JP5094307B2 - Plasma processing equipment - Google Patents

Plasma processing equipment Download PDF

Info

Publication number
JP5094307B2
JP5094307B2 JP2007246671A JP2007246671A JP5094307B2 JP 5094307 B2 JP5094307 B2 JP 5094307B2 JP 2007246671 A JP2007246671 A JP 2007246671A JP 2007246671 A JP2007246671 A JP 2007246671A JP 5094307 B2 JP5094307 B2 JP 5094307B2
Authority
JP
Japan
Prior art keywords
substrate
electrode plate
insulating member
disposed
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007246671A
Other languages
Japanese (ja)
Other versions
JP2009076816A (en
Inventor
日出夫 竹井
智 池田
健二 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2007246671A priority Critical patent/JP5094307B2/en
Publication of JP2009076816A publication Critical patent/JP2009076816A/en
Application granted granted Critical
Publication of JP5094307B2 publication Critical patent/JP5094307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明はプラズマ処理装置に係り、特に、複数枚の基板を一括処理するプラズマ処理装置に関する。   The present invention relates to a plasma processing apparatus, and more particularly, to a plasma processing apparatus that collectively processes a plurality of substrates.

エッチング工程の生産性を高めるために、大型のエッチング装置の内部に複数の基板を配置し、各基板を一括してエッチングし、同一品質で歩留まりよく生産する試みが成されている。   In order to increase the productivity of the etching process, an attempt is made to arrange a plurality of substrates in a large etching apparatus, etch each substrate in a lump, and produce the same quality with a high yield.

図8は、そのようなエッチング工程に用いる従来技術のプラズマ処理装置101を示しており、真空槽111の内部に大型の電極板120が配置されている。
電極板120上にはガス導入装置115が配置されており、電極板120上に複数の基板107を所定間隔で配置し、真空排気系109を動作させ、真空槽111内を真空排気した後、ガス導入系116からエッチングガスを導入し、ガス導入装置115と電極板120の間に交流電圧を印加すると、電極板120上にエッチングガスのプラズマが生成され、活性化されたエッチングガスの分子が基板107表面に入射し、基板107表面がエッチングされる。
FIG. 8 shows a conventional plasma processing apparatus 101 used in such an etching process, and a large electrode plate 120 is arranged inside a vacuum chamber 111.
A gas introduction device 115 is arranged on the electrode plate 120, a plurality of substrates 107 are arranged on the electrode plate 120 at predetermined intervals, the evacuation system 109 is operated, and the inside of the vacuum chamber 111 is evacuated, When an etching gas is introduced from the gas introduction system 116 and an AC voltage is applied between the gas introduction device 115 and the electrode plate 120, an etching gas plasma is generated on the electrode plate 120, and activated etching gas molecules are generated. The light enters the surface of the substrate 107 and the surface of the substrate 107 is etched.

このようなエッチング方法によれば、エッチングによって形成される絶縁膜や配線膜の寸法や平面形状の基板間の一致性が高いが、一枚の基板107の面内では基板107の外周部分の方が、中心部分よりもエッチングされ易く、基板107面内のエッチング寸法の分布が不均一である。
特開平8−181114号公報 特開2001−308073号公報 特開2004−79918号公報
According to such an etching method, the size of the insulating film and wiring film formed by etching and the matching between the planar substrates are high, but the outer peripheral portion of the substrate 107 is within the plane of one substrate 107. However, it is easier to etch than the central portion, and the etching dimension distribution in the surface of the substrate 107 is non-uniform.
JP-A-8-181114 JP 2001-308073 A JP 2004-79918 A

本発明は上記従来技術の課題を解決するために創作されたものであり、複数枚の基板の面内分布を均一にエッチングできるエッチング装置を提供することにある。   The present invention was created to solve the above-described problems of the prior art, and provides an etching apparatus capable of uniformly etching the in-plane distribution of a plurality of substrates.

上記課題を解決するため、本発明は、真空槽と、前記真空槽内に配置された電極板とを有し、前記電極板上に複数の基板を配置し、前記電極板に電圧を印加して前記電極板上にプラズマを形成し、前記各基板の表面を前記プラズマで処理するプラズマ処理装置であって、前記電極板の前記各基板が配置される位置には、絶縁部材が配置され、前記絶縁部材表面は露出され、前記各基板の外周部分が前記絶縁部材上に位置するようにされ、前記絶縁部材の前記基板の前記外周部分よりも内側に位置する部分には、磁石が配置され、前記磁石によって、前記電極板上に配置された前記各基板の表面を磁力線が貫通するように構成され、前記磁石は環状であり、前記各基板裏面の前記磁石は、同一の極性の磁極が前記基板が位置する方向に向けられたプラズマ処理装置である。
また、本発明は、前記真空槽内にエッチングガスを導入するエッチングガス導入装置を有し、前記真空槽内に前記エッチングガスのプラズマを形成し、前記各基板表面をエッチングするプラズマ処理装置である。
In order to solve the above problems, the present invention includes a vacuum chamber and an electrode plate disposed in the vacuum chamber, a plurality of substrates are disposed on the electrode plate, and a voltage is applied to the electrode plate. A plasma processing apparatus for forming plasma on the electrode plate and treating the surface of each substrate with the plasma, wherein an insulating member is disposed at a position where each substrate of the electrode plate is disposed, The surface of the insulating member is exposed so that an outer peripheral portion of each substrate is positioned on the insulating member, and a magnet is disposed on a portion of the insulating member positioned inside the outer peripheral portion of the substrate. The magnetic lines of force penetrate through the surface of each substrate disposed on the electrode plate by the magnet, the magnet is annular, and the magnets on the back surface of each substrate have magnetic poles of the same polarity. Directed in the direction in which the substrate is located It is a plasma processing apparatus.
Further, the present invention is pre-SL has an etching gas introducing system for introducing an etching gas into the vacuum chamber, wherein a plasma is formed of an etching gas into the vacuum chamber, each of said substrate surface in a plasma processing apparatus for etching is there.

本発明は上記のように構成されており、電極板には絶縁部材が設けられ、電極板上に配置される基板は、縁を含め、縁から一定距離内側の外周部分が絶縁部材上に位置するようにされているので、各基板の外周よりも内側部分の下に位置する電極板表面は、絶縁部材で取り囲まれている。   The present invention is configured as described above, and an insulating member is provided on the electrode plate, and the substrate disposed on the electrode plate includes an edge, and an outer peripheral portion located at a certain distance from the edge is positioned on the insulating member. Therefore, the electrode plate surface located below the inner part of the outer periphery of each substrate is surrounded by an insulating member.

基板の外周部の下に配置された絶縁部材は、その表面が露出されており、基板の外周部よりも内側では、電極板表面が露出されているから、電極板に電圧を印加したときに、基板の外周部上の電界は、導電性の電極板が配置されている場合に比べて弱くなり、基板表面に形成されるプラズマ密度が低下する。従って、外周部分に電極板が配置された場合に比べて、エッチング工程の場合は外周部分のエッチング速度が遅くなり、成膜工程の場合は、成膜速度が遅くなる。   Since the surface of the insulating member disposed under the outer peripheral portion of the substrate is exposed and the surface of the electrode plate is exposed inside the outer peripheral portion of the substrate, when a voltage is applied to the electrode plate The electric field on the outer peripheral portion of the substrate is weaker than that in the case where a conductive electrode plate is disposed, and the plasma density formed on the substrate surface is lowered. Therefore, compared with the case where the electrode plate is arranged in the outer peripheral portion, the etching rate in the outer peripheral portion is slow in the etching process, and the film forming speed is slow in the film forming step.

電極板の、絶縁部材で取り囲まれた部分には環状の磁石が配置されている。環状の磁石は電極表面と平行にされており、各基板裏面に位置する磁石は、N極とS極のうち、同じ磁極がそれぞれ基板側に向けられ、それとは反対極性の磁極が基板とは反対側に向けられている。この磁石によって形成された磁力線は、基板の外周よりも内側部分を貫き、電子をトラップし、磁石が無い場合に比べて基板の外周よりも内側部分のプラズマ密度を高めるようにされている。   An annular magnet is disposed on a portion of the electrode plate surrounded by the insulating member. The annular magnet is made parallel to the electrode surface, and the magnet located on the back surface of each substrate has the same magnetic pole of the N pole and S pole directed to the substrate side, and a magnetic pole of the opposite polarity to the substrate. It is directed to the other side. The lines of magnetic force formed by this magnet penetrate the inner portion of the outer periphery of the substrate, trap electrons, and increase the plasma density of the inner portion of the outer periphery of the substrate as compared with the case where there is no magnet.

基板周辺部の底面と接する位置に絶縁部材を配置した場合、基板周辺部のエッチング速度が遅くなり、エッチングの面内分布が均一になる。
基板の中央部分に磁石を配置した場合、基板の中央部分のエッチング速度が速くなり、エッチングの面内分布が均一になる。
When the insulating member is disposed at a position in contact with the bottom surface of the peripheral portion of the substrate, the etching rate at the peripheral portion of the substrate is slowed down, and the in-plane distribution of etching becomes uniform.
When the magnet is arranged in the central portion of the substrate, the etching rate in the central portion of the substrate is increased, and the in-plane distribution of etching becomes uniform.

図1を参照し、符号1は、本発明の一実施例のプラズマ処理装置を示しており、真空槽11の内部に電極板20が配置されている。
電極板20の一部平面形状を図2に示す。図1の電極板20の断面図は、図2のA−A線で截断したときの断面図に相当する。
Referring to FIG. 1, reference numeral 1 denotes a plasma processing apparatus according to an embodiment of the present invention, and an electrode plate 20 is disposed inside a vacuum chamber 11.
A partial planar shape of the electrode plate 20 is shown in FIG. The cross-sectional view of the electrode plate 20 in FIG. 1 corresponds to the cross-sectional view taken along the line AA in FIG.

電極板20は、金属が板状に成形されて成る電極本体21を有している。電極本体21の表面には、縦横に伸びる溝が形成されて、溝の内部には絶縁部材22が配置されている。
縦方向に伸びる溝と横方向に伸びる溝は交差しており、従って、溝間に位置する電極板20表面は、溝内部の絶縁部材22によって取り囲まれている。電極板20の絶縁部材22で取り囲まれた領域の上にはそれぞれ基板7が配置されている。
The electrode plate 20 has an electrode main body 21 formed by forming a metal into a plate shape. A groove extending vertically and horizontally is formed on the surface of the electrode main body 21, and an insulating member 22 is disposed inside the groove.
The grooves extending in the vertical direction intersect with the grooves extending in the horizontal direction. Therefore, the surface of the electrode plate 20 located between the grooves is surrounded by the insulating member 22 inside the groove. A substrate 7 is disposed on each of the regions surrounded by the insulating member 22 of the electrode plate 20.

電極板20の、絶縁部材22で取り囲まれた部分には環状の磁石25が電極板20表面と平行に埋設されており、従って、各基板7裏面の裏面には、環状の磁石25が配置されている。
環状の磁石25は、N極とS極のうち、同じ磁極が電極板20上の基板7が位置する方向に向けられ、反対の極性の磁極が基板7とは反対側に向けられており、各基板7の絶縁部材22よりも内側の中央部分を磁束が貫くように構成されている。
An annular magnet 25 is embedded in the portion of the electrode plate 20 surrounded by the insulating member 22 in parallel with the surface of the electrode plate 20. Therefore, the annular magnet 25 is disposed on the back surface of each substrate 7. ing.
In the annular magnet 25, the same magnetic pole of the N pole and the S pole is oriented in the direction in which the substrate 7 on the electrode plate 20 is positioned, and the magnetic pole of the opposite polarity is directed to the opposite side of the substrate 7. The magnetic flux penetrates through the central portion inside the insulating member 22 of each substrate 7.

真空槽11には真空排気系19が接続されており、真空槽11の内部は真空雰囲気にされている。
真空槽11の内部には、ガス源16に接続されたガス導入装置15が設けられている。ここではガス源16にはエッチングガスが配置されており、ガス導入装置15からガス源16に配置されたエッチングガスを真空槽内11に導入する。
A vacuum exhaust system 19 is connected to the vacuum chamber 11, and the inside of the vacuum chamber 11 is in a vacuum atmosphere.
A gas introduction device 15 connected to a gas source 16 is provided inside the vacuum chamber 11. Here, an etching gas is disposed in the gas source 16, and the etching gas disposed in the gas source 16 is introduced from the gas introduction device 15 into the vacuum chamber 11.

電極板20は電源装置28に接続されており、真空槽11とガス導入装置15は接地電位に接続されている。真空槽11内が所定圧力のエッチングガス雰囲気で安定した後、電源装置28によって電極板20に交流電圧を印加すると、電極板20上にプラズマが形成される。   The electrode plate 20 is connected to a power supply device 28, and the vacuum chamber 11 and the gas introduction device 15 are connected to a ground potential. After the inside of the vacuum chamber 11 is stabilized in an etching gas atmosphere of a predetermined pressure, when an AC voltage is applied to the electrode plate 20 by the power supply device 28, plasma is formed on the electrode plate 20.

絶縁部材22の表面は露出されており、絶縁部材22で囲まれた部分は、電極本体21の表面が露出されている。
基板7の縁は絶縁部材22上に位置しており、従って、基板7の外周部分は、絶縁部材22に面し、絶縁部材22に面する外周部分の内側は、電極本体21に面している。
The surface of the insulating member 22 is exposed, and the surface of the electrode body 21 is exposed at a portion surrounded by the insulating member 22.
The edge of the substrate 7 is located on the insulating member 22. Therefore, the outer peripheral portion of the substrate 7 faces the insulating member 22, and the inner side of the outer peripheral portion facing the insulating member 22 faces the electrode body 21. Yes.

絶縁部材22は露出されているため、基板7の外周部分の電界強度は、裏面に絶縁部材22が配置されていた方が、裏面に電極本体21が配置された場合よりも低くなり、その結果、基板7の絶縁部材22上に位置する外周部分上のプラズマ密度は、絶縁部材22が無い場合よりも低くなる。   Since the insulating member 22 is exposed, the electric field strength at the outer peripheral portion of the substrate 7 is lower when the insulating member 22 is disposed on the back surface than when the electrode body 21 is disposed on the back surface. The plasma density on the outer peripheral portion located on the insulating member 22 of the substrate 7 is lower than that without the insulating member 22.

更に、絶縁部材22で囲まれた電極本体21にはリング状の磁石が埋設されている。基板7の外周部分よりも内側の中央部分は電極本体21表面に面しており、磁石25が形成する磁力線は、電極板20の表面部分と基板7の中央部分を貫通するようにされている。   Further, a ring-shaped magnet is embedded in the electrode body 21 surrounded by the insulating member 22. The central portion inside the outer peripheral portion of the substrate 7 faces the surface of the electrode body 21, and the magnetic lines formed by the magnets 25 pass through the surface portion of the electrode plate 20 and the central portion of the substrate 7. .

その結果、基板7の中央部分では電子が磁束に巻き付いて運動する結果、中央部分のプラズマ密度は、磁石25が無かった場合よりも高くなる。
その結果、基板7表面のプラズマ密度が均一になり、基板7表面が均一にエッチングされる。
環状の磁石25を用い、電極板20表面と平行に埋設しておくと、磁束が環状に基板7表面を貫通し、プラズマ密度が一層均一化する。
As a result, in the central portion of the substrate 7, electrons move around the magnetic flux and move, and as a result, the plasma density in the central portion becomes higher than when the magnet 25 is not provided.
As a result, the plasma density on the surface of the substrate 7 becomes uniform, and the surface of the substrate 7 is etched uniformly.
If the annular magnet 25 is used and embedded in parallel with the surface of the electrode plate 20, the magnetic flux penetrates the surface of the substrate 7 in an annular shape, and the plasma density becomes more uniform.

なお、本発明のプラズマ処理装置1によれば、エッチングガスに替え、薄膜の原料ガスを真空槽11内に導入し、電極板20上に配置された基板7表面に薄膜を形成する場合も、基板7表面のプラズマが均一になり、面内膜厚分布の均一な薄膜を形成することができる。
なお、上記各実施例では、電極板20は、基板7の載置面を上方に向けて水平に配置されていたが、載置面が鉛直になるように電極板20を立設させてもよい。
According to the plasma processing apparatus 1 of the present invention, a thin film source gas is introduced into the vacuum chamber 11 instead of the etching gas, and a thin film is formed on the surface of the substrate 7 disposed on the electrode plate 20, The plasma on the surface of the substrate 7 becomes uniform, and a thin film having a uniform in-plane film thickness distribution can be formed.
In each of the above embodiments, the electrode plate 20 is horizontally disposed with the mounting surface of the substrate 7 facing upward, but the electrode plate 20 may be erected so that the mounting surface is vertical. Good.

また、本発明の処理対象物である基板7はガラス基板等の四角形の基板に限定されず、図3に示すような半導体ウェハ等の円形基板8であって、円形基板8の縁が絶縁部材22上に配置されていればよい。   Further, the substrate 7 that is the object to be processed of the present invention is not limited to a square substrate such as a glass substrate, but is a circular substrate 8 such as a semiconductor wafer as shown in FIG. 3, and the edge of the circular substrate 8 is an insulating member. 22 should just be arrange | positioned.

また、上記実施例では、絶縁部材22を電極本体21の表面に形成した溝内に配置し、電極本体21が分断されないようにしていたが、図4に示すように、電極本体21が絶縁部材22によって複数の小電極に分断されていても、各小電極が電源装置28に接続されていればよい。この場合、分断された各小電極にリング形状などの磁石25を埋設させ、上記実施例と同様の磁力線を形成させてもよい。   Moreover, in the said Example, although the insulating member 22 was arrange | positioned in the groove | channel formed in the surface of the electrode main body 21, and the electrode main body 21 was not parted, as shown in FIG. Even if it is divided into a plurality of small electrodes by 22, each small electrode may be connected to the power supply device 28. In this case, a magnet 25 having a ring shape or the like may be embedded in each divided small electrode, and the magnetic lines of force similar to those in the above embodiment may be formed.

なお、上記実施例では電極板20に交流電圧を印加したが、直流電圧を印加する場合も含まれる。また、電極板20と真空槽11に接地電位を印加し、ガス導入装置に交流電圧を印加する場合も含まれる。   In the above embodiment, an AC voltage is applied to the electrode plate 20, but a case where a DC voltage is applied is also included. Moreover, the case where a ground potential is applied to the electrode plate 20 and the vacuum chamber 11 and an AC voltage is applied to the gas introducing device is also included.

本発明のプラズマ処理装置1によりエッチングされるエッチング対象物は特に限定されず、例えば、SiO2、SiN、Si等を含有する処理膜が表面に形成され基板7を用い、該処理膜をエッチングすることができる。 The etching object to be etched by the plasma processing apparatus 1 of the present invention is not particularly limited. For example, a processing film containing SiO 2 , SiN, Si, or the like is formed on the surface, and the processing film is etched using the substrate 7. be able to.

電極板20の構成材料も特に限定されず、例えば、電極本体21は銅等の金属を、絶縁部材22は例えばアルミナ等のセラミックを用いることができる。
電極板20の大きさや形状も特に限定されず、一例を述べると、基板7が一辺150mmの正方形の場合、絶縁部材22の間隔が160mm、絶縁部材22が幅25mm、膜厚4mm、磁石25が一辺60mmの四角リング形状である。
The constituent material of the electrode plate 20 is not particularly limited. For example, the electrode body 21 can be made of a metal such as copper, and the insulating member 22 can be made of a ceramic such as alumina.
The size and shape of the electrode plate 20 are not particularly limited. For example, when the substrate 7 is a square having a side of 150 mm, the interval between the insulating members 22 is 160 mm, the insulating member 22 is 25 mm wide, the film thickness is 4 mm, and the magnet 25 is It is a square ring shape with a side of 60 mm.

図1に示したプラズマ処理装置1と同様で、一辺150mmの正方形基板の縁が乗るような絶縁部材22が配置された電極板20上に、その基板を合計49枚行列状配置し、所定時間エッチング処理を行った(第一例)。   Similar to the plasma processing apparatus 1 shown in FIG. 1, a total of 49 substrates are arranged in a matrix on the electrode plate 20 on which the edge of a square substrate with a side of 150 mm is placed, for a predetermined time. Etching was performed (first example).

それとは別に、絶縁部材が無く磁石だけがある電極板を用い、基板の裏面全部が電極板に面することと(第二例)、磁石が無く、絶縁部材だけがある電極板を用い、磁力線が基板を貫通しないことと(第三例)、絶縁部材と磁石の両方が無い電極板を用い、基板の裏面全部が電極板に面し、磁力線が基板を貫通しないこと(第四例)が異なる以外は、第一例と同じ条件(基板の大きさ、ガス種、圧力、処理時間等)でエッチング処理を行った。   Separately, an electrode plate without an insulating member and having only a magnet is used, the entire back surface of the substrate faces the electrode plate (second example), and an electrode plate without a magnet and having only an insulating member is used. Does not penetrate the substrate (third example), uses an electrode plate without both the insulating member and the magnet, the entire back surface of the substrate faces the electrode plate, and the lines of magnetic force do not penetrate the substrate (fourth example). Except for the difference, the etching process was performed under the same conditions as the first example (the size of the substrate, the gas type, the pressure, the processing time, etc.)

エッチング処理後の各基板について異なる箇所で(ここでは9箇所)それぞれ膜厚減少量(エッチング量、単位nm)を測定した。測定箇所を図7に「○」で示す。図7の数値は、基板の4つの頂点のうち、1の頂点の座標をゼロとしたときの、当該頂点からの距離を示す。   The thickness reduction amount (etching amount, unit nm) was measured at different locations (here, 9 locations) for each substrate after the etching treatment. The measurement location is indicated by “◯” in FIG. The numerical value of FIG. 7 shows the distance from the vertex when the coordinate of one vertex of the four vertices of the substrate is zero.

図5(a)、(b)は第四、第一例の各測定箇所の測定値の平均をそれぞれ示し、図6(a)、(b)は第三、第二例の各測定箇所の測定値の平均をそれぞれ示す。図5(a)と、図5(b)、図6(a)を比較すると明らかなように、絶縁部材も磁石も配置しない第四例は中央部分のエッチング量が縁部分より小さいのに対し、絶縁部材を配置した第三、第四例は中央部分と縁部分でエッチング量の差が小さくなっている。   FIGS. 5 (a) and 5 (b) show the average of the measurement values at the measurement points in the fourth and first examples, respectively, and FIGS. 6 (a) and 6 (b) show the measurement values at the measurement points in the third and second examples. The average of each measured value is shown. As is clear from comparison between FIG. 5A, FIG. 5B, and FIG. 6A, the fourth example in which neither an insulating member nor a magnet is arranged has a smaller etching amount in the central portion than in the edge portion. In the third and fourth examples in which the insulating member is arranged, the difference in etching amount between the central portion and the edge portion is small.

次に、測定結果から、第一〜第四例毎にエッチング量の平均を求め(平均レート)、更に、第一〜第四例毎に基板面内のエッチング量の分布(基板内分布)と、電極板上の位置が異なる基板同士のエッチング量の相違(基板間分布)を求めた。その結果を下記表1に記載する。   Next, from the measurement result, the average of the etching amount is obtained for each of the first to fourth examples (average rate), and further, the distribution of the etching amount in the substrate surface (distribution within the substrate) for each of the first to fourth examples. The difference in the etching amount (distribution between the substrates) between the substrates having different positions on the electrode plate was obtained. The results are listed in Table 1 below.

Figure 0005094307
Figure 0005094307

尚、平均レートは、「第四例」の平均レートを1とした。上記表1から分かるように、磁石のような高価な部材を用いなくても、絶縁部材を配置するだけで、基板内分布と基板間分布が大幅に向上している。
特に、絶縁部材と磁石の両方を併用すれば、基板内分布と基板間分布がより向上し、平均レートも高くなることがわかった。
The average rate of the “fourth example” was 1. As can be seen from Table 1 above, the distribution within the substrate and the distribution between the substrates are greatly improved only by disposing the insulating member without using an expensive member such as a magnet.
In particular, it was found that if both the insulating member and the magnet are used in combination, the distribution in the substrate and the distribution between the substrates are further improved, and the average rate is also increased.

本願のプラズマ処理装置の一例を説明する断面図Sectional drawing explaining an example of the plasma processing apparatus of this application 電極板の一部平面形状を示す平面図Plan view showing the partial planar shape of the electrode plate 基板と絶縁部材との位置関係の他の例を説明する断面図Sectional drawing explaining the other example of the positional relationship of a board | substrate and an insulating member 電極板の他の例を説明する断面図Sectional drawing explaining the other example of an electrode plate (a):「補正無し」の測定結果と、(b):「絶縁物磁石補正」の測定結果を示す平面図(A): Plan view showing measurement result of “no correction” and (b): measurement result of “insulator magnet correction” (a):「絶縁物補正」の測定結果と、(b):「磁石補正」の測定結果を示す平面図(A): Plan view showing measurement result of “insulator correction” and (b): Measurement result of “magnet correction” 測定箇所を詳細に説明する平面図Plan view explaining the measurement location in detail 従来技術のプラズマ処理装置を説明する断面図Sectional drawing explaining the plasma processing apparatus of a prior art

符号の説明Explanation of symbols

1……プラズマ処理装置 11……真空槽 15……エッチングガス導入装置 20……電極板 21……電極本体 22……絶縁部材 25……磁石   DESCRIPTION OF SYMBOLS 1 ... Plasma processing apparatus 11 ... Vacuum chamber 15 ... Etching gas introduction apparatus 20 ... Electrode plate 21 ... Electrode main body 22 ... Insulating member 25 ... Magnet

Claims (2)

真空槽と、
前記真空槽内に配置された電極板とを有し、
前記電極板上に複数の基板を配置し、前記電極板に電圧を印加して前記電極板上にプラズマを形成し、前記各基板の表面を前記プラズマで処理するプラズマ処理装置であって、
前記電極板の前記各基板が配置される位置には、絶縁部材が配置され、
前記絶縁部材表面は露出され、前記各基板の外周部分が前記絶縁部材上に位置するようにされ
前記絶縁部材の前記基板の前記外周部分よりも内側に位置する部分には、磁石が配置され、
前記磁石によって、前記電極板上に配置された前記各基板の表面を磁力線が貫通するように構成され、
前記磁石は環状であり、前記各基板裏面の前記磁石は、同一の極性の磁極が前記基板が位置する方向に向けられたプラズマ処理装置。
A vacuum chamber;
An electrode plate disposed in the vacuum chamber;
A plasma processing apparatus, wherein a plurality of substrates are arranged on the electrode plate, a voltage is applied to the electrode plate to form plasma on the electrode plate, and a surface of each substrate is treated with the plasma,
An insulating member is disposed at a position where each substrate of the electrode plate is disposed,
The insulating member surface is exposed, and an outer peripheral portion of each substrate is positioned on the insulating member ,
A magnet is disposed on a portion of the insulating member located inside the outer peripheral portion of the substrate,
The magnet is configured such that the magnetic lines of force penetrate the surface of each substrate disposed on the electrode plate,
The plasma processing apparatus, wherein the magnet is annular, and the magnets on the back surface of each substrate have magnetic poles of the same polarity oriented in a direction in which the substrate is located .
前記真空槽内にエッチングガスを導入するエッチングガス導入装置を有し、
前記真空槽内に前記エッチングガスのプラズマを形成し、前記各基板表面をエッチングする請求項記載のプラズマ処理装置。
An etching gas introduction device for introducing an etching gas into the vacuum chamber;
Wherein forming a plasma of an etching gas into the vacuum chamber, the plasma processing apparatus according to claim 1, wherein each substrate surface is etched.
JP2007246671A 2007-09-25 2007-09-25 Plasma processing equipment Active JP5094307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007246671A JP5094307B2 (en) 2007-09-25 2007-09-25 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246671A JP5094307B2 (en) 2007-09-25 2007-09-25 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2009076816A JP2009076816A (en) 2009-04-09
JP5094307B2 true JP5094307B2 (en) 2012-12-12

Family

ID=40611476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246671A Active JP5094307B2 (en) 2007-09-25 2007-09-25 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP5094307B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190005750A (en) 2017-07-06 2019-01-16 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6794937B2 (en) * 2017-06-22 2020-12-02 東京エレクトロン株式会社 Plasma processing equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4512841A (en) * 1984-04-02 1985-04-23 International Business Machines Corporation RF Coupling techniques
JPH0730468B2 (en) * 1988-06-09 1995-04-05 日電アネルバ株式会社 Dry etching equipment
JPH08293488A (en) * 1995-04-24 1996-11-05 Sony Corp Plasma processing device
JP4273628B2 (en) * 2000-04-26 2009-06-03 株式会社デンソー Dry etching method and dry etching apparatus used in this method
JP3833900B2 (en) * 2001-03-28 2006-10-18 株式会社東芝 Etching apparatus and etching method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190005750A (en) 2017-07-06 2019-01-16 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus

Also Published As

Publication number Publication date
JP2009076816A (en) 2009-04-09

Similar Documents

Publication Publication Date Title
CN206877967U (en) Process kit and plasma chamber
JP6204869B2 (en) Plasma processing apparatus and plasma processing method
KR101850193B1 (en) Mounting table and plasma processing apparatus
JP3833900B2 (en) Etching apparatus and etching method
JPS6376328A (en) Magnetron-type plasma treatment device
KR101756853B1 (en) Substrate processing method and substrate processing apparatus
TW201508806A (en) Plasma processing device
KR20130058312A (en) Structure for preventing from arcing between susceptor and shadow frame
JP2006196752A (en) System and method for doping plasma
JP2019061849A5 (en)
JP2013139642A (en) Plasma treatment apparatus applied for sputtering film forming
TWI521559B (en) Magnetic field distribution adjusting device for plasma processor and its adjusting method
TWI578370B (en) Plasma processing device and plasma etching method
JP5094307B2 (en) Plasma processing equipment
JPS6136589B2 (en)
KR20070017616A (en) Multi Magnetized Inductively Coupled Plasmas Structure
JP2011176228A (en) Plasma processing apparatus and focus ring
EP3128819A1 (en) Plasma treatment device and coil used therein
JP4672436B2 (en) Plasma processing equipment
JP4698625B2 (en) Plasma processing equipment
JPH09306896A (en) Plasma processor and plasma processing method
KR101139829B1 (en) Apparatus for multi supplying gas and plasma reactor with apparatus for multi supplying gas
KR20110122456A (en) Apparatus and method for manufacturing liquid crystal display device
KR101200743B1 (en) Multi inductively coupled plasma reactor and method thereof
JPS5867870A (en) Magnetically attached magnetron-type apparatus for high-speed plasma etching or reactive ion etching

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5094307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250