JPS6376328A - Magnetron-type plasma treatment device - Google Patents

Magnetron-type plasma treatment device

Info

Publication number
JPS6376328A
JPS6376328A JP61220738A JP22073886A JPS6376328A JP S6376328 A JPS6376328 A JP S6376328A JP 61220738 A JP61220738 A JP 61220738A JP 22073886 A JP22073886 A JP 22073886A JP S6376328 A JPS6376328 A JP S6376328A
Authority
JP
Japan
Prior art keywords
plasma
magnetron
electrode
magnetic field
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61220738A
Other languages
Japanese (ja)
Other versions
JP2537210B2 (en
Inventor
Katsuya Okumura
勝弥 奥村
Shiyuu Tezaki
手崎 衆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61220738A priority Critical patent/JP2537210B2/en
Publication of JPS6376328A publication Critical patent/JPS6376328A/en
Priority to US07/330,933 priority patent/US4891560A/en
Application granted granted Critical
Publication of JP2537210B2 publication Critical patent/JP2537210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32697Electrostatic control
    • H01J37/32706Polarising the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3458Electromagnets in particular for cathodic sputtering apparatus

Abstract

PURPOSE:To form a magnetron-type plasma treatment device which can extend an erosion region by a method wherein a means with which the magnetic-field intensity parallel to an electrode surface is distributed perpendicularly to the electrode surface and another means with which the distribution inside a plasma space can have tile maximum value are installed. CONSTITUTION:By appropriately adjusting the magnetic-field intensity of an electromagnet 11 and a permanent magnet 12, the magnetic-field intensity can be distributed in such a way that the parallel-magnetic-field intensity reaches the maximum in a region which is located in a sufficiently higher region than the width of an ion sheath part, while this intensity is weaker than the vertical intensity near the ion sheath part. As a result, a cyclotron motion is caused in a region which is located far away from the ion sheath part, and the ion density in a plasma reaches the maximum. After an ion has been diffused in the plasma, it reaches an ion sheath surface 16 and is then irradiates a target 13. Through this constitution, it is possible to obtain an erosion region 17 which is extended as compared with the region to be obtained by conventional devices.

Description

【発明の詳細な説明】 [発明の目的1 (産業上の利用分野) 本発明はマグネトロン型プラズマ処理装置に関し、特に
半導体基板のスパッタリングやエツチングに用いられる
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention 1 (Field of Industrial Application) The present invention relates to a magnetron type plasma processing apparatus, and is particularly used for sputtering and etching of semiconductor substrates.

(従来の技術) 従来、マグネトロン型スパッタリング装置としては、例
えば第11図、第12図に示すものが知られている。
(Prior Art) Conventionally, as a magnetron type sputtering apparatus, those shown in FIGS. 11 and 12, for example, are known.

図中の1は、同心円状の電磁石である。この電磁石1の
上には、円板状のターゲット2が載置され、ターゲット
2表面にも磁力線3がもれるようになっている。この際
ターゲット2表面に水平な平行磁界は、中心軸に対して
放射状になっている。
1 in the figure is a concentric electromagnet. A disc-shaped target 2 is placed on top of the electromagnet 1, so that lines of magnetic force 3 also leak onto the surface of the target 2. At this time, the parallel magnetic field horizontal to the surface of the target 2 is radial with respect to the central axis.

前記ターゲット2には該ターゲット2が陰極になるよう
にプラズマ電314が接続され、これによりターゲツト
2上部にプラズマを発生させる。
A plasma electrode 314 is connected to the target 2 so that the target 2 serves as a cathode, thereby generating plasma above the target 2.

こうした構造の装置において、ターゲット2表面近傍の
電界と前記平行磁界によってプラズマ中の電子がサイク
ロトン運動をし、プラズマ密度を増大させる。以下、こ
の状況について第13図〜第14図を参照して説明する
In an apparatus having such a structure, electrons in the plasma undergo cycloton motion due to the electric field near the surface of the target 2 and the parallel magnetic field, thereby increasing the plasma density. This situation will be explained below with reference to FIGS. 13 to 14.

第13図に示す如く、プラズマとターゲット間にはイオ
ンシース部が形成され、該イオンシース部にはプラズマ
が存在しない。そして、プラズマ密度のターゲツト面か
らの分布は平行磁界がない場合、同図に示す如くイオン
シース部より上方はほぼ均一になっている。しかし、平
行磁界が存在する場合は該平行磁界と電界によって電子
がサイクロトン運動を起こし、第14図に示すようにプ
ラズマ密度が増大する。具体的には、磁界が磁界強度(
通常100ガウス前後)以下であるとほとんどプラズマ
は増大しないが、臨界強度以上では強度とともにプラズ
マ密度も増大する。ここで、平行磁界がターゲツト面よ
り単調減少するため、プラズマ密度はイオンシースと接
する界面近傍で最大値をとる。一方、ターゲツト面内の
平行磁界強度は、第15図に示す如く両磁極間のほぼ中
央部(A部)で最大となる。即ち、プラズマ密度の最大
領域は、A部のイオンシース部と接している部近傍とい
う非常に局在化された領域となっている。
As shown in FIG. 13, an ion sheath is formed between the plasma and the target, and no plasma exists in the ion sheath. The distribution of plasma density from the target surface is almost uniform above the ion sheath as shown in the figure in the absence of a parallel magnetic field. However, when a parallel magnetic field exists, electrons undergo cycloton motion due to the parallel magnetic field and electric field, and the plasma density increases as shown in FIG. 14. Specifically, the magnetic field is determined by the magnetic field strength (
If the intensity is below the critical intensity (usually around 100 Gauss), the plasma will hardly increase, but if the intensity is above the critical intensity, the plasma density will increase with the intensity. Here, since the parallel magnetic field decreases monotonically from the target surface, the plasma density takes its maximum value near the interface where it contacts the ion sheath. On the other hand, the parallel magnetic field strength within the target plane is maximum at approximately the center (section A) between the two magnetic poles, as shown in FIG. That is, the region of maximum plasma density is a very localized region near the part A that is in contact with the ion sheath part.

ところで、前記スパッタ装置においては、イオンシース
部に通常500〜800Vの電圧が印加され、電界によ
ってイオンがプラズマから引出されて加速し、これがタ
ーゲットに照射されてスパッタリングが起こる。
By the way, in the sputtering apparatus, a voltage of usually 500 to 800 V is applied to the ion sheath section, and ions are extracted from the plasma and accelerated by the electric field, and the target is irradiated with the ions to cause sputtering.

しかしながら、上記スパッタ装置によれば、第16図に
示す如くプラズマ密度の最大領域5はイオンシース部近
傍で局在化しているため、該局在化領域からイオンシー
ス部の電圧によって引き出される。このため、スパッタ
リング(エロージョン)はターゲットの局在化した領1
g6のみで起こる。従って、ターゲットの有効率が低下
したりターゲットに対向しておかれた基板上に摸体積し
た場合、膜厚の均一性が損われたり、ステップカバレー
ジの不均一性が現われる。
However, according to the above sputtering apparatus, as shown in FIG. 16, the maximum plasma density region 5 is localized in the vicinity of the ion sheath, and therefore the plasma is extracted from the localized region by the voltage of the ion sheath. For this reason, sputtering (erosion) occurs in localized regions of the target.
Occurs only in g6. Therefore, if the effectiveness of the target decreases or if the target is simulated on a substrate facing the target, the uniformity of the film thickness will be impaired or non-uniformity of step coverage will appear.

(発明が解決しようとする問題点) 本発明が上記事情に鑑みてなされたもので、従来と比ベ
ニローション領域を広げることができるマグネトロン型
プラズマ処理装置を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a magnetron-type plasma processing apparatus that can expand the range of benilotion compared to the conventional one.

[発明の構成コ (問題点を解決するための手段) 本発明は、平面状の電極上部にプラズマを発生させる手
段と、前記電極面に平行な磁界強度に前記電極面に垂直
な分布を持たせ、前記プラズマ空間内で該分布の最大値
を持たせる手段とを具備することを特徴とする。本発明
によれば、従来と比ベニローション領域を広げることが
できる。
[Structure of the Invention (Means for Solving Problems)] The present invention provides means for generating plasma on the upper part of a planar electrode, and a magnetic field having a distribution perpendicular to the electrode surface in a magnetic field parallel to the electrode surface. and means for causing the distribution to have a maximum value within the plasma space. According to the present invention, the range of beni lotion can be expanded compared to conventional products.

(作用) 本発明は、イオンシース部幅より十分高い領域で平行磁
界強度が最大となり、イオンシース部近傍では臨界強度
より弱くなるような磁界強度の分布をもたせる。その結
果、イオンシース部より十分離れた領域でサイクロトン
運動が起こるため、プラズマ中でイオン密度が最大にな
り、該イオンがプラズマ中を拡散してからイオンシース
面に到達し、それからターゲットに照射される。このた
め、エロージョン領域が拡大する。
(Function) The present invention provides a distribution of magnetic field strength such that the parallel magnetic field strength is maximum in a region sufficiently higher than the width of the ion sheath portion, and becomes weaker than the critical strength near the ion sheath portion. As a result, cycloton movement occurs in a region sufficiently far away from the ion sheath, so the ion density in the plasma is maximized, and the ions diffuse through the plasma before reaching the ion sheath surface and then irradiating the target. be done. Therefore, the erosion area expands.

(実施例) 以下、本発明の実施例について図を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第1図は、本発明の実施例1に係るマグネトロン型スパ
ッタリング装置である。
Embodiment 1 FIG. 1 shows a magnetron type sputtering apparatus according to Embodiment 1 of the present invention.

図中の11は、最外周直径200mmの同心円状のN1
1石である。この電磁石11の凹部11aには、該電磁
石11と極性を異にするドーナツ状の永久磁石12が埋
設されている。前記電磁石11の上には円板状のターゲ
ット13が配設され、該ターゲット13にプラズマ電源
14が接続されている。こうした装置において、前記電
磁石11゜永久磁石12による夫々の磁界強度を調整し
、イオンシース部での平行磁界強度が臨界強度以下にな
るようにし、かつ電磁石11.永久磁石12の平行磁界
強度がイオンシース部より十分離れた領域で臨界強度よ
り強くなるようにした。具体的には、ターゲット13表
面より3mmの領域では平行磁界を略相殺し、100ガ
ウス以下とし、15mmの領域で300ガウス以下とし
た。その結果、15mmの領域で300ガウスの平行磁
界が得られた(第2図図示)。このような平行磁界分布
が得られるようにして、2×10°3 Torrでアル
ゴンプラズマを発生させた。この際、イオンシース幅は
、約3mmであった。また、このような条件下でエロー
ジョン領域の幅を測定すると、第3図に示すようになり
、永久磁石を埋設しない従来装置の場合は極間では極間
の約30%しかエロージョンされていなかったものが、
本実施例では略全面にわたってエロージョンされた。こ
れは、プラズマ密度の集中fli[15がイオンシース
面16より離れているため、Arイオンがプラズマ中を
拡散し拡がってからイオンシース面16に到達し、ター
ゲットに照射されるからである。なお、図中の17はエ
ロージョン領域である。
11 in the figure is a concentric circle N1 with an outermost diameter of 200 mm.
It is one stone. A donut-shaped permanent magnet 12 having a polarity different from that of the electromagnet 11 is buried in the recess 11a of the electromagnet 11. A disk-shaped target 13 is disposed above the electromagnet 11, and a plasma power source 14 is connected to the target 13. In such a device, the magnetic field strength of the electromagnet 11.degree. The parallel magnetic field strength of the permanent magnet 12 is made stronger than the critical strength in a region sufficiently distant from the ion sheath portion. Specifically, in a region 3 mm from the surface of the target 13, the parallel magnetic field was approximately canceled out to be 100 Gauss or less, and in a 15 mm region, it was 300 Gauss or less. As a result, a parallel magnetic field of 300 Gauss was obtained in a 15 mm area (as shown in Figure 2). Argon plasma was generated at 2×10°3 Torr so as to obtain such a parallel magnetic field distribution. At this time, the ion sheath width was about 3 mm. In addition, when measuring the width of the erosion area under these conditions, it is shown in Figure 3, and in the case of conventional equipment that does not embed permanent magnets, only about 30% of the erosion between the poles was eroded. The thing is
In this example, erosion occurred over almost the entire surface. This is because the plasma density concentration fli[15 is located away from the ion sheath surface 16, so that the Ar ions diffuse and expand in the plasma before reaching the ion sheath surface 16 and irradiating the target. Note that 17 in the figure is an erosion area.

44−上記実施例1によれば、同心円状の電磁石11の
凹部11aに該電磁石1と極性の異なるドーナツ状の永
久磁石12を配設させた構造となっているため、電磁石
11.永久磁石12の夫々の磁界強度を適宜調整するこ
とにより、イオンシース部幅より十分高い領域では平行
磁界強度が最大になり、イオンシース部近傍では臨界強
度より弱くなるような磁界強度の分布をもたせることが
できる。その結果、イオンシース部より十分離れた領域
でサイクロトン運動が起こるため、プラズマ中でイオン
密度が最大となり、該イオンがプラズマ中を拡散してか
らイオンシース面16に到達し、それからターゲット1
3に照射される。このため、従来と比べ拡大したエロー
ジョン領域17が得られる。
44-According to the first embodiment, the donut-shaped permanent magnet 12 having a polarity different from that of the electromagnet 1 is disposed in the recess 11a of the concentric electromagnet 11, so that the electromagnet 11. By appropriately adjusting the magnetic field strength of each of the permanent magnets 12, a distribution of magnetic field strength is created such that the parallel magnetic field strength is maximum in a region sufficiently higher than the width of the ion sheath part, and becomes weaker than the critical strength in the vicinity of the ion sheath part. be able to. As a result, cycloton movement occurs in a region sufficiently distant from the ion sheath, so that the ion density in the plasma becomes maximum, and the ions diffuse through the plasma before reaching the ion sheath surface 16 and then reaching the target 1.
3 is irradiated. Therefore, an enlarged erosion area 17 can be obtained compared to the conventional one.

なお、上記永久磁石の代わりに電磁石を用いることもで
きる。また、電磁石の極性を時間的に変化させて均一性
の向上を図ることができる。
Note that an electromagnet can also be used instead of the above permanent magnet. Furthermore, uniformity can be improved by temporally changing the polarity of the electromagnet.

実施例2 第4図は、実施例2に係るマグネトロン型エツチング装
置である。同装置は、第4図に示す如く、電磁石11.
永久磁石12の上に基板保持板21を設け、かつ該保持
板21の上に直径150mmの被エツチング基板22を
設けた構造となっている。こうした構造の装置において
、四塩化炭素(CCJ24 )ガスと塩素(Off2)
ガスを導入して該ガスのプラズマを形成し、反応性イオ
ンエツチング法によりAn合金膜のバターニングを行な
ったところ。均一性±5%、エッチング速度1譚/分の
良好なエツチングが達成された。
Embodiment 2 FIG. 4 shows a magnetron type etching apparatus according to Embodiment 2. As shown in FIG. 4, the device includes an electromagnet 11.
The structure is such that a substrate holding plate 21 is provided on the permanent magnet 12, and a substrate to be etched 22 having a diameter of 150 mm is placed on the holding plate 21. In equipment with this structure, carbon tetrachloride (CCJ24) gas and chlorine (Off2)
A gas was introduced to form a plasma of the gas, and the An alloy film was buttered by reactive ion etching. Good etching with a uniformity of ±5% and an etching rate of 1 etch/min was achieved.

実施例3 第5図は、実施例3に係るマグネトロン型エツチング装
置である。同装置において、同心円状の電磁石11とド
ーナツ状の永久磁石12の配置は、実施例1のそれと同
じにした。図中の31は、前記電磁石11及び永久磁石
12上に設けられた円板状の電極である。この電極31
は接地されている。この電極31の上方には、下部に被
エツチング基板22を支持した対向電極32が設けられ
ている。この対向電極32には、プラズマ発生のための
電′a14が該対向電極32が陰極になるように接続さ
れている。こうした装置において、対向電極32に被エ
ツチング基板22をセットし、塩素(Cj22)ガスを
導入してプラズマを発生させ、基板2を深さ5譚までエ
ツチングした。この際、エツチング深さが深いため、エ
ツチング速度を太き(とる必要がある。このため、対向
電極32に冷却機構(図示せず)を並設し電源パワーを
大きくした。その結果、2tm/分の高いエツチング速
度が得られとともに、±5%の均一性が得られた。
Embodiment 3 FIG. 5 shows a magnetron type etching apparatus according to Embodiment 3. In the same device, the arrangement of the concentric electromagnet 11 and the donut-shaped permanent magnet 12 was the same as that in Example 1. Reference numeral 31 in the figure represents a disc-shaped electrode provided on the electromagnet 11 and the permanent magnet 12. This electrode 31
is grounded. Above this electrode 31, a counter electrode 32 is provided which supports the substrate 22 to be etched at its lower part. An electrode 'a14 for plasma generation is connected to this counter electrode 32 so that the counter electrode 32 becomes a cathode. In such an apparatus, the substrate 22 to be etched was set on the counter electrode 32, chlorine (Cj22) gas was introduced to generate plasma, and the substrate 2 was etched to a depth of 5 mm. At this time, since the etching depth is deep, it is necessary to increase the etching speed. Therefore, a cooling mechanism (not shown) was installed in parallel to the counter electrode 32 and the power supply power was increased. As a result, the etching speed was increased to 2 tm/ A high etching rate of 50% and a uniformity of ±5% were obtained.

また、実施例3によれば、被エツチング基板22が載置
される対向電極32の下に磁石等を設置する必要がない
ため、基板の冷却が容易にかつ効率よく行なうことが1
きた。
Further, according to the third embodiment, since there is no need to install a magnet or the like under the counter electrode 32 on which the substrate to be etched 22 is placed, the substrate can be cooled easily and efficiently.
came.

実施例4 第6図は、実施例4に係るマグネトロン型スパッタリン
グ装置である。この装置において、電磁石11と永久磁
石12は実施例1と同じ配置にした。また、前記電磁石
11及び永久磁石12上にはターゲット13を設けられ
、このターゲット14の上方には被膜処理がなされる基
板41を支持する対向電極32が設けられている。前記
ターゲット13及び対向電極32には、夫々第1電源1
4a、14bが接続されている。こうした構造の装置に
おいて、第1電源14aと第2電源14bのパワーを3
0:1〜50:1にしてArプラズマを形成した。この
ようにしてバイアススパッタを行なったところ、1pt
の微細なスペースにも空孔もなく膜堆積が行なえた。
Example 4 FIG. 6 shows a magnetron type sputtering apparatus according to Example 4. In this device, the electromagnet 11 and the permanent magnet 12 were arranged in the same manner as in Example 1. Further, a target 13 is provided on the electromagnet 11 and the permanent magnet 12, and a counter electrode 32 is provided above the target 14 to support a substrate 41 to be coated. A first power source 1 is connected to the target 13 and the counter electrode 32, respectively.
4a and 14b are connected. In a device with such a structure, the power of the first power source 14a and the second power source 14b is
Ar plasma was formed at a ratio of 0:1 to 50:1. When bias sputtering was performed in this way, 1pt
The film could be deposited without any microscopic spaces or voids.

また、本発明に係る他の実施例としては、第7図〜第1
0図に示すものが知られている。第7図は、同心円状磁
石の内部に埋設する磁石に平板リング状の永久磁石51
を使用したものである。但し、この永久磁石51では、
外周面と内周面で極性が異なるように作製されている。
Further, as other embodiments according to the present invention, FIGS.
The one shown in Figure 0 is known. FIG. 7 shows a flat ring-shaped permanent magnet 51 embedded inside a concentric magnet.
This is what was used. However, in this permanent magnet 51,
It is manufactured so that the outer circumferential surface and the inner circumferential surface have different polarities.

第8図は、プラズマ集中リング52a、52bが二重に
なるようにしたもので、大面積の電極に適している。こ
こで、プラズマ集中リングを永久磁石の機械的な移動や
電磁石の電流変化によって移動、変形させることにより
、一層良好な均一性を得ることができる。
FIG. 8 shows a configuration in which the plasma concentration rings 52a and 52b are doubled, which is suitable for large-area electrodes. Here, better uniformity can be obtained by moving and deforming the plasma concentration ring by mechanically moving a permanent magnet or changing the current of an electromagnet.

第9図は、第7図と逆に外周磁石に平板リング状の永久
磁石53を使用したものである。
In FIG. 9, in contrast to FIG. 7, a flat ring-shaped permanent magnet 53 is used as the outer peripheral magnet.

第10図は、2個の平板リング状の永久磁石54a、5
4bを用いて本提案の磁界分布を得たものである。
FIG. 10 shows two flat ring-shaped permanent magnets 54a, 5.
4b was used to obtain the magnetic field distribution of this proposal.

なお、上記実施例では、電磁石を用いた場合について述
べたが、これに限らず、この代わりに永久磁石を用いる
こともできる。
In addition, although the above-mentioned Example described the case where an electromagnet was used, it is not limited to this and a permanent magnet can also be used instead.

また、上記実施例では、スパッタリング又はプラズマエ
ツチングに応用した場合について述べたが、これに限ら
ず、この他プラズマCVD、プラズマ酸化・窒化、アッ
シングなどにも適用できる。
Further, in the above embodiments, the case where the present invention is applied to sputtering or plasma etching has been described, but the present invention is not limited to this, and can be applied to other plasma CVD, plasma oxidation/nitridation, ashing, etc.

[発明の効果] 以上詳述した如く本発明によれば、従来と比ベニローシ
ョン領域を広げることができるマグネトロン型プラズマ
処理装置を提供できる。
[Effects of the Invention] As described in detail above, according to the present invention, it is possible to provide a magnetron-type plasma processing apparatus that can expand the range of benilotion compared to the conventional apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1に係るマグネトロン型スパッ
タリング装置の説明図、第2図は同装置によるターゲッ
トからの距離とプラズマ密度、平行磁界強度との関係を
示す特性図、第3図は同装置によるエロージョン領域の
説明図、第4図は本発明の実施例2に係るマグネトロン
型エツチング装置の説明図、第5図は本発明の実施例3
に係るマグネトロン型エツチング装置の説明図、第6図
は本発明の実施例4に係るマグネトロン型スパッタ装置
の説明図、第7図〜第10図は夫々本発明のその他の実
施例に係るマグネトロン型プラズマ処理装置の要部の説
明図、第11図は従来のマグネトロン型スパッタリング
HMの説明図、第12図は同装置における磁力線の説明
図、第13図は同装置によるターゲットからの距離とプ
ラズマ密度との関係を示す説明図、第14図は同装置に
よるターゲットからの距離とプラズマ密度、平行磁界強
度との関係を示す特性図、第15図は同装置によるター
ゲツト面内の平行磁界強度の説明図、第16図は同装置
によるエロージョン領域の説明図である。 11 ・・・電磁石、12.51.54a、54b−・
・永久磁石、13・・・ターゲット、14a、14b・
・・プラズマ電源、15・・・集中領域、16・・・イ
オンシース而、17・・・エロージョン領域、21・・
・基板保持板、22・・・被エツチング基板、31・・
・電極、32・・・対向電極、52a、52t)・・・
プラズマ集中リング。 出願人代理人 弁理士 鈴江武彦 第1図 プラズマ密度 平行磁界強度 第2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図 「了54a    匣?554a 二=二ニニニコ 第10図 1!11図 第12図 第13図    第14図 第16図
FIG. 1 is an explanatory diagram of a magnetron type sputtering apparatus according to Example 1 of the present invention, FIG. 2 is a characteristic diagram showing the relationship between distance from the target, plasma density, and parallel magnetic field strength using the same apparatus, and FIG. FIG. 4 is an explanatory diagram of the erosion area according to the same apparatus, FIG. 4 is an explanatory diagram of the magnetron type etching apparatus according to the second embodiment of the present invention, and FIG.
FIG. 6 is an explanatory diagram of a magnetron type sputtering apparatus according to Embodiment 4 of the present invention, and FIGS. 7 to 10 are explanatory diagrams of magnetron type sputtering apparatus according to other embodiments of the present invention. An explanatory diagram of the main parts of the plasma processing equipment, Fig. 11 is an explanatory diagram of the conventional magnetron type sputtering HM, Fig. 12 is an explanatory diagram of the magnetic lines of force in the same equipment, and Fig. 13 is the distance from the target and plasma density using the same equipment. Fig. 14 is a characteristic diagram showing the relationship between the distance from the target, plasma density, and parallel magnetic field strength using the same device, and Fig. 15 is an explanation of the parallel magnetic field strength in the target plane using the same device. 16 are explanatory diagrams of the erosion area by the same device. 11...Electromagnet, 12.51.54a, 54b-...
・Permanent magnet, 13...Target, 14a, 14b・
...Plasma power supply, 15...Concentrated area, 16...Ion sheath, 17...Erosion area, 21...
・Substrate holding plate, 22...Substrate to be etched, 31...
- Electrode, 32... Counter electrode, 52a, 52t)...
Plasma concentration ring. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Plasma density Parallel magnetic field strength Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 1! Figure 11 Figure 12 Figure 13 Figure 14 Figure 16

Claims (6)

【特許請求の範囲】[Claims] (1)平面状の電極上部にプラズマを発生させる手段と
、前記電極面に平行な磁界強度に前記電極面に垂直な方
向の分布を持たせ、前記プラズマ空間内で該分布の最大
値を持たせる手段とを具備することを特徴とするマグネ
トロン型プラズマ処理装置。
(1) A means for generating plasma above a planar electrode, a magnetic field intensity parallel to the electrode surface having a distribution in a direction perpendicular to the electrode surface, and having a maximum value of the distribution within the plasma space; 1. A magnetron-type plasma processing apparatus, characterized in that it is equipped with means for causing
(2)前記プラズマがドーナツ状であり、かつ電極面に
平行な磁界がプラズマの中心軸に対し放射状になってい
ることを特徴とする特許請求の範囲第1項記載のマグネ
トロン型プラズマ処理装置。
(2) The magnetron-type plasma processing apparatus according to claim 1, wherein the plasma is donut-shaped and the magnetic field parallel to the electrode surface is radial with respect to the central axis of the plasma.
(3)前記磁界を発生させるための磁石を前記電極下部
に設けたことを特徴とする特許請求の範囲第2項記載の
マグネトロン型プラズマ処理装置。
(3) The magnetron type plasma processing apparatus according to claim 2, wherein a magnet for generating the magnetic field is provided below the electrode.
(4)前記電極に該電極が陰極になるようにプラズマ発
生電源を接続し、平行磁界の最大値になる高さがイオン
シース幅より大きくしたことを特徴とする特許請求の範
囲第1項記載のマグネトロン型プラズマ処理装置。
(4) A plasma generation power source is connected to the electrode so that the electrode becomes a cathode, and the height at which the parallel magnetic field reaches a maximum value is greater than the width of the ion sheath. magnetron type plasma processing equipment.
(5)前記電極がスパッタリングターゲットになり、か
つ該ターゲットと対向して被処理基板が設けられている
ことを特徴とする特許請求の範囲第1項記載のマグネト
ロン型プラズマ処理装置。
(5) The magnetron plasma processing apparatus according to claim 1, wherein the electrode serves as a sputtering target, and a substrate to be processed is provided opposite the target.
(6)前記電極にエッチングすべき基板が設けられてい
ることを特徴とする特許請求の範囲第1項記載のマグネ
トロン型プラズマ処理装置。
(6) The magnetron type plasma processing apparatus according to claim 1, wherein the electrode is provided with a substrate to be etched.
JP61220738A 1986-09-18 1986-09-18 High-density plasma generator Expired - Fee Related JP2537210B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61220738A JP2537210B2 (en) 1986-09-18 1986-09-18 High-density plasma generator
US07/330,933 US4891560A (en) 1986-09-18 1989-03-27 Magnetron plasma apparatus with concentric magnetic means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61220738A JP2537210B2 (en) 1986-09-18 1986-09-18 High-density plasma generator

Publications (2)

Publication Number Publication Date
JPS6376328A true JPS6376328A (en) 1988-04-06
JP2537210B2 JP2537210B2 (en) 1996-09-25

Family

ID=16755753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61220738A Expired - Fee Related JP2537210B2 (en) 1986-09-18 1986-09-18 High-density plasma generator

Country Status (2)

Country Link
US (1) US4891560A (en)
JP (1) JP2537210B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016513336A (en) * 2013-02-06 2016-05-12 アルセロルミッタル インベスティガシオン イ デサロージョ エセ.エレ. Plasma source

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689446B2 (en) * 1988-12-19 1994-11-09 株式会社日立製作所 Thin film forming equipment
ATE114870T1 (en) * 1989-01-24 1994-12-15 Braink Ag UNIVERSAL COLD CATHODE ION GENERATION AND ACCELERATION DEVICE.
DE59009549D1 (en) * 1989-06-05 1995-09-28 Balzers Hochvakuum Process for cooling targets and cooling device for targets.
US5196670A (en) * 1989-10-03 1993-03-23 University Of Cincinnati Magnetic plasma producing device with adjustable resonance plane
US5417833A (en) * 1993-04-14 1995-05-23 Varian Associates, Inc. Sputtering apparatus having a rotating magnet array and fixed electromagnets
US5457298A (en) * 1993-07-27 1995-10-10 Tulip Memory Systems, Inc. Coldwall hollow-cathode plasma device for support of gas discharges
DE4329155A1 (en) * 1993-08-30 1995-03-02 Bloesch W Ag Magnetic field cathode
US5496455A (en) * 1993-09-16 1996-03-05 Applied Material Sputtering using a plasma-shaping magnet ring
JP3100837B2 (en) * 1993-12-24 2000-10-23 松下電器産業株式会社 Sputtering equipment
US5597459A (en) * 1995-02-08 1997-01-28 Nobler Technologies, Inc. Magnetron cathode sputtering method and apparatus
JP3814764B2 (en) * 1995-02-23 2006-08-30 東京エレクトロン株式会社 Sputtering method
US6224724B1 (en) 1995-02-23 2001-05-01 Tokyo Electron Limited Physical vapor processing of a surface with non-uniformity compensation
US5850453A (en) * 1995-07-28 1998-12-15 Srs Labs, Inc. Acoustic correction apparatus
JPH09310174A (en) * 1996-05-21 1997-12-02 Anelva Corp Sputtering device
US7031474B1 (en) * 1999-10-04 2006-04-18 Srs Labs, Inc. Acoustic correction apparatus
US7277767B2 (en) 1999-12-10 2007-10-02 Srs Labs, Inc. System and method for enhanced streaming audio
JP4371569B2 (en) * 2000-12-25 2009-11-25 信越化学工業株式会社 Magnetron sputtering apparatus and photomask blank manufacturing method using the same
ES2228830T3 (en) * 2001-03-27 2005-04-16 Fundacion Tekniker ARCH EVAPORATOR WITH INTENSE MAGNETIC GUIDE FOR WHITE SURFACE WHITE.
US20030209431A1 (en) * 2001-04-10 2003-11-13 Brown Jeffrey T. Magnetron sputtering source with improved target utilization and deposition rate
JP4269263B2 (en) * 2003-07-01 2009-05-27 富士電機デバイステクノロジー株式会社 Method and apparatus for forming hard carbon film
US20060236931A1 (en) * 2005-04-25 2006-10-26 Varian Semiconductor Equipment Associates, Inc. Tilted Plasma Doping
US7498587B2 (en) * 2006-05-01 2009-03-03 Vapor Technologies, Inc. Bi-directional filtered arc plasma source
US8050434B1 (en) 2006-12-21 2011-11-01 Srs Labs, Inc. Multi-channel audio enhancement system
US10043642B2 (en) * 2008-02-01 2018-08-07 Oerlikon Surface Solutions Ag, Pfäffikon Magnetron sputtering source and arrangement with adjustable secondary magnet arrangement
KR101626034B1 (en) 2009-09-12 2016-05-31 위순임 Sputtering apparatus using ICP
KR101160919B1 (en) * 2010-02-02 2012-06-28 위순임 Sputtering apparatus for high efficiency
JP5318052B2 (en) * 2010-06-23 2013-10-16 株式会社神戸製鋼所 Arc type evaporation source having high film forming speed, film manufacturing method and film forming apparatus using this arc type evaporation source
KR20120000317A (en) * 2010-06-25 2012-01-02 고려대학교 산학협력단 Apparatus for forming electronic material layer
JPWO2012035603A1 (en) * 2010-09-13 2014-01-20 株式会社シンクロン Magnetic field generator, magnetron cathode and sputtering device
KR20150103382A (en) * 2011-02-23 2015-09-10 가부시키가이샤 고베 세이코쇼 Arc evaporation source
EP2729955B1 (en) * 2011-07-15 2018-12-19 IHI Hauzer Techno Coating B.V. Apparatus and method for the pretreatment and/or for the coating of an article in a vacuum chamber with a hipims power source
WO2014190140A1 (en) 2013-05-23 2014-11-27 Alan Kraemer Headphone audio enhancement system
JP6403269B2 (en) * 2014-07-30 2018-10-10 株式会社神戸製鋼所 Arc evaporation source
US10332731B2 (en) * 2014-10-10 2019-06-25 The Board Of Trustees Of The University Of Illinois Method of and magnet assembly for high power pulsed magnetron sputtering

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272121A (en) * 1985-09-26 1987-04-02 Tokuda Seisakusho Ltd Semiconductor treating device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU179482B (en) * 1979-02-19 1982-10-28 Mikroelektronikai Valalat Penning pulverizel source
US4461688A (en) * 1980-06-23 1984-07-24 Vac-Tec Systems, Inc. Magnetically enhanced sputtering device having a plurality of magnetic field sources including improved plasma trapping device and method
US4361472A (en) * 1980-09-15 1982-11-30 Vac-Tec Systems, Inc. Sputtering method and apparatus utilizing improved ion source
DE3331406A1 (en) * 1983-08-31 1985-03-14 Leybold-Heraeus GmbH, 5000 Köln SPRAYING CATODE
US4606802A (en) * 1983-12-21 1986-08-19 Hitachi, Ltd. Planar magnetron sputtering with modified field configuration
US4724058A (en) * 1984-08-13 1988-02-09 Vac-Tec Systems, Inc. Method and apparatus for arc evaporating large area targets
US4631106A (en) * 1984-09-19 1986-12-23 Hitachi, Ltd. Plasma processor
JPS63183181A (en) * 1987-01-23 1988-07-28 Anelva Corp Magnetron sputter etching device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272121A (en) * 1985-09-26 1987-04-02 Tokuda Seisakusho Ltd Semiconductor treating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016513336A (en) * 2013-02-06 2016-05-12 アルセロルミッタル インベスティガシオン イ デサロージョ エセ.エレ. Plasma source

Also Published As

Publication number Publication date
JP2537210B2 (en) 1996-09-25
US4891560A (en) 1990-01-02

Similar Documents

Publication Publication Date Title
JPS6376328A (en) Magnetron-type plasma treatment device
KR100646266B1 (en) A plasma processing system for sputter deposition applications
US7757633B2 (en) Method, apparatus and magnet assembly for enhancing and localizing a capacitively coupled plasma
JP2501948B2 (en) Plasma processing method and plasma processing apparatus
KR100619112B1 (en) Plasma processing device
JPH07288195A (en) Plasma treatment apparatus
JPS61183467A (en) Sputtering electrode
JP2006114767A (en) Equipment and method for plasma treatment
US6167835B1 (en) Two chamber plasma processing apparatus
US4943361A (en) Plasma treating method and apparatus therefor
JPS634065A (en) Method and apparatus for sputtering material by high frequency discharge
JP2013139642A (en) Plasma treatment apparatus applied for sputtering film forming
JPH0669026B2 (en) Semiconductor processing equipment
JPS61187336A (en) Plasma etching device
JPH03162583A (en) Vacuum process device
JP5094307B2 (en) Plasma processing equipment
JPH07201831A (en) Surface processor
JP2001220671A (en) Plasma treating system for application to sputter film deposition
JP4223143B2 (en) Plasma processing equipment
JP4379771B2 (en) Plasma processing apparatus and plasma processing method
JPH0241584B2 (en)
JPH02195631A (en) Plasma generator
JP3100242B2 (en) Plasma processing equipment
JP4135173B2 (en) Plasma processing apparatus and plasma processing method
JPS6372870A (en) Plasma treatment device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees