JP2004071228A - Fuel cell system for vehicle - Google Patents

Fuel cell system for vehicle Download PDF

Info

Publication number
JP2004071228A
JP2004071228A JP2002226134A JP2002226134A JP2004071228A JP 2004071228 A JP2004071228 A JP 2004071228A JP 2002226134 A JP2002226134 A JP 2002226134A JP 2002226134 A JP2002226134 A JP 2002226134A JP 2004071228 A JP2004071228 A JP 2004071228A
Authority
JP
Japan
Prior art keywords
fuel cell
hydrogen
oxygen
flow rate
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002226134A
Other languages
Japanese (ja)
Other versions
JP3940839B2 (en
Inventor
Masayuki Kasahara
笠原 雅之
Hitoshi Nishimura
西村 仁
Fumio Takeda
武田 文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2002226134A priority Critical patent/JP3940839B2/en
Publication of JP2004071228A publication Critical patent/JP2004071228A/en
Application granted granted Critical
Publication of JP3940839B2 publication Critical patent/JP3940839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To improve following characteristics of the feed control of oxygen to the feed of hydrogen in a fuel cell system for a vehicle. <P>SOLUTION: This fuel cell system for the vehicle is provided with a fuel cell 1 reacting the hydrogen with the oxygen and generating an electric energy, a hydrogen tank 3 feeding the hydrogen to the fuel cell 1, a flow control valve 5 controlling the flow rate of the hydrogen to be fed to the fuel cell 1, a compressor 9 feeding air including the oxygen to the fuel cell 1, a motor 13 driving the compressor 9, and a control part 17 controlling the opening of the flow control valve 5 according to a load demand to be input from an operation device such as an accelerator pedal, adjusting the rotation speed of the motor 13 related to the opening of the flow control valve 5, driving the compressor 9, and controlling the flow rate of the air to be fed to the fuel cell 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、車両用の燃料電池システムに係り、特に、車両に搭載して車両の動力に用いる燃料電池システムに関する。
【0002】
【従来の技術】
燃料電池は、水素と酸素の化学反応を利用して発電する装置であり、高効率、低公害などの観点から幅広く実用化の研究開発が進められている。燃料電池に供給される水素は、ボンベなどに貯蔵されたものや、燃料を改質させたものなどが用いられ、酸素は、一般に空気に含まれているものが利用される。
【0003】
このような燃料電池の発電量制御は、要求される発電量に応じて燃料電池へ供給する水素と酸素の量を制御することにより行われる。例えば、特開平7―14599号公報などに記載の制御法によれば、要求される発電量に応じて水素の供給量を制御するとともに、燃料電池の出力電流に基づいて酸素の供給量を制御するようにしている。
【0004】
【発明が解決しようとする課題】
しかし、上記従来の技術のように、空気の供給量を燃料電池の出力電流に基づいて制御すると、燃料電池における反応時間の遅れによって、水素の供給量の変化に対する空気の供給量制御の追従性が悪くなる。このような制御法を、車両の動力に用いる燃料電池システムに適用すると、急加速、急減速など負荷変動幅が大きい車両の場合に、燃料電池の発電量の増減が遅れることになる。その結果、アクセルペダルなどの操作器の操作量と実際の加減速との間に違和感が生じるという問題がある。
【0005】
本発明の課題は、燃料電池システムにおいて水素の供給量に対する酸素の供給量制御の追従性を向上することにある。
【0006】
【課題を解決するための手段】
本発明の燃料電池システムは、上記課題を解決するため、水素と酸素とを反応させて電気エネルギを発生する燃料電池と、該燃料電池に水素を供給する水素供給源と、燃料電池に供給される水素の流量を制御する流量制御弁と、燃料電池に酸素を供給する酸素供給源と、負荷要求に応じて流量制御弁の開度を制御し、該流量制御弁の開度に相関させて、酸素の流量を制御する制御手段とを有してなる構成とする。
【0007】
すなわち、流量制御弁の弁開度と流量との間には一定の関係があることに鑑み、水素の流量を制御する流量制御弁の開度に対応した水素供給量に合わせて酸素の供給量を制御するようにしたのである。なお、弁の開度と水素供給量との関係は、予め計測等によって求めておき、制御手段にその相関を記憶させておくか、流量制御弁の開度に直接対応付けて酸素の供給量を記憶させておいてもよい。したがって、本発明によれば、負荷要求に応じて制御される水素の量に相関させて速やかに酸素の流量を制御することができる。その結果、車両の負荷変動幅が大きい場合でも、負荷要求に応じて燃料電池に供給する水素と酸素の量が速やかに増減制御されるから、アクセルペダル等の操作器の操作量と実際の加減速の間に生じる違和感を軽減することができる。
【0008】
一方、上記の流量制御弁の開度に応じて酸素の供給量を制御することに代えて、燃料電池に供給される水素の量を検出する流量計を設け、検出された水素の流量に基づいて酸素の流量を制御するようにしてもよい。
【0009】
これは、予め求めておいた弁の開度と水素供給量との関係が、経時変化など様々な要因により変化することに鑑み、実測した水素供給量に基づいて酸素の流量を制御するようにしたものである。これによれば、経時変化などで流量制御弁の開度と流量との関係が変化しても、適切な量の酸素を供給することができる。
【0010】
ところで、酸素の温度や圧力が変化すると、酸素の密度が変化する。酸素の密度が変われば、体積流量が一定であっても燃料電池に供給される酸素の質量流量が変わるので、これに合わせて酸素の体積流量を制御する必要がある。そこで、燃料電池に供給される酸素の密度を検出し、検出された酸素の密度に基づいて酸素の体積流量を補正するのが好ましい。密度検出手段は、酸素の温度を検出する温度検出手段、または酸素の圧力を検出する圧力検出手段の少なくとも一方により構成することができる。
【0011】
また、酸素供給源として、空気を圧縮する圧縮機と、該圧縮機を駆動するモータとを含んで構成する場合は、モータの回転数を制御することにより、燃料電池に供給する空気量を制御することができる。
【0012】
【発明の実施の形態】
(第1の実施形態)
以下、本発明を適用してなる車両用の燃料電池システムの実施形態について図1および図2を参照して説明する。図1は、本実施形態の主要部の構成を示すブロック図である。図2は、本実施形態の動作を説明するための線図である。
【0013】
図1に示すように、本実施形態の燃料電池システムは、燃料電池1、水素タンク3、流量制御弁5、圧縮機9、冷却器11、モータ13、インバータ15、制御部17、および凝縮器19を含んで構成されている。燃料電池1は、水素極1aと酸素極1bを水素イオン透過膜1cを挟んで対向させて構成されている。水素極1aは、水素あるいは水素を多く含む気体を通す水素室と接し、酸素極1bは、空気が圧縮されて送り込まれる空気室と接して設けられている。水素極1aと酸素極1bは、図示していないが車両の動力装置である電動機に接続され、この電動機に燃料電池1で発生した電気が供給される。
【0014】
燃料電池1の水素室には、水素タンク3から流量制御弁5を介して水素が供給されるようになっている。水素タンク3には、図示していないが水素の供給圧力を所定値に制御するレギュレータ等が設けられている。流量制御弁5は、制御部17よって制御され、アクセルペダルなどの操作器から入力される負荷要求に応じて燃料電池1に供給する水素の量を制御するようになっている。
【0015】
一方、燃料電池1の空気室には、圧縮機9から冷却器11を介して空気が供給されるようになっている。圧縮機9は、モータ13の回転数を変化させて供給する空気量を制御するスクリュー空気圧縮機が適用されている。モータ13の回転数は、インバータ15を介して制御部17によって制御されるようになっている。制御部17は、流量制御弁5の弁開度に相関させて、インバータ15を介してモータ13の回転数を制御し、圧縮機9から供給する空気量を制御している。このように、本実施形態では、空気を大気圧以上に昇圧して燃料電池1に供給することで、水素と酸素の結合反応を促進し、燃料電池1の出力向上あるいは小型化を図っている。
【0016】
冷却器11は、外部から取り込まれ圧縮機9により圧縮された空気を冷却するものである。また、凝縮器19は、燃料電池1で発生した水を回収するようになっている。なお、水とともに凝縮器19に排出される気体は、圧縮機9を介して燃料電池1に戻されるようになっている。
【0017】
ここで、本実施形態の特徴部の構成について動作とともに説明する。本実施形態の燃料電池システムでは、制御部17内に流量制御弁5の弁開度とインバータ周波数の関係を示すデータ図2(c)を予め記憶させておく。図2(a)は、予め計測などにより求めておいた流量制御弁5の弁開度と水素供給量の関係を示すデータである。図2(b)は、インバータ周波数と空気供給量との関係を示すデータである。ここで、供給される水素量に対して供給すべき空気量は決まっているので、図2(a)、(b)の水素供給量に対する空気供給量の関係から、図2(c)の弁開度とインバータ周波数との対応関係が導かれる。
【0018】
制御部17は、負荷要求に応じて予め定められた関係に従って水素の供給量を求め、図2(a)の関係に従って流量制御弁5の開度を制御する。次いで、制御部17は、図2(c)に基づいて流量制御弁5の開度に応じたインバータ周波数の指令をインバータ15に与える。これにより、インバータ15を介してモータ13の回転数が制御され、圧縮機9から燃料電池1に供給される空気量が水素の供給量に見合った値に制御される。
【0019】
このように、本実施形態によれば、流量制御弁5の開度とインバータ周波数を対応付けて空気の供給量を制御することにより、水素の供給量に対する酸素の供給量制御の追従性を向上することができる。したがって、車両の負荷変動幅が大きい場合でも、アクセルペダルなどの操作器から入力される負荷要求に応じて水素と空気の供給量を速やかに増減制御して、操作器の操作量と実際の加減速との間に生じる違和感を軽減することができる。
【0020】
また、水素量に対する空気の制御の遅れ等を抑えることができるので、燃料電池1から排出される未反応水素が増加したり、燃料電池1の出力が不足したりするの低減できる。同様に、空気の供給量が多くなり、反応に不要な空気を圧縮する動力が増加するのを抑制でき、燃料電池システムの効率を向上できる。
【0021】
また、膨張器を用いて燃料電池から排出された圧縮空気の持つエネルギーを回収して空気の圧縮に使用することにより、圧縮動力を軽減して燃料電池システムの効率を向上させることが知られているが、本実施形態によれば、過剰な空気の供給を抑えることができるので、燃料電池システムの効率を向上できる。
【0022】
また、流量制御弁5の弁開度とインバータ周波数との関係図2(c)に基づいて燃料電池1に供給する空気量を制御しているが、図2(c)の関係は、関数式またはデータテーブルにして制御部17に記憶しておくこともできる。また、流量制御弁5の開度を検出し、この検出開度から図2(a)の関係に基づいて水素供給量を求め、これに対する必要な空気量を算出し、図2(b)の関係に基づいてインバータ周波数を求めるようにしてもよい。
【0023】
(第2の実施形態)
本発明を適用してなる車両用の燃料電池システムの第2の実施形態について図3を参照して説明する。図3は、本実施形態の主要部の構成を示すブロック図である。なお、本実施形態では、第1の実施形態と同一のものには同じ符号を付して説明を省略し、第1の実施形態と相違する構成及び特徴部などについて説明する。
【0024】
本実施形態が第1の実施形態と相違する点は、流量制御弁5と燃料電池1との間に流量センサ25を設けている点にある。流量センサ25としては、時間遅れのないフロート式、羽根車式などの瞬時流量計が好ましい。
【0025】
流量センサ25は、検出した水素の流量を制御部27に出力するようになっている。制御部27は、検出水素量に基づいて制御信号をインバータ15に与える。これにより、インバータ15を介してモータ13の回転数が制御され、圧縮機9から燃料電池1に供給される空気量が制御される。このため、経時変化や外乱などで弁開度と水素供給量との関係が変化しても、燃料電池1に供給される水素に対して、適切な量の空気を供給することができ、精度の高い制御を行うことができる。
【0026】
また、本実施形態では、流量センサ25で検出した水素量に基づいて空気の供給量を制御するので、弁の開度と水素供給量との関係を予め計測等によって求めておく作業が不要となる。
【0027】
また、本実施形態では、空気の供給量を制御するにあたり、水素の流量とインバータ周波数の関係を示すデータを予め制御部に記憶させておいて、このデータに基づいて空気の供給量を制御する。また、これに代えて、水素の流量に対応する圧縮機の回転数を求める関係式やデータテーブルなどを予め制御部に記憶させておき、これらに基づいて空気の供給量を制御してもよい。
【0028】
(第3の実施形態)
本発明を適用してなる車両用の燃料電池システムの第3の実施形態について図4および図5を参照して説明する。図4は、本実施形態の主要部の構成を示すブロック図である。図5は、本実施形態の補正の概念を説明するための線図である。なお、本実施形態では、第1の実施形態と同一のものには同じ符号を付して説明を省略し、第1の実施形態と相違する構成及び特徴部などについて説明する。
【0029】
本実施形態が第1の実施形態と相違する点は、圧縮機9に吸引される空気の温度を測定する温度計29を設け、その検出温度に基づいて制御部30によりインバータ周波数の指令値を補正するようにしたことにある。制御部30には、温度による補正のためのデータを予め記憶させておく。本実施形態は、空気の体積流量が同じであっても、温度によって質量流量が変化することに鑑みたものである。例えば、気温が低い場合、同じ質量、すなわち同じ酸素分子数を含む空気の体積は、気温が高い場合に比べ減少するため、一定の水素と過不足なく反応する酸素を供給するには、気温の高い場合より吸い込み空気量を少なくする必要がある。具体的には、気温が低い場合、インバータ周波数を低くして圧縮機9の運転速度を小さくする。
【0030】
本実施形態の制御部30には、図5に示すようなデータが記憶されている。図5の横軸はインバータ周波数を、縦軸は空気(酸素)供給質量を示している。図示のように、気温をパラメータとする例えば線31、32、33を定め、気温低時、通常時、気温高時におけるそれぞれのインバータ周波数と空気(酸素)供給質量との関係を記憶させておく。
【0031】
このように、温度計29で気温を検出し、この検出値に基づいて供給する空気量を補正することにより、気温が変化するような場合でも、燃料電池1に供給される水素に対して、適切な量の空気を供給することができ、圧縮動力損失や未反応水素の排出の増加による効率低下を抑えることができる。
【0032】
また、本実施形態では、図5のデータに代えて、インバータ周波数と空気(酸素)供給質量との関係を気温に対応させるための関係式やデータテーブルを予め制御部30に記憶させておき、これらに基づいて空気の供給量を補正してもよい。
【0033】
また、第1ないし第3の実施形態では、空気を圧縮する圧縮機9と、この圧縮機9を駆動するモータ13とを含んで空気供給源を構成しているが、本発明は、第1ないし第3の実施形態の空気供給源に限らず、周知の空気供給源または酸素供給源を適用することができる。要は、燃料電池に供給される水素と過不足なく反応する量の酸素を供給することができればよい。
【0034】
また、圧縮機は、JISB0132「送風機・圧縮機用語」において、「圧力比が2以上または吐出し圧力が約0.1MPa以上の機械」と定義されているが、第1ないし第3の実施形態では、この圧力よりも低いブロワの範囲までを含めて圧縮機として説明している。
【0035】
また、第1ないし第3の実施形態の燃料電池システムは、水素供給源として水素タンク3を用いているが、本発明の燃料電池システムは、水素ボンベや改質装置など、周知の水素供給源を適用することができる。
【0036】
また、本発明の燃料電池システムは、燃料電池に供給される水素の圧力を検出する圧力計および温度を検出する温度計の少なくとも一方を設けることができる。この場合、制御部に、圧力や温度による補正のためのデータテーブルや関係式などを記憶させておく。また、圧力計に代えて、水素供給源に圧力制御弁を設けてもよい。この場合、この圧力制御弁の設定圧力を用いることができる。これにより、圧力計や温度計からの出力、または圧力制御弁の設定圧力に基づいて供給する空気量を補正することができ、水素の圧力や温度が変化しても、燃料電池に供給される水素量に対して、適切な量の酸素を供給することができる。
【0037】
【発明の効果】
本発明によれば、燃料電池システムにおいて水素の供給量に対する酸素の供給量制御の追従性を向上することができる。
【図面の簡単な説明】
【図1】本発明を適用してなる車両用の燃料電池システムの第1の実施形態の主要部の構成を示すブロック図である。
【図2】本発明を適用してなる車両用の燃料電池システムの第1の実施形態の動作を説明するための線図である。
【図3】本発明を適用してなる車両用の燃料電池システムの第2の実施形態の主要部の構成を示すブロック図である。
【図4】本発明を適用してなる車両用の燃料電池システムの第3の実施形態の主要部の構成を示すブロック図である。
【図5】本発明を適用してなる車両用の燃料電池システムの第3の実施形態の補正の概念を説明するための線図である。
【符号の説明】
1 燃料電池
3 水素タンク
5 流量制御弁
9 圧縮機
11 冷却器
13 モータ
15 インバータ
17、27、30 制御部
19 凝縮器
25 流量センサ
29 温度計
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel cell system for a vehicle, and more particularly to a fuel cell system mounted on a vehicle and used for powering the vehicle.
[0002]
[Prior art]
2. Description of the Related Art A fuel cell is a device that generates electric power by utilizing a chemical reaction between hydrogen and oxygen. Research and development for practical use have been widely pursued from the viewpoints of high efficiency and low pollution. As the hydrogen supplied to the fuel cell, hydrogen stored in a cylinder or the like, or a reformed fuel is used, and oxygen generally contained in air is used.
[0003]
Such power generation control of the fuel cell is performed by controlling the amounts of hydrogen and oxygen supplied to the fuel cell according to the required power generation. For example, according to the control method described in Japanese Patent Application Laid-Open No. 7-14599, the supply amount of hydrogen is controlled in accordance with the required power generation amount, and the supply amount of oxygen is controlled based on the output current of the fuel cell. I am trying to do it.
[0004]
[Problems to be solved by the invention]
However, when the supply amount of air is controlled based on the output current of the fuel cell as in the above-described conventional technique, the response of the air supply amount control to the change in the supply amount of hydrogen due to the delay of the reaction time in the fuel cell is reduced. Gets worse. If such a control method is applied to a fuel cell system used for powering a vehicle, the increase or decrease in the amount of power generated by the fuel cell is delayed in the case of a vehicle having a large load fluctuation range such as sudden acceleration or sudden deceleration. As a result, there is a problem that a sense of discomfort occurs between the operation amount of an operating device such as an accelerator pedal and the actual acceleration / deceleration.
[0005]
An object of the present invention is to improve the followability of oxygen supply control with respect to hydrogen supply in a fuel cell system.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, a fuel cell system according to the present invention has a fuel cell that generates electric energy by reacting hydrogen and oxygen, a hydrogen supply source that supplies hydrogen to the fuel cell, and a fuel cell that is supplied to the fuel cell. A flow control valve that controls the flow rate of hydrogen, an oxygen supply source that supplies oxygen to the fuel cell, and an opening of the flow control valve that is controlled in accordance with a load request, and correlated with the opening of the flow control valve. And control means for controlling the flow rate of oxygen.
[0007]
In other words, considering that there is a certain relationship between the valve opening of the flow control valve and the flow rate, the supply amount of oxygen is adjusted according to the hydrogen supply amount corresponding to the opening degree of the flow control valve that controls the flow rate of hydrogen. Was controlled. The relationship between the opening degree of the valve and the hydrogen supply amount is obtained in advance by measurement or the like, and the correlation is stored in the control means, or the oxygen supply amount is directly associated with the opening degree of the flow control valve. May be stored. Therefore, according to the present invention, the flow rate of oxygen can be quickly controlled in correlation with the amount of hydrogen controlled according to the load request. As a result, even when the load fluctuation range of the vehicle is large, the amounts of hydrogen and oxygen supplied to the fuel cell are quickly increased or decreased according to the load request. It is possible to reduce a sense of discomfort that occurs during deceleration.
[0008]
On the other hand, instead of controlling the supply amount of oxygen according to the opening degree of the flow control valve, a flow meter for detecting the amount of hydrogen supplied to the fuel cell is provided, and the flow rate is measured based on the detected flow rate of hydrogen. Alternatively, the flow rate of oxygen may be controlled.
[0009]
In view of the fact that the relationship between the valve opening degree and the hydrogen supply amount determined in advance changes due to various factors such as aging, the oxygen flow rate is controlled based on the actually measured hydrogen supply amount. It was done. According to this, an appropriate amount of oxygen can be supplied even if the relationship between the opening degree of the flow control valve and the flow rate changes due to a change over time or the like.
[0010]
By the way, when the temperature or pressure of oxygen changes, the density of oxygen changes. If the density of oxygen changes, the mass flow rate of oxygen supplied to the fuel cell changes even if the volume flow rate is constant. Therefore, it is necessary to control the oxygen volume flow rate accordingly. Therefore, it is preferable to detect the density of oxygen supplied to the fuel cell and correct the volume flow rate of oxygen based on the detected density of oxygen. The density detecting means can be constituted by at least one of a temperature detecting means for detecting the temperature of oxygen and a pressure detecting means for detecting the pressure of oxygen.
[0011]
In addition, when the compressor includes a compressor that compresses air and a motor that drives the compressor as an oxygen supply source, the amount of air supplied to the fuel cell is controlled by controlling the number of revolutions of the motor. can do.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
Hereinafter, an embodiment of a vehicle fuel cell system to which the present invention is applied will be described with reference to FIGS. FIG. 1 is a block diagram showing a configuration of a main part of the present embodiment. FIG. 2 is a diagram for explaining the operation of the present embodiment.
[0013]
As shown in FIG. 1, the fuel cell system according to the present embodiment includes a fuel cell 1, a hydrogen tank 3, a flow control valve 5, a compressor 9, a cooler 11, a motor 13, an inverter 15, a control unit 17, and a condenser. 19. The fuel cell 1 is configured such that a hydrogen electrode 1a and an oxygen electrode 1b are opposed to each other with a hydrogen ion permeable membrane 1c interposed therebetween. The hydrogen electrode 1a is provided in contact with a hydrogen chamber through which hydrogen or a gas containing a large amount of hydrogen passes, and the oxygen electrode 1b is provided in contact with an air chamber into which air is compressed and sent. The hydrogen electrode 1a and the oxygen electrode 1b are connected to an electric motor (not shown), which is a power unit of the vehicle, and the electric power generated by the fuel cell 1 is supplied to the electric motor.
[0014]
Hydrogen is supplied from a hydrogen tank 3 to a hydrogen chamber of the fuel cell 1 via a flow control valve 5. The hydrogen tank 3 is provided with a regulator (not shown) for controlling the supply pressure of hydrogen to a predetermined value. The flow control valve 5 is controlled by the control unit 17, and controls the amount of hydrogen supplied to the fuel cell 1 according to a load request input from an operating device such as an accelerator pedal.
[0015]
On the other hand, air is supplied from the compressor 9 to the air chamber of the fuel cell 1 via the cooler 11. As the compressor 9, a screw air compressor that controls the amount of air supplied by changing the rotation speed of the motor 13 is applied. The rotation speed of the motor 13 is controlled by the control unit 17 via the inverter 15. The control unit 17 controls the number of rotations of the motor 13 via the inverter 15 in correlation with the valve opening of the flow control valve 5, and controls the amount of air supplied from the compressor 9. As described above, in the present embodiment, by increasing the pressure of the air above the atmospheric pressure and supplying it to the fuel cell 1, the bonding reaction between hydrogen and oxygen is promoted, and the output of the fuel cell 1 is improved or the size of the fuel cell 1 is reduced. .
[0016]
The cooler 11 cools air taken in from the outside and compressed by the compressor 9. The condenser 19 collects water generated in the fuel cell 1. The gas discharged to the condenser 19 together with the water is returned to the fuel cell 1 via the compressor 9.
[0017]
Here, the configuration of the characteristic portion of the present embodiment will be described together with the operation. In the fuel cell system of the present embodiment, a data diagram (c) showing the relationship between the valve opening of the flow control valve 5 and the inverter frequency is stored in the control unit 17 in advance. FIG. 2A is data showing the relationship between the valve opening degree of the flow control valve 5 and the hydrogen supply amount obtained in advance by measurement or the like. FIG. 2B is data showing the relationship between the inverter frequency and the air supply amount. Here, since the amount of air to be supplied is determined with respect to the amount of supplied hydrogen, the valve shown in FIG. 2C is determined based on the relationship between the amount of air supplied and the amount of hydrogen supplied in FIGS. 2A and 2B. The correspondence between the opening and the inverter frequency is derived.
[0018]
The control unit 17 obtains the supply amount of hydrogen according to a predetermined relationship according to the load request, and controls the opening of the flow control valve 5 according to the relationship shown in FIG. Next, the control unit 17 gives a command of the inverter frequency corresponding to the opening degree of the flow control valve 5 to the inverter 15 based on FIG. Thus, the rotation speed of the motor 13 is controlled via the inverter 15, and the amount of air supplied from the compressor 9 to the fuel cell 1 is controlled to a value corresponding to the amount of hydrogen supplied.
[0019]
As described above, according to the present embodiment, the followability of the oxygen supply amount control to the hydrogen supply amount is improved by controlling the air supply amount by associating the opening degree of the flow control valve 5 with the inverter frequency. can do. Therefore, even when the load fluctuation range of the vehicle is large, the supply amounts of hydrogen and air are rapidly increased or decreased in response to a load request input from an operation device such as an accelerator pedal, so that the operation amount of the operation device and the actual addition amount are controlled. It is possible to reduce a sense of discomfort that occurs during deceleration.
[0020]
Further, since it is possible to suppress a delay in controlling the air with respect to the amount of hydrogen, it is possible to reduce an increase in unreacted hydrogen discharged from the fuel cell 1 and an insufficient output of the fuel cell 1. Similarly, an increase in the supply amount of air, an increase in power for compressing air unnecessary for the reaction can be suppressed, and the efficiency of the fuel cell system can be improved.
[0021]
In addition, it is known that the energy of compressed air discharged from a fuel cell using an expander is recovered and used for compressing air, thereby reducing compression power and improving the efficiency of the fuel cell system. However, according to the present embodiment, the supply of excess air can be suppressed, so that the efficiency of the fuel cell system can be improved.
[0022]
Further, the relationship between the valve opening degree of the flow control valve 5 and the inverter frequency controls the amount of air supplied to the fuel cell 1 based on FIG. 2 (c). Alternatively, it may be stored in the control unit 17 as a data table. Further, the opening degree of the flow control valve 5 is detected, a hydrogen supply amount is obtained from the detected opening degree based on the relationship of FIG. 2 (a), and a necessary air amount for this is calculated. The inverter frequency may be obtained based on the relationship.
[0023]
(Second embodiment)
A second embodiment of a vehicle fuel cell system to which the present invention is applied will be described with reference to FIG. FIG. 3 is a block diagram illustrating a configuration of a main part of the present embodiment. Note that, in the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
[0024]
This embodiment is different from the first embodiment in that a flow sensor 25 is provided between the flow control valve 5 and the fuel cell 1. As the flow sensor 25, an instantaneous flow meter such as a float type or an impeller type having no time delay is preferable.
[0025]
The flow rate sensor 25 outputs the detected flow rate of hydrogen to the control unit 27. The control unit 27 provides a control signal to the inverter 15 based on the detected hydrogen amount. Thus, the rotation speed of the motor 13 is controlled via the inverter 15 and the amount of air supplied from the compressor 9 to the fuel cell 1 is controlled. For this reason, even if the relationship between the valve opening and the hydrogen supply amount changes due to aging or disturbance, an appropriate amount of air can be supplied to the hydrogen supplied to the fuel cell 1 and the accuracy can be improved. High control can be performed.
[0026]
Further, in the present embodiment, since the supply amount of air is controlled based on the hydrogen amount detected by the flow rate sensor 25, it is not necessary to previously measure the relationship between the valve opening degree and the hydrogen supply amount by measurement or the like. Become.
[0027]
In the present embodiment, when controlling the air supply amount, data indicating the relationship between the flow rate of hydrogen and the inverter frequency is stored in the control unit in advance, and the air supply amount is controlled based on this data. . Alternatively, a relational expression for obtaining the number of rotations of the compressor corresponding to the flow rate of hydrogen, a data table, or the like may be stored in the control unit in advance, and the air supply amount may be controlled based on these. .
[0028]
(Third embodiment)
A third embodiment of a fuel cell system for a vehicle to which the present invention is applied will be described with reference to FIGS. FIG. 4 is a block diagram illustrating a configuration of a main part of the present embodiment. FIG. 5 is a diagram for explaining the concept of correction according to the present embodiment. Note that, in the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
[0029]
The present embodiment is different from the first embodiment in that a thermometer 29 for measuring the temperature of the air sucked into the compressor 9 is provided, and a control value of an inverter frequency command value is controlled by a control unit 30 based on the detected temperature. It is to correct. The control unit 30 stores data for correction based on temperature in advance. The present embodiment has been made in view of the fact that the mass flow rate changes with temperature even when the volume flow rate of air is the same. For example, when the temperature is low, the volume of air containing the same mass, that is, the same number of oxygen molecules, is reduced as compared with the case where the temperature is high. It is necessary to reduce the amount of intake air compared to when it is high. Specifically, when the temperature is low, the operating frequency of the compressor 9 is reduced by lowering the inverter frequency.
[0030]
Data as shown in FIG. 5 is stored in the control unit 30 of the present embodiment. The horizontal axis in FIG. 5 indicates the inverter frequency, and the vertical axis indicates the air (oxygen) supply mass. As shown in the figure, for example, lines 31, 32, and 33 are set using the temperature as a parameter, and the relationship between the inverter frequency and the air (oxygen) supply mass when the temperature is low, normal, and when the temperature is high is stored. .
[0031]
As described above, by detecting the air temperature with the thermometer 29 and correcting the supplied air amount based on the detected value, even when the air temperature changes, the hydrogen supplied to the fuel cell 1 can be reduced. An appropriate amount of air can be supplied, and a decrease in efficiency due to loss of compression power and an increase in discharge of unreacted hydrogen can be suppressed.
[0032]
Further, in the present embodiment, instead of the data of FIG. 5, a relational expression or a data table for making the relationship between the inverter frequency and the air (oxygen) supply mass correspond to the temperature is stored in the control unit 30 in advance. The supply amount of air may be corrected based on these.
[0033]
Further, in the first to third embodiments, the air supply source includes the compressor 9 for compressing the air and the motor 13 for driving the compressor 9, but the present invention relates to the first embodiment. Not only the air supply source of the third embodiment but also a known air supply source or oxygen supply source can be applied. The point is that any amount of oxygen that reacts with the hydrogen supplied to the fuel cell without excess or shortage can be supplied.
[0034]
Further, the compressor is defined as “a machine having a pressure ratio of 2 or more or a discharge pressure of about 0.1 MPa or more” in JIS B0132 “Blower / Compressor Terminology”. Describes the compressor as including the range of the blower lower than this pressure.
[0035]
Although the fuel cell systems of the first to third embodiments use the hydrogen tank 3 as a hydrogen supply source, the fuel cell system of the present invention uses a known hydrogen supply source such as a hydrogen cylinder or a reformer. Can be applied.
[0036]
Further, the fuel cell system of the present invention can be provided with at least one of a pressure gauge for detecting the pressure of hydrogen supplied to the fuel cell and a thermometer for detecting the temperature. In this case, the control unit stores a data table and a relational expression for correction based on pressure and temperature. Further, a pressure control valve may be provided in the hydrogen supply source instead of the pressure gauge. In this case, the set pressure of the pressure control valve can be used. This makes it possible to correct the amount of air to be supplied based on the output from the pressure gauge or the thermometer, or the set pressure of the pressure control valve, so that the hydrogen is supplied to the fuel cell even when the pressure or temperature changes. An appropriate amount of oxygen can be supplied with respect to the amount of hydrogen.
[0037]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the followability of the supply control of oxygen with respect to the supply of hydrogen in a fuel cell system can be improved.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a main part of a first embodiment of a vehicle fuel cell system to which the present invention is applied.
FIG. 2 is a diagram for explaining the operation of the first embodiment of the vehicle fuel cell system to which the present invention is applied.
FIG. 3 is a block diagram showing a configuration of a main part of a second embodiment of a vehicle fuel cell system to which the present invention is applied.
FIG. 4 is a block diagram showing a configuration of a main part of a third embodiment of a vehicle fuel cell system to which the present invention is applied.
FIG. 5 is a diagram for explaining a concept of correction in a third embodiment of a vehicle fuel cell system to which the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fuel cell 3 Hydrogen tank 5 Flow control valve 9 Compressor 11 Cooler 13 Motor 15 Inverter 17, 27, 30 Control part 19 Condenser 25 Flow sensor 29 Thermometer

Claims (4)

水素と酸素とを反応させて電気エネルギを発生する燃料電池と、
該燃料電池に水素を供給する水素供給源と、
前記燃料電池に供給される水素の流量を制御する流量制御弁と、
前記燃料電池に酸素を供給する酸素供給源と、
負荷要求に応じて前記流量制御弁の開度を制御し、該流量制御弁の開度に相関させて酸素の流量を制御する制御手段とを有してなる車両用の燃料電池システム。
A fuel cell that generates electrical energy by reacting hydrogen and oxygen;
A hydrogen supply source for supplying hydrogen to the fuel cell;
A flow control valve for controlling the flow rate of hydrogen supplied to the fuel cell,
An oxygen supply source for supplying oxygen to the fuel cell;
A fuel cell system for a vehicle, comprising: control means for controlling an opening degree of the flow control valve in accordance with a load request, and controlling an oxygen flow rate in correlation with the opening degree of the flow control valve.
前記流量制御弁と前記燃料電池との間に流量計を設け、
前記制御手段は、前記流量計により検出された水素の流量に基づいて酸素の流量を制御することを特徴とする請求項1に記載の車両用の燃料電池システム。
Providing a flow meter between the flow control valve and the fuel cell,
The fuel cell system for a vehicle according to claim 1, wherein the control unit controls the flow rate of oxygen based on the flow rate of hydrogen detected by the flow meter.
前記燃料電池に供給される酸素の密度を検出する密度検出手段を備え、
前記制御手段は、前記密度検出手段により検出された密度に基づいて酸素の流量を補正することを特徴とする請求項1または2に記載の車両用の燃料電池システム。
A density detection unit for detecting a density of oxygen supplied to the fuel cell,
The vehicle fuel cell system according to claim 1, wherein the control unit corrects the flow rate of oxygen based on the density detected by the density detection unit.
前記酸素供給源は空気供給源であり、該空気供給源は空気を圧縮する圧縮機と、該圧縮機を駆動するモータとを含んで構成され、
前記制御手段は、前記モータの回転数を制御することにより、前記燃料電池に供給する酸素の流量を制御することを特徴とする請求項1ないし3のいずれか1項に記載の車両用の燃料電池システム。
The oxygen supply source is an air supply source, the air supply source is configured to include a compressor that compresses air, and a motor that drives the compressor,
The vehicle fuel according to any one of claims 1 to 3, wherein the control unit controls a flow rate of oxygen supplied to the fuel cell by controlling a rotation speed of the motor. Battery system.
JP2002226134A 2002-08-02 2002-08-02 Fuel cell system for vehicles Expired - Fee Related JP3940839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002226134A JP3940839B2 (en) 2002-08-02 2002-08-02 Fuel cell system for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002226134A JP3940839B2 (en) 2002-08-02 2002-08-02 Fuel cell system for vehicles

Publications (2)

Publication Number Publication Date
JP2004071228A true JP2004071228A (en) 2004-03-04
JP3940839B2 JP3940839B2 (en) 2007-07-04

Family

ID=32013575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226134A Expired - Fee Related JP3940839B2 (en) 2002-08-02 2002-08-02 Fuel cell system for vehicles

Country Status (1)

Country Link
JP (1) JP3940839B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251694A (en) * 2004-03-08 2005-09-15 Nissan Motor Co Ltd Fuel cell system
JP2006202683A (en) * 2005-01-24 2006-08-03 Nissan Motor Co Ltd Fuel cell system control device and fuel cell system control method
KR100623768B1 (en) 2004-06-15 2006-09-19 현대자동차주식회사 Fuel cell system
JP2006324018A (en) * 2005-05-17 2006-11-30 Daihatsu Motor Co Ltd Control unit and method of fuel cell vehicle
JP2007165163A (en) * 2005-12-15 2007-06-28 Toyota Motor Corp Fuel cell system and movable body
FR2900502A1 (en) * 2006-04-28 2007-11-02 Renault Sas Air flow controlling device for fuel cell of motor vehicle, has control unit including observer for reconstructing states of compressor assembly, that is associated to flowmeter, from rotational speed setpoint and from measured air flow
KR100837958B1 (en) 2006-12-11 2008-06-16 현대자동차주식회사 Hydrogen emission control method and control system thereof
JP2011211770A (en) * 2010-03-29 2011-10-20 Toyota Motor Corp Fuel cell vehicle and method for controlling the same
JP2013137977A (en) * 2011-12-28 2013-07-11 Ikutoku Gakuen Fuel cell power generation system and control method thereof
KR101417345B1 (en) 2012-09-19 2014-07-08 기아자동차주식회사 Control method for fuel cell system
US20160141681A1 (en) * 2014-11-14 2016-05-19 Toyota Jidosha Kabushiki Kaisha Fuel Cell System, Fuel Cell Vehicle, and Method for Controlling Fuel Cell System
CN112644343A (en) * 2021-01-12 2021-04-13 广西玉柴机器股份有限公司 Air compressor rotating speed correction method of fuel cell system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128673A (en) * 1982-01-27 1983-08-01 Hitachi Ltd Control of fuel cell power generating plant
JPS59111271A (en) * 1982-12-15 1984-06-27 Toshiba Corp Control device for fuel-cell power generating system
JPS6151772A (en) * 1984-08-18 1986-03-14 Mitsubishi Electric Corp Flow rate controller of fuel cell system
JP2000208161A (en) * 1999-01-14 2000-07-28 Nissan Motor Co Ltd Operating method of and operating device for fuel cell
JP2001143735A (en) * 1999-11-12 2001-05-25 Isuzu Motors Ltd Fuel cell system for vehicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128673A (en) * 1982-01-27 1983-08-01 Hitachi Ltd Control of fuel cell power generating plant
JPS59111271A (en) * 1982-12-15 1984-06-27 Toshiba Corp Control device for fuel-cell power generating system
JPS6151772A (en) * 1984-08-18 1986-03-14 Mitsubishi Electric Corp Flow rate controller of fuel cell system
JP2000208161A (en) * 1999-01-14 2000-07-28 Nissan Motor Co Ltd Operating method of and operating device for fuel cell
JP2001143735A (en) * 1999-11-12 2001-05-25 Isuzu Motors Ltd Fuel cell system for vehicles

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251694A (en) * 2004-03-08 2005-09-15 Nissan Motor Co Ltd Fuel cell system
KR100623768B1 (en) 2004-06-15 2006-09-19 현대자동차주식회사 Fuel cell system
JP2006202683A (en) * 2005-01-24 2006-08-03 Nissan Motor Co Ltd Fuel cell system control device and fuel cell system control method
JP2006324018A (en) * 2005-05-17 2006-11-30 Daihatsu Motor Co Ltd Control unit and method of fuel cell vehicle
JP4744188B2 (en) * 2005-05-17 2011-08-10 ダイハツ工業株式会社 Control device for fuel cell vehicle
JP2007165163A (en) * 2005-12-15 2007-06-28 Toyota Motor Corp Fuel cell system and movable body
FR2900502A1 (en) * 2006-04-28 2007-11-02 Renault Sas Air flow controlling device for fuel cell of motor vehicle, has control unit including observer for reconstructing states of compressor assembly, that is associated to flowmeter, from rotational speed setpoint and from measured air flow
KR100837958B1 (en) 2006-12-11 2008-06-16 현대자동차주식회사 Hydrogen emission control method and control system thereof
JP2011211770A (en) * 2010-03-29 2011-10-20 Toyota Motor Corp Fuel cell vehicle and method for controlling the same
JP2013137977A (en) * 2011-12-28 2013-07-11 Ikutoku Gakuen Fuel cell power generation system and control method thereof
KR101417345B1 (en) 2012-09-19 2014-07-08 기아자동차주식회사 Control method for fuel cell system
US9252442B2 (en) 2012-09-19 2016-02-02 Hyundai Motor Company System and method for controlling fuel cell system
US20160141681A1 (en) * 2014-11-14 2016-05-19 Toyota Jidosha Kabushiki Kaisha Fuel Cell System, Fuel Cell Vehicle, and Method for Controlling Fuel Cell System
CN105609823A (en) * 2014-11-14 2016-05-25 丰田自动车株式会社 Fuel cell system, fuel cell vehicle, and method for controlling fuel cell system
US10115990B2 (en) * 2014-11-14 2018-10-30 Toyota Jidosha Kabushiki Kaisha Fuel cell system, fuel cell vehicle, and method for controlling fuel cell system
CN112644343A (en) * 2021-01-12 2021-04-13 广西玉柴机器股份有限公司 Air compressor rotating speed correction method of fuel cell system
CN112644343B (en) * 2021-01-12 2022-08-30 广西玉柴机器股份有限公司 Air compressor rotating speed correction method of fuel cell system

Also Published As

Publication number Publication date
JP3940839B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
US7282288B2 (en) Fuel cell system and method
JP6299683B2 (en) Fuel cell system
JP2004071228A (en) Fuel cell system for vehicle
US20130089801A1 (en) Fuel cell system and method of controlling fuel cell system
US7968241B2 (en) Fuel cell system and method of controlling gas pressure in fuel cell system
US6497972B1 (en) Fuel cell system and method for controlling operating pressure thereof
WO2008133318A1 (en) Fuel battery system and power supply control method
CN110048144A (en) A kind of fuel cell system and its air supply control method
JP4185671B2 (en) Control device for fuel cell system
US6587766B2 (en) Method for controlling the power of a fuel cell stack, method for controlling the power of a drive unit of an electric vehicle, and fuel cell device
JP5082220B2 (en) Fuel cell system
JP2005253270A (en) Control device for fuel cell vehicle
JP3928526B2 (en) Fuel cell system
JP4951862B2 (en) Fuel cell system
JP2003217624A (en) Fuel cell power plant
JP2005302648A (en) Method of estimating hydrogen concentration, and fuel cell system
JP4876368B2 (en) Operation control of fuel cell system
US20050118467A1 (en) Fuel cell system and control method for fuel cell
JP2006196192A (en) Fuel cell system
JP4981538B2 (en) Pressure sensor calibration device and fuel cell system
JP5210495B2 (en) Fuel cell system
JP2006310046A (en) Hydrogen circulation amount control device and hydrogen circulation amount control method for fuel cell
US10186721B2 (en) Fuel cell system
JP3943007B2 (en) Oxidant pressure control method for fuel cell system
JP4701664B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees