JP4744188B2 - Control device for fuel cell vehicle - Google Patents

Control device for fuel cell vehicle Download PDF

Info

Publication number
JP4744188B2
JP4744188B2 JP2005143501A JP2005143501A JP4744188B2 JP 4744188 B2 JP4744188 B2 JP 4744188B2 JP 2005143501 A JP2005143501 A JP 2005143501A JP 2005143501 A JP2005143501 A JP 2005143501A JP 4744188 B2 JP4744188 B2 JP 4744188B2
Authority
JP
Japan
Prior art keywords
pressure
fuel cell
regulator
atmospheric pressure
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005143501A
Other languages
Japanese (ja)
Other versions
JP2006324018A (en
Inventor
裕親 下永吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2005143501A priority Critical patent/JP4744188B2/en
Publication of JP2006324018A publication Critical patent/JP2006324018A/en
Application granted granted Critical
Publication of JP4744188B2 publication Critical patent/JP4744188B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Description

本発明は、いわゆる水素燃料電池を搭載した燃料電池車の制御装置に関する。 The present invention relates to the control equipment of the fuel cell vehicle equipped with a so-called a hydrogen fuel cell.

従来、いわゆる水素燃料電池を搭載し、燃料として高圧水素を用いる燃料電池車は、水素タンクの高圧(例えば250〜350気圧)の水素をレギュレータにより1〜2気圧程度まで減圧し、レギュレータの二次側の減圧された水素(水素ガス)と空気とを燃料電池ユニット(電池セルユニット)に供給し、このユニットにより水素と酸素とを燃料とし、その電気化学反応によって発電し、その電力でモータを駆動する。   Conventionally, a fuel cell vehicle equipped with a so-called hydrogen fuel cell and using high-pressure hydrogen as fuel depressurizes high-pressure hydrogen (for example, 250 to 350 atm) of a hydrogen tank to about 1 to 2 atm by a regulator, The depressurized hydrogen (hydrogen gas) and air are supplied to the fuel cell unit (battery cell unit), hydrogen and oxygen are used as fuel by this unit, and electricity is generated by the electrochemical reaction. To drive.

この燃料電池車は、要求される発電量に応じて燃料電池ユニットに空気(酸素)を供給する必要があることから、前記の要求される発電量に応じて空気供給手段としてのコンプレッサ等により燃料電池ユニットへの空気供給流量を制御しているが、標高の高い地域等を走行する場合には、空気密度の減少によって実際に燃料電池ユニットに供給される空気量(モル(mol)数)が減少することも考慮して燃料電池ユニットへの空気供給流量を制御する必要がある。   Since this fuel cell vehicle needs to supply air (oxygen) to the fuel cell unit according to the required power generation amount, the fuel is supplied by a compressor or the like as an air supply means according to the required power generation amount. Although the air supply flow rate to the battery unit is controlled, when traveling in high altitude areas, the amount of air (mol number) actually supplied to the fuel cell unit due to the decrease in air density is It is necessary to control the air supply flow rate to the fuel cell unit in consideration of the decrease.

具体的には、例えば標高1000mの高地では、標高0mの地域(大気圧が約100kPa)に比して大気圧が約10kPa減少することから、この大気圧の減少に対する空気供給流量の補正を行なわなければ、燃料電池ユニットに供給される空気量が約1割も減少する。   Specifically, for example, in an altitude of 1000 m above sea level, the atmospheric pressure is reduced by about 10 kPa compared to an area at an altitude of 0 m (atmospheric pressure is about 100 kPa). If not, the amount of air supplied to the fuel cell unit is reduced by about 10%.

そのため、従来のこの種の燃料電池車の制御においては、多くの場合、専用の圧力センサ等を備えて周囲環境の大気圧を実測し、その測定結果にしたがってコンプレッサ等の駆動を補正し、燃料電池ユニットに供給される空気量を大気圧の増減変化に応じて補正している(例えば、特許文献1参照。)。   Therefore, in the conventional control of this type of fuel cell vehicle, in many cases, a dedicated pressure sensor or the like is provided to actually measure the atmospheric pressure in the surrounding environment, and the drive of the compressor or the like is corrected according to the measurement result. The amount of air supplied to the battery unit is corrected according to changes in the atmospheric pressure (see, for example, Patent Document 1).

特開2004−342475号公報(要約、段落[0027]−[0038]、図1)JP 2004-342475 A (Abstract, paragraphs [0027]-[0038], FIG. 1)

前記従来のように大気圧を測定する専用の圧力センサ等を設けると、その分コストがアップし、この種の燃料電池車の制御を安価に行なうことができない問題がある。また、専用の圧力センサを設けずに、標高差等における大気圧変動を見越して、あらかじめ十分な空気量を供給することも考えられるが、コンプレッサ等の空気供給手段で消費する電力が増加し、燃料電池系としての効率的な発電が行なえなくなるおそれがある。   If a dedicated pressure sensor or the like for measuring the atmospheric pressure is provided as in the prior art, the cost increases correspondingly, and there is a problem that this type of fuel cell vehicle cannot be controlled at low cost. In addition, it is conceivable to supply a sufficient amount of air in advance in anticipation of atmospheric pressure fluctuations in altitude differences, etc., without providing a dedicated pressure sensor, but the power consumed by air supply means such as a compressor increases, There is a risk that efficient power generation as a fuel cell system cannot be performed.

ところで、この種の燃料電池車の制御装置のレギュレータの1例を示した図2からも明らかなように、通常、レギュレータ1の一次側(水素タンク側)、二次側(燃料電池ユニット側)には圧力センサ2、3が設けられ、両圧力センサ2、3により一次側、二次側の水素ガスの圧力が検出されて監視される。   By the way, as is apparent from FIG. 2 showing an example of a regulator of this type of fuel cell vehicle control device, the primary side (hydrogen tank side) and the secondary side (fuel cell unit side) of the regulator 1 are usually used. Are provided with pressure sensors 2 and 3, and the pressures of the primary and secondary hydrogen gases are detected and monitored by both pressure sensors 2 and 3.

また、レギュレータ1は、筐体1aの上部に収容されたばね4の弾性力と、前記上部を外部に連通する空気孔1bの大気圧とにより、筐体1aの内部の前記上部と下部との隔壁としてのダイヤフラム5を介して前記下部の弁6が上下動して一次側と二次側との水素流通路を制御し、この制御によって二次圧力を設定された1〜2気圧の所望圧力に減圧する。   Further, the regulator 1 has a partition wall between the upper portion and the lower portion inside the housing 1a by the elastic force of the spring 4 housed in the upper portion of the housing 1a and the atmospheric pressure of the air hole 1b communicating the upper portion with the outside. The lower valve 6 moves up and down through a diaphragm 5 as a control to control the hydrogen flow passage between the primary side and the secondary side, and the secondary pressure is set to a desired pressure of 1 to 2 atm by this control. Reduce pressure.

この場合、大気圧が増減すると、ダイヤフラム5を介して弁6に加わる力が増減し、弁6の開閉の状態が変化し、大気圧が減少したときは、弁6が上動して閉まる方向に変化し、二次圧力が減少し、大気圧が増大したときは、その逆に変化する。   In this case, when the atmospheric pressure increases or decreases, the force applied to the valve 6 via the diaphragm 5 increases or decreases, the opening / closing state of the valve 6 changes, and when the atmospheric pressure decreases, the valve 6 moves upward and closes. When the secondary pressure decreases and the atmospheric pressure increases, the reverse occurs.

本発明は、上記のレギュレータの二次圧力変化に着目してなされたものであり、大気圧を測定する専用の圧力センサ等を設けることなく大気圧を推定して検出する安価な制御構成により、燃料電池ユニットの空気供給流量の大気圧変化に対する適切な補正を行って標高の高い地域等においても十分な発電量を確保することを目的とする。   The present invention has been made paying attention to the secondary pressure change of the above regulator, and by an inexpensive control configuration for estimating and detecting atmospheric pressure without providing a dedicated pressure sensor or the like for measuring atmospheric pressure, An object of the present invention is to ensure a sufficient amount of power generation even in a high altitude region by appropriately correcting the air supply flow rate of the fuel cell unit with respect to the atmospheric pressure change.

上記した目的を達成するために、本発明の燃料電池車の制御装置は、水素タンクの高圧の水素をレギュレータにより減圧して燃料電池ユニットに供給し、該燃料電池ユニットにより、前記水素と空気供給手段から供給された空気とを燃料として発電する燃料電池車の制御装置であって、大気圧によって変化する前記レギュレータの前記燃料電池ユニット側の二次圧力を検出するレギュレータ二次圧力検出手段と、前記レギュレータ二次圧力検出手段の検出二次圧力に対する前記大気圧の特性マップから前記大気圧を推定する大気圧推定手段と、前記大気圧推定手段の推定結果に基き前記大気圧の変動にしたがって前記燃料電池ユニットの空気供給量を補正する空気供給量制御手段とを備えたことを特徴としている(請求項1)。   In order to achieve the above object, a control device for a fuel cell vehicle according to the present invention reduces the high-pressure hydrogen in a hydrogen tank by a regulator and supplies it to the fuel cell unit, and the fuel cell unit supplies the hydrogen and air. A control device for a fuel cell vehicle that generates electric power using air supplied from the means as a fuel, and a regulator secondary pressure detecting means for detecting a secondary pressure on the fuel cell unit side of the regulator that changes according to atmospheric pressure; The atmospheric pressure estimating means for estimating the atmospheric pressure from a characteristic map of the atmospheric pressure with respect to the detected secondary pressure of the regulator secondary pressure detecting means, and the atmospheric pressure based on the estimation result of the atmospheric pressure estimating means, An air supply amount control means for correcting the air supply amount of the fuel cell unit is provided (claim 1).

また、本発明の燃料電池車の制御装置は、レギュレータの水素タンク側の一次圧力を検出するレギュレータ一次圧力検出手段と、燃料電池ユニットの発電量から換算した水素流量を検出する水素流量検出手段と、レギュレータ二次圧力検出手段の検出二次圧力を、前記レギュレータ一次圧力検出手段の検出一次圧力、前記水素流量検出手段の検出水素流量の少なくともいずれか一方によって補正する補正手段とを備え、大気圧推定手段により、前記補正手段の補正後の前記二次圧力から大気圧を推定するようにしたことも特徴としている(請求項2)。   The control device for a fuel cell vehicle according to the present invention includes a regulator primary pressure detection means for detecting a primary pressure on the hydrogen tank side of the regulator, a hydrogen flow rate detection means for detecting a hydrogen flow rate converted from a power generation amount of the fuel cell unit, and And a correcting means for correcting the detected secondary pressure of the regulator secondary pressure detecting means by at least one of the detected primary pressure of the regulator primary pressure detecting means and the detected hydrogen flow rate of the hydrogen flow rate detecting means, It is also characterized in that the atmospheric pressure is estimated from the secondary pressure corrected by the correcting means by the estimating means (claim 2).

まず、請求項1の構成によれば、レギュレータの二次圧力が大気圧の影響を受けて変化することに着目し、大気圧測定の専用の圧力センサを用いることなく、レギュレータの検出二次圧力に対する前記大気圧の特性マップから大気圧を推定して検出することができる。 First, according to the configuration of claim 1 , paying attention to the fact that the secondary pressure of the regulator changes under the influence of the atmospheric pressure, the detected secondary pressure of the regulator can be obtained without using a pressure sensor dedicated to atmospheric pressure measurement. The atmospheric pressure can be estimated and detected from the atmospheric pressure characteristic map .

そして、大気圧の推定結果に基き、大気圧の増減変化にしたがって燃料電池ユニットの空気供給量を自動的に適切に補正することができる。   Then, based on the atmospheric pressure estimation result, the air supply amount of the fuel cell unit can be automatically and appropriately corrected in accordance with the change in the atmospheric pressure.

そのため、大気圧測定の専用の圧力センサを用いない安価な制御構成により、大気圧の増減に応じて燃料電池ユニットに供給する空気量を補正し、標高の高い地域等においても十分な発電量を確保してこの種の燃料電池車を安定に走行することができる。   Therefore, with an inexpensive control configuration that does not use a pressure sensor dedicated to atmospheric pressure measurement, the amount of air supplied to the fuel cell unit is corrected according to the increase or decrease in atmospheric pressure, so that sufficient power generation can be achieved even in high altitude areas. This type of fuel cell vehicle can be stably driven.

つぎに、請求項2の構成によれば、レギュレータの検出二次圧力を、その検出一次圧力や発電量から検出した水素流量に基いて補正することにより、補正後のレギュレータの二次圧力から大気圧を一層精度よく推定して検出することができ、推定した大気圧の変化に対する燃料電池ユニットの空気供給量の補正精度を一層向上することができる。 Next, according to the configuration of claim 2 , the detected secondary pressure of the regulator is corrected based on the detected primary pressure and the hydrogen flow rate detected from the power generation amount, so that the corrected secondary pressure of the regulator is increased. The atmospheric pressure can be estimated and detected with higher accuracy, and the correction accuracy of the air supply amount of the fuel cell unit with respect to the estimated change in atmospheric pressure can be further improved.

つぎに、本発明をより詳細に説明するため、その一実施形態について、図1及び図2にしたがって詳述する。   Next, in order to describe the present invention in more detail, an embodiment thereof will be described in detail with reference to FIGS.

図1は燃料電池車の制御装置のブロック図、図2はそのレギュレータの一例の模式図である。   FIG. 1 is a block diagram of a control device for a fuel cell vehicle, and FIG. 2 is a schematic diagram of an example of the regulator.

そして、図1において、7は水素タンクであり、その高圧(250〜300気圧)の水素がレギュレータ一次圧力検出手段としての一次側(水素タンク側)の圧力センサ2を通ってレギュレータ1に送られ、このレギュレータ1で1〜2気圧程度に減圧される。   In FIG. 1, reference numeral 7 denotes a hydrogen tank, and the high-pressure (250 to 300 atm) hydrogen is sent to the regulator 1 through the pressure sensor 2 on the primary side (hydrogen tank side) as the regulator primary pressure detecting means. The regulator 1 reduces the pressure to about 1 to 2 atmospheres.

8は燃料電池ユニットであり、レギュレータ1の減圧された二次側の水素がレギュレータ二次圧力検出手段としての二次側の圧力センサ2を通って供給される。9は燃料電池ユニット8に空気を供給するコンプレッサであり、空気供給手段を形成する。10はコンプレッサ9の駆動制御回路部であり、燃料電池ユニット8の発電量に基くフィードバック制御により、要求される発電量に相当するコンプレッサ回転数を演算し、その指令値に基づいてコンプレッサ9の空気送給を制御する。   Reference numeral 8 denotes a fuel cell unit, and the secondary-side hydrogen whose regulator 1 has been depressurized is supplied through a secondary-side pressure sensor 2 serving as a regulator secondary pressure detecting means. A compressor 9 supplies air to the fuel cell unit 8 and forms air supply means. Reference numeral 10 denotes a drive control circuit section of the compressor 9, which calculates the compressor rotational speed corresponding to the required power generation amount by feedback control based on the power generation amount of the fuel cell unit 8, and based on the command value, Control feeding.

11は水素流量検出手段を形成する換算回路部であり、燃料電池ユニット8の発電量から燃料電池ユニット8に供給される水素流量を検出する。12は補正手段を形成する二次圧力補正部であり、圧力センサ3の検出二次圧力を、レギュレータ1の特性等に基き、圧力センサ2の検出一次圧力、換算回路部11の検出水素流量の少なくともいずれか一方によって補正する。   Reference numeral 11 denotes a conversion circuit unit that forms hydrogen flow rate detection means, and detects the flow rate of hydrogen supplied to the fuel cell unit 8 from the amount of power generated by the fuel cell unit 8. Reference numeral 12 denotes a secondary pressure correction unit that forms correction means. The secondary pressure detected by the pressure sensor 3 is determined based on the characteristics of the regulator 1 and the like, based on the detected primary pressure of the pressure sensor 2 and the detected hydrogen flow rate of the conversion circuit unit 11. Correct with at least one of them.

13は大気圧推定手段を形成する推定回路部であり、EEPROM等の不揮発性のメモリに二次圧力補正部12の補正後の検出二次圧力に対する大気圧の特性マップ(大気圧マップ)を保持し、このマップから二次圧力補正部12の補正後の検出二次圧力に対応する大気圧を読み出して大気圧を推定し、推定結果をフィードバック制御の補正値として駆動制御回路部10に供給し、大気圧の推定結果に基き大気圧の変動にしたがって燃料電池ユニット8の空気供給量を補正する。   Reference numeral 13 denotes an estimation circuit unit that forms atmospheric pressure estimation means, and holds a characteristic map (atmospheric pressure map) of atmospheric pressure with respect to the detected secondary pressure corrected by the secondary pressure correction unit 12 in a nonvolatile memory such as an EEPROM. Then, the atmospheric pressure corresponding to the detected secondary pressure corrected by the secondary pressure correction unit 12 is read from this map to estimate the atmospheric pressure, and the estimation result is supplied to the drive control circuit unit 10 as a correction value for feedback control. Then, the air supply amount of the fuel cell unit 8 is corrected according to the fluctuation of the atmospheric pressure based on the estimation result of the atmospheric pressure.

そして、水素タンク7の高圧の水素をレギュレータ1で減圧し、レギュレータ1の二次側の減圧した水素(水素ガス)とコンプレッサ9からの空気とを燃料電池ユニット8に供給し、その電気化学反応によって発電した電力で車両駆動用のモータ(図示せず)を駆動する。   Then, the high-pressure hydrogen in the hydrogen tank 7 is depressurized by the regulator 1, and the depressurized hydrogen (hydrogen gas) on the secondary side of the regulator 1 and the air from the compressor 9 are supplied to the fuel cell unit 8, and the electrochemical reaction A motor (not shown) for driving the vehicle is driven by the electric power generated by.

このとき、レギュレータ1は例えば図2に示すように構成され、ばね4の弾性力と大気圧とにより一次側の高圧の水素を減圧するが、大気圧の増減変化によっても二次圧力が増減変化し、標高の高い地域等の走行時には、大気圧の減少にしたがって二次圧力が減少する。   At this time, the regulator 1 is configured as shown in FIG. 2, for example, and the high pressure hydrogen on the primary side is depressurized by the elastic force of the spring 4 and the atmospheric pressure. However, when traveling in areas with high altitudes, the secondary pressure decreases as the atmospheric pressure decreases.

そして、この二次圧力を圧力センサ3によって検出し、その検出二次圧力を二次圧力補正部12を介して推定回路部13に供給し、大気圧を推定する。   Then, the secondary pressure is detected by the pressure sensor 3, and the detected secondary pressure is supplied to the estimation circuit unit 13 via the secondary pressure correction unit 12 to estimate the atmospheric pressure.

このとき、処理の簡素化等を図る場合は、二次圧力補正部12を省き、圧力センサ3の検出二次圧力を推定回路部13に直接供給し、検出二次圧力のみから大気圧を推定するようにしてもよいが、レギュレータ1の特性等に基き、検出二次圧力と大気圧との関係が、レギュレータ1の一次圧力や水素流量の影響を受けることから、実験等によってそれらの影響を測定し、圧力センサ2の検出一次圧力、換算回路部11の検出水素流量の少なくともいずれか一方の検出二次圧力に対する補正特性を二次圧力補正部12に予め設定する。   At this time, when simplifying the processing, the secondary pressure correction unit 12 is omitted, the detected secondary pressure of the pressure sensor 3 is directly supplied to the estimation circuit unit 13, and the atmospheric pressure is estimated from only the detected secondary pressure. However, based on the characteristics of the regulator 1, the relationship between the detected secondary pressure and the atmospheric pressure is affected by the primary pressure of the regulator 1 and the hydrogen flow rate. Measurement is performed, and a correction characteristic for the detected secondary pressure of at least one of the detected primary pressure of the pressure sensor 2 and the detected hydrogen flow rate of the conversion circuit unit 11 is preset in the secondary pressure correcting unit 12.

なお、圧力センサ2の検出一次圧力、換算回路部11の検出水素流量のいずれか一方の補正を施すより、両方の補正を施す方が大気圧の推定精度が向上する。また、この補正特性の設定は、例えば推定回路部13の大気圧マップのような検出一次圧力、検出水素流量に対する検出二次圧力の補正量のマップを二次圧力補正部12の不揮発性メモリに保持して行なうことができる。   Note that the correction accuracy of the atmospheric pressure is improved by correcting both of the detected primary pressure of the pressure sensor 2 and the detected hydrogen flow rate of the conversion circuit unit 11 rather than correcting either of them. Further, the correction characteristic is set by, for example, detecting a map of correction amount of the detected secondary pressure with respect to the detected primary pressure and the detected hydrogen flow rate such as the atmospheric pressure map of the estimation circuit unit 13 in the nonvolatile memory of the secondary pressure correcting unit 12. Can be held.

そして、二次圧力補正部12により、圧力センサ3の検出二次圧力に、例えば、圧力センサ2の検出一次圧力、換算回路部11の検出水素流量の両方の補正を施し、補正後の検出二次圧力を推定回路部13に供給し、この回路部13の大気圧マップから、補正後の検出二次圧力に対応する大気圧を読み出して推定し、大気圧測定の専用の圧力センサを用いることなく、レギュレータ1の二次圧力を検出する既存の圧力センサ3の検出二次圧力から大気圧を精度よく検出する。   Then, the secondary pressure correction unit 12 corrects, for example, both the detected primary pressure of the pressure sensor 2 and the detected hydrogen flow rate of the conversion circuit unit 11 to the detected secondary pressure of the pressure sensor 3, and detects the detected second pressure after correction. The secondary pressure is supplied to the estimation circuit unit 13, and the atmospheric pressure corresponding to the corrected secondary pressure is read from the atmospheric pressure map of the circuit unit 13 and estimated, and a pressure sensor dedicated to atmospheric pressure measurement is used. Rather, the atmospheric pressure is accurately detected from the detected secondary pressure of the existing pressure sensor 3 that detects the secondary pressure of the regulator 1.

さらに、推定回路部13の推定結果の大気圧をコンプレッサ9の駆動制御回路部10に供給し、この駆動回路部10において、燃料電池ユニット8の発電量に基づくコンプレッサ9の検出回転数又はこの回転数の目標値を、推定結果の大気圧により予め設定された特性で補正する。   Further, the atmospheric pressure as the estimation result of the estimation circuit unit 13 is supplied to the drive control circuit unit 10 of the compressor 9, and in this drive circuit unit 10, the detected rotation speed of the compressor 9 based on the power generation amount of the fuel cell unit 8 or this rotation The numerical target value is corrected with a characteristic set in advance by the atmospheric pressure of the estimation result.

この補正により、コンプレッサ9から燃料電池ユニット8に供給する空気流量を、大気圧の増減の逆に補正し、標高の高い地域等の走行時には、大気圧の減少に応じて燃料電池ユニット8に供給する空気流量を増加補正する。   By this correction, the flow rate of air supplied from the compressor 9 to the fuel cell unit 8 is corrected in reverse to the increase or decrease of the atmospheric pressure, and is supplied to the fuel cell unit 8 according to the decrease of the atmospheric pressure when traveling in a high altitude region or the like. Correct the air flow to be increased.

したがって、大気圧測定の専用の圧力センサを用いない安価な制御構成により大気圧の増減に応じて燃料電池ユニット8に供給する空気量[mol]を補正し、標高の高い地域等においても十分な発電量を確保し、この種の燃料電池車を安定に走行することができる。   Therefore, the amount of air [mol] supplied to the fuel cell unit 8 is corrected in accordance with the increase or decrease of the atmospheric pressure by an inexpensive control configuration that does not use a pressure sensor dedicated to atmospheric pressure measurement, which is sufficient even in high altitude areas. The amount of power generation is ensured, and this type of fuel cell vehicle can be driven stably.

ところで、図1の駆動制御回路部10、換算回路部11、二次圧力補正部12、推定回路部13等は、演算増幅器等を用いたハードウエア回路によって形成してもよいが、マイクロコンピュータ構成のECUのソフトウエア処理によって形成することが好ましい。   Incidentally, the drive control circuit unit 10, the conversion circuit unit 11, the secondary pressure correction unit 12, the estimation circuit unit 13 and the like of FIG. 1 may be formed by a hardware circuit using an operational amplifier or the like. Preferably, it is formed by software processing of the ECU.

そして、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能であり、例えば、レギュレータ1の構造等はどのようであってもよい。   The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention. It may be.

また、推定回路部13の大気圧マップの特性等は、実験等に基いて、種々に設定してよいのも勿論である。   Of course, the characteristics of the atmospheric pressure map of the estimation circuit unit 13 may be variously set based on experiments or the like.

そして、本発明は、水素燃料電池を搭載した種々の燃料電池車の制御に適用することができる。   The present invention can be applied to control of various fuel cell vehicles equipped with a hydrogen fuel cell.

この発明の一実施形態のブロック図である。It is a block diagram of one embodiment of this invention. 図1のレギュレータの一例の模式図である。It is a schematic diagram of an example of the regulator of FIG.

符号の説明Explanation of symbols

1 レギュレータ
2、3 圧力センサ
7 水素タンク
8 燃料電池ユニット
9 コンプレッサ
10 駆動制御回路部
11 換算回路部
12 二次圧力補正部
13 推定回路部
DESCRIPTION OF SYMBOLS 1 Regulator 2, 3 Pressure sensor 7 Hydrogen tank 8 Fuel cell unit 9 Compressor 10 Drive control circuit part 11 Conversion circuit part 12 Secondary pressure correction part 13 Estimation circuit part

Claims (2)

水素タンクの高圧の水素をレギュレータにより減圧して燃料電池ユニットに供給し、該燃料電池ユニットにより、前記水素と空気供給手段から供給された空気とを燃料として発電する燃料電池車の制御装置であって、
大気圧によって変化する前記レギュレータの前記燃料電池ユニット側の二次圧力を検出するレギュレータ二次圧力検出手段と、
前記レギュレータ二次圧力検出手段の検出二次圧力に対する前記大気圧の特性マップから前記大気圧を推定する大気圧推定手段と、
前記大気圧推定手段の推定結果に基き前記大気圧の変動にしたがって前記燃料電池ユニットの空気供給量を補正する空気供給量制御手段とを備えたことを特徴とする燃料電池車の制御装置。
A control device for a fuel cell vehicle, wherein high pressure hydrogen in a hydrogen tank is depressurized by a regulator and supplied to a fuel cell unit, and the fuel cell unit generates electricity using the hydrogen and air supplied from an air supply means as fuel. And
A regulator secondary pressure detecting means for detecting a secondary pressure on the fuel cell unit side of the regulator that changes according to atmospheric pressure;
Atmospheric pressure estimating means for estimating the atmospheric pressure from a characteristic map of the atmospheric pressure with respect to the detected secondary pressure of the regulator secondary pressure detecting means;
An apparatus for controlling a fuel cell vehicle, comprising: an air supply amount control means for correcting an air supply amount of the fuel cell unit based on a change in the atmospheric pressure based on an estimation result of the atmospheric pressure estimation means.
請求項1記載の燃料電池車の制御装置において、
レギュレータの水素タンク側の一次圧力を検出するレギュレータ一次圧力検出手段と、
燃料電池ユニットの発電量から換算した水素流量を検出する水素流量検出手段と、
レギュレータ二次圧力検出手段の検出二次圧力を、前記レギュレータ一次圧力検出手段の検出一次圧力、前記水素流量検出手段の検出水素流量の少なくともいずれか一方によって補正する補正手段とを備え、
大気圧推定手段により、前記補正手段の補正後の前記二次圧力から大気圧を推定するようにしたことを特徴とする燃料電池車の制御装置。
The control apparatus for a fuel cell vehicle according to claim 1,
Regulator primary pressure detection means for detecting the primary pressure on the hydrogen tank side of the regulator;
A hydrogen flow rate detecting means for detecting a hydrogen flow rate converted from the power generation amount of the fuel cell unit;
A correction means for correcting the detected secondary pressure of the regulator secondary pressure detecting means by at least one of the detected primary pressure of the regulator primary pressure detecting means and the detected hydrogen flow rate of the hydrogen flow rate detecting means,
A control apparatus for a fuel cell vehicle, wherein an atmospheric pressure is estimated from the secondary pressure corrected by the correcting means by an atmospheric pressure estimating means.
JP2005143501A 2005-05-17 2005-05-17 Control device for fuel cell vehicle Expired - Fee Related JP4744188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005143501A JP4744188B2 (en) 2005-05-17 2005-05-17 Control device for fuel cell vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005143501A JP4744188B2 (en) 2005-05-17 2005-05-17 Control device for fuel cell vehicle

Publications (2)

Publication Number Publication Date
JP2006324018A JP2006324018A (en) 2006-11-30
JP4744188B2 true JP4744188B2 (en) 2011-08-10

Family

ID=37543549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005143501A Expired - Fee Related JP4744188B2 (en) 2005-05-17 2005-05-17 Control device for fuel cell vehicle

Country Status (1)

Country Link
JP (1) JP4744188B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4288625B2 (en) * 2007-09-19 2009-07-01 トヨタ自動車株式会社 Fuel cell system and reaction gas supply amount control method
JP4406938B2 (en) * 2007-10-16 2010-02-03 トヨタ自動車株式会社 Fuel cell system and compressor rotation speed control method
JP6984169B2 (en) * 2017-05-18 2021-12-17 株式会社アイシン Fuel cell system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345113A (en) * 2000-05-31 2001-12-14 Honda Motor Co Ltd Supply gas circulation device for fuel cell
JP2002075418A (en) * 2000-08-30 2002-03-15 Honda Motor Co Ltd Humidifying device for fuel cell
JP2004036541A (en) * 2002-07-04 2004-02-05 Toyota Motor Corp Fuel supply control device for internal combustion engine
JP2004071228A (en) * 2002-08-02 2004-03-04 Hitachi Industrial Equipment Systems Co Ltd Fuel cell system for vehicle
JP2004253208A (en) * 2003-02-19 2004-09-09 Nissan Motor Co Ltd Fuel cell system
JP2004342386A (en) * 2003-05-14 2004-12-02 Toyota Motor Corp Operation control of fuel cell system
JP2005071939A (en) * 2003-08-27 2005-03-17 Nissan Motor Co Ltd Control device of fuel cell system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345113A (en) * 2000-05-31 2001-12-14 Honda Motor Co Ltd Supply gas circulation device for fuel cell
JP2002075418A (en) * 2000-08-30 2002-03-15 Honda Motor Co Ltd Humidifying device for fuel cell
JP2004036541A (en) * 2002-07-04 2004-02-05 Toyota Motor Corp Fuel supply control device for internal combustion engine
JP2004071228A (en) * 2002-08-02 2004-03-04 Hitachi Industrial Equipment Systems Co Ltd Fuel cell system for vehicle
JP2004253208A (en) * 2003-02-19 2004-09-09 Nissan Motor Co Ltd Fuel cell system
JP2004342386A (en) * 2003-05-14 2004-12-02 Toyota Motor Corp Operation control of fuel cell system
JP2005071939A (en) * 2003-08-27 2005-03-17 Nissan Motor Co Ltd Control device of fuel cell system

Also Published As

Publication number Publication date
JP2006324018A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP5099285B2 (en) Fuel supply device
US9028570B2 (en) Odorant addition device and fuel gas supply system
US8855898B2 (en) Systems and methods to diagnose valve leakage in a vehicle
JP4756465B2 (en) Fuel cell system and moving body
JP5120590B2 (en) Fuel cell system and injector diagnostic method
JP5196209B2 (en) Fuel cell system and fuel gas leak determination method in fuel cell system
US8846262B2 (en) Reactive compressor surge mitigation strategy for a fuel cell power system
US7736814B2 (en) Fuel-cell system and method of estimating nitrogen concentration on fuel electrode of fuel cell
US8470485B2 (en) Fuel cell system
KR20200042568A (en) Fuel cell hydrogen supply fault diagnosis system and diagnosis method
KR101820209B1 (en) Fuel cell system
US8024134B2 (en) Gas sensor and output processing method thereof
JP4033376B2 (en) Fuel supply device
WO2008099905A1 (en) Fuel cell system
JP2007134168A (en) Fuel cell system and its hydrogen leak detection method
JP2008047353A (en) Fuel cell system
JP4744188B2 (en) Control device for fuel cell vehicle
JP4655082B2 (en) Fuel cell system
JP5158558B2 (en) Fuel cell system
JP2009016068A (en) Fuel cell system
JP2011204411A (en) Fuel cell system and moving body
JP2007328995A (en) Fuel cell system
JP2007227058A (en) Fuel cell system, and method of controlling fuel cell system
KR101846628B1 (en) Fuel cell system
KR101806696B1 (en) Device and method for detecting water level of water trap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees