング A tank device for storing compressed fluid with a sensor module device
JP7197695B2 (en) 2018-11-29 2022-12-27 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Tank arrangement for storing compressed fluid with sensor module arrangement

Also Published As

Publication number Publication date
JP2006140132A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
JP5099285B2 (en) Fuel supply device
JP4806989B2 (en) Fuel cell system
US8367257B2 (en) Fuel cell system and method for adjusting moisture content in a polymer electrolyte membrane
JP4756465B2 (en) Fuel cell system and moving body
JP4941730B2 (en) Fuel supply device and vehicle
JP4883360B2 (en) Fuel cell system
JP4739849B2 (en) Fuel cell system
JP4962777B2 (en) Gas supply system
JP5421553B2 (en) High pressure gas supply system
JP4033376B2 (en) Fuel supply device
JP2013177910A (en) High-pressure gas supply system
JP5110415B2 (en) Fuel cell system and gas leak detection method
JP2009123592A (en) Fuel cell system
JP5224080B2 (en) Fuel cell system and off-gas purge method
JP6222191B2 (en) Fuel cell system
JP2006294447A (en) Fault determination apparatus
JP5199645B2 (en) Fuel cell system
JP2007227058A (en) Fuel cell system, and method of controlling fuel cell system
US9059438B2 (en) Fuel cell system
JP4363475B2 (en) Fuel cell system
JP4632119B2 (en) Fuel supply device
JP6004925B2 (en) Fuel utilization system
JP4744188B2 (en) Control device for fuel cell vehicle
JP7146844B2 (en) gas supply system
JP5097016B2 (en) Fuel cell system and method for determining open / close state of shut-off valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5099285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees