JP5092679B2 - Judgment method of building damage - Google Patents

Judgment method of building damage Download PDF

Info

Publication number
JP5092679B2
JP5092679B2 JP2007272574A JP2007272574A JP5092679B2 JP 5092679 B2 JP5092679 B2 JP 5092679B2 JP 2007272574 A JP2007272574 A JP 2007272574A JP 2007272574 A JP2007272574 A JP 2007272574A JP 5092679 B2 JP5092679 B2 JP 5092679B2
Authority
JP
Japan
Prior art keywords
building
energy
layer
mode
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007272574A
Other languages
Japanese (ja)
Other versions
JP2009098101A (en
Inventor
治彦 栗野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2007272574A priority Critical patent/JP5092679B2/en
Publication of JP2009098101A publication Critical patent/JP2009098101A/en
Application granted granted Critical
Publication of JP5092679B2 publication Critical patent/JP5092679B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

本発明は、地震に対する建物の健全性や損傷度を評価する、建物の被災の有無の判定方法に関するものである。   The present invention relates to a method for determining the presence or absence of damage to a building, which evaluates the soundness and damage level of the building against an earthquake.

従来から、建物内に設置された加速度計などから得られた信号を基に、建物の被災度を判定する手法がいくつか提案されている。計測信号を処理することで固有周期や減衰定数を等価線形的に評価し、損傷の可能性を指摘するものや、建物の層間変形を推定し、これと許容変形との関係から損傷の有無を判定するものなどが代表的な方法である。   Conventionally, several methods for determining the damage level of a building based on a signal obtained from an accelerometer installed in the building have been proposed. By processing the measurement signal, the natural period and attenuation constant are evaluated equivalently linearly, indicating the possibility of damage, estimating the interlayer deformation of the building, and determining whether there is damage from the relationship between this and the allowable deformation What is determined is a typical method.

しかしながら、例えば鉄骨構造物などでは、部材の損傷度は過去に経験した最大値のみから決まるのではなく、繰り返し変形により投入されたエネルギ的ダメージにより定まることが既往の研究により明らかにされている。しかし、観測記録を用いたこれまでの被災度判定方法においては、このエネルギ的な観点から建物の損傷度を判定する方法はなかった。   However, for example, in steel structures, past studies have revealed that the degree of damage to a member is not determined only from the maximum value experienced in the past, but is determined by energy damage that has been thrown in due to repeated deformation. However, in the conventional damage degree determination methods using observation records, there is no method for determining the damage degree of a building from this energy viewpoint.

一方、上述のように計測記録を分析するのではなく、基礎部の地震記録を用いて、建物設計時と同じように応答解析を行い、建物の損傷度を推定する方法もある。但し、実構造物と設計時の計算諸元とは隔たりがあるのが通常であり、観測記録と計算結果が合致するよう、建物モデルの係数を変化させながら検討していく必要があり、多大な労力と時間が要求されるため、即時的な判定には適さない。   On the other hand, there is also a method of estimating the degree of damage to the building by analyzing the response in the same way as at the time of building design by using the earthquake record of the foundation instead of analyzing the measurement record as described above. However, there is usually a gap between the actual structure and the design specifications at the time of design, and it is necessary to study while changing the coefficients of the building model so that the observation records and the calculation results match. Requires a lot of effort and time, so it is not suitable for immediate judgment.

なお、本発明に関連する先行技術文献として、例えば特許文献1、2がある。   In addition, there exist patent document 1, 2 as a prior art document relevant to this invention, for example.

特許文献1の発明は、地震発生後の建物の残余耐震性能を迅速にかつ客観的に判定する建物の耐震性能評価方法であり、建物の基礎部と上層階に設置した加速度センサにより計測した加速度計測値を2回積分して計測点での絶対変位を算出し、建物の振動モード形を仮定して建物各階の相対変位と絶対加速度を算出し、それらの値から建物の応答変形量を代表する代表変位及び建物の応答加速度を代表する代表加速度を計算して建物の性能曲線を求め、他方、基礎部での加速度計測値を建物に入力した入力地震動として加速度応答スペクトル及び変位応答スペクトルを計算して建物の要求曲線を求め、これらの性能曲線と要求曲線の比較から建物の残余耐震性能を判定するものである。   The invention of Patent Document 1 is a method for evaluating the seismic performance of a building that quickly and objectively determines the residual seismic performance of the building after the occurrence of an earthquake. The acceleration measured by the acceleration sensors installed on the foundation and upper floors of the building Calculate the absolute displacement at the measurement point by integrating the measured value twice, calculate the relative displacement and absolute acceleration of each floor of the building assuming the vibration mode shape of the building, and represent the response deformation amount of the building from those values The representative acceleration representing the representative displacement and the response acceleration of the building is calculated to obtain the performance curve of the building. On the other hand, the acceleration response spectrum and the displacement response spectrum are calculated as the input seismic motion that inputs the acceleration measurement value at the foundation. Thus, the required curve of the building is obtained, and the residual seismic performance of the building is judged from a comparison between the performance curve and the required curve.

特許文献2の発明は、地震後の橋梁の使用可否を客観的かつ効率的に予測する地震時橋梁被災度判定システムであり、橋梁構造物の橋脚頭部に設置した加速度センサにより橋梁頭部の加速度応答記録を取得し、地震前後の固有周期の変化を演算し、この演算した結果から橋梁の損傷の有無を判定するものである。   The invention of Patent Document 2 is an earthquake damage level determination system for an earthquake that objectively and efficiently predicts whether or not a bridge can be used after an earthquake. The acceleration sensor installed on the pier head of the bridge structure An acceleration response record is acquired, the change of the natural period before and after the earthquake is calculated, and the presence or absence of damage to the bridge is determined from the result of the calculation.

特開2003−344213号公報JP 2003-344213 A 特開2006−170661号公報JP 2006-170661 A

前述したように、観測記録を用いた被災度判定手法では、エネルギ的な観点から建物の損傷度を判定するものではなく、正確な被災度の判定ができないという課題がある。   As described above, the damage degree determination method using the observation record does not determine the damage degree of the building from the viewpoint of energy, and there is a problem that the damage degree cannot be accurately determined.

また、基礎部の地震記録を用いて建物設計時と同じように応答解析を行う推定方法では、多大な労力と時間が要求されるため、即時的な判断には適さないという課題がある。   In addition, the estimation method that performs response analysis using the earthquake records of the foundation as in the case of building design has a problem that it is not suitable for immediate judgment because it requires a great deal of labor and time.

本発明は、上記のような課題を解消すべくなされたものであり、建物モデルの諸元を利用しながらも、あくまで地震時に観測された応答波形を用いて、建物に投入されたエネルギ量を安定して推定することができ、建物の被災の有無を正確に短時間で判定することができる建物の被災の有無の判定方法を提供するものである。   The present invention has been made to solve the above-described problems, and while using the specifications of the building model, the amount of energy input to the building is calculated using the response waveform observed at the time of the earthquake. The present invention provides a method for determining whether or not a building has been damaged, which can be stably estimated and can accurately determine whether or not a building has been damaged in a short time.

本発明の請求項1の発明は、地震時における建物基礎部と建物内の1点あるいは数点の波形記録と、別途求められている建物質量、固有周期および固有モード形を用いて、各モード毎の建物に入力された入力エネルギ量 L(t)および減衰による減衰消費エネルギ量 D(t)を推定し、各時刻における前記入力エネルギ量 L(t)と前記減衰消費エネルギ量 D(t)の差分である建物が吸収した各モード毎の建物吸収エネルギ量 W(t)を主要なモード次数まで合計することで得られる建物全体の吸収エネルギW(t)の最大値が建物の弾性許容エネルギ量に比べて十分小さければ、建物は地震で損傷を受けていないとして、建物の被災の有無を判定することを特徴とする建物の被災の有無の判定方法である。 According to the first aspect of the present invention, each mode is recorded using a waveform record of one or several points in the building foundation and the building at the time of an earthquake, and separately obtained building mass, natural period and natural mode shape. The input energy amount s L (t) input to each building and the attenuation consumption energy amount s D (t) due to attenuation are estimated, and the input energy amount s L (t) and the attenuation energy consumption amount s at each time are estimated. The maximum value of the absorbed energy W (t) of the entire building obtained by summing the building absorbed energy amount s W (t) for each mode absorbed by the building, which is the difference of D (t) , up to the main mode order. If it is sufficiently smaller than the elastic allowable energy amount of the building, it is determined that the building is not damaged by the earthquake, and it is determined whether the building is damaged or not.

本発明の請求項2の発明は、請求項1において得られた各モード毎の建物吸収エネルギ量 W(t)について、地震終了後の振動が十分収束した最終時刻t における各モードの塑性吸収エネルギ W(t )を、別途求められている建物固有モードおよび各層の耐力分布の情報から、弾性時の振動エネルギ分布に比例させて各層iに分配して層毎に足し合わせたものを各層iの仮の塑性吸収エネルギW とし、前記仮の塑性吸収エネルギW i を弾性的に蓄えるのに必要な各層のせん断力との関係から、前記仮の塑性吸収エネルギW i の各層iへの分配を修正し、各層の塑性吸収エネルギ量 pi を算定することを特徴とする建物の被災の有無の判定方法である。 The invention of claim 2 of the present invention is the plasticity of each mode at the final time t m when the vibration after the earthquake is sufficiently converged with respect to the building absorbed energy amount s W (t) for each mode obtained in claim 1. Absorbed energy s W (t m ) is distributed to each layer i in proportion to the vibration energy distribution at the time of elasticity, and is added to each layer in proportion to the separately obtained building eigenmode and information on the strength distribution of each layer was a temporary plastic absorbed energy W i of each layer i, the relationship between the shear force required layers to store plastic absorbed energy W i of the temporary elastically, each layer i of plastic absorbed energy W i of the temporary This is a method for determining the presence or absence of damage to a building, characterized in that the distribution of energy is corrected and the amount of plastic absorbed energy W pi of each layer is calculated.

本発明は、地震時に建物で観測された応答波形を基に、建物のエネルギ損傷を簡便に評価する手法であり、1〜数点の記録から各モードのエネルギ収支を評価して損傷分布則を適用することにより、各層の塑性吸収エネルギ量を推定するものである。地震後の残余耐震性の評価、あるいは詳細な調査を実施すべき層の決定等に必要な情報を簡単に得ることができる。   The present invention is a method for simply evaluating the energy damage of a building based on the response waveform observed in the building during an earthquake. The energy balance of each mode is evaluated from a record of one to several points to determine the damage distribution law. By applying, the amount of plastic absorption energy of each layer is estimated. Information necessary for evaluation of residual seismic resistance after an earthquake or determination of a layer to be subjected to detailed investigation can be easily obtained.

請求項1の発明では、建物モデルの諸元を利用し、かつ、地震時に建物で観測された応答波形を用い、建物に投入されたエネルギ量を推定する。建物モデルの諸元を利用してはいるものの、質量やモード形、概略の固有周期といった、誤差の小さな量を用いているため、安定した良好な推定が可能である。   According to the first aspect of the present invention, the amount of energy input to the building is estimated using the specifications of the building model and using the response waveform observed in the building during the earthquake. Although the specifications of the building model are used, stable and good estimation is possible because small amounts of error such as mass, mode shape, and approximate natural period are used.

請求項2の発明では、建物の耐力情報が必要であるが、各層の相対的な耐力の比のみを用いるため、古い建物のように部材耐力の真の値が推定困難であっても、相対的な関係のみから推定できる。また、計算は極めて短時間で行えるため、基礎部の地震記録を用いた詳細な応答解析(順解析)による推定結果を補完するだけでなく、地震後に詳細調査が必要な層を迅速に特定できるなど、様々な利用方法がある。   The invention of claim 2 requires building strength information. However, since only the relative strength ratio of each layer is used, even if it is difficult to estimate the true value of member strength as in an old building, It can be estimated from only the relationship. In addition, since calculations can be performed in a very short time, not only can the results of detailed response analysis (forward analysis) using the earthquake records of the foundation be supplemented, but also the layers that require detailed investigation after the earthquake can be quickly identified. There are various usage methods.

具体的には、地震後に、先ず観測記録を地動加速度d2y/da2と相対速度dx/daに修正し、続いてdx/daを各次成分svに分解する。観測点が複数あればモード分解を適用できる。 Specifically, after the earthquake, the observation record is first corrected to the ground acceleration d 2 y / da 2 and the relative velocity dx / da, and then dx / da is decomposed into the respective secondary components s v. Mode decomposition can be applied if there are multiple observation points.

Figure 0005092679
Figure 0005092679

Uは観測位置の刺激係数を観測点数に対応する次数まで並べたモード行列であり、建物設計諸元により求まるモード行列を用いても良いし、観測記録から別途求められているものを用いてもよい。観測点数より高次まで評価する場合や観測点が1点の場合には、バンドパスフィルター+刺激係数による補正を行い、各次の速度波形を求める。バンドパスフィルターを用いるに当たっても概略の各モードの固有周期が必要であるが、これも建物設計諸元から得られる値を用いても良いし、観測記録から別途求められるものを用いても良い。   U is a mode matrix in which the stimulation coefficients at the observation position are arranged up to the order corresponding to the number of observation points, and a mode matrix obtained from building design specifications may be used, or a matrix obtained separately from observation records may be used. Good. When evaluating up to higher order than the number of observation points, or when the number of observation points is one, correction by a band pass filter + stimulus coefficient is performed to obtain each next velocity waveform. Even when using a bandpass filter, an approximate natural period of each mode is required, but this may also be a value obtained from building design specifications, or may be obtained separately from observation records.

次に、各次のエネルギ応答を求める。先ず各次の入力エネルギsL(t)、減衰消費エネルギsD(t)を次式により算定する。ここで、sM はs次有効質量、tは地震開始からの経過時間であり、sMは建物諸元の質量分布と剛性分布を用いて算定すればよい。 Next, each subsequent energy response is determined. First, each next input energy s L (t) and attenuation consumption energy s D (t) are calculated by the following equations. Here, s M is the s-order effective mass, t is the elapsed time from the start of the earthquake, and s M may be calculated using the mass distribution and stiffness distribution of the building specifications.

Figure 0005092679
Figure 0005092679

Figure 0005092679
Figure 0005092679

(3)式の係数sCは、建物が十分弾性範囲に収まっている小地震時の記録からsD=sLの条件により定めることができる。各時刻における(2)式と(3)式の差分である次式は、時刻tにおける各モードの建物吸収エネルギを表している。 The coefficient s C in the equation (3) can be determined by the condition of s D = s L from the record at the time of a small earthquake that the building is sufficiently in the elastic range. The following equation, which is the difference between equations (2) and (3) at each time, represents the building absorbed energy in each mode at time t.

Figure 0005092679
Figure 0005092679

建物全体の吸収エネルギは、(4)式を主要なモード次数まで合計することで得られる。   The absorbed energy of the entire building can be obtained by summing up the equation (4) up to the main mode order.

Figure 0005092679
Figure 0005092679

建物が揺れている最中、即ち地震継続中の(4)式は、各モードの建物吸収エネルギすなわち各モードの建物の弾性振動エネルギと塑性吸収エネルギの和を表しており、弾性振動エネルギと塑性吸収エネルギを区別することは困難であるが、(5)式の最大値が建物の弾性許容エネルギ量に比べて十分小さければ、直ちにこの建物は地震で損傷を受けていないと判定することができる。以上が請求項1の発明である。 While the building is shaking, that is earthquake continued in the equation (4) represents the sum of the elastic vibration energy and plastic absorbing the energy of the building absorbed energy that is, each mode of each mode, elastic vibration energy and plastic Although it is difficult to distinguish the absorbed energy , if the maximum value of equation (5) is sufficiently small compared to the elastic allowable energy of the building, it can be immediately determined that the building is not damaged by the earthquake. . The above is the invention of claim 1.

地震終了後の時刻tmにおいて振動は十分収束したものとすると、この最終時刻における(4)式の値sW(tm) は、各モードの塑性吸収エネルギspを表す。このspが塑性化層の位置や集中の程度に影響を受けない、地震と建物諸元で決まる固有値であると仮定すると、各層のエネルギ損傷を等しくする、いわゆる最適降伏せん断力分布時には、
spは弾性時の振動エネルギ分布に比例して、次のようにi層に分配されることになる。
Assuming that the vibration has sufficiently converged at time t m after the end of the earthquake, the value s W (t m ) in equation (4) at this final time represents the plastic absorption energy s W p of each mode. Assuming that this s W p is an eigenvalue determined by the earthquake and building dimensions that is not affected by the position and concentration of the plasticized layer, the energy damage of each layer is equal, so-called optimal yield shear force distribution,
s W p is distributed to the i layer in proportion to the vibration energy distribution at the time of elasticity.

Figure 0005092679
Figure 0005092679

分配係数sλiは建物固有モードにより予め定まる。 The distribution coefficient s λ i is determined in advance by the building eigenmode.

Figure 0005092679
Figure 0005092679

Figure 0005092679
Figure 0005092679

iを弾性的に蓄えるのに必要なせん断力は、各層剛性kiを用いてQi=(2kii1/2と書ける。層剛性を用いない、モーダル解析と類似の表現に直すと、 The shear force required to store W i elastically can be written as Q i = (2k i W i ) 1/2 using the layer stiffness k i . If the expression is similar to the modal analysis without using the layer rigidity,

Figure 0005092679
Figure 0005092679

(9)式を観測地震に対する最適降伏せん断力分布と見なし、損傷分布則を適用すると、各層の塑性吸収エネルギ量Wpiが次のように予測される。 When the equation (9) is regarded as the optimum yield shear force distribution for the observed earthquake and the damage distribution law is applied, the plastic absorbed energy amount W pi of each layer is predicted as follows.

Figure 0005092679
Figure 0005092679

(10)式より分かるように、損傷エネルギを各層に分配するパラメータは、耐力の相対的な関係であり、絶対値ではない。従って、古い建物のように材料強度が不明の場合でも部材の断面寸法の関係から相対的な強度分布を求められれば良いことが特徴である。   As can be seen from the equation (10), the parameter for distributing the damage energy to each layer is a relative relationship of proof stress and not an absolute value. Therefore, even when the material strength is unknown as in an old building, it is a feature that it is only necessary to obtain a relative strength distribution from the relationship of the cross-sectional dimensions of the members.

本発明は、以上のような構成からなるので、次のような効果が得られる。   Since the present invention is configured as described above, the following effects can be obtained.

(1) 建物に投入されたエネルギ量を安定して良好に推定することができ、建物の被災の有無を正確に短時間に判定することができる。   (1) The amount of energy input to the building can be estimated stably and satisfactorily, and the presence or absence of damage to the building can be accurately determined in a short time.

(2) 建物の各層の塑性吸収エネルギを良好に推定することができ、残余耐震性の評価や地震後に詳細な調査を実施すべき層の決定に必要な情報等を簡単に得ることができる。   (2) The plastic absorption energy of each layer of the building can be estimated well, and the information necessary for the evaluation of residual earthquake resistance and the determination of the layer to be investigated in detail after the earthquake can be easily obtained.

以下、本発明を図示する実施形態に基づいて説明する。本発明は、地震時に建物で観測された応答波形を基に、建物のエネルギ損傷を簡便に評価する建物の被災の有無の判定方法である。   Hereinafter, the present invention will be described based on the illustrated embodiments. The present invention is a method for determining whether or not a building is damaged based on a response waveform observed in the building during an earthquake, and simply evaluating the energy damage of the building.

観測情報と必要な建物情報は、(a)基礎の加速度、建物内1〜数点の加速度(速度)、(b)建物質量分布mi、1〜数次の刺激関数βu 、振動数ω、各層の弾性限耐力分布QYi(相対的な分布)であり、評価フローを図1に示す。 Observation information and the building information required, (a) the basis for the acceleration, the building to several points acceleration (velocity), (b) building the mass distribution m i, 1 to several primary stimulation function .beta.u, vibration frequency omega, It is elastic limit proof stress distribution QYi (relative distribution) of each layer, and an evaluation flow is shown in FIG.

簡単なモデルを用いた数値解析により、本発明の判定方法を以下のように実施した。   By a numerical analysis using a simple model, the determination method of the present invention was implemented as follows.

(1)建物モデルと入力地震動
図2に示すように、2種類のせん断型多質点モデル(A:10質点、B:15質点)を用いた。図2には固有周期と刺激関数が示されている。図3に示すように、入力地震動として3種類を採用し、全て75cm/sに基準化して用いた。図3には2VE(エネルギ)スペクトルが示されている。建物減衰としては、1次及び2次にそれぞれ2%のLayleigh減衰を考慮する。
(1) Building model and input ground motion As shown in Fig. 2, two types of shear type multi-mass point models (A: 10 mass points, B: 15 mass points) were used. FIG. 2 shows the natural period and the stimulation function. As shown in Fig. 3, three types of input seismic motion were adopted and all were standardized to 75 cm / s. In FIG. 3, a 2V E (energy) spectrum is shown. As building attenuation, 2% Layleigh attenuation is considered for each of the first and second order.

(2)観測位置
図2に示すように、基礎の加速度以外に、(A)全層(参考)、(B)頂部と中間の2箇所、(c)頂部のみ、(D)中間のみ、の4ケースの速度波形を観測できるものとした。
(2) Observation position As shown in Fig. 2, in addition to the basic acceleration, (A) all layers (reference), (B) top and middle two locations, (c) only top, (D) only middle It was assumed that the velocity waveform of 4 cases could be observed.

(3)解析結果
各モデルで応答の傾向の異なる2波について示す。図4にスケルトンと応答最大値の関係、図5に推定された各モードの塑性吸収エネルギspを示す。(A)で評価したspの総量と応答解析結果(正解)の誤差は1%未満である。(B)及び(D)の推定値は(A)とほぼ同等であり、1〜2の観測点数で2次程度は精度良くspを推定できるようである。但し、(c)は他より小さめの値を示しており、1箇所観測の場合は位置の選択が重要となる。
(3) Analysis results Shown for two waves with different response trends for each model. FIG. 4 shows the relationship between the skeleton and the maximum response value, and FIG. 5 shows the estimated plastic absorbed energy s W p of each mode. The error between the total amount of s W p evaluated in (A) and the response analysis result (correct answer) is less than 1%. The estimated values of (B) and (D) are almost the same as those of (A), and it seems that s W p can be estimated with high accuracy in the second order with the number of observation points of 1-2. However, (c) shows a smaller value than the others, and in the case of observation at one place, selection of the position is important.

図6は塑性吸収エネルギ分布Wpiであり、(10)式による推定結果(損傷集中指数はn=6とした)も合わせて示してある。同一建物モデルでも地震波により損傷集中層の位置は大きく異なるが、推定値と正解値は概ね良好に対応している。(c)の結果も値は小さいながら分布形は対応しており、いずれのケースでも損傷が集中する層の位置は良好に推定できている。 FIG. 6 shows the plastic absorption energy distribution W pi and also shows the estimation result (the damage concentration index is n = 6) by the equation (10). Even in the same building model, the location of the damage concentrated layer varies greatly depending on the seismic wave, but the estimated value and the correct value correspond roughly well. Although the value of (c) is also small, the distribution form corresponds, and the position of the layer where damage is concentrated can be estimated well in any case.

弾塑性応答を弾性モード形により分解して評価したエネルギ収支から最適降伏せん断力を求め、損傷分布則を適用することにより、1〜2点程度の観測記録から建物の塑性吸収エネルギ分布を良好に推定することができる。   Obtain the optimum yield shear force from the energy balance evaluated by analyzing the elastic-plastic response by elastic mode shape, and apply the damage distribution law to improve the plastic absorption energy distribution of the building from the observation records of about 1 to 2 points. Can be estimated.

残余耐震性の評価や地震後に詳細な調査を実施すべき層の決定に必要な情報等を簡単に得ることができる。また、本手法では、観測波形を使用してエネルギ収支を評価している点が重要であり、建物モデルと地動加速度を用いた応答解析(順解析)の精度検証にも利用することができる。   Information necessary for evaluation of residual seismic resistance and determination of layers to be investigated in detail after an earthquake can be easily obtained. In this method, it is important to evaluate the energy balance using the observed waveform, and it can be used to verify the accuracy of response analysis (forward analysis) using the building model and ground motion acceleration.

本発明の建物の被災の有無の判定方法のフロー図である。It is a flowchart of the determination method of the presence or absence of the damage of the building of this invention. 振動モデルの刺激関数を示すグラフである。It is a graph which shows the stimulation function of a vibration model. 入力地震動の22VE(エネルギ)スペクトルを示すグラフである。It is a graph which shows 22V E (energy) spectrum of input earthquake motion. スケルトンと応答最大値を示すグラフである。It is a graph which shows a skeleton and a response maximum value. 推定された各モードの塑性吸収エネルギspを示すグラフである。Was estimated is a graph showing the plastic absorption energy s W p of each mode. 推定された塑性吸収エネルギ分布Wpiを示すグラフである。It is a graph which shows the estimated plastic absorption energy distribution Wpi .

符号の説明Explanation of symbols

sL……各モードの入力エネルギ
sD……各モードの減衰消費エネルギ
sp……各モードの塑性吸収エネルギ
pi……各層の塑性吸収エネルギ
s L: Input energy in each mode
s D …… Attenuation energy consumption in each mode
s W p …… Plastic absorption energy of each mode W pi …… Plastic absorption energy of each layer

Claims (2)

地震時における建物基礎部と建物内の1点あるいは数点の波形記録と、別途求められている建物質量、固有周期および固有モード形を用いて、各モード毎の建物に入力された入力エネルギ量 L(t)および減衰による減衰消費エネルギ量 D(t)を推定し、
各時刻における前記入力エネルギ量 L(t)と前記減衰消費エネルギ量 D(t)の差分である建物が吸収した各モード毎の建物吸収エネルギ量
Figure 0005092679
を主要なモード次数まで合計することで得られる建物全体の吸収エネルギ
Figure 0005092679
の最大値が建物の弾性許容エネルギ量に比べて十分小さければ、建物は地震で損傷を受けていないとして、建物の被災の有無を判定することを特徴とする建物の被災の有無の判定方法。
The amount of input energy input to the building for each mode using the waveform record of one or several points in the building foundation and the building at the time of the earthquake, and the separately determined building mass, natural period and natural mode shape s L (t) and attenuation energy consumption s D (t) due to attenuation are estimated,
The amount of building absorbed energy for each mode absorbed by the building, which is the difference between the input energy amount s L (t) and the attenuated energy consumption amount s D (t) at each time
Figure 0005092679
Energy absorption of the entire building obtained by summing up to the main mode order
Figure 0005092679
If the maximum value is sufficiently smaller than the elastic allowable energy amount of the building, the building is not damaged by the earthquake, and the presence or absence of damage to the building is determined.
請求項1において得られた各モード毎の建物吸収エネルギ量
Figure 0005092679
について、地震終了後の振動が十分収束した最終時刻t における各モードの塑性吸収エネルギ W(t )を、別途求められている建物固有モードおよび各層の耐力分布の情報から、弾性時の振動エネルギ分布に比例させて各層iに分配して層毎に足し合わせたものを各層iの仮の塑性吸収エネルギW とし、前記仮の塑性吸収エネルギW i を弾性的に蓄えるのに必要な各層のせん断力との関係から、前記仮の塑性吸収エネルギW i の各層iへの分配を修正し、各層の塑性吸収エネルギ量 pi を算定することを特徴とする建物の被災の有無の判定方法。
Building absorption energy amount for each mode obtained in claim 1
Figure 0005092679
, The plastic absorption energy s W (t m ) of each mode at the final time t m when the vibration after the earthquake has sufficiently converged is obtained from the information on the building eigenmode and the yield strength distribution of each layer separately obtained . the combined sum for each layer was partitioned layers i in proportion to the vibration energy distribution as a temporary plastic absorbed energy W i of each layer i, needed to store the plastic absorbed energy W i of the temporary resiliently Determining whether a building is damaged or not by correcting the distribution of the temporary plastic absorbed energy W i to each layer i from the relationship with the shear force of each layer and calculating the amount of plastic absorbed energy W pi of each layer Method.
JP2007272574A 2007-10-19 2007-10-19 Judgment method of building damage Expired - Fee Related JP5092679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007272574A JP5092679B2 (en) 2007-10-19 2007-10-19 Judgment method of building damage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007272574A JP5092679B2 (en) 2007-10-19 2007-10-19 Judgment method of building damage

Publications (2)

Publication Number Publication Date
JP2009098101A JP2009098101A (en) 2009-05-07
JP5092679B2 true JP5092679B2 (en) 2012-12-05

Family

ID=40701236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007272574A Expired - Fee Related JP5092679B2 (en) 2007-10-19 2007-10-19 Judgment method of building damage

Country Status (1)

Country Link
JP (1) JP5092679B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5569900B2 (en) * 2009-09-29 2014-08-13 株式会社aLab Seismic performance evaluation method, seismic performance evaluation device, and seismic performance evaluation system
JP5289373B2 (en) * 2010-03-31 2013-09-11 株式会社東芝 Vibration resistance evaluation method, vibration resistance evaluation apparatus and vibration resistance evaluation system for plant equipment
TWI449883B (en) * 2011-02-10 2014-08-21 Univ Nat Taiwan Science Tech Method for analyzing structure safety
CN102385663B (en) * 2011-08-22 2014-05-07 天津大学 Earthquake collapse analysis method for high-rise steel frame structure
JP5911733B2 (en) * 2012-02-22 2016-04-27 大和ハウス工業株式会社 Safety evaluation system for base-isolated buildings
JP2016105050A (en) * 2014-12-01 2016-06-09 清水建設株式会社 Building soundness determination system and building soundness determination method
JP6679166B2 (en) * 2016-04-28 2020-04-15 前田建設工業株式会社 Safety diagnostic device, safety diagnostic method, and safety diagnostic program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05340798A (en) * 1992-06-11 1993-12-21 Omron Corp Deciding device for dangerousness of vibration
JPH1144615A (en) * 1997-07-25 1999-02-16 Mitsubishi Heavy Ind Ltd Building damage monitoring system in an earthquake

Also Published As

Publication number Publication date
JP2009098101A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
JP5092679B2 (en) Judgment method of building damage
Law et al. Structural response reconstruction with transmissibility concept in frequency domain
Ji et al. Seismic damage detection of a full-scale shaking table test structure
JP5809174B2 (en) Building safety verification system, building safety verification method and program
Sevim et al. Assessment of nonlinear seismic performance of a restored historical arch bridge using ambient vibrations
JP5547029B2 (en) Building damage evaluation method and building damage evaluation apparatus
JP6487888B2 (en) Estimation method of building layer stiffness
JP6001740B1 (en) High precision evaluation of structure transfer functions, earthquake response prediction, deterioration diagnosis system and method
JP6235376B2 (en) Damage evaluation system for building and damage evaluation method
CN112816352B (en) Engineering structure damage identification method and device, computer equipment and storage medium
Boumechra Damage detection in beam and truss structures by the inverse analysis of the static response due to moving loads
Türker et al. Assessment of semi-rigid connections in steel structures by modal testing
JP6314359B2 (en) Method for evaluating changes in natural frequency of railway bridges
Hu et al. Use of measured vibration of in-situ sleeper for detecting underlying railway ballast damage
Bagheri et al. Identification of flexural rigidity in bridges with limited structural information
Morales‐Valdez et al. Shear building stiffness estimation by wave traveling time analysis
JP7180946B2 (en) Earthquake information processing equipment
JP5252447B2 (en) Building vibration level prediction method and system
JP6438745B2 (en) Estimation method for inter-building displacement
Li et al. Parametric time‐domain identification of multiple‐input systems using decoupled output signals
JP7007222B2 (en) Seismic resistance judgment method for structures and seismic resistance judgment system for structures
JP6642232B2 (en) Earthquake damage estimation system, structure with earthquake damage estimation system, and earthquake damage estimation program
Boroujeni Evaluation of various methods of FEMA 356 compare to FEMA 440
JP6363539B2 (en) Estimation method of damaged part of building
JP6438746B2 (en) Estimation method for inter-building displacement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R150 Certificate of patent or registration of utility model

Ref document number: 5092679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees