JP5094337B2 - レーザ加工方法 - Google Patents

レーザ加工方法 Download PDF

Info

Publication number
JP5094337B2
JP5094337B2 JP2007287562A JP2007287562A JP5094337B2 JP 5094337 B2 JP5094337 B2 JP 5094337B2 JP 2007287562 A JP2007287562 A JP 2007287562A JP 2007287562 A JP2007287562 A JP 2007287562A JP 5094337 B2 JP5094337 B2 JP 5094337B2
Authority
JP
Japan
Prior art keywords
lens
workpiece
region
laser
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007287562A
Other languages
English (en)
Other versions
JP2009113068A (ja
Inventor
耕司 久野
達也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2007287562A priority Critical patent/JP5094337B2/ja
Publication of JP2009113068A publication Critical patent/JP2009113068A/ja
Application granted granted Critical
Publication of JP5094337B2 publication Critical patent/JP5094337B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、加工対象物を切断するためのレーザ加工方法に関する。
従来のレーザ加工方法としては、板状の加工対象物に集光点を合わせて第1のレーザ光を照射することで、加工対象物を切断するための領域を切断予定ラインに沿って形成するものが知られている(例えば、特許文献1参照。)このようなレーザ加工方法では、第2のレーザ光を照射しながら、加工対象物の縁部を跨ぐように、第2のレーザ光を加工対象物の厚さ方向と交差する一方向に移動させるのに併せて、第2のレーザ光の反射光を受光する。そして、第2のレーザ光の反射光の全光量の変化に基づいて、加工対象物の縁部の位置を検出する。
特開2007−167918号公報
ここで、上述したようなレーザ加工方法では、例えば、加工対象物のレーザ光照射面に酸化膜や窒化膜等の薄膜が形成されることがある。薄膜の透過率は、レーザ光の波長と薄膜の膜圧に依存しており、膜厚に対して周期的に変化することが知られている。透過率が小さくなる膜厚になると、レーザ光照射面の第2のレーザ光の反射率が低くなる。よって、この場合、レーザ光照射面で反射する反射光の全光量と、加工対象物以外で反射する反射光の全光量との差が小さくなり、加工対象物の縁部の位置を精度よく検出することができないおそれがある。
そこで、本発明は、加工対象物の縁部の位置を精度よく検出することができるレーザ加工方法を提供することを課題とする。
上記課題を解決するために、本発明に係るレーザ加工方法は、板状の加工対象物に集光点を合わせて第1のレーザ光を照射することにより、加工対象物を切断するための領域を切断予定ラインに沿って形成するレーザ加工方法であって、第2のレーザ光をレンズを介して照射しながら、加工対象物の縁部を跨ぐように、第2のレーザ光を加工対象物の厚さ方向と交差する一方向に移動させるのに併せて、第2のレーザ光の反射光を受光することにより、第2のレーザ光が反射する反射面の変位に関する変位信号を、受光した反射光の全光量で正規化して求め、求められた変位信号が一定になるように、駆動手段に駆動信号を入力してレンズをその光軸方向に沿って駆動させる工程と、駆動信号の変化に基づいて、縁部の位置を検出する工程と、を含むこと特徴とする。
このレーザ加工方法によれば、照射された第2のレーザ光が加工対象物の縁部を跨ぐように一方向に移動され、これに併せて、第2のレーザ光の反射光が受光されて変位信号が求められ、変位信号が一定となるように、駆動手段でレンズがその光軸方向に沿って駆動される。これにより、第2のレーザ光を一方向に移動させる際、加工対象物の外及び加工対象物上において、第2のレーザ光が反射する反射面の変位に追従するようにレンズが駆動されることになる。ここで、例えば第2のレーザ光が加工対象物に乗り上げたときには、反射面の位置が大きく変化することになるため、駆動手段に入力される駆動信号が大きく変化する。さらに、変位信号は、受光した反射光の全光量で正規化され、反射光の全光量の相対値として求められているため、反射光の全光量が少ない場合においても、駆動手段に駆動信号が入力され、反射面の変位に追従するようにレンズが駆動される。つまり、駆動信号は、反射光の光量によらないものとなる。従って、駆動信号の変化に基づいて、加工対象物の縁部の位置を検出することにより、反射光の全光量が少ない場合でも、かかる縁部の位置を精度よく検出することが可能となる。
また、第2のレーザ光を一方向に移動させる際には、縁部を含む所定領域での第2のレーザ光の移動速度を、所定領域以外での移動速度よりも遅くすることが好ましい。この場合、縁部を含む所定領域では、駆動信号の変化が細かく検出されることになり、加工対象物の縁部の位置を一層精度よく検出することが可能となる。
また、加工対象物を切断するための領域は、切断の起点となる改質領域であることが好ましい。これにより、加工対象物を精度よく切断することができる。
また、上記作用効果を好適に奏する場合としては、具体的には、レンズのピントが加工対象物のレーザ光照射面に合う状態とし、この状態にて駆動手段に入力されている駆動信号を基準駆動信号として求める工程を含み、縁部の位置を検出する際には、駆動信号が基準駆動信号となったときの光軸の一方向における位置を、縁部の位置として検出する場合が挙げられる。
また、第1のレーザ光を照射することで加工対象物を切断するための領域を切断予定ラインに沿って形成する際には、加工対象物に対し離れた位置から加工対象物上の位置まで、レンズを切断予定ラインに沿って移動させるのに併せて、レンズの光軸が、検出した縁部の位置にあると判断されるまでは、駆動手段によるレンズの駆動を停止し、レンズの光軸が、検出した縁部の位置にあると判断された後には、変位信号が一定になるように、駆動手段に駆動信号を入力してレンズをその光軸方向に沿って駆動させることが好ましい。また、第1のレーザ光を照射することで加工対象物を切断するための領域を切断予定ラインに沿って形成する際には、加工対象物上の位置から加工対象物に対し離れた位置まで、レンズを切断予定ラインに沿って移動させるのに併せて、レンズの光軸が、検出した縁部の位置にあると判断されるまでは、変位信号が一定になるように、駆動手段に駆動信号を入力してレンズをその光軸方向に沿って駆動させ、レンズの光軸が、検出した縁部の位置にあると判断された後には、駆動手段によるレンズの駆動を停止することが好ましい。これらの場合、レンズがレーザ光照射面に好適に追従されることになり、加工対象物を切断するための領域を切断予定ラインに沿って精度よく形成することができる。
また、第1のレーザ光を照射することで加工対象物を切断するための領域を切断予定ラインに沿って形成する際には、加工対象物に対し離れた位置から加工対象物上の位置まで、レンズを切断予定ラインに沿って移動させるのに併せて、レンズの光軸が、検出した縁部の位置にあると判断されるまでは、第1のレーザ光の照射を停止し、レンズの光軸が、検出した縁部の位置にあると判断された後には、第1のレーザ光を照射することにより領域を切断予定ラインに沿って形成することが好ましい。また、第1のレーザ光を照射することで加工対象物を切断するための領域を切断予定ラインに沿って形成する際には、加工対象物上の位置から加工対象物に対し離れた位置まで、レンズを切断予定ラインに沿って移動させるのに併せて、レンズの光軸が、検出した縁部の位置にあると判断されるまでは、第1のレーザ光を照射することにより領域を切断予定ラインに沿って形成し、レンズの光軸が、検出した縁部の位置にあると判断された後には、第1のレーザ光の照射を停止することが好ましい。これらの場合、検出した縁部の位置に基づいて第1のレーザ光の照射が開始及び停止されることになり、加工対象物を切断するための領域を切断予定ラインに沿って一層精度よく形成することができる。なお、「第1のレーザ光の照射を停止する」とは、例えば第1のレーザ光の発振を停止したり、シャッタ等で第1のレーザ光を物理的に遮断したりすることだけでなく、例えばレーザ強度を加工閾値(加工対象物を切断するための領域が形成されるに足るレーザ強度の低限値)未満にする等の「第1のレーザ光の照射を実質的に停止する」場合を含むものである。
本発明によれば、加工対象物の縁部の位置を精度よく検出することが可能となる。
以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当要素には同一符号を付し、重複する説明を省略する。
本実施形態に係るレーザ加工方法においては、板状の加工対象物に集光点を合わせて第1のレーザ光を照射することにより、切断予定ラインに沿って加工対象物に改質領域を形成する。そこで、まず、本実施形態に係るレーザ加工方法における改質領域の形成について、図1〜図9を参照して説明する。
図1に示すように、レーザ加工装置100は、レーザ光(第1のレーザ光)Lをパルス発振等するレーザ光源101と、レーザ光Lの光軸の向きを90°変えるように配置されたダイクロイックミラー103と、レーザ光Lを集光するための集光用レンズ105と、を備えている。また、レーザ加工装置100は、集光用レンズ105で集光されたレーザ光Lが照射される加工対象物1を支持するための支持台107と、支持台107をX、Y、Z軸方向に移動させるためのステージ111と、レーザ光Lの出力やパルス幅等を調節するためにレーザ光源101を制御するレーザ光源制御部102と、ステージ111の移動を制御するステージ制御部115と、を備えている。
このレーザ加工装置100においては、レーザ光源101から出射されたレーザ光Lは、ダイクロイックミラー103によってその光軸の向きを90°変えられ、支持台107上に載置された加工対象物1の内部に集光用レンズ105によって集光される。これと共に、ステージ111が移動させられ、加工対象物1がレーザ光Lに対して切断予定ライン5に沿って相対移動させられる。これにより、切断予定ライン5に沿って、切断の起点となる改質領域が加工対象物1に形成されることとなる。以下、この改質領域について詳細に説明する。
図2に示すように、板状の加工対象物1には、加工対象物1を切断するための切断予定ライン5が設定されている。切断予定ライン5は、直線状に延びた仮想線である。加工対象物1の内部に改質領域を形成する場合、図3に示すように、加工対象物1の内部に集光点Pを合わせた状態で、レーザ光Lを切断予定ライン5に沿って(すなわち、図2の矢印A方向に)相対的に移動させる。これにより、図4〜図6に示すように、改質領域7が切断予定ライン5に沿って加工対象物1の内部に形成され、切断予定ライン5に沿って形成された改質領域7が切断起点領域8となる。
なお、集光点Pとは、レーザ光Lが集光する箇所のことである。また、切断予定ライン5は、直線状に限らず曲線状であってもよいし、仮想線に限らず加工対象物1の表面3に実際に引かれた線であってもよい。また、改質領域7は、連続的に形成される場合もあるし、断続的に形成される場合もある。また、改質領域7は少なくとも加工対象物1の内部に形成されていればよい。また、改質領域7を起点に亀裂が形成される場合があり、亀裂及び改質領域7は、加工対象物1の外表面(表面、裏面、若しくは外周面)に露出していてもよい。
ちなみに、ここでは、レーザ光Lが、加工対象物1を透過すると共に加工対象物1の内部の集光点近傍にて特に吸収され、これにより、加工対象物1に改質領域7が形成される(すなわち、内部吸収型レーザ加工)。よって、加工対象物1の表面3ではレーザ光Lが殆ど吸収されないので、加工対象物1の表面3が溶融することはない。一般的に、表面3から溶融され除去されて穴や溝等の除去部が形成される(表面吸収型レーザ加工)場合、加工領域は表面3側から徐々に裏面側に進行する。
ところで、本実施形態に係るレーザ加工方法及びレーザ加工装置にて形成される改質領域は、密度、屈折率、機械的強度やその他の物理的特性が周囲とは異なる状態になった領域をいう。例えば、(1)溶融処理領域、(2)クラック領域、絶縁破壊領域、(3)屈折率変化領域等があり、これらが混在した領域もある。
本実施形態に係るレーザ加工方法及びレーザ加工装置における改質領域は、レーザ光の局所的な吸収や多光子吸収という現象により形成される。多光子吸収とは、材料の吸収のバンドギャップEよりも光子のエネルギーhνが小さいと光学的に透明となるため、材料に吸収が生じる条件はhν>Eであるが、光学的に透明でも、レーザ光Lの強度を非常に大きくするとnhν>Eの条件(n=2,3,4,・・・)で材料に吸収が生じる現象をいう。多光子吸収による溶融処理領域の形成は、例えば、溶接学会全国大会講演概要第66集(2000年4月)の第72頁〜第73頁の「ピコ秒パルスレーザによるシリコンの加工特性評価」に記載されている。
また、D.Du,X.Liu,G.Korn,J.Squier,and G.Mourou,”Laser Induced Breakdown by Impact Ionization in SiO2 with Pulse Widths from 7ns to 150fs”,Appl Phys Lett64(23),Jun.6,1994に記載されているようにパルス幅が数ピコ秒からフェムト秒の超短パルスレーザ光を利用することにより形成される改質領域を利用してもよい。
(1)改質領域が溶融処理領域を含む場合
加工対象物(例えばシリコンのような半導体材料)の内部に集光点を合わせて、集光点における電界強度が1×10(W/cm)以上で且つパルス幅が1μs以下の条件でレーザ光Lを照射する。これにより、集光点近傍にてレーザ光Lが吸収されて加工対象物の内部が局所的に加熱され、この加熱により加工対象物の内部に溶融処理領域が形成される。
溶融処理領域とは、一旦溶融後再固化した領域や、まさに溶融状態の領域や、溶融状態から再固化する状態の領域であり、相変化した領域や結晶構造が変化した領域ということもできる。また、溶融処理領域とは単結晶構造、非晶質構造、多結晶構造において、ある構造が別の構造に変化した領域ということもできる。つまり、例えば、単結晶構造から非晶質構造に変化した領域、単結晶構造から多結晶構造に変化した領域、単結晶構造から非晶質構造及び多結晶構造を含む構造に変化した領域を意味する。加工対象物がシリコン単結晶構造の場合、溶融処理領域は例えば非晶質シリコン構造である。
図7は、レーザ光が照射されたシリコンウェハ(半導体基板)の一部における断面の写真を表した図である。図7に示すように、半導体基板11の内部に溶融処理領域13が形成されている。
入射するレーザ光の波長に対して透過性の材料の内部に溶融処理領域13が形成されたことを説明する。図8は、レーザ光の波長とシリコン基板の内部の透過率との関係を示す線図である。ただし、シリコン基板の表面側と裏面側それぞれの反射成分を除去し、内部のみの透過率を示している。シリコン基板の厚さtが50μm、100μm、200μm、500μm、1000μmの各々について上記関係を示した。
例えば、Nd:YAGレーザの波長である1064nmにおいて、シリコン基板の厚さが500μm以下の場合、シリコン基板の内部ではレーザ光Lが80%以上透過することが分かる。図7に示す半導体基板11の厚さは350μmであるので、溶融処理領域13は半導体基板11の中心付近、つまり表面から175μmの部分に形成される。この場合の透過率は、厚さ200μmのシリコンウェハを参考にすると、90%以上なので、レーザ光Lが半導体基板11の内部で吸収されるのは僅かであり、殆どが透過する。しかし、1×10(W/cm)以上で且つパルス幅が1μs以下の条件でレーザ光Lをシリコンウェハ内部に集光することで集光点とその近傍で局所的にレーザ光が吸収され溶融処理領域13が半導体基板11の内部に形成される。
なお、シリコンウェハには、溶融処理領域を起点として亀裂が発生する場合がある。また、溶融処理領域に亀裂が内包されて形成される場合があり、この場合には、その亀裂が、溶融処理領域においての全面に渡って形成されていたり、一部分のみや複数部分に形成されていたりすることがある。更に、この亀裂は、自然に成長する場合もあるし、シリコンウェハに力が印加されることにより成長する場合もある。溶融処理領域から亀裂が自然に成長する場合には、溶融処理領域が溶融している状態から成長する場合と、溶融処理領域が溶融している状態から再固化する際に成長する場合とのいずれもある。ただし、どちらの場合も溶融処理領域はシリコンウェハの内部に形成され、切断面においては、図7に示すように、内部に溶融処理領域が形成されている。
(2)改質領域がクラック領域を含む場合
加工対象物(例えばガラスやLiTaOからなる圧電材料)の内部に集光点を合わせて、集光点における電界強度が1×10(W/cm)以上で且つパルス幅が1μs以下の条件でレーザ光Lを照射する。このパルス幅の大きさは、加工対象物の内部にレーザ光Lが吸収されてクラック領域が形成される条件である。これにより、加工対象物の内部には光学的損傷という現象が発生する。この光学的損傷により加工対象物の内部に熱ひずみが誘起され、これにより加工対象物の内部に、1つ又は複数のクラックを含むクラック領域が形成される。クラック領域は絶縁破壊領域とも言える。
図9は電界強度とクラックの大きさとの関係の実験結果を示す線図である。横軸はピークパワー密度であり、レーザ光Lがパルスレーザ光なので電界強度はピークパワー密度で表される。縦軸は1パルスのレーザ光Lにより加工対象物の内部に形成されたクラック部分(クラックスポット)の大きさを示している。クラックスポットが集まりクラック領域となる。クラックスポットの大きさは、クラックスポットの形状のうち、最大の長さとなる部分の大きさである。グラフ中の黒丸で示すデータは集光用レンズ(C)の倍率が100倍、開口数(NA)が0.80の場合である。一方、グラフ中の白丸で示すデータは集光用レンズ(C)の倍率が50倍、開口数(NA)が0.55の場合である。ピークパワー密度が1011(W/cm)程度から加工対象物の内部にクラックスポットが発生し、ピークパワー密度が大きくなるに従いクラックスポットも大きくなることが分かる。
(3)改質領域が屈折率変化領域を含む場合
加工対象物(例えばガラス)の内部に集光点を合わせて、集光点における電界強度が1×10(W/cm)以上で且つパルス幅が1ns以下の条件でレーザ光Lを照射する。このように、パルス幅が極めて短い状態で加工対象物の内部にレーザ光Lが吸収されると、そのエネルギーが熱エネルギーに転化せず、加工対象物の内部にはイオン価数変化、結晶化又は分極配向等の永続的な構造変化が誘起され、屈折率変化領域が形成される。
なお、改質領域とは、溶融処理領域、絶縁破壊領域、屈折率変化領域等やそれらが混在した領域を含めて、その材料において改質領域の密度が非改質領域の密度と比較して変化した領域であったり、格子欠陥が形成された領域であったりする。これらをまとめて高密転移領域と言うこともできる。
また、溶融処理領域や屈折率変化領域、改質領域の密度が非改質領域の密度と比較して変化した領域、格子欠陥が形成された領域は、更にそれら領域の内部や改質領域と非改質領域との界面に亀裂(割れ、マイクロクラック)を内包している場合がある。内包される亀裂は改質領域の全面に渡る場合や一部分のみや複数部分に形成される場合がある。
ちなみに、加工対象物の結晶構造やその劈開性等を考慮して、改質領域を次のように形成すれば、精度よく加工対象物を切断することが可能になる。
すなわち、シリコン等のダイヤモンド構造の単結晶半導体からなる基板の場合は、(111)面(第1劈開面)や(110)面(第2劈開面)に沿った方向に改質領域を形成するのが好ましい。また、GaAs等の閃亜鉛鉱型構造のIII−V族化合物半導体からなる基板の場合は、(110)面に沿った方向に改質領域を形成するのが好ましい。更に、サファイア(Al)等の六方晶系の結晶構造を有する基板の場合は、(0001)面(C面)を主面として(1120)面(A面)或いは(1100)面(M面)に沿った方向に改質領域を形成するのが好ましい。
また、上述した改質領域を形成すべき方向(例えば、単結晶シリコン基板における(111)面に沿った方向)、或いは改質領域を形成すべき方向に直交する方向に沿って基板にオリエンテーションフラットを形成すれば、そのオリエンテーションフラットを基準とすることで、改質領域を容易且つ正確に基板に形成することが可能になる。
次に、本発明の一実施形態に係るレーザ加工方法について説明する。
図10は、本実施形態に係るレーザ加工装置の概略構成図である。図10に示すように、レーザ加工装置200は、ステージ201、レーザ光源202、レンズ203、AF(autofocus)ユニット204、制御部205及び駆動ユニット(駆動手段)206を備えている。
ステージ201は、XYZ方向に並進移動可能に構成され、加工対象物1を支持している。この加工対象物1は、例えばシリコンからなる厚さ300μm半導体基板であり、図11に示すように、上方視において略円形を呈している。半導体基板の表面には、オリエンテーションフラット6に平行な方向及び垂直な方向にマトリックス状に配置された複数の機能素子(例えば、受光素子等)が形成されている。このような加工対象物1には、隣り合う機能素子間を通るような格子状の切断予定ライン5が設定されている。
図10に戻り、レーザ光源202は、ビームスプリッタ210で透過されてレンズ203で集光されるレーザ光(第1のレーザ光)Lを出射する。レンズ203は、複数のレンズを含んで構成されるレンズ群である。
AFユニット204は、ビームスプリッタ210で反射されてレンズ203で集光されるAF用レーザ光(第2のレーザ光)LBを出射する。また、AFユニット204は、AF用レーザ光LBの反射光を受光することで、AF用レーザ光LBの反射面(以下、単に「反射面」という)の変位(うねり)に関する変位信号を、受光した反射光の全光量で正規化して取得する。ここでは、例えば非点収差法を用いることで反射光の集光像に応じた非点信号を求めると共に、受光した反射光の全光量に相当する全光量信号を求め、そして、非点信号を全光量信号で除算することにより、変位信号を取得している。また、AFユニット204は、取得した変位信号を制御部205に出力する。
制御部205は、例えばCPU、ROM、及びRAM等から構成され、変位信号が一定になるように、駆動ユニット206に電圧信号(駆動信号)を入力してレンズ203をその光軸方向に沿って駆動させる。これにより、レンズ203が、反射面の変位に追従するように駆動される。
駆動ユニット206は、制御部205から入力された電圧信号に応じて、レンズ203をその光軸方向に沿って駆動させる。ここでの駆動ユニット206としては、例えばピエゾが用いられており、2.5V±2.5Vの範囲内の電圧信号が入力され、20μm±20μmのストローク範囲内でレンズ203を光軸方向に沿って駆動させる。
次に、レーザ加工装置200を用いて加工対象物1を切断する場合について説明する。
まず、加工対象物1の裏面21に、例えばエキスパンドテープ等のテープ211を貼り付け、この加工対象物1をステージ201に載置する。続いて、加工対象物1のレーザ光照射面である表面3を、CCDカメラ等の撮像手段(不図示)によりレンズ203を介して撮像する。そして、レンズ203をZ軸方向に移動させ、投影されるレクチルパターンのコントラストが最大になる状態とする(ハイトセット)。
このハイトセット時において、AF用レーザ光LBを照射し、レーザ光照射面3にて反射される反射光を受光して、変位信号を取得する。そして、この変位信号を基準変位信号として制御部205にメモリーする。これにより、ハイトセット時のレーザ光照射面3が変位信号での変位0とされる。また、ハイトセット時に駆動ユニット206に入力された電圧信号を、基準電圧信号(ここでは、2.5V)として制御部205にメモリーする。
次に、加工対象物1のエッジ(縁部)の位置を検出する。まず、加工対象物1の概略位置を既知の諸条件の下に算出する。ここでは、加工対象物1のサイズ、及び加工対象物1がステージ201の吸着テーブル(不図示)の中心に載置されている等の条件に基づいて、加工対象物1の概略位置を算出する。
続いて、図12(a)に示すように、加工対象物1においてエッジ検出ライン15a(図18参照)の一方側のエッジx1の近傍(例えば、エッジx1の概略位置から数mm手前)にレンズ203の光軸Gが位置するように、加工対象物1を移動させる。このときのステージ201の速度は、例えば600mm/秒とされている。
続いて、図12(b)〜図13(b)に示すように、縁部を含む所定領域において、AF用レーザ光LBをレンズ203を介して照射しながら、エッジ検出ライン15aに沿う矢印A1方向に加工対象物1を例えば10mm/秒で移動させ、加工対象物1のエッジx1を跨ぐようにAF用レーザ光LBを矢印B1方向に相対移動させる。このエッジ検出ライン15aは、加工対象物1の厚さ方向と直交する一方向であり、ここでは、加工対象物1に形成されたアライメントマークを基準に設定されている。なお、エッジ検出ライン15aとして、切断予定ライン5を利用してもよい。
これに併せて、AF用レーザ光LBの反射光を受光し、反射面の変位に関する変位信号を、受光した反射光の全光量で正規化して求める。そして、この変位信号が基準変位信号になるように、駆動ユニット206に電圧信号を入力してレンズ203を光軸G方向に沿って駆動させる。これにより、レンズ203が反射面の変位に追従するように駆動され、レンズ203と反射面との間の距離が、ハイトセット時のレンズ203とレーザ光照射面3との間の距離となるように制御される。
具体的には、図12(b)に示すように、AF用レーザ光LBを矢印B1方向に相対移動させながら、テープ211のAF用レーザ光LBが照射される側の面であるテープ面211aにて反射した反射光を受光して変位信号を求める。これと共に、この変位信号が基準変位信号になるように駆動ユニット206に電圧信号を入力し、レンズ203を光軸G方向に沿って駆動させる。このとき、変位信号が略0Vとなることから、図14に示すように、駆動ユニット206に入力される電圧信号が、最大値の5Vで一定になっている。これは、以下の理由によるためである。
図15は、変位信号の特性を示すグラフである。図中において、横軸は反射面の変位を示し、縦軸は変位信号の値を示す。矢印Rは、反射面の変位を測定できる範囲である測長レンジを示す。図15に示すように、レンズ203が加工対象物1に近づく方向に測長レンジRを拡げるべく、かかる方向に変位センサの中心がずれているため、反射面の変位が0の場合(図中の丸印)には、変位信号値が負の値となっている。よって、変位信号が略0Vの場合には、変位信号が基準変位信号となる(変位信号が図中の右方向に移動する)ように、駆動ユニット206が縮小作動され、レンズ203が加工対象物1に遠ざかる方向に移動する。一方、加工対象物1の厚さは、駆動ユニット206のストローク範囲を超えたものとなっている。従って、AF用レーザ光LBがテープ面211aで反射する場合には、駆動ユニット206がフルストロークした縮小限の状態となり、電圧信号が最大値である5Vになるのである。
そして、AF用レーザ光LBが加工対象物1のエッジx1に乗り上げたとき(図13(a)の状態)にあっては、AF用レーザ光LBの反射面がテープ面211aからレーザ光照射面3に変化する。さらに、上述したようにハイトセット時には2.5Vの電圧信号が駆動ユニット206に入力されている。そのため、図14に示すように、電圧信号が5Vから2.5Vになったときに、AF用レーザ光LBが加工対象物1に乗り上げたと判断することができる。よって、電圧信号が2.5V(基準電圧信号)となったとき(図中の丸印)の座標を、エッジx1の位置として取得し、制御部205にメモリーする。
続いて、図13(b)に示すように、AF用レーザ光LBを矢印B1方向に引き続き相対移動させながら、加工対象物1のレーザ光照射面3にて反射した反射光を受光して変位信号を求め、この変位信号が基準変位信号になるように、駆動ユニット206に電圧信号を入力してレンズ203を光軸G方向に沿って駆動させ、レンズ203をレーザ光照射面3に追従させる。
次に、図16(a)に示すように、加工対象物1においてエッジ検出ライン15a(図18参照)の他方側のエッジx2の近傍にレンズ203の光軸Gが位置するように、ステージ201を移動させて加工対象物1を移動させる。図16(b)〜図17(b)に示すように、縁部を含む所定領域において、AF用レーザ光LBをレンズ203を介して照射しながら、エッジ検出ライン15aに沿う矢印A2方向に加工対象物1を移動させ、加工対象物1のエッジx2を跨ぐようにAF用レーザ光LBを矢印B2方向に相対移動させる。これに併せて、AF用レーザ光LBの反射光を受光して変位信号を求め、この変位信号が基準変位信号になるように、駆動ユニット206に電圧信号を入力してレンズ203を光軸G方向に沿って駆動させる。
そして、AF用レーザ光LBがエッジx1に乗り上げたときと同様に、電圧信号が2.5Vとなったときの座標をエッジx2の位置として取得し、制御部205にメモリーする。
次に、上記のエッジx1,x2の位置の取得と同様に、加工対象物1のエッジ検出ライン15b(図18参照)に沿うエッジx3,x4の位置をそれぞれ取得し、これらを制御部205にそれぞれメモリーする。続いて、図18に示すように、メモリーしたエッジx1,x2の位置から求められる垂直2等分線16aと、メモリーしたエッジx3,x4の位置から求められる垂直2等分線16bとの交点に基づいて、加工対象物1の中心点oの位置を算出する。そして、この中心点o位置と、加工対象物1の直径とから、加工対象物1の全周に亘るエッジの位置を導出し、加工対象物1におけるエッジの位置の検出が完了することとなる。
なお、加工対象物1の直径は、加工対象物1のサイズから求めてもよく、エッジx1〜x4を通る円の公式から求めてもよい。また、以上においては、説明の便宜上、オリエンテーションフラット6を省略して扱っている。
次に、検出したエッジの位置を基に、レンズ203を駆動ユニット206で光軸G方向に沿って駆動させつつ加工対象物1に集光点Pを合わせてレーザ光Lを照射し、加工対象物1を切断するための改質領域7を切断予定ライン5に沿って形成する。具体的には、切断予定ライン5の延長線上の一端側で加工対象物1に対し所定距離だけ離れた位置から、切断予定ライン5の延長線上の他端側で加工対象物1に対し所定距離だけ離れた位置まで、レンズ203を切断予定ライン5に沿って相対移動させる。併せて、検出したエッジの位置に基づいて、レンズ203の光軸Gがテープ211上にあると判断される場合には、レンズ203がテープ面211aに追従しない状態とすると共に、レーザ光Lの照射をOFFとする。一方、検出したエッジの位置に基づいて、レンズ203の光軸Gがレーザ光照射面3上にあると判断される場合には、レンズ203をレーザ光照射面3の変位に追従させると共に、レーザ光Lの照射をONとする。より具体的には、以下の動作を実行する。
すなわち、まず、加工対象物1に対し所定距離だけ離れた位置から加工対象物1上の位置まで、レンズ203を切断予定ライン5に沿って移動させる。ここで、レンズ203の光軸Gが、検出したエッジの位置にあると判断されるまでは、駆動ユニット206を非作動にしてレンズ203が駆動しない状態とすると共に、レーザ光Lの照射を停止する。なお、この状態のレンズ203の光軸G方向における位置は、レンズ203の焦点がレーザ光照射面3に合うような位置とされている。ちなみに、「レーザ光Lの照射を停止」とは、レーザ光Lの発振を停止すること、及びシャッタ等を用いて加工対象物1に向かうレーザ光Lを物理的に遮断することだけでなく、例えばレーザ光源101をCW駆動したりレーザ出力を低く設定したり等することで、レーザ強度を加工閾値(改質領域7が形成されるに足るレーザ強度の低限値)未満にするような「レーザ光Lの照射を実質的に停止」する場合も含む(以下の説明において同じ)。
そして、レンズ203の光軸Gが、検出したエッジの位置にあると判断された後には、AFユニット204からAF用レーザ光LBを照射して変位信号を取得し、この変位信号が一定になるように、駆動ユニット206に電圧信号を入力してレンズ203を駆動することで、レンズ203をレーザ光照射面3の変位に追従させる。併せて、レーザ光Lを照射して改質領域7を切断予定ライン5に沿って形成する。これにより、加工対象物1の内部の所望位置に改質領域7が精度よく形成されることとなる。なお、「レーザ光Lを照射」とは、レーザ光Lを発振させて当該レーザ光Lを加工対象物1に照射すること、及びシャッタ等で物理的に遮断されていたレーザ光Lが加工対象物1に照射されるように遮断状態を開放することだけでなく、例えばレーザ光源101をパルス駆動することにより、既に照射しているレーザ光Lのレーザ強度を加工閾値以上にするような場合も含む(以下の説明において同じ)。
これに続いて、加工対象物1上の位置から加工対象物1に対し所定距離だけ離れた位置まで、レンズ203を切断予定ライン5に沿って移動させる。ここで、レンズ203の光軸Gが、検出したエッジの位置にあると判断されるまでは、引き続き駆動ユニット206に電圧信号を入力してレンズ203を駆動し、レンズ203をレーザ光照射面3の変位に追従させると共に、引き続きレーザ光Lを照射して改質領域7を切断予定ライン5に沿って形成する。
そして、レンズ203の光軸Gが、検出したエッジの位置にあると再び判断された後には、AF用レーザ光LBの照射を停止して駆動ユニット206を非作動とし、レンズ203が駆動しない状態とすると共に、レーザ光Lの照射を停止する。
その後、上記と同様に、他の切断予定ライン5に沿って改質領域7を形成する。これを各切断予定ライン5に沿って繰り返すことにより、各切断予定ライン5に沿って改質領域7が形成されることとなる。
最後に、テープ211を拡張させ、改質領域7を切断の起点として加工対象物1を切断予定ライン5に沿って分断し、複数の半導体チップとして互いに離間させる。
以上、本実施形態によれば、照射されたAF用レーザ光LBが加工対象物1のエッジx1,x2,x3,x4を跨ぐように、エッジ検出ライン15a,15bに沿って移動され、これに併せて、AF用レーザ光LBの反射光が受光されて変位信号が求められ、変位信号が一定となるように、駆動ユニット206でレンズ203が光軸G方向に沿って駆動される。よって、AF用レーザ光LBをエッジ検出ライン15a,15bに沿って移動させる際、テープ211上及び加工対象物1上において、AF用レーザ光LBが反射するテープ面211a及びレーザ光照射面3の変位に追従するようにレンズ203が駆動されることになる。
ここで、AF用レーザ光LBがテープ211から加工対象物1に乗り上げたときには、反射面がテープ面211aからレーザ光照射面3となることから、反射面の位置が大きく変化するため、駆動ユニット206に入力される電圧信号が大きく変化する。さらに、変位信号にあっては、受光した反射光の全光量で正規化され、反射光の全光量の相対値として求められている。よって、反射光の全光量が少ない場合でも、駆動ユニット206に電圧信号が入力され、反射面の変位に追従するようにレンズ203が駆動される。つまり、電圧信号は、反射光の光量によらないものとなる。従って、電圧信号の変化に基づいて加工対象物1のエッジx1〜x4の位置を検出することにより、反射光の全光量が少ない場合でも、エッジx1〜x4の位置を精度よく検出することができる。その結果、レーザ光照射面3に形成された酸化膜や窒化膜等の膜厚にばらつきのある加工対象物1に対しても、そのエッジx1〜x4の位置を精度よく検出することができる。
また、本実施形態によれば、上述したように、AF用レーザ光LBがエッジ検出ライン15a,15bに沿って移動される際、エッジx1〜x4の近傍でのAF用レーザ光LBの移動速度が、エッジx1〜x4の近傍以外での移動速度よりも遅くなっている。そのため、エッジx1〜x4の近傍では、電圧信号の変化を細かく(高分解能で)検出することができ、加工対象物1のエッジx1〜x4の位置を一層精度よく検出することができる。
また、本実施形態では、上述したように、レーザ光Lを照射することで改質領域7を切断予定ライン5に沿って形成する際、レーザ光照射面3の変位に追従するようにレンズ203をその光軸Gに沿って駆動させている。そのため、加工対象物1の内部の所望位置に改質領域7が精度よく形成されることになる。ここで、従来のレーザ加工方法では、レンズ203の光軸Gが、加工対象物1に乗り上げたとき/加工対象物1から乗り降りたとき、前述のように反射面の位置が大きく変化して電圧信号が大きく変化(ここでは、電圧信号5Vと2.5Vとの間で変化)する。そのため、レンズ203の駆動量が大きくなってしまう。よって、例えば、光軸Gが加工対象物1に乗り上げたとき、レンズ203が大きく駆動されるために、レンズ203がエッジに追従するのに遅れが生じることがある。
この点、本実施形態では、次の作用効果を奏する。すなわち、上記のように、加工対象物1に対し離れた位置から加工対象物1上の位置までレンズ203を切断予定ライン5に沿って移動させるのに併せて、光軸Gがエッジの位置にあると判断されるまでは、レンズ203の駆動を停止し、光軸Gがエッジの位置にあると判断された後、レンズ203をレーザ光照射面3の変位に追従させている。よって、レンズ203の光軸Gが加工対象物に乗り上げたときにレンズ203が大きく駆動されることが抑制され、レンズ203を好適にエッジに追従させることができる。さらに、上述したように、レンズ203が駆動しない状態において、レンズ203の光軸G方向における位置をその焦点がレーザ光照射面3に合うような位置としているため、かかる追従の応答性を高めることができ、レンズ203を一層好適にエッジに追従させることができる。
また、上記のように、加工対象物1上の位置から加工対象物1に対し離れた位置までレンズ203を切断予定ライン5に沿って移動させるのに併せて、光軸Gがエッジの位置にあると判断されるまでは、レンズ203をレーザ光照射面3の変位に追従させ、光軸Gがエッジの位置にあると判断された後には、レンズ203の駆動を停止している。よって、レンズ203の光軸Gが加工対象物1から乗り降りたとき以後にも、レンズ203の光軸G方向における位置を、レンズ203の焦点がレーザ光照射面3に合うような位置のままにすることができる。その結果、例えば、その後続けて他の切断予定ライン5に沿って改質領域7を形成する場合、レンズ203の光軸Gが加工対象物1に乗り上げたとき、レンズ203を好適にエッジに追従させることができる。従って、本実施形態では、レンズ203をレーザ光照射面3に好適に追従させることができ、改質領域7を切断予定ライン5に沿って精度よく形成することができる。
また、本実施形態では、上述したように、レーザ光Lを照射することで改質領域7を切断予定ライン5に沿って形成する際、加工対象物1に対し離れた位置から加工対象物1上の位置まで、レンズ203を切断予定ライン5に沿って移動させるのに併せて、光軸Gがエッジの位置にあると判断されるまでは、レーザ光Lの照射を停止し、光軸Gがエッジの位置にあると判断された後には、レーザ光Lを照射して改質領域7を切断予定ライン5に沿って形成している。そして、加工対象物1上の位置から加工対象物1に対し離れた位置まで、レンズ203を切断予定ライン5に沿って移動させるのに併せて、光軸Gがエッジの位置にあると判断されるまでは、レーザ光Lを照射して改質領域7を切断予定ライン5に沿って形成し、光軸Gがエッジの位置にあると判断された後には、レーザ光Lの照射を停止している。従って、検出したエッジの位置に基づいてレーザ光Lの照射が開始及び停止されることになり、改質領域7を切断予定ライン5に沿って一層精度よく形成することができる。
以上に説明したレーザ加工方法に関し、高倍カメラを用いた画像により検出したエッジの位置との比較検証を行った。その結果、本実施形態により検出したエッジの位置と画像により検出したエッジの位置と平均誤差が0.0085mmとなった。これにより、加工対象物1のエッジの位置を精度よく検出できるという上記効果を確認することができた。
本発明は、上記実施形態に限定されるものではない。例えば、上記実施形態は、半導体材料からなる加工対象物1に溶融処理領域を含む改質領域7を形成したが、ガラスや圧電材料等、他の材料からなる加工対象物の内部に、クラック領域や屈折率変化領域等、他の改質領域を形成してもよい。また、本発明は加工対象物の内部に改質領域を正確に形成するために、より好適であるが、レーザアブレーション法を用いたレーザ加工方法にも適用し、加工対象物を切断するための領域として、溝等を形成する場合にも適用できる。
また、上記実施形態では、AF用レーザ光LBの光軸をレーザ光Lの光軸と同軸にして出射したが、非同軸にして出射しても勿論よい。また、上記実施形態では、エッジの位置を検出する際、照射したAF用レーザ光LBが加工対象物1に乗り上げるように移動させたが、AF用レーザ光が加工対象物から乗り降りるように移動させてもよく、要は、AF用レーザ光を加工対象物のエッジを跨ぐように移動させればよい。
改質領域の形成に用いられるレーザ加工装置の概略構成図である。 改質領域の形成の対象となる加工対象物の平面図である。 図2の加工対象物のIII−III線に沿っての断面図である。 レーザ加工後の加工対象物の平面図である。 図4の加工対象物のV−V線に沿っての断面図である。 図4の加工対象物のVI−VI線に沿っての断面図である。 レーザ加工後のシリコンウェハの切断面の写真を表した図である。 レーザ光の波長とシリコン基板の内部の透過率との関係を示すグラフである。 レーザ光のピークパワー密度とクラックスポットの大きさとの関係を示すグラフである。 本実施形態に係るレーザ加工装置の概略構成図である。 本実施形態に係るレーザ加工方法の対象となる加工対象物の平面図である。 本実施形態に係るレーザ加工方法についての説明図である。 図12の後続の説明図である。 本実施形態に係るレーザ加工方法における電圧信号を示す図である。 本実施形態に係るレーザ加工方法における変位信号の特性を示すグラフである。 図13の後続の説明図である。 図16の後続の説明図である。 本実施形態に係るレーザ加工方法における加工対象物の中心点位置を算出する工程の説明図である。
符号の説明
1…加工対象物、3…レーザ光照射面(反射面)、5…切断予定ライン、7…改質領域(領域)、203…レンズ、206…駆動ユニット(駆動手段)、211…テープ面(反射面)、L…レーザ光(第1のレーザ光)、LB…AF用レーザ光(第2のレーザ光)、P…集光点、x1,x2,x3,x4…エッジ(縁部)、G…レンズの光軸。

Claims (8)

  1. 板状の加工対象物に集光点を合わせて第1のレーザ光を照射することにより、前記加工対象物を切断するための領域を切断予定ラインに沿って形成するレーザ加工方法であって、
    第2のレーザ光をレンズを介して照射しながら、前記加工対象物の縁部を跨ぐように、前記第2のレーザ光を加工対象物の厚さ方向と交差する一方向に移動させるのに併せて、
    前記第2のレーザ光の反射光を受光することにより、前記第2のレーザ光が反射する反射面の変位に関する変位信号を、受光した前記反射光の全光量で正規化して求め、
    求められた前記変位信号が一定になるように、駆動手段に駆動信号を入力して前記レンズをその光軸方向に沿って駆動させる工程と、
    前記駆動信号の変化に基づいて、前記縁部の位置を検出する工程と、を含むこと特徴とするレーザ加工方法。
  2. 前記第2のレーザ光を前記一方向に移動させる際には、
    前記縁部を含む所定領域での前記第2のレーザ光の移動速度を、前記所定領域以外での移動速度よりも遅くすることを特徴とする請求項1記載のレーザ加工方法。
  3. 前記加工対象物を切断するための前記領域は、切断の起点となる改質領域であることを特徴とする請求項1又は2記載のレーザ加工方法。
  4. 前記レンズのピントが前記加工対象物のレーザ光照射面に合う状態とし、この状態にて前記駆動手段に入力されている前記駆動信号を基準駆動信号として求める工程を含み、
    前記縁部の前記位置を検出する際には、
    前記駆動信号が前記基準駆動信号となったときの前記光軸の前記一方向における位置を、前記縁部の前記位置として検出することを特徴とする請求項1〜3の何れか一項記載のレーザ加工方法。
  5. 前記第1のレーザ光を照射することで前記加工対象物を切断するための前記領域を前記切断予定ラインに沿って形成する際には、
    前記加工対象物に対し離れた位置から前記加工対象物上の位置まで、前記レンズを前記切断予定ラインに沿って移動させるのに併せて、
    前記レンズの光軸が、検出した前記縁部の位置にあると判断されるまでは、前記駆動手段による前記レンズの駆動を停止し、
    前記レンズの光軸が、検出した前記縁部の位置にあると判断された後には、前記変位信号が一定になるように、前記駆動手段に前記駆動信号を入力して前記レンズをその光軸方向に沿って駆動させることを特徴とする請求項1〜4の何れか一項記載のレーザ加工方法。
  6. 前記第1のレーザ光を照射することで前記加工対象物を切断するための前記領域を前記切断予定ラインに沿って形成する際には、
    前記加工対象物上の位置から前記加工対象物に対し離れた位置まで、前記レンズを前記切断予定ラインに沿って移動させるのに併せて、
    前記レンズの光軸が、検出した前記縁部の位置にあると判断されるまでは、前記変位信号が一定になるように、前記駆動手段に前記駆動信号を入力して前記レンズをその光軸方向に沿って駆動させ、
    前記レンズの光軸が、検出した前記縁部の位置にあると判断された後には、前記駆動手段による前記レンズの駆動を停止することを特徴とする請求項1〜5の何れか一項記載のレーザ加工方法。
  7. 前記第1のレーザ光を照射することで前記加工対象物を切断するための前記領域を前記切断予定ラインに沿って形成する際には、
    前記加工対象物に対し離れた位置から前記加工対象物上の位置まで、前記レンズを前記切断予定ラインに沿って移動させるのに併せて、
    前記レンズの光軸が、検出した前記縁部の位置にあると判断されるまでは、前記第1のレーザ光の照射を停止し、
    前記レンズの光軸が、検出した前記縁部の位置にあると判断された後には、前記第1のレーザ光を照射することにより前記領域を前記切断予定ラインに沿って形成することを特徴とする請求項1〜6の何れか一項記載のレーザ加工方法。
  8. 前記第1のレーザ光を照射することで前記加工対象物を切断するための前記領域を前記切断予定ラインに沿って形成する際には、
    前記加工対象物上の位置から前記加工対象物に対し離れた位置まで、前記レンズを前記切断予定ラインに沿って移動させるのに併せて、
    前記レンズの光軸が、検出した前記縁部の位置にあると判断されるまでは、前記第1のレーザ光を照射することにより前記領域を前記切断予定ラインに沿って形成し、
    前記レンズの光軸が、検出した前記縁部の位置にあると判断された後には、前記第1のレーザ光の照射を停止することを特徴とする請求項1〜7の何れか一項記載のレーザ加工方法。
JP2007287562A 2007-11-05 2007-11-05 レーザ加工方法 Active JP5094337B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007287562A JP5094337B2 (ja) 2007-11-05 2007-11-05 レーザ加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007287562A JP5094337B2 (ja) 2007-11-05 2007-11-05 レーザ加工方法

Publications (2)

Publication Number Publication Date
JP2009113068A JP2009113068A (ja) 2009-05-28
JP5094337B2 true JP5094337B2 (ja) 2012-12-12

Family

ID=40780793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007287562A Active JP5094337B2 (ja) 2007-11-05 2007-11-05 レーザ加工方法

Country Status (1)

Country Link
JP (1) JP5094337B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
WO2023036641A1 (de) * 2021-09-09 2023-03-16 TRUMPF Werkzeugmaschinen SE + Co. KG Verfahren und laserbearbeitungsmaschine mit vorausschauender werkstückkantenerkennung beim laserbearbeiten von werkstücken

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084620A (ja) * 2010-10-08 2012-04-26 Mitsubishi Electric Corp レーザ加工装置
DE102011003395B3 (de) 2011-01-31 2012-03-29 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Abtrennen eines Randabschnitts eines Werkstücks mittels eines Lasertrennschnitts sowie zugehörige Laserschneidvorrichtung
CN106583961B (zh) * 2017-03-01 2023-10-24 湖南泰嘉新材料科技股份有限公司 连续焊接焊缝监测探头、焊缝监测系统及方法
CN111085774B (zh) * 2018-10-24 2022-01-25 大族激光科技产业集团股份有限公司 一种快速寻边方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4509578B2 (ja) * 2004-01-09 2010-07-21 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4804911B2 (ja) * 2005-12-22 2011-11-02 浜松ホトニクス株式会社 レーザ加工装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US11219966B1 (en) 2018-12-29 2022-01-11 Wolfspeed, Inc. Laser-assisted method for parting crystalline material
US11826846B2 (en) 2018-12-29 2023-11-28 Wolfspeed, Inc. Laser-assisted method for parting crystalline material
US11901181B2 (en) 2018-12-29 2024-02-13 Wolfspeed, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US11911842B2 (en) 2018-12-29 2024-02-27 Wolfspeed, Inc. Laser-assisted method for parting crystalline material
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods
US11034056B2 (en) 2019-05-17 2021-06-15 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods
US11654596B2 (en) 2019-05-17 2023-05-23 Wolfspeed, Inc. Silicon carbide wafers with relaxed positive bow and related methods
US12070875B2 (en) 2019-05-17 2024-08-27 Wolfspeed, Inc. Silicon carbide wafers with relaxed positive bow and related methods
WO2023036641A1 (de) * 2021-09-09 2023-03-16 TRUMPF Werkzeugmaschinen SE + Co. KG Verfahren und laserbearbeitungsmaschine mit vorausschauender werkstückkantenerkennung beim laserbearbeiten von werkstücken

Also Published As

Publication number Publication date
JP2009113068A (ja) 2009-05-28

Similar Documents

Publication Publication Date Title
JP5094337B2 (ja) レーザ加工方法
JP5449665B2 (ja) レーザ加工方法
JP5054496B2 (ja) 加工対象物切断方法
JP5670647B2 (ja) 加工対象物切断方法
JP6353683B2 (ja) レーザ加工装置及びレーザ加工方法
JP4804911B2 (ja) レーザ加工装置
JP5101073B2 (ja) レーザ加工装置
JP4732063B2 (ja) レーザ加工方法
JP4418282B2 (ja) レーザ加工方法
JP5148575B2 (ja) レーザ加工方法、及び、レーザ加工装置
TW200824828A (en) Laser working method
JP2009034723A (ja) レーザ加工方法、レーザ加工装置及びその製造方法
WO2008004395A1 (fr) Procédé de traitement par laser
WO2014030520A1 (ja) 加工対象物切断方法
JP2008016577A (ja) ウエーハのレーザー加工方法
JP6076601B2 (ja) レーザ加工方法、半導体デバイスの製造方法及びレーザ加工装置
JP2008110400A (ja) レーザ加工方法
JP2007185664A (ja) レーザ内部スクライブ方法
JP3990710B2 (ja) レーザ加工方法
JP5575200B2 (ja) レーザ加工装置及びその製造方法
JP2012081522A (ja) レーザ加工方法、レーザ加工装置及びその製造方法
JP2006165594A (ja) 半導体材料基板の切断方法
JP2006165593A (ja) 半導体材料基板の切断方法
JP3761566B2 (ja) 半導体チップの製造方法
KR20130143433A (ko) 레이저 가공방법 및 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5094337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250