JP5098794B2 - High frequency circuit board - Google Patents

High frequency circuit board Download PDF

Info

Publication number
JP5098794B2
JP5098794B2 JP2008127109A JP2008127109A JP5098794B2 JP 5098794 B2 JP5098794 B2 JP 5098794B2 JP 2008127109 A JP2008127109 A JP 2008127109A JP 2008127109 A JP2008127109 A JP 2008127109A JP 5098794 B2 JP5098794 B2 JP 5098794B2
Authority
JP
Japan
Prior art keywords
insulating resin
resin layer
layer
conductor layer
foam insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008127109A
Other languages
Japanese (ja)
Other versions
JP2009277855A (en
Inventor
裕介 近藤
悦男 水嶋
靖 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008127109A priority Critical patent/JP5098794B2/en
Publication of JP2009277855A publication Critical patent/JP2009277855A/en
Application granted granted Critical
Publication of JP5098794B2 publication Critical patent/JP5098794B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structure Of Printed Boards (AREA)

Description

本発明は、高周波領域における信号伝送において、低損失で信号伝送が可能な高周波回路基板に関する。   The present invention relates to a high frequency circuit board capable of signal transmission with low loss in signal transmission in a high frequency region.

家庭用の高速無線通信や車載用衝突防止レーダーなど、近年高周波を活用したアプリケーションの開発が盛んである。高周波信号処理を目的とした回路基板においては、数GHzまでの高周波領域ではストリップ線路、マイクロストリップ線路といった伝送線が多く用いられるが、さらに高いマイクロ波領域やミリ波領域にいたっては信号の減衰が著しいため、これらの線路を用いることが難しくなる。そこで、替わりの信号伝搬路として導波管が広く用いられている。導波管は優れた伝送特性を示す一方、線路のサイズが大きいこと、微細な引き回しができないこと、製造コストが大きいことなどのデメリットを有する。したがって、導波管に劣らない伝送特性を有し、かつ、安価で微細配線にも対応可能な回路基板が望まれている。   In recent years, high-frequency applications such as home high-speed wireless communication and in-vehicle collision prevention radar have been actively developed. In circuit boards for the purpose of high-frequency signal processing, transmission lines such as strip lines and microstrip lines are often used in high-frequency regions up to several GHz, but signal attenuation in higher microwave regions and millimeter-wave regions. Since it is remarkable, it becomes difficult to use these lines. Therefore, a waveguide is widely used as an alternative signal propagation path. Waveguides exhibit excellent transmission characteristics, but have disadvantages such as a large line size, inability to perform fine routing, and high manufacturing costs. Therefore, there is a demand for a circuit board that has transmission characteristics not inferior to those of a waveguide, is inexpensive, and can handle fine wiring.

ストリップ線路(図2参照)やマイクロストリップ線路を用いる場合、基板の材料には樹脂やセラミックを用いるのが一般的であるが、基板材料の誘電特性が伝送損失、特に誘電損と呼ばれる材料起因の損失に大きく影響を及ぼすことが知られている。誘電損を低減するためには、比誘電率,誘電正接の小さな材料を用いることが好ましく、低誘電率,低誘電正接な材料の開発が現在も進められている。   In the case of using a strip line (see FIG. 2) or a microstrip line, it is common to use resin or ceramic as the material of the substrate. However, the dielectric characteristics of the substrate material are caused by transmission loss, particularly due to a material called dielectric loss. It is known to have a large effect on losses. In order to reduce the dielectric loss, it is preferable to use a material having a small relative dielectric constant and a dielectric loss tangent, and development of a material having a low dielectric constant and a low dielectric loss tangent is ongoing.

誘電特性に優れる樹脂材料としてはPTFE(テフロン(登録商標))が広く知られているが、より低誘電率,低誘電正接の材料を必要とする用途に向けて、これまでにも様々な基板材料が提案されてきた。例えば、特許文献1〜3では、発泡材を用いた基板材料の提案がなされている。   PTFE (Teflon (registered trademark)) is widely known as a resin material having excellent dielectric properties, but various substrates have been used so far for applications requiring materials having a lower dielectric constant and lower dielectric loss tangent. Materials have been proposed. For example, Patent Documents 1 to 3 propose a substrate material using a foam material.

特開昭62−69580号公報JP-A 62-69580 特開平7−202439号公報JP 7-202439 A 特開平6−125154号公報JP-A-6-125154

特許文献1では発泡材の片面、もしくは両面に銅箔を配置した基板材料を提案している。発泡材を用いることにより比誘電率の低い基板材料が得られ、低損失な回路基板を形成することが可能である。しかしながら、コア部分が熱可塑性樹脂のみからなるため、機械的な強度が十分でない。特許文献2についても発泡材としてPETなどの熱可塑性フィルムを用いているため、特許文献1と同様に十分な機械強度は得られない。また、特許文献3では熱硬化性樹脂の発泡硬化物を用いることにより機械強度を向上させているが、ウェットプロセスによる配線形成では薬液が発泡部に入り込んで残存し、信頼性を低下させる可能性がある。そこで、本発明は、熱硬化性の絶縁樹脂層と、信号線導体層と、発泡体からなる絶縁樹脂層と、接地導体層とを、熱硬化性絶縁樹脂層/信号線導体層/発泡体絶縁樹脂層/接地導体層の順に積層することにより、優れた伝送特性と十分な機械強度を有する高周波回路基板を提供することを目的とする。   Patent Document 1 proposes a substrate material in which a copper foil is disposed on one or both sides of a foam material. By using a foam material, a substrate material having a low relative dielectric constant can be obtained, and a low-loss circuit substrate can be formed. However, since the core portion is made of only a thermoplastic resin, the mechanical strength is not sufficient. Also in Patent Document 2, since a thermoplastic film such as PET is used as the foaming material, sufficient mechanical strength cannot be obtained as in Patent Document 1. Further, in Patent Document 3, the mechanical strength is improved by using a foam cured product of a thermosetting resin, but in wiring formation by a wet process, a chemical solution may enter and remain in the foamed portion, thereby reducing reliability. There is. Therefore, the present invention provides a thermosetting insulating resin layer, a signal line conductor layer, an insulating resin layer made of a foam, and a ground conductor layer. It is an object to provide a high-frequency circuit board having excellent transmission characteristics and sufficient mechanical strength by laminating an insulating resin layer / ground conductor layer in this order.

本発明は、熱硬化性樹脂の非発泡硬化物からなる非発泡体絶縁樹脂層と、信号線導体層と、樹脂発泡体からなる発泡体絶縁樹脂層と、接地導体層とを有し、非発泡体絶縁樹脂層/信号線導体層/発泡体絶縁樹脂層/接地導体層の順に積層されてなる高周波回路基板に関する。   The present invention comprises a non-foam insulating resin layer made of a non-foamed cured product of a thermosetting resin, a signal line conductor layer, a foam insulating resin layer made of a resin foam, and a ground conductor layer. The present invention relates to a high-frequency circuit board in which a foam insulating resin layer / a signal line conductor layer / a foam insulating resin layer / a ground conductor layer are laminated in this order.

また、本発明は、前記樹脂発泡体の10GHzにおける比誘電率が1.0〜2.0、誘電正接が0.0001〜0.001である前記の高周波回路基板に関する。   The present invention also relates to the above high-frequency circuit board, wherein the resin foam has a relative dielectric constant at 10 GHz of 1.0 to 2.0 and a dielectric loss tangent of 0.0001 to 0.001.

また、本発明は、前記発泡体絶縁樹脂層の厚みが0.05〜1.0mmである前記の高周波回路基板に関する。   The present invention also relates to the high-frequency circuit board, wherein the foam insulating resin layer has a thickness of 0.05 to 1.0 mm.

また、本発明は、前記熱硬化性樹脂の非発泡硬化物の10GHzにおける比誘電率が2.0〜4.0、誘電正接が0.001〜0.01である前記の高周波回路基板に関する。   The present invention also relates to the above high-frequency circuit board, wherein the non-foamed cured product of the thermosetting resin has a relative dielectric constant at 10 GHz of 2.0 to 4.0 and a dielectric loss tangent of 0.001 to 0.01.

また、本発明は、前記非発泡体絶縁樹脂層の厚みが0.05〜1.0mmである前記の高周波回路基板に関する。   The present invention also relates to the high-frequency circuit board, wherein the non-foam insulating resin layer has a thickness of 0.05 to 1.0 mm.

また、本発明は、前記熱硬化性樹脂の非発泡硬化物の25〜30℃における貯蔵弾性率が1〜30GPaである前記の高周波回路基板に関する。   Moreover, this invention relates to the said high frequency circuit board whose storage elastic modulus in 25-30 degreeC of the non-foaming hardened | cured material of the said thermosetting resin is 1-30 GPa.

本発明によれば、十分な機械強度を有し、かつ、低損失で信号伝送が可能な高周波回路基板を提供することができる。   According to the present invention, it is possible to provide a high-frequency circuit board having sufficient mechanical strength and capable of signal transmission with low loss.

本発明の高周波回路基板の一態様の断面図を、図1に示す。本発明の高周波回路基板は、熱硬化性樹脂の非発泡硬化物からなる非発泡体絶縁樹脂層1と、信号線導体層2と、樹脂発泡体からなる発泡体絶縁樹脂層3と、接地導体層4とを有し、非発泡体絶縁樹脂層1/信号線導体層2/発泡体絶縁樹脂層3/接地導体層4の順に積層されてなる高周波回路基板である。樹脂発泡体からなる絶縁樹脂は低誘電率、かつ、低誘電正接な材料であり、前記構造を形成することにより伝送損失の小さいマイクロストリップ線路を形成することができる。   A cross-sectional view of one embodiment of the high-frequency circuit board of the present invention is shown in FIG. The high-frequency circuit board of the present invention includes a non-foam insulating resin layer 1 made of a non-foamed cured product of a thermosetting resin, a signal line conductor layer 2, a foam insulating resin layer 3 made of a resin foam, and a ground conductor. A high-frequency circuit board having a layer 4 and laminated in the order of non-foam insulating resin layer 1 / signal line conductor layer 2 / foam insulating resin layer 3 / ground conductor layer 4. An insulating resin made of a resin foam is a material having a low dielectric constant and a low dielectric loss tangent, and a microstrip line with a small transmission loss can be formed by forming the structure.

なお、本明細書中、比誘電率、及び、誘電正接は、空洞共振器摂動法誘電率測定装置(関東電子応用開発社製)を用いて測定した値である。また、貯蔵弾性率は、動的粘弾性測定装置Rheogel-E4000(ユービーエム社製)を用いて測定した値である。   In the present specification, the dielectric constant and the dielectric loss tangent are values measured using a cavity resonator perturbation method dielectric constant measuring apparatus (manufactured by Kanto Electronics Application Development Co., Ltd.). The storage elastic modulus is a value measured using a dynamic viscoelasticity measuring device Rheogel-E4000 (manufactured by UBM).

樹脂発泡体の材料は特に限定されるものではなく、熱可塑性樹脂の発泡体、熱硬化性樹脂の発泡硬化物のいずれであってもよく、例えば、ポリスチレン、ポリエチレン、ポリプロピレン、ポリウレタンなどの発泡体を好適に用いることができる。発泡体絶縁樹脂層の比誘電率としては、10GHzにおいて1.0〜2.0であることが好ましい。比誘電率が2.0を超えると伝送損失が増加して所望の効果が得られないことがある。できるだけ伝送損失を低減するため、発泡体絶縁樹脂層の比誘電率は1.0〜1.3であることがより好ましい。また、発泡体絶縁樹脂層の誘電正接は、10GHzにおいて0.0001〜0.001であることが好ましい。誘電正接が0.001を超えると伝送損失が増加して所望の効果が得られないことがある。同様に、できるだけ伝送損失を低減するため、発泡体絶縁樹脂層の誘電正接は0.0001〜0.0003であることがより好ましい。   The material of the resin foam is not particularly limited, and may be any of a thermoplastic resin foam and a thermosetting resin foam cured product, for example, a foam such as polystyrene, polyethylene, polypropylene, and polyurethane. Can be suitably used. The relative dielectric constant of the foam insulating resin layer is preferably 1.0 to 2.0 at 10 GHz. If the relative dielectric constant exceeds 2.0, transmission loss may increase and a desired effect may not be obtained. In order to reduce transmission loss as much as possible, the relative dielectric constant of the foam insulating resin layer is more preferably 1.0 to 1.3. The dielectric loss tangent of the foam insulating resin layer is preferably 0.0001 to 0.001 at 10 GHz. If the dielectric loss tangent exceeds 0.001, the transmission loss may increase and the desired effect may not be obtained. Similarly, in order to reduce transmission loss as much as possible, the dielectric loss tangent of the foam insulating resin layer is more preferably 0.0001 to 0.0003.

樹脂発泡体は、気泡率が70〜99%であることが好ましく、90〜98%であることがより好ましい。気泡率が70%未満であると、所望の誘電特性が得られず、伝送損失が増加することがある。また、99%を超えると、機械的強度が著しく低下し、厚みの制御や回路基板の形成が困難になることがある。   The resin foam preferably has a cell ratio of 70 to 99%, more preferably 90 to 98%. If the bubble ratio is less than 70%, desired dielectric characteristics cannot be obtained, and transmission loss may increase. On the other hand, if it exceeds 99%, the mechanical strength is remarkably lowered, and it may be difficult to control the thickness and form a circuit board.

樹脂発泡体からなる発泡体絶縁樹脂層の厚みとしては、0.05〜1.0mmであることが好ましい。1.0mmを超えると回路基板全体が厚くなり、また、コストの増加も招くため好ましくない。一方、0.05mmより薄くなると伝送損失が増加する傾向がある。厚みと伝送損失を両立する観点から、0.05〜0.3mmとするのがより好ましい。   The thickness of the foam insulating resin layer made of a resin foam is preferably 0.05 to 1.0 mm. If the thickness exceeds 1.0 mm, the entire circuit board becomes thick and the cost is increased, which is not preferable. On the other hand, when it becomes thinner than 0.05 mm, the transmission loss tends to increase. From the viewpoint of achieving both thickness and transmission loss, it is more preferably 0.05 to 0.3 mm.

発泡体絶縁樹脂層上には、信号線導体層を介して、熱硬化性樹脂の非発泡硬化物からなる非発泡体絶縁樹脂層を配置することにより、回路基板の機械強度を補強することが可能である。なお、本発明において、熱硬化性樹脂の非発泡硬化物とは、熱硬化性樹脂を製泡剤の添加など、発泡処理を行わずに熱硬化させて得られる硬化物を意味する。熱硬化性樹脂は特に限定されるものではなく、エポキシ樹脂系、フェノール樹脂系、不飽和ポリエステル樹脂などが好適に用いられる。エポキシ樹脂系熱硬化性樹脂としては、例えば、ビスフェノールA型エポキシ樹脂等の、ポリフェノールのグリシジルエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂等が挙げられる。エポキシ樹脂の硬化剤としても特に制限はなく、例えば、ジシアンジアミド、イミダゾール類、芳香族アミン類、フェノール樹脂、酸無水物等を用いることができる。フェノール樹脂系熱硬化性樹脂の硬化に用いられる硬化剤も、ヘキサメチレンテトラミン等、特に制限はない。また、非発泡体絶縁樹脂層は、この熱硬化性絶縁樹脂は、基板の熱膨張率低減や機械強度の向上を目的として、樹脂とガラスクロスを一体化させた形態や各種フィラー類が添加された形態をとっても構わない。フィラーとしては、例えば、溶融シリカ、ガラス、アルミナ、チタニア、ジルコン、炭酸カルシウム、珪酸カルシウム、珪酸マグネシウム、珪酸アルミニウム、窒化珪素、窒化ホウ素、ベリリア、ジルコニア、チタン酸バリウム、チタン酸カリウム、チタン酸カルシウムなどが挙げられる。   On the foam insulating resin layer, the mechanical strength of the circuit board can be reinforced by disposing a non-foam insulating resin layer made of a non-foamed cured product of a thermosetting resin via a signal line conductor layer. Is possible. In the present invention, the non-foamed cured product of the thermosetting resin means a cured product obtained by thermosetting the thermosetting resin without performing foaming treatment such as addition of a foaming agent. The thermosetting resin is not particularly limited, and an epoxy resin system, a phenol resin system, an unsaturated polyester resin, or the like is preferably used. Examples of the epoxy resin thermosetting resin include polyphenol glycidyl ether type epoxy resins, phenol novolac type epoxy resins, and the like, such as bisphenol A type epoxy resins. There is no restriction | limiting in particular as a hardening | curing agent of an epoxy resin, For example, a dicyandiamide, imidazoles, aromatic amines, a phenol resin, an acid anhydride etc. can be used. The curing agent used for curing the phenol resin thermosetting resin is not particularly limited, such as hexamethylenetetramine. In addition, the non-foamed insulating resin layer is made of this thermosetting insulating resin, with the addition of resin and glass cloth and various fillers for the purpose of reducing the thermal expansion coefficient of the substrate and improving the mechanical strength. You may take the form. Examples of the filler include fused silica, glass, alumina, titania, zircon, calcium carbonate, calcium silicate, magnesium silicate, aluminum silicate, silicon nitride, boron nitride, beryllia, zirconia, barium titanate, potassium titanate, calcium titanate. Etc.

非発泡体絶縁樹脂層の比誘電率としては、10GHzにおいて2.0〜4.0であることが好ましい。非発泡体絶縁樹脂層の比誘電率が4.0を超えると、伝送損失が増加するため好ましくない。伝送損失の低減には比誘電率がなるべく小さいことが望ましいが、2.0未満にするには発泡体などを用いた構造にしなければならないため、機械強度の低下を招くことがある。伝送損失と機械強度を両立する観点から、2.0〜3.7とするのがより好ましい。また、非発泡体絶縁樹脂層の誘電正接は10GHzにおいて0.001〜0.01であることが好ましい。誘電正接が0.01を超えると伝送損失が増加する。0.001未満にするには、比誘電率と同様に発泡体などを用いる必要があり、機械強度を低下させるため好ましくない。伝送損失と機械強度を両立する観点から、0.001〜0.006とするのがより好ましい。   The relative dielectric constant of the non-foam insulating resin layer is preferably 2.0 to 4.0 at 10 GHz. If the relative dielectric constant of the non-foam insulating resin layer exceeds 4.0, transmission loss increases, which is not preferable. In order to reduce transmission loss, it is desirable that the relative dielectric constant is as small as possible. However, in order to reduce the transmission loss to less than 2.0, a structure using a foam or the like must be used. From the viewpoint of achieving both transmission loss and mechanical strength, it is more preferably 2.0 to 3.7. The dielectric loss tangent of the non-foam insulating resin layer is preferably 0.001 to 0.01 at 10 GHz. If the dielectric loss tangent exceeds 0.01, transmission loss increases. In order to make it less than 0.001, it is necessary to use a foam or the like as in the case of the relative dielectric constant, which is not preferable because the mechanical strength is lowered. From the viewpoint of achieving both transmission loss and mechanical strength, it is more preferably 0.001 to 0.006.

非発泡体絶縁樹脂層の厚みとしては、0.05〜1.0mmであることが好ましい。熱硬化性樹脂は、信号線導体層に面して接地導体層の無い側に配置されるため、薄い方が伝送損失低減に有効である。しかし、過度に薄くすると回路基板の機械強度が不十分になり、取り扱い性も低下するため0.05mmを下限とするのが好ましい。また、上限は伝送損失の増加を抑制するため、1.0mmとするのが好ましい。伝送損失と機械強度・取り扱い性を両立する観点から、0.05〜0.3mmとするのがより好ましい。   The thickness of the non-foam insulating resin layer is preferably 0.05 to 1.0 mm. Since the thermosetting resin faces the signal line conductor layer and is disposed on the side without the ground conductor layer, the thinner one is more effective in reducing transmission loss. However, if the thickness is excessively thin, the mechanical strength of the circuit board becomes insufficient, and the handleability also decreases. The upper limit is preferably 1.0 mm in order to suppress an increase in transmission loss. From the viewpoint of achieving both transmission loss and mechanical strength / handleability, the thickness is more preferably 0.05 to 0.3 mm.

さらに、非発泡体絶縁樹脂層の貯蔵弾性率は25〜30℃において1〜30GPaであることが好ましい。十分な機械強度を得る上では1GPa以上であることが望ましい。また、30GPaを超えると加工性が低下する傾向がある。機械強度と加工性を両立する観点から、5〜20GPaとするのがより好ましい。   Furthermore, the storage elastic modulus of the non-foam insulating resin layer is preferably 1 to 30 GPa at 25 to 30 ° C. In order to obtain sufficient mechanical strength, it is desirably 1 GPa or more. Moreover, when it exceeds 30 GPa, there exists a tendency for workability to fall. From the viewpoint of achieving both mechanical strength and workability, it is more preferably 5 to 20 GPa.

信号線導体層の材料については特に限定されるものではないが、銅、ニッケル、金、銀、アルミニウムなどの金属を好適に用いることができる。一般的な配線板用途から言えば、銅が特性やコスト面で優れる。なお、めっきなどにより複数の金属から信号線導体層が形成されても差し支えない。   The material for the signal line conductor layer is not particularly limited, but metals such as copper, nickel, gold, silver, and aluminum can be suitably used. Speaking of general wiring board applications, copper is superior in terms of characteristics and cost. The signal line conductor layer may be formed from a plurality of metals by plating or the like.

接地導体層の材料についても信号線導体層同様、特に限定されるものではなく、例えば、銅、ニッケル、金、銀、アルミニウムなどの金属が挙げられ、特性やコストの観点から自由に選択することができる。接地導体層の厚みは任意に選択することができるが、0.01〜1.0mmが好ましく、0.5〜1.0mmがより好ましい。接地導体層にはコストの優位性から銅箔などの金属箔を用いることができ、この場合、汎用性から0.01mmが下限となる。一方、基板を組み立てる際の作業性、及び、信頼性を向上させるためには、0.5mm以上とすることが好ましく、金属板なども用いることができる。また、基板厚みやコストの増加を抑制するため、1.0mmを上限とすることが好ましい。   The material for the ground conductor layer is not particularly limited as in the case of the signal line conductor layer, and examples thereof include metals such as copper, nickel, gold, silver, and aluminum, and can be freely selected from the viewpoint of characteristics and cost. Can do. Although the thickness of a grounding conductor layer can be selected arbitrarily, 0.01-1.0 mm is preferable and 0.5-1.0 mm is more preferable. A metal foil such as a copper foil can be used for the ground conductor layer because of cost advantage. In this case, 0.01 mm is the lower limit because of versatility. On the other hand, in order to improve workability and reliability when assembling the substrate, the thickness is preferably 0.5 mm or more, and a metal plate or the like can also be used. Moreover, in order to suppress an increase in substrate thickness and cost, it is preferable to set 1.0 mm as the upper limit.

本発明の高周波回路基板には、上記の非発泡体絶縁樹脂層の接地導体層を有する面とは反対側の面に、導体層が形成されていないが、これは、導体層の存在によって、伝送損失が増加することを抑制するためである。導体層を形成した場合には、信号線がストリップライン構造となり、導体層のない構造に比べて一般的に伝送損失が増加する。   In the high-frequency circuit board of the present invention, the conductor layer is not formed on the surface opposite to the surface having the ground conductor layer of the non-foam insulating resin layer, but this is due to the presence of the conductor layer, This is to suppress an increase in transmission loss. When a conductor layer is formed, the signal line has a stripline structure, and transmission loss generally increases as compared with a structure without a conductor layer.

本発明の高周波回路基板は、例えば、非発泡体絶縁樹脂層の片面上に、金属箔等の導体層の接着、又はスパッタリング等によって導体層を形成し、次いで導体層にフォトリソグラフィとエッチング等の処理を行って信号線を形成して信号線導体層とし、その信号線導体層上に発泡体絶縁樹脂層及び接地導体層をその順で積層して製造することができる。また、熱硬化性樹脂と必要に応じて用いられる硬化剤等とをガラスクロス等の繊維強化材に含浸させてなるプリプレグに金属箔等の金属層を積層し、加熱加圧して得られる非発泡体絶縁樹脂層の片面又は両面に金属層を有する金属張積層板を用い、その片面の金属箔層にフォトリソグラフィとエッチング等の処理を行って信号線を形成して信号線導体層を形成することもできる。金属張積層板が両面に金属層を有する場合には、片面の金属層は、エッチング等によって除去する。接地導体層上への発泡体絶縁樹脂層及び接地導体層の積層、固定は、積層後の基板端部のビス止め等、締結手段によって行うことができる。また、非発泡体絶縁樹脂層と発泡体絶縁樹脂層の積層には、接着剤を用いてもよい。ただし、接着剤層が厚くなると伝送損失が増加するため、厚みをできるだけ薄くすることが重要である。数μm以下であれば、伝送損失への影響は小さい。接着剤としてはエポキシ系などが使用できるが、非発泡体絶縁樹脂層が熱可塑性樹脂の場合は、溶剤に対する耐性を考慮する必要がある。   The high-frequency circuit board of the present invention is formed by, for example, forming a conductor layer on one surface of a non-foam insulating resin layer by bonding or sputtering of a conductor layer such as a metal foil, and then performing photolithography and etching on the conductor layer. The signal line conductor layer can be formed by processing to form a signal line conductor layer, and the foam insulating resin layer and the ground conductor layer can be laminated in that order on the signal line conductor layer. Also, non-foaming obtained by laminating a metal layer such as a metal foil on a prepreg obtained by impregnating a fiber reinforced material such as a glass cloth with a thermosetting resin and a curing agent used as necessary, and then heating and pressing. A signal line conductor layer is formed by using a metal-clad laminate having a metal layer on one or both sides of the body insulating resin layer and performing a process such as photolithography and etching on the metal foil layer on one side to form a signal line. You can also. When the metal-clad laminate has metal layers on both sides, the metal layer on one side is removed by etching or the like. Lamination and fixing of the foam insulating resin layer and the ground conductor layer on the ground conductor layer can be performed by fastening means such as screwing of the end portion of the substrate after lamination. An adhesive may be used for laminating the non-foam insulating resin layer and the foam insulating resin layer. However, since the transmission loss increases as the adhesive layer becomes thicker, it is important to make the thickness as thin as possible. If it is several μm or less, the influence on the transmission loss is small. Epoxy or the like can be used as the adhesive, but when the non-foamed insulating resin layer is a thermoplastic resin, it is necessary to consider resistance to solvents.

次に実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, the present invention will be specifically described by way of examples, but the present invention is not limited to these.

[実施例1]
10GHzにおける比誘電率3.42、誘電正接0.0057、25〜30℃における貯蔵弾性率14GPaの非発泡体絶縁樹脂層の両面に銅層を有する、厚さ0.1mmの両面銅張積層板 MCL−FX−2(日立化成工業株式会社製、商品名)(厚さ64μmの非発泡体絶縁樹脂層の両面に、各々厚さ18μmの銅層を有する積層板)の片面に、特性インピーダンスが50Ωとなるようにフォトリソグラフィとエッチングにより長さ20mmの信号線を形成し、信号線導体層とした。また、同時に反対面側の銅をエッチングにより全面除去した。非発泡体絶縁樹脂層上の信号線導体層上に、厚さ0.5mmの発泡ポリプロピレン(10GHzにおける比誘電率1.1、誘電正接0.0002、気泡率:97%)と厚さ0.5mmのアルミ板を順に重ね、端部をビス止めして基板を一体化させ、高周波回路基板1を得た。
[Example 1]
A double-sided copper clad laminate having a thickness of 0.1 mm, having a copper layer on both sides of a non-foam insulating resin layer having a relative dielectric constant of 3.42 at 10 GHz and a dielectric loss tangent of 0.0057 and a storage elastic modulus of 14 GPa at 25-30 ° C. Characteristic impedance is present on one side of MCL-FX-2 (trade name, manufactured by Hitachi Chemical Co., Ltd.) (a laminated board having a copper layer with a thickness of 18 μm on each side of a non-foam insulating resin layer with a thickness of 64 μm). A signal line having a length of 20 mm was formed by photolithography and etching so as to be 50Ω, thereby forming a signal line conductor layer. At the same time, the copper on the opposite side was entirely removed by etching. On the signal line conductor layer on the non-foamed insulating resin layer, 0.5 mm thick foamed polypropylene (relative dielectric constant 1.1 at 10 GHz, dielectric loss tangent 0.0002, bubble rate: 97%) and thickness 0. 5 mm aluminum plates were stacked in order, the ends were screwed together to integrate the substrate, and the high-frequency circuit board 1 was obtained.

[実施例2]
10GHzにおける比誘電率3.42、誘電正接0.0057、25〜30℃における貯蔵弾性率14GPaの非発泡体絶縁樹脂層の両面に銅層を有する、厚さ0.1mmの両面銅張積層板 MCL−FX−2(日立化成工業株式会社製、商品名)(厚さ64μmの非発泡体絶縁樹脂層の両面に、各々厚さ18μmの銅層を有する積層板)の片面に、特性インピーダンスが50Ωとなるようにフォトリソグラフィとエッチングにより長さ20mmの信号線を形成し、信号線導体層とした。また、同時に反対面側の銅をエッチングにより全面除去した。非発泡体絶縁樹脂層上の信号線導体層上に、厚さ0.3mmの発泡ポリプロピレン(10GHzにおける比誘電率1.1、誘電正接0.0002、気泡率:97%)と厚さ0.5mmのアルミ板を順に重ね、端部をビス止めして基板を一体化させ、高周波回路基板2を得た。
[Example 2]
A double-sided copper clad laminate having a thickness of 0.1 mm, having a copper layer on both sides of a non-foam insulating resin layer having a relative dielectric constant of 3.42 at 10 GHz and a dielectric loss tangent of 0.0057 and a storage elastic modulus of 14 GPa at 25-30 ° C. Characteristic impedance is present on one side of MCL-FX-2 (trade name, manufactured by Hitachi Chemical Co., Ltd.) (a laminated board having a copper layer with a thickness of 18 μm on each side of a non-foam insulating resin layer with a thickness of 64 μm). A signal line having a length of 20 mm was formed by photolithography and etching so as to be 50Ω, thereby forming a signal line conductor layer. At the same time, the copper on the opposite side was entirely removed by etching. On the signal line conductor layer on the non-foamed insulating resin layer, a 0.3 mm thick foamed polypropylene (relative dielectric constant 1.1 at 10 GHz, dielectric loss tangent 0.0002, bubble rate: 97%) and a thickness of 0. 5 mm aluminum plates were stacked in order, the ends were screwed together to integrate the substrate, and the high-frequency circuit board 2 was obtained.

[実施例3]
発泡ポリプロピレンの厚みを0.1mmとした以外は、実施例1と同様な手順により高周波回路基板3を得た。
[Example 3]
A high frequency circuit board 3 was obtained by the same procedure as in Example 1 except that the thickness of the expanded polypropylene was 0.1 mm.

[実施例4]
10GHzにおける比誘電率4.2、誘電正接0.021、25〜30℃における貯蔵弾性率8GPaの非発泡体絶縁樹脂層の両面に銅層を有する、厚さ0.1mmの両面銅張積層板 MCL−E−67(日立化成工業株式会社製、商品名)(厚さ64μmの非発泡体絶縁樹脂層の両面に、各々厚さ18μmの銅層を有する積層板)の片面に、特性インピーダンスが50Ωとなるようにフォトリソグラフィとエッチングにより長さ20mmの信号線を形成し、信号線導体層とした。また、同時に対面側の銅をエッチングにより全面除去した。非発泡体絶縁樹脂層上の信号線導体層上に、厚さ0.3mmの発泡ポリプロピレン(10GHzにおける比誘電率1.1、誘電正接0.0002、気泡率:97%)と厚さ0.5mmのアルミ板を順に重ね、端部をビス止めして基板を一体化させ、高周波回路基板4を得た。
[Example 4]
A double-sided copper clad laminate having a thickness of 0.1 mm, having a copper layer on both sides of a non-foam insulating resin layer having a relative dielectric constant of 4.2 at 10 GHz and a dielectric loss tangent of 0.021, 25 to 30 ° C. and a storage elastic modulus of 8 GPa Characteristic impedance is present on one side of MCL-E-67 (trade name, manufactured by Hitachi Chemical Co., Ltd.) (a laminated board having a 18 μm thick copper layer on each side of a 64 μm thick non-foam insulating resin layer). A signal line having a length of 20 mm was formed by photolithography and etching so as to be 50Ω, thereby forming a signal line conductor layer. At the same time, the copper on the opposite side was removed entirely by etching. On the signal line conductor layer on the non-foamed insulating resin layer, a 0.3 mm thick foamed polypropylene (relative dielectric constant 1.1 at 10 GHz, dielectric loss tangent 0.0002, bubble rate: 97%) and a thickness of 0. 5 mm aluminum plates were stacked in order, the ends were screwed together to integrate the substrate, and the high-frequency circuit board 4 was obtained.

[実施例5]
両面銅張積層板 MCL−FX−2の厚みを0.3mm(非発泡体絶縁樹脂層の厚さ:264μm、各銅層の厚さ:18μm)とした以外は、実施例2と同様な手順により高周波回路基板5を得た。
[Example 5]
Double-sided copper-clad laminate The same procedure as in Example 2 except that the thickness of MCL-FX-2 was 0.3 mm (non-foam insulating resin layer thickness: 264 μm, each copper layer thickness: 18 μm) Thus, a high frequency circuit board 5 was obtained.

[実施例6]
両面銅張積層板 MCL−FX−2の厚みを0.5mm(非発泡体絶縁樹脂層の厚さ:464μm、各銅層の厚さ:18μm)とした以外は、実施例2と同様な手順により高周波回路基板6を得た。
[Example 6]
Double-sided copper-clad laminate The same procedure as in Example 2 except that the thickness of MCL-FX-2 was changed to 0.5 mm (non-foam insulating resin layer thickness: 464 μm, each copper layer thickness: 18 μm). Thus, a high frequency circuit board 6 was obtained.

[比較例1]
10GHzにおける比誘電率3.42、誘電正接0.0057、25〜30℃における貯蔵弾性率:14GPaの非発泡体絶縁樹脂層の両面に銅層を有する、厚さ0.1mmの両面銅張積層板 MCL−FX−2(日立化成工業株式会社製、商品名)(厚さ64μmの非発泡体絶縁樹脂層の両面に、各々厚さ18μmの銅層を有する積層板)の片面に、特性インピーダンスが50Ωとなるようにフォトリソグラフィとエッチングにより長さ20mmの信号線を形成し、信号線導体層とした。非発泡体絶縁樹脂層上の信号線導体層上に、厚さ0.3mmの発泡ポリプロピレン(10GHzにおける比誘電率1.1、誘電正接0.0002、気泡率:97%)と厚さ0.5mmのアルミ板を順に重ね、端部をビス止めして基板を一体化させ、高周波回路基板7を得た。この高周波回路基板7は、図2に示す断面を有するストリップ線路構造のものであり、信号線導体層2を2つの誘電体層5で挟持し、一方の誘電体層5の外面にアルミ板からなる接地導体層4を、他方の誘電体層5の外面に銅からなる導体層6を配置した構造を有する。
[Comparative Example 1]
A dielectric constant of 3.42 at 10 GHz, a dielectric loss tangent of 0.0057, a storage elastic modulus at 25-30 ° C .: a double-sided copper-clad laminate with a thickness of 0.1 mm, having a copper layer on both sides of a non-foam insulating resin layer of 14 GPa Plate MCL-FX-2 (trade name, manufactured by Hitachi Chemical Co., Ltd.) (a laminated plate having a copper layer with a thickness of 18 μm on each side of a non-foam insulating resin layer with a thickness of 64 μm), a characteristic impedance A signal line having a length of 20 mm was formed by photolithography and etching so as to be 50Ω, thereby forming a signal line conductor layer. On the signal line conductor layer on the non-foamed insulating resin layer, a 0.3 mm thick foamed polypropylene (relative dielectric constant 1.1 at 10 GHz, dielectric loss tangent 0.0002, bubble rate: 97%) and a thickness of 0. 5 mm aluminum plates were stacked in order, the ends were screwed together, and the substrate was integrated to obtain a high-frequency circuit board 7. The high-frequency circuit board 7 has a stripline structure having a cross section shown in FIG. 2, and the signal line conductor layer 2 is sandwiched between two dielectric layers 5, and an outer surface of one dielectric layer 5 is made of an aluminum plate. The ground conductor layer 4 has a structure in which a conductor layer 6 made of copper is disposed on the outer surface of the other dielectric layer 5.

[比較例2]
10GHzにおける比誘電率3.42、誘電正接0.0057、25〜30℃における貯蔵弾性率:14GPaの非発泡体絶縁樹脂層の両面に銅層を有する、厚さ0.1mmの両面銅張積層板 MCL−FX−2(日立化成工業株式会社製、商品名)(厚さ64μmの非発泡体絶縁樹脂層の両面に、各々厚さ18μmの銅層を有する積層板)の片面に、特性インピーダンスが50Ωとなるようにフォトリソグラフィとエッチングにより長さ20mmの信号線を形成し、高周波回路基板8を得た。
作製した高周波回路基板の信号線、及び、接地導体層の端部にSMAコネクタをはんだ付けし、アジレント・テクノロジー社製ネットワークアナライザPNA E8364Bを用いて10GHzにおける伝送損失を測定した。尚、伝送損失の測定に際し、実施例1〜5においては、発泡ポリプロピレン上のアルミ板を接地導体層として用い、比較例1では、アルミ板、及び、エッチング除去せずに残った外層銅箔からなる導体層の両方を接地導体層として用い、比較例2では、両面銅張積層板の信号線形成をしなかった方の銅層を接地導体層として用いた。
[Comparative Example 2]
A dielectric constant of 3.42 at 10 GHz, a dielectric loss tangent of 0.0057, a storage elastic modulus at 25-30 ° C .: a double-sided copper-clad laminate with a thickness of 0.1 mm, having a copper layer on both sides of a non-foam insulating resin layer of 14 GPa Plate MCL-FX-2 (trade name, manufactured by Hitachi Chemical Co., Ltd.) (a laminated plate having a copper layer with a thickness of 18 μm on each side of a non-foam insulating resin layer with a thickness of 64 μm), a characteristic impedance A signal line having a length of 20 mm was formed by photolithography and etching so as to be 50Ω, and the high-frequency circuit board 8 was obtained.
An SMA connector was soldered to the signal line of the produced high-frequency circuit board and the end of the ground conductor layer, and transmission loss at 10 GHz was measured using a network analyzer PNA E8364B manufactured by Agilent Technologies. In the measurement of transmission loss, in Examples 1 to 5, an aluminum plate on foamed polypropylene was used as the ground conductor layer, and in Comparative Example 1, from the aluminum plate and the outer layer copper foil that remained without being removed by etching. Both of the conductor layers to be used were used as the ground conductor layers, and in Comparative Example 2, the copper layer on which the signal lines of the double-sided copper-clad laminate were not formed was used as the ground conductor layer.

表1に示すように、実施例1〜6ではいずれも伝送損失が0.2dB以下であった。一方、比較例ではいずれも0.36dB程度で損失が大きいことが分かる。実施例と比較例では、接地導体層の配置と発泡体絶縁層の有無が異なっており、本発明における基板構造が伝送損失低減に有効であることがこの結果から分かる。実施例1〜3においては、発泡体の厚みが薄くなると伝送損失が増加している。これは、発泡体厚みが薄くなることにより信号線−接地導体層間の誘電損が増加するためである。また、実施例2,5,6においては、積層板厚み(熱硬化性樹脂層厚み)が厚くなると伝増損失が増加している。これは、積層板が厚くなることにより熱硬化性樹脂による誘電損が増加するためである。実施例中、実施例1の伝送損失が最小となっており、これは実施例中発泡体が最も厚く、かつ、積層板が最も薄いことによる効果が示されているものである。   As shown in Table 1, in each of Examples 1 to 6, the transmission loss was 0.2 dB or less. On the other hand, in the comparative examples, it can be seen that the loss is large at about 0.36 dB. In the example and the comparative example, the arrangement of the ground conductor layer and the presence or absence of the foam insulating layer are different, and it can be seen from this result that the substrate structure in the present invention is effective in reducing transmission loss. In Examples 1 to 3, the transmission loss increases as the thickness of the foam decreases. This is because the dielectric loss between the signal line and the ground conductor layer increases as the foam thickness decreases. In Examples 2, 5, and 6, the transmission loss increases as the laminate thickness (thermosetting resin layer thickness) increases. This is because the dielectric loss due to the thermosetting resin increases as the thickness of the laminate increases. In the examples, the transmission loss of Example 1 is the smallest, which shows the effect of the foam being the thickest and the laminate being the thinnest in the Examples.

Figure 0005098794
Figure 0005098794

本発明における回路基板の断面図Sectional view of the circuit board in the present invention 従来のストリップ線路を用いた回路基板の断面図Sectional view of a circuit board using a conventional stripline

符号の説明Explanation of symbols

1 非発泡体絶縁樹脂層
2 信号線導体層
3 発泡体絶縁樹脂層
4 接地導体層
5 誘電体層
6 導体層
DESCRIPTION OF SYMBOLS 1 Non-foam insulation resin layer 2 Signal line conductor layer 3 Foam insulation resin layer 4 Ground conductor layer 5 Dielectric layer 6 Conductor layer

Claims (5)

繊維強化材に含浸させた熱硬化性樹脂の非発泡硬化物からなり厚みが0.05〜1.0mm、25〜30℃における貯蔵弾性率が1〜30GPaである非発泡体絶縁樹脂層と、該非発泡体絶縁樹脂層の片面に予め形成された信号線導体層と、樹脂発泡体からなる発泡体絶縁樹脂層と、接地導体層とを有し、該信号線導体層が形成された該非発泡体絶縁樹脂層と、該発泡体絶縁樹脂層と、該接地導体層とが、非発泡体絶縁樹脂層/信号線導体層/発泡体絶縁樹脂層/接地導体層の順に積層されてなる高周波回路基板。 Such a non-foamed cured thermosetting resin impregnated into the fiber reinforcement Riatsumi is 0.05 to 1.0 mm, non-foam insulating resin layer a storage elastic modulus Ru 1~30GPa der at 25 to 30 ° C. A signal line conductor layer formed in advance on one side of the non-foamed insulating resin layer, a foam insulating resin layer made of a resin foam, and a ground conductor layer, and the signal line conductor layer is formed. The non-foam insulating resin layer, the foam insulating resin layer, and the ground conductor layer are laminated in the order of non-foam insulating resin layer / signal line conductor layer / foam insulating resin layer / ground conductor layer. High frequency circuit board. 該信号線導体層が形成された該非発泡体絶縁樹脂層と、該発泡体絶縁樹脂層と、該接地導体層とが、締結手段によって積層、固定されてなる請求項1に記載の高周波回路基板。The high-frequency circuit board according to claim 1, wherein the non-foam insulating resin layer on which the signal line conductor layer is formed, the foam insulating resin layer, and the ground conductor layer are laminated and fixed by fastening means. . 前記発泡体絶縁樹脂層が、発泡ポリスチレン、発泡ポリエチレン、発泡ポリプロピレン及び発泡ポリウレタンからなる群から選ばれる発泡体からなり、10GHzにおける比誘電率が1.0〜2.0、誘電正接が0.0001〜0.001である請求項1又は2に記載の高周波回路基板。 The foam insulating resin layer is made of a foam selected from the group consisting of foamed polystyrene, foamed polyethylene, foamed polypropylene, and foamed polyurethane. The relative dielectric constant at 10 GHz is 1.0 to 2.0, and the dielectric loss tangent is 0.0001. The high-frequency circuit board according to claim 1 or 2 , which is ˜0.001. 前記発泡体絶縁樹脂層の厚みが0.05〜1.0mmである請求項1〜3いずれかに記載の高周波回路基板。 The high frequency circuit board according to any one of claims 1 to 3 , wherein the foam insulating resin layer has a thickness of 0.05 to 1.0 mm. 前記非発泡体絶縁樹脂層の10GHzにおける比誘電率が2.0〜4.0、誘電正接が0.001〜0.01である請求項1〜いずれかに記載の高周波回路基板。 The non-foam insulating resin layer relative dielectric constant at 10GHz of 2.0 to 4.0, a high frequency circuit board according to claim 1-4 dielectric loss tangent is 0.001 to 0.01.
JP2008127109A 2008-05-14 2008-05-14 High frequency circuit board Expired - Fee Related JP5098794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008127109A JP5098794B2 (en) 2008-05-14 2008-05-14 High frequency circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008127109A JP5098794B2 (en) 2008-05-14 2008-05-14 High frequency circuit board

Publications (2)

Publication Number Publication Date
JP2009277855A JP2009277855A (en) 2009-11-26
JP5098794B2 true JP5098794B2 (en) 2012-12-12

Family

ID=41443016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008127109A Expired - Fee Related JP5098794B2 (en) 2008-05-14 2008-05-14 High frequency circuit board

Country Status (1)

Country Link
JP (1) JP5098794B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013103253A1 (en) * 2012-01-06 2013-07-11 주식회사 기가레인 Printed circuit board having shielding member for reducing dielectric loss
JP2013206892A (en) * 2012-03-27 2013-10-07 Mitsui Chemicals Tohcello Inc High frequency substrate material
JP6146043B2 (en) * 2013-02-21 2017-06-14 富士通株式会社 Measuring apparatus and measuring method
JP2014192529A (en) * 2013-03-26 2014-10-06 Hitachi Ltd Mobile communication marker
CN105828530B (en) * 2015-10-30 2019-02-15 维沃移动通信有限公司 A kind of circuit board and electronic equipment
CN107860556A (en) * 2017-10-24 2018-03-30 北京特种机械研究所 Pool wall anticollision device, collision-prevention device for aircraft Hot Separation of Vertical Underwater Launched experimental tank
JP7166122B2 (en) * 2018-09-28 2022-11-07 日東電工株式会社 roll body

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644667B2 (en) * 1985-09-05 1994-06-08 住友電気工業株式会社 Flexible printed circuit board with shield
JPH0644668B2 (en) * 1985-09-05 1994-06-08 住友電気工業株式会社 Flexible printed circuit board with shield
JPS6269580A (en) * 1985-09-21 1987-03-30 松下電工株式会社 Printed circuit board material
JPH0722741A (en) * 1993-07-01 1995-01-24 Japan Gore Tex Inc Coverlay film and coverlay film covering circuit board
JP2003017826A (en) * 2001-06-28 2003-01-17 Nitto Denko Corp Wiring board
JP2004082372A (en) * 2002-08-23 2004-03-18 Nitto Denko Corp Insulating material for high frequency wiring board and high frequency wiring board

Also Published As

Publication number Publication date
JP2009277855A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP5098794B2 (en) High frequency circuit board
US9439303B2 (en) Circuit board and method for manufacturing same
JP5658399B1 (en) Printed wiring board
US8242380B2 (en) Printed circuit board substrate and method for constructing same
WO2001003478A1 (en) Printed wiring board and prepreg for printed wiring board
KR20180071244A (en) Method for manufacturing wiring board
Nishimura et al. Development of new dielectric material to reduce transmission loss
JP2008537964A (en) Methods and compositions for dielectric materials
JP4829028B2 (en) Circuit board and circuit board manufacturing method
JP2014207297A (en) Flexible printed circuit, and method for manufacturing the same
TWI558544B (en) Metal clad laminate, and printed wiring board
JP2002307611A (en) Fluoroplastic copper-clad laminated sheet
JP4689263B2 (en) Multilayer wiring board and manufacturing method thereof
Ravichandran et al. Packaging approaches for mm wave and sub-THz communication
JP2007277463A (en) Low dielectric prepreg, and metal foil clad laminate and multilayer printed wiring board using the same
CN114765917A (en) Printed circuit board, manufacturing method thereof and electronic communication equipment
JP2003017821A (en) Printed wiring board material and use thereof
JPS62283694A (en) Manufacture of printed wiring board
JP2003017820A (en) Relative permittivity stabilized printed wiring board material and use thereof
JP7449655B2 (en) multilayer printed wiring board
JP2009194179A (en) Flexible printed wiring board and slidable mobile telephone terminal using flexible printed wiring board
JPH0316299Y2 (en)
JP5406252B2 (en) Printed wiring circuit and manufacturing method thereof
JP6748338B1 (en) Flat antenna board
US20240121888A1 (en) Systems and methods for improving high frequency transmission in printed circuit boards

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees