JP5099277B1 - Activated carbon powder, method for producing the same, and electric double layer capacitor - Google Patents

Activated carbon powder, method for producing the same, and electric double layer capacitor Download PDF

Info

Publication number
JP5099277B1
JP5099277B1 JP2012521889A JP2012521889A JP5099277B1 JP 5099277 B1 JP5099277 B1 JP 5099277B1 JP 2012521889 A JP2012521889 A JP 2012521889A JP 2012521889 A JP2012521889 A JP 2012521889A JP 5099277 B1 JP5099277 B1 JP 5099277B1
Authority
JP
Japan
Prior art keywords
activated carbon
carbon powder
cellulose acetate
acetic acid
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012521889A
Other languages
Japanese (ja)
Other versions
JPWO2012074054A1 (en
Inventor
隆秀 中村
昌孝 永田
真一 遠藤
芳夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai Co Ltd
Original Assignee
Nankai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai Co Ltd filed Critical Nankai Co Ltd
Priority to JP2012521889A priority Critical patent/JP5099277B1/en
Application granted granted Critical
Publication of JP5099277B1 publication Critical patent/JP5099277B1/en
Publication of JPWO2012074054A1 publication Critical patent/JPWO2012074054A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

BET比表面積が1600〜3000m2/gの範囲にあって、平均細孔直径が2.0〜4.0nmの範囲にあり、かつ細孔の全容積が1.0〜3.0cm3/gの範囲にある活性炭粉末は、特に電気二重層キャパシタの電極活物質として有利に用いることができる。
【選択図】なし
The BET specific surface area is in the range of 1600 to 3000 m 2 / g, the average pore diameter is in the range of 2.0 to 4.0 nm, and the total volume of the pores is 1.0 to 3.0 cm 3 / g. In particular, the activated carbon powder in the range can be advantageously used as an electrode active material of an electric double layer capacitor.
[Selection figure] None

Description

本発明は、活性炭粉末とその製造方法に関する。本発明はまた、その活性炭粉末を電極活物質に用いた電気二重層キャパシタにも関する。   The present invention relates to activated carbon powder and a method for producing the same. The present invention also relates to an electric double layer capacitor using the activated carbon powder as an electrode active material.

活性炭は、各種の工業分野にわたって広く使用されており、空気浄化、放射性物質吸着、ヨウ素トラップ、メタン吸蔵、水素吸蔵、浄水製造、溶剤回収、脱色、水処理、ガスマスクでの用途などの目的で利用されている。また、近年では、キャパシタ(電気二重層キャパシタ、リチウムイオンキャパシタ)の電極活物質としても用いられていて、その高機能化が要望されている。   Activated carbon is widely used in various industrial fields for purposes such as air purification, radioactive material adsorption, iodine trap, methane occlusion, hydrogen occlusion, purified water production, solvent recovery, decolorization, water treatment, and gas mask applications. It's being used. In recent years, it is also used as an electrode active material for capacitors (electric double layer capacitors, lithium ion capacitors), and there is a demand for higher functionality.

電気二重層キャパシタは、電極と電解液との間の界面に形成される電気二重層を利用したエネルギー貯蔵デバイスである。この電気二重層キャパシタで用いる電極活物質としての活性炭は比表面積が大きい方が、電解液との間の界面が広くなり、静電容量が大きくなるので好ましい。従って、電気二重層キャパシタの電極活物質には、比表面積が大きい活性炭が利用されている。活性炭は、通常、繊維状の活性炭粒子からなる活性炭繊維と非繊維状(粒状)の活性炭粒子からなる活性炭粉末とに大別される。   An electric double layer capacitor is an energy storage device using an electric double layer formed at an interface between an electrode and an electrolyte. The activated carbon as the electrode active material used in this electric double layer capacitor is preferably larger in specific surface area because the interface with the electrolytic solution becomes wider and the capacitance increases. Therefore, activated carbon having a large specific surface area is used as the electrode active material of the electric double layer capacitor. The activated carbon is generally roughly classified into activated carbon fibers made of fibrous activated carbon particles and activated carbon powder made of non-fibrous (granular) activated carbon particles.

非特許文献1には、電気二重層キャパシタ用の活性炭について、低温と室温で、同じ電気二重層容量を形成させるには2nm以上の細孔が必要であると記載されている(p.80)。また、非特許文献1のp.79の表7には、比表面積が〜2500m2/g、平均細孔径が20〜40Å(2〜4nm)、累積細孔容積が0.5〜1.5cc/gのフェノール系の活性炭繊維が記載されている。但し、この非特許文献1に記載されているフェノール系活性炭繊維は、特殊なフェノール樹脂繊維(ノボロイド繊維)を炭化賦活して得られた活性炭繊維である(p.73−75)。この非特許文献1にはフェノール系以外の活性炭繊維として、レーヨン(セルロース)繊維を原料とするレーヨン系とポリアクリロニトリル繊維を原料とするアクリル系の活性炭繊維も記載されているが、レーヨン系の活性炭繊維では、比表面積が1000〜1500m2/gと小さく、平均細孔径も14Å(1.4nm)と小さい。また、アクリル系の活性炭繊維でも、比表面積が700〜1200m2/gと小さく、平均細孔径も10Å(1.0nm)と小さく、さらに累積細孔容積は〜1.1cc/gとされている。Non-Patent Document 1 describes that activated carbon for an electric double layer capacitor requires pores of 2 nm or more to form the same electric double layer capacitance at low temperature and room temperature (p.80). . Also, p. Table 7 of 79 shows phenol-based activated carbon fibers having a specific surface area of ˜2,500 m 2 / g, an average pore diameter of 20 to 40 mm (2 to 4 nm), and a cumulative pore volume of 0.5 to 1.5 cc / g. Have been described. However, the phenol-based activated carbon fiber described in Non-Patent Document 1 is an activated carbon fiber obtained by carbonizing and activating a special phenol resin fiber (novoloid fiber) (p.73-75). This non-patent document 1 also describes rayon-based activated carbon fibers using rayon (cellulose) fibers as raw materials and acrylic-based activated carbon fibers using polyacrylonitrile fibers as raw materials other than phenol-based activated carbon fibers. In the fiber, the specific surface area is as small as 1000 to 1500 m 2 / g, and the average pore diameter is as small as 14 mm (1.4 nm). Further, even in the case of acrylic activated carbon fibers, the specific surface area is as small as 700 to 1200 m 2 / g, the average pore diameter is as small as 10 mm (1.0 nm), and the cumulative pore volume is set to be about 1.1 cc / g. .

特許文献1には、電気二重層キャパシタ用の活性炭粉末として、リン原子含有量が1000〜20000ppmで、BET比表面積が1600〜2200m2/g、平均細孔径が1.7〜2.1nmの範囲にあって、細孔直径が1.4〜2.0nmの間の細孔容積が0.25cm3/g以上のリン化合物複合活性炭粉末が記載されている。但し、細孔容積の上限は、好ましくは0.5cm3/g以下と記載されている([0032])。また、この特許文献1には、上記の活性炭粉末の製造方法として、活性炭原料とリン酸とを130〜170℃で混練した後成型し、これを100〜230℃で加熱する第1加熱工程と、400〜600℃で加熱する第2加熱工程とを経た後、不活性ガス雰囲気下800℃以上で焼成して活性炭とリン化合物とを複合化する方法が記載されている。活性炭原料の例としては、堅木、軟木及びそれらの屑、トウモロコシの穂、コーヒー豆、米のもみ、果実の種、果実の殻などの植物や糖蜜やリグニンなどの残骸や石炭、タール、ピッチ、アスファルト、石油残留物が挙げられている。In Patent Document 1, as an activated carbon powder for an electric double layer capacitor, a phosphorus atom content is 1000 to 20000 ppm, a BET specific surface area is 1600 to 2200 m 2 / g, and an average pore diameter is 1.7 to 2.1 nm. Then, a phosphorus compound composite activated carbon powder having a pore diameter of 1.4 to 2.0 nm and a pore volume of 0.25 cm 3 / g or more is described. However, the upper limit of the pore volume is preferably described as 0.5 cm 3 / g or less ([0032]). Moreover, in this patent document 1, as a manufacturing method of said activated carbon powder, the activated carbon raw material and phosphoric acid are knead | mixed at 130-170 degreeC, it shape | molds after that, and this is heated at 100-230 degreeC, And a second heating step of heating at 400 to 600 ° C., followed by baking at 800 ° C. or higher in an inert gas atmosphere to combine activated carbon and a phosphorus compound. Examples of activated carbon raw materials include hardwoods, softwoods and their waste, corn ears, coffee beans, rice fir, fruit seeds, fruit shells and other debris such as molasses and lignin, coal, tar, pitch , Asphalt and petroleum residues.

一方、特許文献2には、活性炭粉末の製造方法として、酢酸セルロース(セルロースアシレート)を炭化して炭化物を生成し、得られた炭化物を賦活する方法が記載されているが、得られた活性炭粉末について、その比表面積、平均細孔直径及び細孔容積の記載はない。但し、特許文献2の実施例で得られている活性炭粉末は、ヨウ素吸着量が1144mg/g程度であり、比表面積はあまり高くないと推察される。   On the other hand, Patent Document 2 describes a method for producing activated carbon powder by carbonizing cellulose acetate (cellulose acylate) to produce a carbide, and activating the obtained carbide. There is no description of the specific surface area, average pore diameter and pore volume of the powder. However, the activated carbon powder obtained in the example of Patent Document 2 has an iodine adsorption amount of about 1144 mg / g, and it is presumed that the specific surface area is not so high.

特開2008−21966号公報JP 2008-21966 A 特開2008−201664号公報JP 2008-201664 A

西野敦、直井勝彦,「電気化学キャパシタの開発と応用」,CMCテクニカルライブラリー173,シーエムシー出版,2004年6月26日発行、p.73−80Satoshi Nishino and Katsuhiko Naoi, “Development and Application of Electrochemical Capacitors”, CMC Technical Library 173, CMC Publishing, published on June 26, 2004, p. 73-80

非特許文献1に記載されているフェノール系活性炭繊維は、比表面積、平均細孔径及び細孔容積のいずれも大きく、電気二重層キャパシタ用の電極活物質として有用な材料の一つであると考えられる。しかしながら、非特許文献1に記載されているフェノール系活性炭繊維は、特殊なフェノール樹脂繊維であるノボロイド繊維を原料として使用するため、汎用性が低く、生産コストに問題がある。また、繊維状の活性炭粒子は非繊維状の活性炭粒子と比較して、電極に成形する際に粒子間に隙間ができ易いため、活性炭繊維は活性炭粉末と比較して充填密度が低くなり易い。一方、特許文献1に記載されている活性炭粉末については、比表面積、平均細孔直径及び細孔容積の各特性が上記非特許文献1に記載されているフェノール系活性炭繊維より劣る。   The phenol-based activated carbon fiber described in Non-Patent Document 1 has a large specific surface area, average pore diameter, and pore volume, and is considered to be one of useful materials as an electrode active material for electric double layer capacitors. It is done. However, the phenol-based activated carbon fiber described in Non-Patent Document 1 uses a novoloid fiber, which is a special phenol resin fiber, as a raw material, and therefore has low versatility and a problem in production cost. Further, since the fibrous activated carbon particles are more likely to have gaps between the particles when formed into the electrodes than the non-fibrous activated carbon particles, the activated carbon fibers are likely to have a lower packing density than the activated carbon powder. On the other hand, the activated carbon powder described in Patent Document 1 is inferior to the phenol-based activated carbon fiber described in Non-Patent Document 1 in terms of specific surface area, average pore diameter, and pore volume.

従って、本発明の目的は、比表面積、平均細孔直径及び細孔容積の各特性が従来のフェノール系活性炭繊維と同等もしくはそれより優れ、電気二重層キャパシタの電極活物質として有利に用いることができる活性炭粉末及びその製造方法を提供することにある。本発明の目的はまた、電気容量の大きい電気二重層キャパシタを提供することにもある。   Therefore, the object of the present invention is that the specific surface area, average pore diameter, and pore volume characteristics are equal to or better than those of conventional phenol-based activated carbon fibers, and can be advantageously used as an electrode active material for electric double layer capacitors. An object of the present invention is to provide an activated carbon powder and a method for producing the same. Another object of the present invention is to provide an electric double layer capacitor having a large electric capacity.

本発明者は、酢酸セルロースを加熱して炭化させる炭化工程、炭化工程で得られた炭化物を、炭化工程で酢酸セルロースを炭化させるときの温度よりも50℃以上高い温度で加熱して炭化物に残留する酢酸成分を揮発させて除去する酢酸除去工程、そして酢酸除去工程で酢酸が除去された炭化物を賦活処理する賦活工程を含む方法を用いることによって、BET比表面積が1600〜3000m2/gの範囲にあって、平均細孔直径が2.0〜4.0nmの範囲にあり、かつ細孔の全容積が1.0〜3.0cm3/gの範囲にある活性炭粉末を得ることができることを見出した。そして、その活性炭粉末は電気二重層キャパシタの電極活物質として用いた場合に高い静電容量を示すことを確認して、本発明を完成させた。The present inventor heated the cellulose acetate to carbonize, and the carbonized product obtained in the carbonization step is heated at a temperature higher by 50 ° C. than the temperature at which the cellulose acetate is carbonized in the carbonization step to remain in the carbide. The BET specific surface area is in the range of 1600 to 3000 m 2 / g by using an acetic acid removing step for volatilizing and removing the acetic acid component to be removed, and an activation step for activating the carbide from which acetic acid has been removed in the acetic acid removing step. Then, it is possible to obtain an activated carbon powder having an average pore diameter in the range of 2.0 to 4.0 nm and a total volume of the pores in the range of 1.0 to 3.0 cm 3 / g. I found it. The activated carbon powder was confirmed to show a high capacitance when used as an electrode active material of an electric double layer capacitor, and the present invention was completed.

従って、本発明は、BET比表面積が1600〜3000m2/gの範囲にあって、平均細孔直径が2.0〜4.0nmの範囲にあり、かつ細孔の全容積が1.0〜3.0cm3/gの範囲にある活性炭粉末にある。Therefore, the present invention has a BET specific surface area in the range of 1600 to 3000 m 2 / g, an average pore diameter in the range of 2.0 to 4.0 nm, and a total pore volume of 1.0 to The activated carbon powder is in the range of 3.0 cm 3 / g.

上記本発明の活性炭粉末の好ましい態様は、次の通りである。
(1)BET比表面積が2100〜3000m2/gの範囲、特に2600〜3000m2/gの範囲にある。
(2)平均細孔直径が2.2〜2.8nmの範囲にある。
(3)細孔の全容積が1.1〜2.5cm3/gの範囲にある。
(4)平均アスペクト比が5以下、さらに好ましくは3以下、特に好ましくは2以下である。
(5)平均粒子径が1〜30μmの範囲にある。
(6)電気二重層キャパシタ用である。
Preferred embodiments of the activated carbon powder of the present invention are as follows.
(1) BET specific surface area in the range of 2100~3000m 2 / g, especially in the range of 2600~3000m 2 / g.
(2) The average pore diameter is in the range of 2.2 to 2.8 nm.
(3) The total volume of the pores is in the range of 1.1 to 2.5 cm 3 / g.
(4) The average aspect ratio is 5 or less, more preferably 3 or less, and particularly preferably 2 or less.
(5) The average particle diameter is in the range of 1 to 30 μm.
(6) For electric double layer capacitors.

本発明はまた、正極と負極と電解液とからなる電気二重層キャパシタであって、正極及び負極のうちの少なくとも一方が上記本発明の活性炭粉末を含む電気二重層キャパシタにもある。   The present invention is also an electric double layer capacitor comprising a positive electrode, a negative electrode, and an electrolytic solution, wherein at least one of the positive electrode and the negative electrode includes the activated carbon powder of the present invention.

本発明はさらに、酢酸セルロースを加熱して炭化させる炭化工程、炭化工程で得られた炭化物を、炭化工程で酢酸セルロースを炭化させたときの温度よりも50℃以上高い温度で加熱して炭化物に残留する酢酸成分を揮発させて除去する酢酸除去工程、そして酢酸除去工程で酢酸が除去された炭化物を賦活処理する賦活工程を含む上記本発明の活性炭粉末の製造方法にもある。   The present invention further includes a carbonization step in which cellulose acetate is heated to carbonize, and the carbide obtained in the carbonization step is heated to a temperature higher by 50 ° C. than the temperature at which cellulose acetate is carbonized in the carbonization step. The method for producing the activated carbon powder of the present invention also includes an acetic acid removing step for volatilizing and removing the remaining acetic acid component, and an activation step for activating the carbide from which acetic acid has been removed in the acetic acid removing step.

上記本発明の活性炭粉末の製造方法の好ましい態様は、次の通りである。
(1)炭化工程において、酢酸セルロースをリン化合物の存在下で加熱して炭化させる。
(2)酢酸セルロースが、リン化合物を含む酢酸セルロースである。
(3)酢酸セルロースが、リン化合物をリン量として0.1〜5.0質量%の範囲にて含む。
(4)酢酸セルロースが、リン化合物を実質的に含まない酢酸セルロースと、リン化合物を含む酢酸セルロースとの混合物である。
(5)酢酸セルロースとリン化合物との混合物を加熱して酢酸セルロースを炭化させる。
(6)炭化工程において、酢酸セルロースを不活性ガス雰囲気下にて250〜350℃の温度で加熱して炭化させる。
(7)酢酸除去工程において、炭化物を不活性ガス雰囲気下にて380〜700℃の温度で加熱する。
(8)賦活工程において、炭化物を、二酸化炭素ガス、水蒸気、酸素ガス、塩化水素ガス、アンモニアガス及び空気からなる群より選ばれる気体雰囲気下にて800〜1100℃の温度で加熱する。
The preferable aspect of the manufacturing method of the activated carbon powder of the said invention is as follows.
(1) In the carbonization step, cellulose acetate is heated and carbonized in the presence of a phosphorus compound.
(2) The cellulose acetate is cellulose acetate containing a phosphorus compound.
(3) Cellulose acetate contains a phosphorus compound in the range of 0.1 to 5.0% by mass as the amount of phosphorus.
(4) The cellulose acetate is a mixture of cellulose acetate substantially free of a phosphorus compound and cellulose acetate containing a phosphorus compound.
(5) A mixture of cellulose acetate and a phosphorus compound is heated to carbonize the cellulose acetate.
(6) In the carbonization step, cellulose acetate is heated and carbonized in an inert gas atmosphere at a temperature of 250 to 350 ° C.
(7) In the acetic acid removal step, the carbide is heated at a temperature of 380 to 700 ° C. in an inert gas atmosphere.
(8) In the activation step, the carbide is heated at a temperature of 800 to 1100 ° C. in a gas atmosphere selected from the group consisting of carbon dioxide gas, water vapor, oxygen gas, hydrogen chloride gas, ammonia gas, and air.

本発明の活性炭粉末は、電気二重層キャパシタの電解液との接触下において高い静電容量を示す。また、本発明の活性炭粉末は非繊維状であって、活性炭繊維と比較して、粒子形状や粒子サイズが均一であることから充填密度を高くすることができる。従って、本発明の活性炭粉末を電極活物質として用いた電気二重層キャパシタは高い電気容量を示す。また、電気二重層キャパシタ用の電極活物質は低コスト化が要望されており、この点からも酢酸セルロースを原料として製造することができる本発明の活性炭粉末は、活性炭繊維と比べて有利である。本発明の活性炭粉末は、大きなBET比表面積を有することから、気相吸着用、気体貯蔵用、浄水用もしくは脱色用の活性炭粉末としても有利に使用することができる。
また、本発明の製造方法を利用することによって、通常は廃棄される酢酸セルロースを原料に用いて、高性能の活性炭粉末を工業的に有利に製造することができるとの利点がある。
The activated carbon powder of the present invention exhibits a high capacitance under contact with the electrolytic solution of the electric double layer capacitor. Moreover, the activated carbon powder of the present invention is non-fibrous and has a uniform particle shape and particle size compared to the activated carbon fiber, so that the packing density can be increased. Therefore, the electric double layer capacitor using the activated carbon powder of the present invention as an electrode active material exhibits a high electric capacity. In addition, the electrode active material for electric double layer capacitors is required to be reduced in cost, and from this point, the activated carbon powder of the present invention that can be produced using cellulose acetate as a raw material is more advantageous than activated carbon fibers. . Since the activated carbon powder of the present invention has a large BET specific surface area, it can be advantageously used as an activated carbon powder for gas phase adsorption, gas storage, water purification, or decolorization.
Further, by using the production method of the present invention, there is an advantage that high-performance activated carbon powder can be advantageously produced industrially using cellulose acetate which is usually discarded as a raw material.

本発明に従う、コイン型電気二重層キャパシタの一例の断面図である。It is sectional drawing of an example of a coin-type electric double layer capacitor according to this invention. 実施例3〜5の活性炭粉末の製造に使用したローラハースキルン内の温度分布を示すグラフである。It is a graph which shows the temperature distribution in the roller hearth kiln used for manufacture of the activated carbon powder of Examples 3-5.

本発明の活性炭粉末は微小の活性炭粒子からなる。活性炭粒子は非繊維状であって、平均アスペクト比(活性炭粒子の長径と短径との比:長径/短径)が、一般に5以下、好ましくは3以下、特に好ましくは2以下である。   The activated carbon powder of the present invention consists of fine activated carbon particles. The activated carbon particles are non-fibrous, and the average aspect ratio (ratio between the major axis and the minor axis of the activated carbon particles: major axis / minor axis) is generally 5 or less, preferably 3 or less, particularly preferably 2 or less.

本発明の活性炭粉末は、BET比表面積が1600〜3000m2/gの範囲、好ましくは、2100〜3000m2/gの範囲、より好ましくは、2300〜3000m2/gの範囲、特に好ましくは、2600〜3000m2/gの範囲にある。活性炭粉末を電気二重層キャパシタの電極活物質に使用した場合、活性炭粉末と電解液との間の界面に電気二重層が形成されるため、活性炭粉末のBET比表面積が大きい方が静電容量が高くなる。従って、活性炭粉末は大きな比表面積にて電解液と接している方が有利となる。このため、次に述べるように、活性炭粉末の平均細孔直径と細孔容積が重要となる。The activated carbon powder of the present invention has a BET specific surface area in the range of 1600 to 3000 m 2 / g, preferably in the range of 2100 to 3000 m 2 / g, more preferably in the range of 2300 to 3000 m 2 / g, particularly preferably 2600. It is in the range of ˜3000 m 2 / g. When activated carbon powder is used as an electrode active material for an electric double layer capacitor, an electric double layer is formed at the interface between the activated carbon powder and the electrolyte. Therefore, the larger the BET specific surface area of the activated carbon powder, the greater the capacitance. Get higher. Therefore, it is advantageous that the activated carbon powder is in contact with the electrolyte solution with a large specific surface area. For this reason, as described below, the average pore diameter and pore volume of the activated carbon powder are important.

本発明の活性炭粉末は、平均細孔直径が2.0〜4.0nmの範囲、好ましくは2.0〜3.5nmの範囲、より好ましくは2.0〜2.8nmの範囲、特に好ましくは2.2〜2.8nmの範囲にある。平均細孔直径は、活性炭粉末を電気二重層キャパシタの電解液との接触下に置いた場合に発生する活性炭粉末の細孔中への電解液の浸入の容易さの指標となる。すなわち、平均細孔直径が大きい方が、電解液の活性炭粉末の細孔中への浸入が容易となる。但し、平均細孔直径が過度に大きくなると、活性炭粉末に形成できる細孔の数が少なくなるため、活性炭粉末のBET比表面積が小さくなり易い。   The activated carbon powder of the present invention has an average pore diameter in the range of 2.0 to 4.0 nm, preferably in the range of 2.0 to 3.5 nm, more preferably in the range of 2.0 to 2.8 nm, particularly preferably. It is in the range of 2.2 to 2.8 nm. The average pore diameter is an indicator of the ease of penetration of the electrolyte into the pores of the activated carbon powder that occurs when the activated carbon powder is placed in contact with the electrolyte of the electric double layer capacitor. That is, the larger the average pore diameter, the easier it is for the electrolyte to enter the pores of the activated carbon powder. However, if the average pore diameter is excessively large, the number of pores that can be formed in the activated carbon powder decreases, and therefore the BET specific surface area of the activated carbon powder tends to decrease.

本発明の活性炭粉末は、細孔の全容積が1.0〜3.0cm3/gの範囲、好ましくは1.1〜2.5cm3/gの範囲にある。細孔全容積もまた、活性炭粉末を電気二重層キャパシタの電解液との接触下に置いた場合に発生する活性炭粉末の細孔中への電解液の浸入の容易さの指標となる。すなわち、細孔全容積が大きい方が、電解液の活性炭粉末の細孔中への浸入量が多くなる。但し、細孔全容積が過度に大きくなると、活性炭粉末の強度が弱くなる。The activated carbon powder of the present invention has a total pore volume in the range of 1.0 to 3.0 cm 3 / g, preferably in the range of 1.1 to 2.5 cm 3 / g. The total pore volume is also an indicator of the ease of entry of the electrolyte into the pores of the activated carbon powder that occurs when the activated carbon powder is placed in contact with the electrolyte of the electric double layer capacitor. That is, the larger the total pore volume, the greater the amount of penetration of the electrolytic solution into the pores of the activated carbon powder. However, when the total pore volume becomes excessively large, the strength of the activated carbon powder becomes weak.

本発明の活性炭粉末は、ヨウ素吸着量が1600〜2300mg/gの範囲にあることが好ましく、2000〜2300mg/gの範囲にあることがより好ましい。このmg/gの単位で表されるヨウ素吸着量の値に対する、m2/gの単位で表されるBET比表面積の比(BET比表面積/ヨウ素吸着量)は1.1〜2.0の範囲にあることが好ましく、1.1〜1.5の範囲にあることがより好ましい。The activated carbon powder of the present invention preferably has an iodine adsorption amount in the range of 1600 to 2300 mg / g, and more preferably in the range of 2000 to 2300 mg / g. The ratio (BET specific surface area / iodine adsorption amount) of BET specific surface area expressed in units of m 2 / g to the iodine adsorption amount value expressed in units of mg / g is 1.1 to 2.0. It is preferably in the range, more preferably in the range of 1.1 to 1.5.

本発明の活性炭粉末は、平均粒子径が1〜30μmの範囲にあることが好ましく、3〜20μmの範囲にあることがより好ましい。   The activated carbon powder of the present invention preferably has an average particle size in the range of 1 to 30 μm, and more preferably in the range of 3 to 20 μm.

本発明の活性炭粉末はリン化合物を含有していてもよい。但し、活性炭粉末に含まれるリン化合物の量はリン量として5.0質量%以下であることが好ましく、0.3〜1質量%の範囲にあることがより好ましく、0.3〜0.7質量%の範囲にあることが特に好ましい。   The activated carbon powder of the present invention may contain a phosphorus compound. However, the amount of the phosphorus compound contained in the activated carbon powder is preferably 5.0% by mass or less as the amount of phosphorus, more preferably in the range of 0.3 to 1% by mass, and 0.3 to 0.7 It is particularly preferable to be in the range of mass%.

本発明の活性炭粉末は、例えば、酢酸セルロースを加熱して炭化させる炭化工程、炭化工程で得られた炭化物を、炭化工程で酢酸セルロースを炭化させるときの温度よりも50℃以上高い温度で加熱して炭化物に残留する酢酸成分を揮発させて除去する酢酸除去工程、そして酢酸除去工程で酢酸が除去された炭化物を賦活処理する賦活工程を含む方法により製造することができる。   The activated carbon powder of the present invention is heated, for example, by carbonizing the cellulose acetate by heating cellulose acetate, and by heating the carbide obtained in the carbonizing step at a temperature 50 ° C. or higher than the temperature when carbonizing the cellulose acetate in the carbonizing step. Thus, it can be produced by a method including an acetic acid removing step of volatilizing and removing the acetic acid component remaining in the carbide, and an activation step of activating the carbide from which acetic acid has been removed in the acetic acid removing step.

上記の活性炭粉末の製造方法において、出発原料として用いる酢酸セルロースは、酢酸の置換度が2〜3の範囲にあることが好ましい。酢酸セルロースは、トリアセチルセルロースを主成分とするセルロースであることが好ましい。酢酸セルロースの形態には制限はなく、フレーク状、粉末状及び塊状のいずれの形態であってもよい。   In the method for producing activated carbon powder, cellulose acetate used as a starting material preferably has a degree of substitution of acetic acid in the range of 2-3. The cellulose acetate is preferably cellulose mainly composed of triacetyl cellulose. There is no restriction | limiting in the form of a cellulose acetate, Any form of flake form, a powder form, and a lump form may be sufficient.

酢酸セルロースは可塑剤を含んでいてもよい。可塑剤の例としては、リン酸エステル、カルボン酸とアルコールのエステル及びポリエステルを挙げることができる。リン酸エステルの例としては、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェートを挙げることができる。カルボン酸の例としては、フタル酸、クエン酸、オレイン酸、リシノール酸及びセバシン酸を挙げることができる。アルコールの例としては、脂肪族アルコール(好ましくは炭素原子数が1〜6の脂肪族アルコール)、グリコール酸、グリコール(好ましくは炭素原子数が2〜3のグリコール)、グリセロール、ジグリセロール、ペンタエリスリトール及びジペンタエリスリトールを挙げることができる。エステルの例としては、フタル酸と脂肪族アルコールとのエステル(例、ジメチルフタレート、ジエチルフタレート、ジブチルフタレート、ジオクチルフタレート、ジエチルヘキシルフタレート)及びクエン酸と脂肪族アルコールとのエステル(例、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル)を挙げることができる。ポリエステルの例としては、芳香族ジカルボン酸とグリコールとのポリエステルを挙げることができる。   Cellulose acetate may contain a plasticizer. Examples of plasticizers include phosphate esters, esters of carboxylic acids and alcohols, and polyesters. Examples of the phosphate ester include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, and tributyl phosphate. Examples of carboxylic acids include phthalic acid, citric acid, oleic acid, ricinoleic acid and sebacic acid. Examples of alcohols include aliphatic alcohols (preferably aliphatic alcohols having 1 to 6 carbon atoms), glycolic acid, glycols (preferably glycols having 2 to 3 carbon atoms), glycerol, diglycerol, pentaerythritol. And dipentaerythritol. Examples of esters include esters of phthalic acid and aliphatic alcohols (eg, dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dioctyl phthalate, diethyl hexyl phthalate) and esters of citric acid and aliphatic alcohols (eg, acetyl citrate) Triethyl, acetyltributyl citrate). Examples of polyesters include polyesters of aromatic dicarboxylic acids and glycols.

酢酸セルロースは、写真フィルムの支持体や液晶表示装置用の偏光板の保護フィルムの材料として利用されている。本発明の活性炭粉末の製造方法の実施に際しては、写真フィルムの生産工程や液晶表示装置用偏光板の生産工程で生じた不良品から回収した酢酸セルロースを原料として使用することができる。また、本発明の活性炭粉末の製造方法の実施に際しては、写真フィルムや液晶表示装置用偏光板の使用済み品から回収された酢酸セルロースを原料として用いてもよい。   Cellulose acetate is used as a material for a protective film of a polarizing plate for a photographic film support or a liquid crystal display device. In carrying out the method for producing activated carbon powder of the present invention, cellulose acetate recovered from defective products produced in the production process of photographic films and the production process of polarizing plates for liquid crystal display devices can be used as a raw material. Moreover, when implementing the manufacturing method of the activated carbon powder of this invention, you may use the cellulose acetate collect | recovered from the used goods of the photographic film and the polarizing plate for liquid crystal display devices as a raw material.

炭化工程では、酢酸セルロースをリン化合物の存在下で加熱して炭化させることが好ましい。リン化合物は加熱前に出発原料の酢酸セルロースに加えておくことが好ましい。すなわち、出発原料は、リン化合物を含む酢酸セルロース、リン化合物を実質的に含まない酢酸セルロースとリン化合物を含む酢酸セルロースとの混合物、または酢酸セルロースとリン化合物との混合物であることが好ましい。   In the carbonization step, it is preferable to heat and carbonize cellulose acetate in the presence of a phosphorus compound. The phosphorus compound is preferably added to the starting cellulose acetate before heating. That is, the starting material is preferably cellulose acetate containing a phosphorus compound, a mixture of cellulose acetate substantially free of a phosphorus compound and cellulose acetate containing a phosphorus compound, or a mixture of cellulose acetate and a phosphorus compound.

リン化合物含有酢酸セルロースは、リン化合物をリン量として0.1〜5.0質量%の範囲にて含むことが好ましく、0.1〜3.0質量%の範囲にて含むことがより好ましく、0.1〜1.0質量%の範囲にて含むことが特に好ましい。リン化合物は、リン酸エステルであることが好ましい。リン酸エステルの例は前記の通りである。リン化合物は、酢酸セルロース中に分子分散していることが好ましい。   The phosphorus compound-containing cellulose acetate preferably contains the phosphorus compound in the range of 0.1 to 5.0% by mass, more preferably 0.1 to 3.0% by mass, as the phosphorus amount. It is particularly preferable to include within the range of 0.1 to 1.0% by mass. The phosphorus compound is preferably a phosphate ester. Examples of the phosphate ester are as described above. The phosphorus compound is preferably molecularly dispersed in cellulose acetate.

リン化合物を実質的に含まない酢酸セルロースとは、リン含有量が0.1質量%未満、特に0.01質量%未満のものをいう。リン化合物を実質的に含まない酢酸セルロースと混合するリン化合物含有酢酸セルロースは、上記の通りである。リン化合物を実質的に含まない酢酸セルロースとリン化合物含有酢酸セルロースとの混合比は、質量比で30:70〜70:30の範囲にあることが好ましい。   Cellulose acetate substantially free of phosphorus compounds refers to those having a phosphorus content of less than 0.1% by mass, particularly less than 0.01% by mass. The phosphorus compound-containing cellulose acetate mixed with the cellulose acetate substantially free of the phosphorus compound is as described above. The mixing ratio of cellulose acetate substantially free of phosphorus compound and phosphorus compound-containing cellulose acetate is preferably in the range of 30:70 to 70:30 by mass ratio.

酢酸セルロースと混合するリン化合物の例としては、リン酸、リン酸塩及びリン酸エステルを挙げることができる。リン酸は、オルトリン酸及び縮合リン酸を含む。リン酸塩の例としては、アンモニウム塩、アルカリ金属塩及びアルカリ土類金属塩を挙げることができる。リン酸エステルの例は前記の通りである。リン化合物はリン酸エステルであることが好ましい。酢酸セルロースとリン化合物の混合物は、リン化合物をリン量として0.1〜5.0質量%の範囲にて含むことが好ましく、0.1〜3.0質量%の範囲にて含むことがより好ましく、0.1〜1.0質量%の範囲にて含むことが特に好ましい。酢酸セルロースは、リン化合物含有酢酸セルロースであってもよいし、リン化合物を実質的に含まない酢酸セルロースであってもよい。   Examples of the phosphorus compound to be mixed with cellulose acetate include phosphoric acid, phosphate and phosphate ester. Phosphoric acid includes orthophosphoric acid and condensed phosphoric acid. Examples of phosphates include ammonium salts, alkali metal salts, and alkaline earth metal salts. Examples of the phosphate ester are as described above. The phosphorus compound is preferably a phosphate ester. The mixture of cellulose acetate and the phosphorus compound preferably contains the phosphorus compound in the range of 0.1 to 5.0% by mass, and more preferably in the range of 0.1 to 3.0% by mass. It is particularly preferable that it is contained in the range of 0.1 to 1.0% by mass. The cellulose acetate may be a phosphorus compound-containing cellulose acetate, or may be cellulose acetate substantially free of a phosphorus compound.

炭化工程では、酢酸セルロースを不活性ガスの雰囲気下にて250〜350℃の温度で加熱して炭化させることが好ましい。不活性ガスの例としては、窒素ガス及びアルゴンガス、ヘリウムガス、キセノンガス、ネオンガスなどの希ガスを挙げることができる。加熱時間は、少なくとも酢酸セルロースが炭化物となるまでであるが、通常は5〜180分の範囲で、例えば5〜30分もしくは30〜120分の範囲である。炭化工程において、酢酸セルロースは、通常、一旦溶融し、次いで固化した後に炭化する。酢酸セルロースが一旦溶融することによって、原料の酢酸セルロースがリン化合物を含む場合には炭化物中にリン化合物を均一に分散させることができる。得られた炭化物は、次の酢酸除去工程で炭化物中に残留する酢酸を揮発除去することによって細孔が形成される。なお、この炭化工程においても、通常は酢酸の一部は揮発により除去される。   In the carbonization step, it is preferable to heat and carbonize the cellulose acetate at a temperature of 250 to 350 ° C. in an inert gas atmosphere. Examples of the inert gas include noble gases such as nitrogen gas and argon gas, helium gas, xenon gas, and neon gas. The heating time is until at least cellulose acetate becomes a carbide, but is usually in the range of 5 to 180 minutes, for example, in the range of 5 to 30 minutes or 30 to 120 minutes. In the carbonization step, cellulose acetate is usually carbonized after it is once melted and then solidified. When cellulose acetate is once melted, when the raw material cellulose acetate contains a phosphorus compound, the phosphorus compound can be uniformly dispersed in the carbide. In the obtained carbide, pores are formed by volatilizing and removing acetic acid remaining in the carbide in the subsequent acetic acid removing step. In this carbonization step, part of acetic acid is usually removed by volatilization.

酢酸除去工程では、炭化物を不活性ガスの雰囲気下にて加熱して、酢酸成分を揮発させることにより除去することが好ましい。加熱温度は、一般に380〜700℃の範囲、好ましくは500〜650℃の範囲である。不活性ガスの例としては、窒素ガス及びアルゴンガス、ヘリウムガス、キセノンガス、ネオンガスなどの希ガスを挙げることができる。加熱時間は、一般に10分間〜10時間の範囲、好ましくは30分間〜5時間の範囲である。酢酸除去工程において、炭化物から酢酸成分が揮発するときに生成する通路が、細孔として炭化物内に多数形成される。酢酸除去工程にて、炭化物内に多数の細孔が形成されていることは、炭化物のヨウ素吸着量を測定することによって確認することができる。酢酸除去工程前の炭化物は、ヨウ素吸着量が通常は100mg/g以下であるが、酢酸除去工程後の炭化物は、ヨウ素吸着量が通常は300〜800mg/gの範囲、特に400〜800mg/gの範囲と大幅に大きくなる。上記の不活性ガスに二酸化炭素ガス、水蒸気、酸素、空気などの酸化性ガスを混合すると、細孔形成が促進される場合がある。酸化性ガスの使用量は、不活性ガスと酸化性ガスの合計量に対して20質量%以下となる量であることが好ましく、5〜15質量%の範囲となる量であることが特に好ましい。また、炭化工程で不活性ガスに該酸化性ガスを混合し、連続して同一雰囲気下で酢酸除去工程を行なってもよい。酢酸除去工程後の炭化物に残留している酢酸の量は、炭化物の全体量に対する酢酸含有量として20質量%以下となる量であることが好ましく、10質量%以下となる量であることが特に好ましい。   In the acetic acid removal step, it is preferable to remove the carbide by heating the carbide in an inert gas atmosphere to volatilize the acetic acid component. The heating temperature is generally in the range of 380 to 700 ° C, preferably in the range of 500 to 650 ° C. Examples of the inert gas include noble gases such as nitrogen gas and argon gas, helium gas, xenon gas, and neon gas. The heating time is generally in the range of 10 minutes to 10 hours, preferably in the range of 30 minutes to 5 hours. In the acetic acid removing step, many passages formed when the acetic acid component volatilizes from the carbide are formed as pores in the carbide. The formation of a large number of pores in the carbide in the acetic acid removing step can be confirmed by measuring the iodine adsorption amount of the carbide. The carbide before the acetic acid removal step usually has an iodine adsorption amount of 100 mg / g or less, but the carbide after the acetic acid removal step usually has an iodine adsorption amount in the range of 300 to 800 mg / g, particularly 400 to 800 mg / g. The range will be significantly larger. When an oxidizing gas such as carbon dioxide gas, water vapor, oxygen, or air is mixed with the above inert gas, pore formation may be promoted. The amount of the oxidizing gas used is preferably 20% by mass or less, particularly preferably 5-15% by mass, based on the total amount of the inert gas and the oxidizing gas. . Alternatively, the oxidizing gas may be mixed with an inert gas in the carbonization step, and the acetic acid removal step may be continuously performed in the same atmosphere. The amount of acetic acid remaining in the carbide after the acetic acid removal step is preferably 20% by mass or less, particularly preferably 10% by mass or less as the acetic acid content with respect to the total amount of carbides. preferable.

炭化工程及び酢酸除去工程において発生する酢酸を含む揮発ガスは、燃焼させてもよいし、また液化して回収してもよい。回収した酢酸を含む液体は農業用途製品、工業用酢酸及び燃料などの原料として利用することができる。また、回収した液体を原料の酢酸セルロースに添加することによって、酢酸除去工程での炭化物の細孔形成が促進され、活性炭の特性が向上する。   Volatile gas containing acetic acid generated in the carbonization step and acetic acid removal step may be burned or liquefied and recovered. The recovered liquid containing acetic acid can be used as a raw material for agricultural products, industrial acetic acid and fuel. Further, by adding the recovered liquid to the raw material cellulose acetate, the formation of carbide pores in the acetic acid removing step is promoted, and the characteristics of the activated carbon are improved.

賦活工程において、賦活処理は、炭化物を賦活ガスの存在下にて加熱することにより行なうことが好ましい。賦活ガスの例としては、二酸化炭素ガス、水蒸気、酸素ガス、塩化水素ガス、アンモニアガス及び空気を挙げることができる。賦活ガスとしては、二酸化炭素ガス及び水蒸気が好ましく、水蒸気が特に好ましい。加熱温度は、一般に800〜1100℃の範囲、好ましくは900〜1100℃の範囲である。加熱時間は、一般に10分間〜10時間の範囲、好ましくは30分間〜5時間の範囲である。賦活処理によって、酢酸除去工程で炭化物内に形成された細孔が発達して、細孔の径や容積が大きくなる。炭化物内に分散されているリン化合物は、賦活処理による細孔の発達を促進する効果があると理解される。   In the activation step, the activation treatment is preferably performed by heating the carbide in the presence of an activation gas. Examples of the activation gas include carbon dioxide gas, water vapor, oxygen gas, hydrogen chloride gas, ammonia gas, and air. As the activation gas, carbon dioxide gas and water vapor are preferable, and water vapor is particularly preferable. The heating temperature is generally in the range of 800 to 1100 ° C, preferably in the range of 900 to 1100 ° C. The heating time is generally in the range of 10 minutes to 10 hours, preferably in the range of 30 minutes to 5 hours. By the activation treatment, pores formed in the carbide in the acetic acid removal step develop, and the diameter and volume of the pores increase. It is understood that the phosphorus compound dispersed in the carbide has an effect of promoting pore development by the activation treatment.

賦活ガスに二酸化炭素ガスを用いる場合、賦活工程にて排出されるのは一酸化炭素ガスと二酸化炭素ガスとを含む混合ガスである。この排出された混合ガスは回収して賦活ガスとして利用してもよい。混合ガスを賦活ガスとして利用する場合、予め該混合ガス中に含まれる一酸化炭素ガスを二酸化炭素ガスに変換して、混合ガス中の二酸化炭素ガス量を増加させることが好ましい。混合ガス中の一酸化炭素ガスを二酸化炭素ガスに変換する方法としては、混合ガスを酸素の存在下で酸化触媒と接触させる方法、混合ガスを水蒸気存在下でシフト触媒と接触させる方法、混合ガスを酸素の存在下で燃焼する方法を挙げることができる。   When carbon dioxide gas is used as the activation gas, what is discharged in the activation step is a mixed gas containing carbon monoxide gas and carbon dioxide gas. The discharged mixed gas may be recovered and used as an activation gas. When the mixed gas is used as the activation gas, it is preferable to convert the carbon monoxide gas contained in the mixed gas into carbon dioxide gas in advance to increase the amount of carbon dioxide gas in the mixed gas. As a method for converting carbon monoxide gas in the mixed gas into carbon dioxide gas, a method in which the mixed gas is brought into contact with the oxidation catalyst in the presence of oxygen, a method in which the mixed gas is brought into contact with the shift catalyst in the presence of water vapor, and a mixed gas Can be mentioned in the presence of oxygen.

炭化工程、酢酸除去工程及び賦活工程の実施のためには、公知の加熱炉を用いることができる。加熱炉は回分式でもよいし、連続式でもよい。回分式加熱炉の例としては、炭窯式炭化炉、撹拌式炭化炉、トロリー式炭化炉及び流動層式炭化炉を挙げることができる。連続式加熱炉では、炉内での被加熱物の搬送方式に特には制限はない。被加熱物の搬送方式の例としては、ローラ式、ベルトコンベア式、流動層式、ロータリキルン式及びスクリューコンベア式を挙げることができる。生産効率上は、連続式加熱炉を用いることが好ましい。   A well-known heating furnace can be used for implementation of a carbonization process, an acetic acid removal process, and an activation process. The heating furnace may be a batch type or a continuous type. Examples of the batch heating furnace include a charcoal kiln type carbonization furnace, a stirring type carbonization furnace, a trolley type carbonization furnace, and a fluidized bed type carbonization furnace. In the continuous heating furnace, there is no particular limitation on the method of conveying the object to be heated in the furnace. Examples of the conveyance method of the object to be heated include a roller type, a belt conveyor type, a fluidized bed type, a rotary kiln type, and a screw conveyor type. In terms of production efficiency, it is preferable to use a continuous heating furnace.

炭化工程、酢酸除去工程及び賦活工程の各工程は、それぞれ別の加熱炉を用いて順次行なってもよいし、一つの加熱炉を用いて連続的に行なってもよい。また、炭化工程と酢酸除去工程を一つの加熱炉を用いて連続的に行ない、賦活工程は別の加熱炉を用いて行なってもよいし、酢酸除去工程と賦活工程を一つの加熱炉を用いて連続的に行ない、炭化工程は別の加熱炉を用いて行なってもよい。   Each process of a carbonization process, an acetic acid removal process, and an activation process may be sequentially performed using a separate heating furnace, respectively, and may be performed continuously using one heating furnace. Further, the carbonization step and the acetic acid removal step may be continuously performed using one heating furnace, and the activation step may be performed using another heating furnace, or the acetic acid removal step and the activation step may be performed using one heating furnace. The carbonization step may be performed using another heating furnace.

炭化工程と酢酸除去工程での加熱処理は撹拌を行わずに静置状態で行なう方が、細孔が発達した炭化物が得られる傾向がある。このため、炭化工程と酢酸除去工程は、炉内での被加熱物の搬送方式がローラ式もしくはベルトコンベア式の連続式加熱炉を用いて行なうことが好ましい。連続式加熱炉には、被加熱物の搬送方式がローラ式のローラハースキルンを用いることが、炉内での温度の制御が容易であるので好ましい。   When the heat treatment in the carbonization step and the acetic acid removal step is performed in a stationary state without stirring, a carbide having developed pores tends to be obtained. For this reason, it is preferable that the carbonization step and the acetic acid removal step be performed using a continuous heating furnace in which the object to be heated in the furnace is conveyed by a roller or a belt conveyor. In a continuous heating furnace, it is preferable to use a roller-type roller hearth kiln as a method for conveying an object to be heated because it is easy to control the temperature in the furnace.

ローラハースキルンでは、炉内を250〜350℃の温度に調整された第一加熱領域と、第一加熱領域よりも50℃以上高く、かつ380〜700℃の温度に調整された第二加熱領域とに分け、原料の酢酸セルロースを収納した耐熱容器を第一領域から第二領域に搬送することによって炭化工程と酢酸除去工程とを行なうことが好ましい。均質の炭化物を得るために、二個以上の耐熱容器を重ねることができる。
賦活工程は生産効率を高めるために、ロータリキルンを用いて行なうことが好ましい。
In the roller hearth kiln, the 1st heating area | region adjusted to the temperature of 250-350 degreeC in the furnace, and the 2nd heating area | region adjusted to the temperature of 380-700 degreeC higher than the 1st heating area 50 degreeC or more It is preferable to perform the carbonization step and the acetic acid removal step by conveying the heat-resistant container containing the raw material cellulose acetate from the first region to the second region. Two or more heat-resistant containers can be stacked to obtain a homogeneous carbide.
The activation step is preferably performed using a rotary kiln in order to increase production efficiency.

賦活処理後の炭化物(活性炭)は、必要に応じて粉砕処理及び分級処理を行なって、粒子サイズを調整することが望ましい。粉砕処理には、例えば、ボールミル、ディスクミル、ビーズミル及びジェットミルなどの粉砕装置を用いることができる。粉砕装置は、ボールミル(特に、遊星ボールミル)、ディスクミル(特に、石臼式ディスクミル)を用いることが好ましい。これらのミルの粉砕媒体は、活性炭への金属の混入を防ぐために、アルミナ製、セラミック製またはジルコニア製のいずれかであることが好ましい。分級処理には、例えば、ステンレス製の篩やサイクロン型分級機を用いることができる。   It is desirable to adjust the particle size of the activated carbide (activated carbon) by performing a pulverization process and a classification process as necessary. For the pulverization treatment, for example, a pulverizer such as a ball mill, a disk mill, a bead mill, and a jet mill can be used. It is preferable to use a ball mill (particularly a planetary ball mill) or a disk mill (particularly a stone mill type disc mill) as the grinding device. The grinding media for these mills are preferably made of alumina, ceramic or zirconia in order to prevent the metal from being mixed into the activated carbon. For the classification process, for example, a stainless steel sieve or a cyclone classifier can be used.

次に、本発明の活性炭粉末を電極活物質に用いた電気二重層キャパシタについて、説明する。
図1は、本発明に従う、電気二重層キャパシタの一例の断面図である。
Next, an electric double layer capacitor using the activated carbon powder of the present invention as an electrode active material will be described.
FIG. 1 is a cross-sectional view of an example of an electric double layer capacitor according to the present invention.

図1に示されている電気二重層キャパシタは、一般にコイン型と呼ばれている電気二重層キャパシタである。図1において、電気二重層キャパシタは、正極容器1、正極容器1の底部表面の上に積載された、正極集電体2と正極活物質シート3とを圧着させて形成した正極シート4、正極シート4の上に積載されたセパレータ5、セパレータ5の上に積載された、負極活物質シート6と負極集電体7とを圧着させて形成した負極シート8、負極シート8の上に被せられた負極容器9、正極容器1と負極容器9とを封止するガスケット10、そして内部に封入されている電解液(図示せず)からなる。   The electric double layer capacitor shown in FIG. 1 is an electric double layer capacitor generally called a coin type. In FIG. 1, an electric double layer capacitor includes a positive electrode container 1, a positive electrode sheet 4 loaded on the bottom surface of the positive electrode container 1, and a positive electrode sheet 4 and a positive electrode active material sheet 3, which are formed by pressure bonding. A separator 5 stacked on the sheet 4, a negative electrode sheet 8 stacked on the separator 5, and a negative electrode sheet 8 formed by pressure-bonding the negative electrode active material sheet 6 and the negative electrode current collector 7, and the negative electrode sheet 8. The negative electrode container 9, the gasket 10 for sealing the positive electrode container 1 and the negative electrode container 9, and an electrolyte solution (not shown) sealed inside.

正極活物質シート3及び負極活物質シート6はいずれも、一般に電極活物質とバインダーと導電材との混合物からなる。本発明では、正極活物質シート3及び負極活物質シート6のうちの少なくとも一方(好ましくは両方)の電極活物質に本発明の活性炭粉末を用いる。バインダーの例としては、ポリテトラフルオロエチレン及びポリビニリデンフロライドを挙げることができる。導電材の例としては、アセチレンブラック及びカーボンブラックを挙げることができる。   Both the positive electrode active material sheet 3 and the negative electrode active material sheet 6 are generally composed of a mixture of an electrode active material, a binder, and a conductive material. In the present invention, the activated carbon powder of the present invention is used for at least one (preferably both) of the positive electrode active material sheet 3 and the negative electrode active material sheet 6. Examples of the binder include polytetrafluoroethylene and polyvinylidene fluoride. Examples of the conductive material include acetylene black and carbon black.

電解液としては、電解質を含む有機溶媒溶液が一般に用いられる。電解質の例としては、テトラアルキルアンモニウムヘキサフルオロホスフェート、テトラアルキルホスホニウムヘキサフルオロホスフェート、テトラアルキルホスホニウムテトラフルオロボレート及びテトラアルキルアンモニウムテトラフルオロボレートを挙げることができる。これらの電解質は一種を単独で使用してもよいし、二種以上を併用してもよい。有機溶媒の例としては、プロピレンカーボネートやエチレンカーボネートなどのアルキレンカーボネート、γ−ブチロラクトン、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、テトラヒドロフラン、ジメトキシエタン及びメチルホルマートを挙げることができる。これらの有機溶媒は一種を単独で使用してもよいし、二種以上を併用してもよい。電解液の電解質の濃度は、一般に0.5〜2.0モル/Lの範囲にある。   As the electrolytic solution, an organic solvent solution containing an electrolyte is generally used. Examples of the electrolyte include tetraalkylammonium hexafluorophosphate, tetraalkylphosphonium hexafluorophosphate, tetraalkylphosphonium tetrafluoroborate and tetraalkylammonium tetrafluoroborate. These electrolytes may be used individually by 1 type, and may use 2 or more types together. Examples of the organic solvent include alkylene carbonates such as propylene carbonate and ethylene carbonate, γ-butyrolactone, dimethylformamide, dimethyl sulfoxide, acetonitrile, tetrahydrofuran, dimethoxyethane, and methyl formate. These organic solvents may be used individually by 1 type, and may use 2 or more types together. The concentration of the electrolyte in the electrolytic solution is generally in the range of 0.5 to 2.0 mol / L.

正極容器1、正極集電体2、負極集電体7及び負極容器9の材料には、一般に金属が用いられる。金属の例としては、アルミニウム及びステンレスを挙げることができる。セパレータ5には、一般に多孔質シートが用いられる。多孔質シートの例としては、ガラスウールシート及び不織布シートを挙げることができる。ガスケット10の材料には樹脂が用いられる。樹脂の例としては、ポリプロピレン、ポリエチレン、ポリブチレン及びポリアミドを挙げることができる。   As a material of the positive electrode container 1, the positive electrode current collector 2, the negative electrode current collector 7, and the negative electrode container 9, a metal is generally used. Examples of metals include aluminum and stainless steel. As the separator 5, a porous sheet is generally used. Examples of the porous sheet include a glass wool sheet and a non-woven sheet. Resin is used for the material of the gasket 10. Examples of the resin include polypropylene, polyethylene, polybutylene, and polyamide.

本発明の電気二重層キャパシタはコイン型電気二重層キャパシタに限定されるものではない。本発明の電気二重層キャパシタは、捲回型の電気二重層キャパシタであってもよい。捲回型の電気二重層キャパシタとは、長尺状の正極活物質シートと長尺状の負極活物質シートとの間にセパレータを介在させた状態で捲回して作製した電極ロールと、電解液とを容器に収容して封止した構成の電気二重層キャパシタである。   The electric double layer capacitor of the present invention is not limited to a coin-type electric double layer capacitor. The electric double layer capacitor of the present invention may be a wound type electric double layer capacitor. A wound type electric double layer capacitor is an electrode roll produced by winding a separator between a long positive electrode active material sheet and a long negative electrode active material sheet, and an electrolytic solution. Is an electric double layer capacitor that is sealed in a container.

[実施例1]
<活性炭粉末の製造>
トリフェニルホスフェートを含有する酢酸セルロース(リン量:0.1〜5質量%)をフレーク状に粉砕して、耐熱容器に入れた。その容器に温度計と窒素ガス導入口とガス排気口とを備えた蓋をした。次いで、耐熱容器の窒素ガス導入口に窒素ガスを供給しながら、耐熱容器の内部温度が300℃となるように加熱した。耐熱容器内の酢酸セルロースフレークは溶解し、液体となった後、炭化して炭化物が生成した(炭化工程)。
[Example 1]
<Manufacture of activated carbon powder>
Cellulose acetate (phosphorus content: 0.1 to 5% by mass) containing triphenyl phosphate was pulverized into flakes and placed in a heat-resistant container. The container was covered with a thermometer, a nitrogen gas inlet and a gas outlet. Subsequently, it heated so that the internal temperature of a heat-resistant container might be 300 degreeC, supplying nitrogen gas to the nitrogen gas inlet of a heat-resistant container. The cellulose acetate flakes in the heat-resistant container dissolved and became liquid, and then carbonized to produce carbides (carbonization step).

炭化物が生成した後、耐熱容器の内部温度を600℃にまで昇温させて、その温度で1時間保持して、炭化物に残留する酢酸を除去した(酢酸除去工程)。加熱後、室温まで放冷した後、蓋を外して、炭化物を取り出した。酢酸除去工程後の炭化物のヨウ素吸着量を測定したところ、580mg/gであった。酢酸除去工程後の炭化物中の酢酸含有量は6.0質量%であった。   After the carbide was generated, the internal temperature of the heat-resistant container was raised to 600 ° C. and held at that temperature for 1 hour to remove acetic acid remaining on the carbide (acetic acid removal step). After heating, the mixture was allowed to cool to room temperature, the lid was removed, and the carbide was taken out. It was 580 mg / g when the iodine adsorption amount of the carbide | carbonized_material after an acetic acid removal process was measured. The acetic acid content in the carbide after the acetic acid removing step was 6.0% by mass.

酢酸除去工程で得られた炭化物を、窒素ガス導入口と二酸化炭素ガス導入口とガス排気口とを備えたロータリキルン炉に投入した。ロータリキルン炉を1rpmの回転速度で回転させ、二酸化炭素ガス導入口に二酸化炭素ガスを16L/分の流量で供給しながら、炉内温度を1050℃にまで昇温させ、その温度で3時間保持して、炭化物を賦活した(賦活工程)。その後、放冷し、炉内温度が800℃になった時点で、二酸化炭素ガスの供給を止め、窒素ガス導入口に窒素ガスを供給し、炉内温度が100℃になった時点で炉内から賦活処理した炭化物(活性炭)を取り出した。得られた活性炭をジルコニア製の容器とボールを用いた遊星ボールミルにて粉砕処理した後、分級処理して活性炭粉末を得た。得られた活性炭粉末のリン含有量は0.56質量%であった。また、活性炭粉末の平均粒子径は3.8μmであった。   The carbide obtained in the acetic acid removal step was put into a rotary kiln furnace equipped with a nitrogen gas inlet, a carbon dioxide gas inlet, and a gas exhaust. The rotary kiln furnace is rotated at a rotation speed of 1 rpm, and while the carbon dioxide gas is supplied to the carbon dioxide gas inlet at a flow rate of 16 L / min, the furnace temperature is raised to 1050 ° C. and held at that temperature for 3 hours. Then, the carbide was activated (activation process). Then, it was allowed to cool, and when the furnace temperature reached 800 ° C., the supply of carbon dioxide gas was stopped, nitrogen gas was supplied to the nitrogen gas inlet, and when the furnace temperature reached 100 ° C. The activated charcoal (activated carbon) was taken out of the product. The obtained activated carbon was pulverized by a planetary ball mill using a zirconia container and balls, and then classified to obtain activated carbon powder. The phosphorus content of the obtained activated carbon powder was 0.56% by mass. The average particle diameter of the activated carbon powder was 3.8 μm.

<活性炭粉末の評価>
得られた活性炭粉末のBET比表面積、平均細孔直径、細孔全容積、ヨウ素吸着量及び電気二重層キャパシタ用電解液との接触下での静電容量を、下記の方法により測定した。その結果を表1に示す。
<Evaluation of activated carbon powder>
The obtained activated carbon powder was measured for the BET specific surface area, the average pore diameter, the total pore volume, the iodine adsorption amount, and the capacitance under contact with the electrolytic solution for electric double layer capacitor by the following method. The results are shown in Table 1.

(BET比表面積、平均細孔直径及び細孔全容積の測定方法)
窒素ガスを用いたBET法により測定した吸着等温線より算出した。
(Measurement method of BET specific surface area, average pore diameter and total pore volume)
It calculated from the adsorption isotherm measured by BET method using nitrogen gas.

(ヨウ素吸着量の測定方法)
JIS K−1474(活性炭試験方法)に規定されている方法に従って測定した。
(Measurement method of iodine adsorption)
It measured according to the method prescribed | regulated to JISK-1474 (activated carbon test method).

(静電容量の測定方法)
下記の通り、コイン型電気二重層キャパシタを製造して、静電容量を測定した。
(1)コイン型電気二重層キャパシタの製造
活性炭粉末10mgとアセチレンブラック4mgとポリテトラフルオロエチレン(PTFE)2mgとを秤量し、これらを乳鉢に入れて混練した。得られた混練物を直径16mmの円形シート状に成型し、これを活物質シートとした。次に、この活物質シートをメッシュ状のアルミニウム製集電体に圧着して、電極シートを作製した。電極シートは二個作製し、一方を正極シート、他方を負極シートとした。次いで、正極シートと負極シートとを減圧下にて加熱乾燥した。
(Capacitance measurement method)
A coin-type electric double layer capacitor was manufactured and the capacitance was measured as follows.
(1) Production of Coin Type Electric Double Layer Capacitor 10 mg of activated carbon powder, 4 mg of acetylene black and 2 mg of polytetrafluoroethylene (PTFE) were weighed and kneaded in a mortar. The obtained kneaded material was molded into a circular sheet having a diameter of 16 mm and used as an active material sheet. Next, this active material sheet was pressure-bonded to a mesh-like aluminum current collector to produce an electrode sheet. Two electrode sheets were prepared, one being a positive electrode sheet and the other being a negative electrode sheet. Subsequently, the positive electrode sheet and the negative electrode sheet were heat-dried under reduced pressure.

加熱乾燥した正極シートと負極シートとを、アルゴンガス雰囲気のグローブボックスに入れ、そのグローブボックス内にて、図1に示すようなコイン型電気二重層キャパシタを製造した。すなわち、正極容器の中に正極シートを、正極容器の底部表面と電極シートのアルミニウム製集電体とが接するように積層し、次いで、正極シートの上にガラスウール製セパレータを積層した。次に、このままガラスウール製セパレータに、電解液(1.5モル/Lのトリエチルメチルアンモニウムヘキサフルオロホスフェートを含有するプロピレンカーボネート溶液)を滴下して、上記セパレータに電解液を十分にしみ込ませた後、セパレータの上に負極シートを、セパレータ表面と負極シートの活物質シートとが接するように積層した。そして最後に、負極シートの上から負極容器を被せ、ガスケットを用いて封止した。   The heat-dried positive electrode sheet and negative electrode sheet were put in a glove box in an argon gas atmosphere, and a coin-type electric double layer capacitor as shown in FIG. 1 was manufactured in the glove box. That is, the positive electrode sheet was laminated in the positive electrode container so that the bottom surface of the positive electrode container and the aluminum current collector of the electrode sheet were in contact, and then a glass wool separator was laminated on the positive electrode sheet. Next, after the electrolytic solution (propylene carbonate solution containing 1.5 mol / L triethylmethylammonium hexafluorophosphate) is dropped into the glass wool separator as it is, the electrolytic solution is sufficiently infiltrated into the separator. The negative electrode sheet was laminated on the separator so that the separator surface and the active material sheet of the negative electrode sheet were in contact with each other. Finally, a negative electrode container was placed on the negative electrode sheet and sealed with a gasket.

(2)静電容量の測定
コイン型電気二重層キャパシタを、1mA(電極面積当たりの電流密度:0.5mA/cm2)の定電流にて、電圧が3.0Vとなるまで充電した。次に、充電したコイン型電気二重層キャパシタを、1mAの定電流にて電圧が0Vとなるまで放電させ、コイン型電気二重層キャパシタの放電電圧と放電時間との関係をプロットした放電カーブを作成した。放電カーブの勾配から、常法に従って活性炭粉末の静電容量を算出した。
(2) Measurement of capacitance The coin-type electric double layer capacitor was charged with a constant current of 1 mA (current density per electrode area: 0.5 mA / cm 2 ) until the voltage reached 3.0V. Next, the charged coin-type electric double layer capacitor is discharged at a constant current of 1 mA until the voltage reaches 0 V, and a discharge curve is created in which the relationship between the discharge voltage and the discharge time of the coin-type electric double layer capacitor is plotted. did. From the slope of the discharge curve, the capacitance of the activated carbon powder was calculated according to a conventional method.

[実施例2]
実施例1の活性炭粉末の製造において、酢酸除去工程での加熱温度を400℃としたこと以外は、実施例1と同様に処理して、活性炭粉末を製造した。なお、酢酸除去工程後の炭化物は、ヨウ素吸着量が386mg/g、酢酸含有量が6.0質量%であった。得られた活性炭粉末は、リン含有量が0.58質量%であり、平均粒子径は3.7μmであった。得られた活性炭粉末のBET比表面積、平均細孔直径、細孔全容積、ヨウ素吸着量及び静電容量を実施例1と同様に測定した。表1に、その結果を示す。
[Example 2]
In the production of the activated carbon powder of Example 1, the activated carbon powder was produced in the same manner as in Example 1 except that the heating temperature in the acetic acid removal step was 400 ° C. The carbide after the acetic acid removing step had an iodine adsorption amount of 386 mg / g and an acetic acid content of 6.0% by mass. The obtained activated carbon powder had a phosphorus content of 0.58% by mass and an average particle size of 3.7 μm. The obtained activated carbon powder was measured in the same manner as in Example 1 for the BET specific surface area, average pore diameter, pore total volume, iodine adsorption amount and capacitance. Table 1 shows the results.

[比較例1]
市販の電気二重層キャパシタ用活性炭粉末について、静電容量を実施例1と同様に測定した。表1に、その結果と活性炭粉末の比表面積、細孔全容積及びヨウ素吸着量を示す。
[Comparative Example 1]
The electrostatic capacity of the commercially available activated carbon powder for electric double layer capacitors was measured in the same manner as in Example 1. Table 1 shows the results, the specific surface area of the activated carbon powder, the total pore volume, and the iodine adsorption amount.

Figure 0005099277
Figure 0005099277

表1の結果から明らかなように、本発明に従う活性炭粉末は、市販の活性炭粉末と比較して、高いBET比表面積と細孔全容積を示し、電気二重層キャパシタの電極活物質として用いた場合に高い静電容量を示すことが確認された。   As is clear from the results in Table 1, the activated carbon powder according to the present invention has a higher BET specific surface area and a total pore volume than the commercially available activated carbon powder, and is used as an electrode active material for an electric double layer capacitor. It was confirmed that a high capacitance was exhibited.

[実施例3]
トリフェニルホスフェートの代わりにフェニレンジカルボン酸とエチレンジオールとのポリエステルを10〜15質量%の範囲で含有する酢酸セルロースを用いたこと以外は、実施例1と同様に処理して活性炭粉末を得た。酢酸除去工程後の炭化物は、ヨウ素吸着量が500mg/gであり、酢酸含有量は5.0質量%であった。得られた活性炭粉末は、BET比表面積が2200m2/g、平均細孔直径が2.3nm、細孔全容積が1.30cm3/g、そしてヨウ素吸着量が1800mg/gであった。
[Example 3]
An activated carbon powder was obtained in the same manner as in Example 1 except that cellulose acetate containing a polyester of phenylene dicarboxylic acid and ethylene diol in the range of 10 to 15% by mass was used instead of triphenyl phosphate. The carbide after the acetic acid removing step had an iodine adsorption amount of 500 mg / g and an acetic acid content of 5.0% by mass. The obtained activated carbon powder had a BET specific surface area of 2200 m 2 / g, an average pore diameter of 2.3 nm, a total pore volume of 1.30 cm 3 / g, and an iodine adsorption amount of 1800 mg / g.

[実施例4]
トリフェニルホスフェートを含有する酢酸セルロース(リン量:1.5質量%)のフレーク状粉砕品を耐熱容器に入れて、炉内温度を図2に示す温度分布に調整したローラハースキルン(長さ10m)内に1m/時間の速度で搬送して、炭化工程と酢酸除去工程とを連続的に行なった。なお、図2において、横軸はローラハースキルンの入り口からの距離を、縦軸は該距離での温度を示す。得られた炭化物は、ヨウ素吸着量が476mg/g、酢酸含有量が5.4質量%であった。得られた炭化物を電気炉に入れ、該電気炉に水蒸気を水として0.5mL/分の速度で導入しながら、850℃の温度で3時間加熱して賦活工程を行なった。賦活工程後の炭化物を、実施例1と同様に粉砕処理し、次いで分級処理して活性炭粉末を得た。得られた活性炭粉末は、BET比表面積が2100m2/g、平均細孔直径が2.32nm、細孔全容積が1.19cm3/g、そしてヨウ素吸着量が1803mg/gであった。
[Example 4]
Roller hearth kiln (length: 10 m) in which a flake pulverized product of cellulose acetate (phosphorus content: 1.5% by mass) containing triphenyl phosphate was placed in a heat-resistant container and the furnace temperature was adjusted to the temperature distribution shown in FIG. The carbonization step and the acetic acid removal step were continuously carried out at a speed of 1 m / hour. In FIG. 2, the horizontal axis indicates the distance from the entrance of the roller hearth kiln, and the vertical axis indicates the temperature at the distance. The obtained carbide had an iodine adsorption of 476 mg / g and an acetic acid content of 5.4% by mass. The obtained carbide was put into an electric furnace, and the activation process was performed by heating at 850 ° C. for 3 hours while introducing water vapor into the electric furnace at a rate of 0.5 mL / min. The activated carbide was pulverized in the same manner as in Example 1 and then classified to obtain activated carbon powder. The obtained activated carbon powder had a BET specific surface area of 2100 m 2 / g, an average pore diameter of 2.32 nm, a total pore volume of 1.19 cm 3 / g, and an iodine adsorption amount of 1803 mg / g.

[実施例5]
賦活工程において、加熱時間を4時間としたこと以外は実施例4と同様に処理して活性炭粉末を得た。得られた活性炭粉末は、BET比表面積が2435m2/g、平均細孔直径が2.44nm、細孔全容積が1.48cm3/g、そしてヨウ素吸着量が1837mg/gであった。
[Example 5]
In the activation step, activated carbon powder was obtained in the same manner as in Example 4 except that the heating time was 4 hours. The obtained activated carbon powder had a BET specific surface area of 2435 m 2 / g, an average pore diameter of 2.44 nm, a total pore volume of 1.48 cm 3 / g, and an iodine adsorption amount of 1837 mg / g.

[実施例6]
賦活工程において、電気炉に二酸化炭素ガスを200mL/分の速度で導入しながら、950℃の温度で3時間加熱したこと以外は実施例4と同様に処理して活性炭粉末を得た。得られた活性炭粉末は、BET比表面積が2775m2/g、平均細孔直径が3.77nm、細孔全容積が2.61cm3/g、そしてヨウ素吸着量が2111mg/gであった。
[Example 6]
In the activation step, activated carbon powder was obtained in the same manner as in Example 4 except that carbon dioxide gas was introduced into the electric furnace at a rate of 200 mL / min and heated at a temperature of 950 ° C. for 3 hours. The obtained activated carbon powder had a BET specific surface area of 2775 m 2 / g, an average pore diameter of 3.77 nm, a total pore volume of 2.61 cm 3 / g, and an iodine adsorption amount of 2111 mg / g.

[実施例7](出発原料の酢酸セルロースに含まれるリン化合物の影響)
実施例3で使用したフェニレンジカルボン酸とエチレンジオールとのポリエステルを10〜15質量%の範囲で含有する酢酸セルロースのフレーク状粉砕物100質量部に、実施例1で使用したトリフェニルホスフェートを含有する酢酸セルロース(リン量:0.1〜5質量%)のフレーク状粉砕物を100質量部加えて混合した。得られた混合物(リン含有量:0.05〜2.5質量%)を出発原料に用いたこと以外は、実施例1と同様に処理して活性炭粉末を得た。得られた活性炭粉末のBET比表面積、平均細孔直径、細孔全容積、そしてヨウ素吸着量を、実施例3で得られた活性炭粉末の結果を共に表2に示す。
[Example 7] (Influence of phosphorus compound contained in cellulose acetate as starting material)
The triphenyl phosphate used in Example 1 is contained in 100 parts by mass of cellulose acetate flakes containing a polyester of phenylene dicarboxylic acid and ethylene diol used in Example 3 in the range of 10 to 15% by mass. 100 parts by mass of a flake pulverized product of cellulose acetate (phosphorus amount: 0.1 to 5% by mass) was added and mixed. An activated carbon powder was obtained by treating in the same manner as in Example 1 except that the obtained mixture (phosphorus content: 0.05 to 2.5% by mass) was used as a starting material. Table 2 shows the BET specific surface area, average pore diameter, total pore volume, and iodine adsorption amount of the obtained activated carbon powder together with the results of the activated carbon powder obtained in Example 3.

[実施例8](出発原料の酢酸セルロースに含まれるリン化合物の影響)
実施例3で使用したフェニレンジカルボン酸とエチレンジオールとのポリエステルを10〜15質量%の範囲で含有する酢酸セルロースをフレーク状に粉砕して得た粉砕物100質量部に、トリフェニルホスフェートを10質量部加えて混合した。得られた混合物(リン含有量:1質量%)を出発原料に用いたこと以外は、実施例1と同様に処理して活性炭粉末を得た。得られた活性炭粉末のBET比表面積、平均細孔直径、細孔全容積、そしてヨウ素吸着量を表2に示す。
[Example 8] (Influence of phosphorus compound contained in cellulose acetate as starting material)
10 parts by weight of triphenyl phosphate was added to 100 parts by weight of a pulverized product obtained by pulverizing cellulose acetate containing a polyester of phenylenedicarboxylic acid and ethylene diol used in Example 3 in a range of 10 to 15% by weight. Part was added and mixed. An activated carbon powder was obtained by treating in the same manner as in Example 1 except that the obtained mixture (phosphorus content: 1% by mass) was used as a starting material. Table 2 shows the BET specific surface area, average pore diameter, total pore volume, and iodine adsorption amount of the obtained activated carbon powder.

Figure 0005099277
Figure 0005099277

上記表2の結果から、出発原料の酢酸セルロースがリン化合物を含む場合に、得られる活性炭粉末のBET比表面積、平均細孔直径、細孔全容積そしてヨウ素吸着量のいずれについても高い値を示す傾向があることが分かる。   From the results in Table 2 above, when the starting cellulose acetate contains a phosphorus compound, the activated carbon powder obtained shows high values for all of the BET specific surface area, average pore diameter, total pore volume, and iodine adsorption amount. It turns out that there is a tendency.

1 正極容器
2 正極集電体
3 正極活物質シート
4 正極シート
5 セパレータ
6 負極活物質シート
7 負極集電体
8 負極シート
9 負極容器
10 ガスケット
DESCRIPTION OF SYMBOLS 1 Positive electrode container 2 Positive electrode collector 3 Positive electrode active material sheet 4 Positive electrode sheet 5 Separator 6 Negative electrode active material sheet 7 Negative electrode collector 8 Negative electrode sheet 9 Negative electrode container 10 Gasket

Claims (8)

酢酸セルロースを加熱して炭化させる炭化工程、炭化工程で得られた炭化物を、炭化工程で酢酸セルロースを炭化させたときの温度よりも50℃以上高い温度で加熱して炭化物に残留する酢酸成分を揮発させて除去する酢酸除去工程、そして酢酸除去工程で酢酸が除去された炭化物を賦活処理する賦活工程を含む、BET比表面積が1600〜3000mA carbonization process in which cellulose acetate is heated and carbonized, and the carbide obtained in the carbonization process is heated at a temperature of 50 ° C. or more higher than the temperature when cellulose acetate is carbonized in the carbonization process. A BET specific surface area of 1600 to 3000 m, including an acetic acid removing step for volatilizing and removing, and an activation step for activating the carbide from which acetic acid has been removed in the acetic acid removing step 22 /gの範囲にあって、平均細孔直径が2.0〜4.0nmの範囲にあり、かつ細孔の全容積が1.0〜3.0cm/ G, the average pore diameter is in the range of 2.0 to 4.0 nm, and the total pore volume is 1.0 to 3.0 cm. 3Three /gの範囲にある活性炭粉末の製造方法。/ G of activated carbon powder in the range of g. 炭化工程において、酢酸セルロースをリン化合物の存在下で加熱して炭化させる請求項1に記載の活性炭粉末の製造方法。The method for producing activated carbon powder according to claim 1, wherein in the carbonization step, cellulose acetate is heated and carbonized in the presence of a phosphorus compound. 酢酸セルロースが、リン化合物をリン量として0.1〜5.0質量%の範囲にて含む請求項2に記載の活性炭粉末の製造方法。The manufacturing method of the activated carbon powder of Claim 2 in which a cellulose acetate contains the phosphorus compound in 0.1-5.0 mass% as phosphorus amount. 酢酸セルロースが、リン化合物を実質的に含まない酢酸セルロースと、リン化合物を含む酢酸セルロースとの混合物である請求項2に記載の活性炭粉末の製造方法。The method for producing activated carbon powder according to claim 2, wherein the cellulose acetate is a mixture of cellulose acetate substantially free of a phosphorus compound and cellulose acetate containing a phosphorus compound. 酢酸セルロースとリン化合物との混合物を加熱して、酢酸セルロースを炭化させる請求項2に記載の活性炭粉末の製造方法。The manufacturing method of the activated carbon powder of Claim 2 which heats the mixture of a cellulose acetate and a phosphorus compound, and carbonizes a cellulose acetate. 炭化工程において、酢酸セルロースを不活性ガス雰囲気下にて250〜350℃の温度で加熱して炭化させる請求項1または2に記載の活性炭粉末の製造方法。The method for producing activated carbon powder according to claim 1 or 2, wherein in the carbonization step, cellulose acetate is heated and carbonized at a temperature of 250 to 350 ° C in an inert gas atmosphere. 酢酸除去工程において、炭化物を不活性ガス雰囲気下にて380〜700℃の温度で加熱する請求項1または2に記載の活性炭粉末の製造方法。The method for producing activated carbon powder according to claim 1 or 2, wherein in the acetic acid removing step, the carbide is heated at a temperature of 380 to 700 ° C in an inert gas atmosphere. 賦活工程において、炭化物を、二酸化炭素ガス、水蒸気、酸素ガス、塩化水素ガス、アンモニアガス及び空気からなる群より選ばれる気体雰囲気下にて800〜1100℃の温度で加熱する請求項1または2に記載の活性炭粉末の製造方法。In the activation step, the carbide is heated at a temperature of 800 to 1100 ° C. in a gas atmosphere selected from the group consisting of carbon dioxide gas, water vapor, oxygen gas, hydrogen chloride gas, ammonia gas and air. The manufacturing method of the activated carbon powder of description.
JP2012521889A 2010-12-03 2011-12-01 Activated carbon powder, method for producing the same, and electric double layer capacitor Expired - Fee Related JP5099277B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012521889A JP5099277B1 (en) 2010-12-03 2011-12-01 Activated carbon powder, method for producing the same, and electric double layer capacitor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010270411 2010-12-03
JP2010270411 2010-12-03
JP2011158980 2011-07-20
JP2011158980 2011-07-20
JP2012521889A JP5099277B1 (en) 2010-12-03 2011-12-01 Activated carbon powder, method for producing the same, and electric double layer capacitor
PCT/JP2011/077803 WO2012074054A1 (en) 2010-12-03 2011-12-01 Active carbon powder and process for production thereof, and electric double layer capacitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012198621A Division JP5598683B2 (en) 2010-12-03 2012-09-10 Method for producing carbide for activated carbon powder production raw material

Publications (2)

Publication Number Publication Date
JP5099277B1 true JP5099277B1 (en) 2012-12-19
JPWO2012074054A1 JPWO2012074054A1 (en) 2014-05-19

Family

ID=46171979

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012521889A Expired - Fee Related JP5099277B1 (en) 2010-12-03 2011-12-01 Activated carbon powder, method for producing the same, and electric double layer capacitor
JP2012198621A Expired - Fee Related JP5598683B2 (en) 2010-12-03 2012-09-10 Method for producing carbide for activated carbon powder production raw material

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012198621A Expired - Fee Related JP5598683B2 (en) 2010-12-03 2012-09-10 Method for producing carbide for activated carbon powder production raw material

Country Status (3)

Country Link
JP (2) JP5099277B1 (en)
TW (1) TW201236039A (en)
WO (1) WO2012074054A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013042146A (en) * 2010-12-03 2013-02-28 Nankai Kogyo Kk Active carbon powder, manufacturing method thereof, and electric double-layer capacitor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6139863B2 (en) * 2012-11-05 2017-05-31 南開工業株式会社 Method for producing activated carbon
JP6289167B2 (en) * 2014-02-27 2018-03-07 南開工業株式会社 Method for producing activated carbon
WO2015146459A1 (en) * 2014-03-27 2015-10-01 Jx日鉱日石エネルギー株式会社 Activated carbon, method for producing activated carbon and method for treating activated carbon
JP2016051728A (en) * 2014-08-28 2016-04-11 Jx日鉱日石エネルギー株式会社 Activated carbon, carbon starting material for activated carbon, and production method of activated carbon and carbon starting material for activated carbon
CN104934231A (en) * 2015-06-19 2015-09-23 中国第一汽车股份有限公司 Super capacitor electrode material
KR102020126B1 (en) * 2017-12-19 2019-09-10 주식회사 티씨케이 Method for manufacturing activated carbon for electrode material
US20220266138A1 (en) * 2021-02-22 2022-08-25 Neople Inc. Method and apparatus for providing touch screen interface

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111314A (en) * 1997-06-10 1999-01-06 Dainippon Ink & Chem Inc Spherical active carbonaceous material and its production
JP2002033249A (en) * 2000-05-09 2002-01-31 Mitsubishi Chemicals Corp Activated charcoal for electric double-layer capacitor
JP2006075708A (en) * 2004-09-09 2006-03-23 Optonix Seimitsu:Kk Spherical superfine particle and its manufacturing method
JP2007266248A (en) * 2006-03-28 2007-10-11 Osaka Gas Co Ltd Electric double layer capacitor, carbon material thereof, and electrode thereof
JP2008201664A (en) * 2007-01-24 2008-09-04 Fujifilm Corp Method for producing activated carbon and recycling system of waste film
WO2009006396A2 (en) * 2007-06-29 2009-01-08 Michigan Technological University Process of forming radicalized polymer intermediates and radicalized polymer intermediate compositions
JP2009269764A (en) * 2008-04-10 2009-11-19 Kansai Coke & Chem Co Ltd Alkali activated carbon and its manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102855A (en) * 1990-07-20 1992-04-07 Ucar Carbon Technology Corporation Process for producing high surface area activated carbon
JP2000100437A (en) * 1998-09-24 2000-04-07 Daicel Chem Ind Ltd Binder, laminated body, and lithium secondary battery using them
WO2001098209A1 (en) * 2000-04-27 2001-12-27 Institute Of Physics, Chinese Academy Of Sciences Pyrolyzed hard carbon material, preparation and its applications
JP4037673B2 (en) * 2002-02-20 2008-01-23 ジ ェ ニ ス 株式会社 Electromagnetic wave absorber and method for producing the same
CN101855757B (en) * 2007-11-16 2013-01-23 旭化成株式会社 Nonaqueous lithium-type storage element
JP5099277B1 (en) * 2010-12-03 2012-12-19 南開工業株式会社 Activated carbon powder, method for producing the same, and electric double layer capacitor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111314A (en) * 1997-06-10 1999-01-06 Dainippon Ink & Chem Inc Spherical active carbonaceous material and its production
JP2002033249A (en) * 2000-05-09 2002-01-31 Mitsubishi Chemicals Corp Activated charcoal for electric double-layer capacitor
JP2006075708A (en) * 2004-09-09 2006-03-23 Optonix Seimitsu:Kk Spherical superfine particle and its manufacturing method
JP2007266248A (en) * 2006-03-28 2007-10-11 Osaka Gas Co Ltd Electric double layer capacitor, carbon material thereof, and electrode thereof
JP2008201664A (en) * 2007-01-24 2008-09-04 Fujifilm Corp Method for producing activated carbon and recycling system of waste film
WO2009006396A2 (en) * 2007-06-29 2009-01-08 Michigan Technological University Process of forming radicalized polymer intermediates and radicalized polymer intermediate compositions
JP2009269764A (en) * 2008-04-10 2009-11-19 Kansai Coke & Chem Co Ltd Alkali activated carbon and its manufacturing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
柳井弘, 石崎信男, 活性炭読本 −第2版−, JPN6012041532, 10 March 1998 (1998-03-10), JP, pages 86, ISSN: 0002300309 *
炭素材料学会編, 活性炭−基礎と応用, vol. pp. 30-31, JPN6012041530, 1 September 1978 (1978-09-01), JP, ISSN: 0002300308 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013042146A (en) * 2010-12-03 2013-02-28 Nankai Kogyo Kk Active carbon powder, manufacturing method thereof, and electric double-layer capacitor

Also Published As

Publication number Publication date
JP5598683B2 (en) 2014-10-01
JPWO2012074054A1 (en) 2014-05-19
WO2012074054A1 (en) 2012-06-07
JP2013042146A (en) 2013-02-28
TW201236039A (en) 2012-09-01

Similar Documents

Publication Publication Date Title
JP5598683B2 (en) Method for producing carbide for activated carbon powder production raw material
JP4432493B2 (en) Method for producing activated carbon, polarizable electrode and electric double layer capacitor
US20170053748A1 (en) Carbon activation method and energy storage device thereof
Ma et al. Highly porous carbon microflakes derived from catkins for high-performance supercapacitors
CN106115675B (en) A kind of method for preparing mesoporous graphene
JP7083343B2 (en) Modified activated carbon and its manufacturing method
CN103165862A (en) High-performance negative material of lithium ion cell and preparation method of material
CN103326023A (en) High-performance lithium ion battery silicon-carbon cathode material and preparation method thereof
reddy Bommireddy et al. Prussian blue analogue Co3 (Co (CN) 6) 2 cuboids as an electrode material for high-performance supercapacitor
JP2011046584A (en) Method of manufacturing active carbon, and electric double layer capacitor using the active carbon prepared by the method
US20180212229A1 (en) High specific surface area hard carbon-based electrode active material through carbonization process control and electrode active material by thereof
CN106006617B (en) A kind of preparation method and applications of graphene hollow nano cages
Sundriyal et al. Pencil peel derived mixed phase activated carbon and metal-organic framework derived cobalt-tungsten oxide for high-performance hybrid supercapacitors
JP2013249234A (en) Activated carbon and method for producing the same
KR101419340B1 (en) Preparation method of Graphite oxide and graphene nanosheet
Xiao et al. Nitrogen-enriched activated carbons via dual N-doping processes: Electrode material for high gravimetric-and volumetric-performance supercapacitor
JP2015151324A (en) Activated carbon and method for producing the same
WO2016031423A1 (en) Activated carbon, carbon starting material for activated carbon, method for producing activated carbon, and method for producing carbon starting material for activated carbon
CN113371709A (en) Preparation method of rice hull-based high-specific-surface-area biochar material
CN102496475A (en) Grapheme-based electrode plate of super capacitor and preparation method for electrode plate
JP2019016644A (en) Porous sintered compact, method for manufacturing the same and capacitor electrode
WO2017104630A1 (en) Positive electrode active material for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and method for manufacturing same
JP3664331B2 (en) Graphite microcrystal
CN108101030A (en) A kind of preparation method of three-dimensional porous grapheme material
KR102139098B1 (en) Electrode active material and method for preparing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5099277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees