JP5092621B2 - Wiring board and manufacturing method thereof - Google Patents

Wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP5092621B2
JP5092621B2 JP2007213354A JP2007213354A JP5092621B2 JP 5092621 B2 JP5092621 B2 JP 5092621B2 JP 2007213354 A JP2007213354 A JP 2007213354A JP 2007213354 A JP2007213354 A JP 2007213354A JP 5092621 B2 JP5092621 B2 JP 5092621B2
Authority
JP
Japan
Prior art keywords
insulating layer
layer
wiring
organic insulating
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007213354A
Other languages
Japanese (ja)
Other versions
JP2009049153A (en
Inventor
浩一 中山
茂樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2007213354A priority Critical patent/JP5092621B2/en
Publication of JP2009049153A publication Critical patent/JP2009049153A/en
Application granted granted Critical
Publication of JP5092621B2 publication Critical patent/JP5092621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Description

本発明は,配線基板およびその製造方法に関する。   The present invention relates to a wiring board and a manufacturing method thereof.

基板上にMicro Electro Mechanical Systems (以下MEMS) 構造を含む配線が配置される配線基板が用いられている(例えば,特許文献1参照)。
特開2003−121470号公報
A wiring board in which wiring including a Micro Electro Mechanical Systems (hereinafter referred to as MEMS) structure is arranged on a substrate is used (for example, see Patent Document 1).
JP 2003-121470 A

配線基板では配線を保護するため,配線上に有機絶縁層を配置することが通例である。ところで,耐環境性等のために,基板上の配線をより強力に保護することが必要となる場合がある。例えば,配線を有機絶縁層で保護した配線基板にMEMS構造を構築する場合,MEMS作成工程で使用される強力な薬品などにより有機絶縁層がダメージを受ける可能性がある。
上記に鑑み,本発明は基板上の配線が効果的に保護される配線基板およびその製造方法を提供することを目的とする。
In a wiring board, in order to protect the wiring, an organic insulating layer is usually disposed on the wiring. By the way, it may be necessary to protect the wiring on the board more strongly for environmental resistance or the like. For example, when a MEMS structure is constructed on a wiring board in which wiring is protected by an organic insulating layer, the organic insulating layer may be damaged by powerful chemicals used in the MEMS production process.
In view of the above, an object of the present invention is to provide a wiring board in which wiring on the board is effectively protected and a method for manufacturing the wiring board.

本発明の一態様に係る配線基板は,基板上に配線層と,有機絶縁層とを少なくとも1層ずつ交互に積層してなり,かつ最上層の有機絶縁層がポリイミド系樹脂からなる積層体と,前記積層体の最上層の有機絶縁層上に配置される,酸化シリコンからなる無機絶縁層と,を具備することを特徴とする。   A wiring board according to an aspect of the present invention includes a laminate in which at least one wiring layer and an organic insulating layer are alternately stacked on the substrate, and the uppermost organic insulating layer is a polyimide resin. And an inorganic insulating layer made of silicon oxide disposed on the uppermost organic insulating layer of the laminate.

本発明の一態様に係る配線基板の製造方法は,基板上に配線層と,有機絶縁層とを少なくとも1層ずつ交互に積層し,かつ最上層の有機絶縁層をポリイミド系樹脂で構成した積層体を形成するステップと,前記積層体の最上層の有機絶縁層上に,酸化シリコンからなる無機絶縁層を形成するステップと,を具備することを特徴とする。   A method of manufacturing a wiring board according to an aspect of the present invention includes a laminate in which at least one wiring layer and an organic insulating layer are alternately stacked on a substrate, and the uppermost organic insulating layer is formed of a polyimide resin. Forming a body, and forming an inorganic insulating layer made of silicon oxide on the uppermost organic insulating layer of the laminate.

本発明によれば,基板上の配線が効果的に保護される配線基板およびその製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the wiring board by which the wiring on a board | substrate is protected effectively, and its manufacturing method can be provided.

以下,図面を参照して,本発明の実施の形態を詳細に説明する。
図1は,本発明の一実施形態に係る配線基板100を表す断面図である。
配線基板100は,基板110,配線層121〜124,有機絶縁層131〜134,層間接続部141〜143,無機絶縁層151を有する。この内,基板110,配線層121〜124,有機絶縁層131〜134は,「基板上に配線層と,有機絶縁層とを少なくとも1層ずつ交互に積層してなる積層体」として機能する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a sectional view showing a wiring board 100 according to an embodiment of the present invention.
The wiring substrate 100 includes a substrate 110, wiring layers 121 to 124, organic insulating layers 131 to 134, interlayer connection portions 141 to 143, and an inorganic insulating layer 151. Among these, the board | substrate 110, the wiring layers 121-124, and the organic insulating layers 131-134 function as "the laminated body which laminates | stacks at least one wiring layer and an organic insulating layer on a board | substrate alternately."

基板110は,シリコン等の半導体から構成される。
配線層121〜124は,金属等の導電体からなる配線パターンが配置される層であり,互いに積層される。即ち,配線基板100は,4つの配線層121〜124が積層される4層配線基板である。
The substrate 110 is made of a semiconductor such as silicon.
The wiring layers 121 to 124 are layers on which a wiring pattern made of a conductor such as metal is disposed, and are stacked on each other. That is, the wiring board 100 is a four-layer wiring board in which four wiring layers 121 to 124 are laminated.

有機絶縁層131〜134は,例えば,厚さが8〜10μmのポリイミド系樹脂またはベンゾシクロブテン(BCB)等の有機絶縁体からなる。この内,有機絶縁層131〜133は,配線層121〜124の間に配置され,これらを電気的に絶縁する層間絶縁膜である。有機絶縁層134は,最上層の配線層124上に配置され,配線層124を電気的,機械的に保護する。有機絶縁層134には,配線層124と外部との電気的接続のために開口135が設けられる。   The organic insulating layers 131 to 134 are made of, for example, an organic insulator such as polyimide resin having a thickness of 8 to 10 μm or benzocyclobutene (BCB). Among these, the organic insulating layers 131 to 133 are interlayer insulating films that are disposed between the wiring layers 121 to 124 and electrically insulate them. The organic insulating layer 134 is disposed on the uppermost wiring layer 124 and protects the wiring layer 124 electrically and mechanically. An opening 135 is provided in the organic insulating layer 134 for electrical connection between the wiring layer 124 and the outside.

無機絶縁層151は,例えば,厚さが0.1〜2μmのシリコン酸化物(SiOx),シリコン窒化物(SiNx)等の無機絶縁体からなり,配線層124を電気的,機械的に保護する。無機絶縁層151にはそれぞれ,配線層124と外部との電気的接続のために開口153が設けられる。無機絶縁層151の厚さが0.1μmを下回る場合,無機絶縁層151中の欠陥などに起因して,有機絶縁層134,配線層124等の保護に欠ける可能性が有る。また,無機絶縁層151の厚さが2.0μmを超える場合,その内部応力により,クラックが生じ,保護に欠ける可能性がある。   The inorganic insulating layer 151 is made of, for example, an inorganic insulator such as silicon oxide (SiOx) or silicon nitride (SiNx) having a thickness of 0.1 to 2 μm, and protects the wiring layer 124 electrically and mechanically. . Each of the inorganic insulating layers 151 is provided with an opening 153 for electrical connection between the wiring layer 124 and the outside. When the thickness of the inorganic insulating layer 151 is less than 0.1 μm, there is a possibility that protection of the organic insulating layer 134, the wiring layer 124, and the like is lacking due to defects in the inorganic insulating layer 151 and the like. Further, when the thickness of the inorganic insulating layer 151 exceeds 2.0 μm, the internal stress may cause a crack and lack protection.

配線層124は,有機絶縁層133上に形成される。次に示すように,無機絶縁層151を配線層124上に直接配置するよりも,有機絶縁層134を中間に介在させた方が好ましいからである。
無機絶縁層151は有機絶縁層133と性質が異なる。一般に,無機絶縁材料は有機絶縁材料に比べて,固く(柔軟性が乏しい(ヤング率が大きい)),絶縁性が良好(抵抗率が大きい),内部応力が大きい。配線層124上に,柔軟性が大きい有機絶縁層134,絶縁性が大きい無機絶縁層151を順に配置することで,配線層124の機械的,電気的保護の確実性を向上することができる。
The wiring layer 124 is formed on the organic insulating layer 133. This is because it is preferable to interpose the organic insulating layer 134 in the middle rather than directly disposing the inorganic insulating layer 151 on the wiring layer 124 as shown below.
The inorganic insulating layer 151 is different in nature from the organic insulating layer 133. In general, inorganic insulating materials are harder (less flexible (higher Young's modulus)), better in insulation (higher resistivity), and larger in internal stress than organic insulating materials. By arranging the organic insulating layer 134 having high flexibility and the inorganic insulating layer 151 having high insulating property in this order on the wiring layer 124, the reliability of mechanical and electrical protection of the wiring layer 124 can be improved.

仮に,配線層124上に有機絶縁層134のみを配置させた場合,配線層124の電気的保護が不十分となり,十分な絶縁性が得られない可能性がある。また,配線層124上に無機絶縁層151を直接配置させた場合,無機絶縁層151の内部応力により配線層124が撓む可能性がある。柔軟性が大きい有機絶縁層131〜133上に配線層124が配置されるからである。   If only the organic insulating layer 134 is disposed on the wiring layer 124, the electrical protection of the wiring layer 124 becomes insufficient, and sufficient insulation may not be obtained. Further, when the inorganic insulating layer 151 is directly disposed on the wiring layer 124, the wiring layer 124 may be bent due to internal stress of the inorganic insulating layer 151. This is because the wiring layer 124 is disposed on the flexible organic insulating layers 131 to 133.

(比較例)
図2は,本発明の比較例に係る配線基板100xを表す断面図である。
配線基板100xは,配線基板100と比較すると,有機絶縁層134,無機絶縁層151を有しない。
配線基板100xは,有機絶縁層134,無機絶縁層151を有しないことから,特に,厳しい環境下で使用したときに,配線層124の外界からの保護が不十分となる可能性がある。これに対して,配線基板100では,配線層124が有機絶縁層134,無機絶縁層151によって保護されることで,耐環境性が向上される。
(Comparative example)
FIG. 2 is a cross-sectional view showing a wiring board 100x according to a comparative example of the present invention.
The wiring board 100 x does not have the organic insulating layer 134 and the inorganic insulating layer 151 as compared with the wiring board 100.
Since the wiring board 100x does not have the organic insulating layer 134 and the inorganic insulating layer 151, there is a possibility that the protection of the wiring layer 124 from the outside is insufficient particularly when used in a severe environment. On the other hand, in the wiring substrate 100, the wiring layer 124 is protected by the organic insulating layer 134 and the inorganic insulating layer 151, so that the environmental resistance is improved.

(配線基板100の製造法)
以下,配線基板100の製造方法を説明する。
図3は,配線基板100を製造する手順を表すフロー図である。図4A〜図4Fは,図3の手順で製造される配線基板100を表す断面図である。
(Manufacturing method of wiring board 100)
Hereinafter, a method for manufacturing the wiring substrate 100 will be described.
FIG. 3 is a flowchart showing a procedure for manufacturing the wiring board 100. 4A to 4F are cross-sectional views showing the wiring board 100 manufactured by the procedure of FIG.

(1)基板110への多層配線層の形成(ステップS11,S12,図4A〜図4D)
基板110に配線層121〜124が形成される。
1)基板110への配線層121の形成(図4A)
例えば,次の手順で,基板110上に配線層121が形成される。
(1) Formation of multilayer wiring layer on substrate 110 (steps S11 and S12, FIGS. 4A to 4D)
Wiring layers 121 to 124 are formed on the substrate 110.
1) Formation of the wiring layer 121 on the substrate 110 (FIG. 4A)
For example, the wiring layer 121 is formed on the substrate 110 by the following procedure.

・シリコン等の基板110を用意する(ステップS11)。基板110の厚みは,例えば,200〜800μmである。この基板110には,下地層に先立ち,必要に応じて無機絶縁層が形成される。この無機絶縁層の厚みは,例えば,50〜2000nmである。   A substrate 110 such as silicon is prepared (Step S11). The thickness of the substrate 110 is, for example, 200 to 800 μm. Prior to the base layer, an inorganic insulating layer is formed on the substrate 110 as necessary. The inorganic insulating layer has a thickness of 50 to 2000 nm, for example.

・下地層の形成
基板110上に下地層が形成される。電解めっき法により配線層121を形成するために,基板110に導電性を付与する。
下地層には,スパッタリング法等により形成された,例えば,銅,銀,金等の薄膜を用いることができる。また,下地層を,このような薄膜と,クロム,チタン,窒化チタン,ニッケル等の密着膜との積層構造としてもよい。
Formation of base layer A base layer is formed on the substrate 110. In order to form the wiring layer 121 by electrolytic plating, conductivity is imparted to the substrate 110.
For the underlayer, for example, a thin film such as copper, silver, or gold formed by sputtering or the like can be used. The underlayer may have a laminated structure of such a thin film and an adhesion film such as chromium, titanium, titanium nitride, or nickel.

・レジストの形成・パターニング
基板110上にレジストを塗布し,フォトマスクを用いて露光することで,パターニングする。この結果,レジストに開口部が形成される。この開口部は,配線層121を形成する型として機能する。
-Formation and patterning of resist A resist is apply | coated on the board | substrate 110, It patterns by exposing using a photomask. As a result, an opening is formed in the resist. This opening functions as a mold for forming the wiring layer 121.

・電解めっき
メッキ液を用いて,下地層に給電し,レジストの開口部内に,例えば,金属等の導電性材料を堆積することで,配線層121が形成される(電解めっき法)。配線層121の厚みは,例えば,2〜6μmである。
Electrolytic Plating A wiring layer 121 is formed by supplying power to the base layer using a plating solution and depositing a conductive material such as metal in the opening of the resist (electrolytic plating method). The thickness of the wiring layer 121 is 2 to 6 μm, for example.

・レジストの除去
溶媒等によって,レジストを溶解して除去する。
以上のようにして,基板110上に配線パターンを有する配線層121が形成される(図4A)。
・ Removal of resist Dissolve the resist with a solvent.
As described above, the wiring layer 121 having the wiring pattern is formed on the substrate 110 (FIG. 4A).

2)基板110への有機絶縁層131の形成・パターニング(図4B)
基板110に有機絶縁層131が形成される。例えば,基板110に感光性の有機絶縁材料を塗布し,所定のパターンで露光して現像することにより,開口141Aを有する有機絶縁層131を形成する。感光性の有機絶縁材料として,例えば,ポリイミド系樹脂,ベンゾシクロブテン(BCB)等を使用できる。有機絶縁層131の厚みは,例えば,8〜10μmである。
2) Formation and patterning of organic insulating layer 131 on substrate 110 (FIG. 4B)
An organic insulating layer 131 is formed on the substrate 110. For example, an organic insulating layer 131 having an opening 141A is formed by applying a photosensitive organic insulating material to the substrate 110, exposing the substrate 110 in a predetermined pattern, and developing. As the photosensitive organic insulating material, for example, polyimide resin, benzocyclobutene (BCB), or the like can be used. The thickness of the organic insulating layer 131 is, for example, 8 to 10 μm.

3)層間接続部141の形成(図4C)
・有機絶縁層131を覆うように,下地金属層,レジストパターンを順に形成する。下地金属層は,例えば,スパッタリング法等により形成できる。このような下地金属層の厚みは,例えば,50〜350nmの範囲で設定できる。
レジストパターンは,有機絶縁層131の開口に対応する開口を有する。
3) Formation of interlayer connection 141 (FIG. 4C)
A base metal layer and a resist pattern are sequentially formed so as to cover the organic insulating layer 131. The base metal layer can be formed by, for example, a sputtering method. The thickness of such a base metal layer can be set in the range of 50 to 350 nm, for example.
The resist pattern has an opening corresponding to the opening of the organic insulating layer 131.

・このレジストパターンをマスクとし,下地金属層を給電層として,電解めっきにより導電性材料を堆積した後,レジストパターンを除去する。この結果,有機絶縁層131の開口内に導電性物質が充填され,層間接続部141が形成される。
・その後,層間接続部141上に存在している余分な下地金属層を除去する。これにより,基板110に有機絶縁層131,および層間接続部141が形成される(図4C)。
Using this resist pattern as a mask and using the underlying metal layer as a power feeding layer, deposit a conductive material by electrolytic plating, and then remove the resist pattern. As a result, the opening of the organic insulating layer 131 is filled with the conductive material, and the interlayer connection portion 141 is formed.
After that, the excess base metal layer existing on the interlayer connection 141 is removed. Thereby, the organic insulating layer 131 and the interlayer connection 141 are formed on the substrate 110 (FIG. 4C).

4)基板110への配線層122〜124の形成(図4D)
以上の手順1)〜3)を繰り返すことで,配線層122〜124,層間接続部142,143,有機絶縁層132〜133を生成する。
4) Formation of wiring layers 122 to 124 on the substrate 110 (FIG. 4D)
By repeating the above steps 1) to 3), the wiring layers 122 to 124, the interlayer connection portions 142 and 143, and the organic insulating layers 132 to 133 are generated.

(2)有機絶縁層134の形成・パターニング(ステップS13,図4E)
基板110に有機絶縁層134が形成される。例えば,基板110に感光性の有機絶縁材料を塗布し,所定のパターンで露光して現像することにより,開口を有する有機絶縁層131を形成する。感光性の有機絶縁材料として,例えば,ポリイミド系樹脂,ベンゾシクロブテン(BCB)を使用できる。有機絶縁層134の厚みは,例えば,2〜20μmである。
(2) Formation and patterning of organic insulating layer 134 (step S13, FIG. 4E)
An organic insulating layer 134 is formed on the substrate 110. For example, an organic insulating layer 131 having an opening is formed by applying a photosensitive organic insulating material to the substrate 110, exposing and developing in a predetermined pattern. As the photosensitive organic insulating material, for example, polyimide resin, benzocyclobutene (BCB) can be used. The thickness of the organic insulating layer 134 is, for example, 2 to 20 μm.

(3)無機絶縁層151の形成・パターニング(ステップS14,図4F,図1)
・無機絶縁層151の形成(図4F)
無機絶縁層151を形成する。例えば,スパッタリング,CVD(Chemical Vapor Deposition)等によって,シリコン酸化物(SiOx),シリコン窒化物(SiNx)等からなる無機絶縁層151を形成する。このとき,例えば,次のようにして,元素の組成比を変化させた無機絶縁層151を形成する。
・スパッタリング法において,スパッタリングガスとしてのArの他,反応性ガスのOを導入し,Oガスの比率(O/(Ar+O))を変化させる。
・CVD法において,反応ガスの混合比(例えば,シランガスと酸素ガスの混合比)を変化させる。
・基板側にバイアスを印加したプラズマCVD法を用い,このバイアスを変化させる。プラズマCVDでは,基板側へのバイアス(電圧)の印加によって,プラズマ中のイオンを基板に引き込むことができる。このバイアスの大きさにより,イオンの引き込み量(供給量)を変化させ,膜質をコントロールできる。
(3) Formation / patterning of inorganic insulating layer 151 (step S14, FIG. 4F, FIG. 1)
Formation of the inorganic insulating layer 151 (FIG. 4F)
An inorganic insulating layer 151 is formed. For example, the inorganic insulating layer 151 made of silicon oxide (SiOx), silicon nitride (SiNx), or the like is formed by sputtering, CVD (Chemical Vapor Deposition), or the like. At this time, for example, the inorganic insulating layer 151 in which the composition ratio of elements is changed is formed as follows.
In the sputtering method, reactive gas O 2 is introduced in addition to Ar as a sputtering gas, and the ratio of O 2 gas (O 2 / (Ar + O 2 )) is changed.
In the CVD method, the mixing ratio of the reaction gas (for example, the mixing ratio of silane gas and oxygen gas) is changed.
• Use the plasma CVD method with a bias applied to the substrate side to change this bias. In plasma CVD, by applying a bias (voltage) to the substrate side, ions in the plasma can be drawn into the substrate. Depending on the magnitude of this bias, the amount of ions drawn (amount of supply) can be changed to control the film quality.

・レジストパターンの形成
無機絶縁層151上にレジストパターンを形成する。即ち,感光性のレジストを塗布し,露光,現像することで,開口を有するレジストパターンが形成される。
Formation of resist pattern A resist pattern is formed on the inorganic insulating layer 151. That is, a resist pattern having an opening is formed by applying a photosensitive resist, exposing and developing.

・無機絶縁層151のパターニング
レジストパターンをマスクとして無機絶縁層151をエッチングして,開口を形成する。このエッチングには,ドライエッチング(RIE(Reactive Ion Etching:反応性イオンエッチング)等),ウェットエッチング(エッチング液による)の何れを用いても良い。
以上のようにして,配線基板100が形成される(図1)。
-Patterning of the inorganic insulating layer 151 The inorganic insulating layer 151 is etched using the resist pattern as a mask to form an opening. For this etching, either dry etching (RIE (Reactive Ion Etching) or the like) or wet etching (by an etching solution) may be used.
In this way, the wiring board 100 is formed (FIG. 1).

(実施例)
以下,本発明の実施例につき説明する。実験の結果,無機絶縁層151の材質が有機絶縁層134と無機絶縁層151の密着力に大きな影響を与えることが判った。
有機絶縁層134には,感光性ポリイミド材料(具体的には,デュポンマイクロシステムズ製 HD7010(サンプル1〜6),東レ製 PW1800(サンプル7),Dow Chemical社製 Cyclotene-4024-40(以下 BCB)(サンプル8)を用いた。HD7010はネガ型で厚膜,高解像性を特徴とし,PW1800はポジ型で金属との密着性にすぐれた構造をしている。BCBはネガ型で高解像性,良好な電気特性を特徴とする絶縁材料である。
無機絶縁層151は,シランガス(SiH),酸素ガス(O)をガス種とするCVDによって形成されるシリコン酸化物(SiOx)を用いた。
ここで,CVDでの成膜時にシランガスと酸素ガスの混合比を変化させて,シリコン酸化物中でのシリコン元素と酸素元素の組成比が異なる配線基板100を作成した。
(Example)
Examples of the present invention will be described below. As a result of the experiment, it was found that the material of the inorganic insulating layer 151 greatly affects the adhesion between the organic insulating layer 134 and the inorganic insulating layer 151.
The organic insulating layer 134 includes a photosensitive polyimide material (specifically, HD7010 (samples 1 to 6) manufactured by DuPont Microsystems, PW1800 (sample 7) manufactured by Toray, Cyclotene-4024-40 (hereinafter referred to as BCB) manufactured by Dow Chemical Co., Ltd.) (Sample 8) HD7010 is a negative type, characterized by thick film and high resolution, PW1800 is a positive type, and has a good adhesion to metal.BCB is a negative type, high resolution It is an insulating material characterized by image quality and good electrical characteristics.
As the inorganic insulating layer 151, silicon oxide (SiOx) formed by CVD using silane gas (SiH 4 ) and oxygen gas (O 2 ) as gas species was used.
Here, the wiring substrate 100 in which the composition ratio of the silicon element and the oxygen element in the silicon oxide was changed by changing the mixing ratio of the silane gas and the oxygen gas at the time of film formation by CVD.

表1,表2それぞれに,ポリイミドとして,HD7010,PW1800を用いた実験結果を表す。(O/Si)組成比,内部応力[MPa],密着強度[mN],密着力,絶縁性が対応して表される。   Tables 1 and 2 show experimental results using HD7010 and PW1800 as polyimide, respectively. (O / Si) The composition ratio, the internal stress [MPa], the adhesion strength [mN], the adhesion strength, and the insulating properties are represented in a corresponding manner.

Figure 0005092621
Figure 0005092621
Figure 0005092621
Figure 0005092621

なお,ポリイミドをBCBとした場合,(O/Si)組成比:1.69のとき,内部応力[MPa]:200,密着強度[mN]:40.5,密着力:○,絶縁性:○の結果が得られた。   When polyimide is BCB, when (O / Si) composition ratio: 1.69, internal stress [MPa]: 200, adhesion strength [mN]: 40.5, adhesion strength: ○, insulation: ○ Results were obtained.

(O/Si)組成比は,作成されたシリコン酸化物(SiOx)でのシリコン元素に対する酸素原子の組成比(SiOxでのx)を表し,作成したシリコン酸化物をESCA(electron spectroscopy for chemical analysis: X 線電子分光法)で分析することで測定した。ここでは,ESCA測定装置としてVGサイエンティフィク社製のESCALAB 220i-XLを用いた。   The (O / Si) composition ratio represents the composition ratio of oxygen atoms to silicon elements (x in SiOx) in the produced silicon oxide (SiOx), and the produced silicon oxide is expressed by ESCA (electron spectroscopy for chemical analysis). : X-ray electron spectroscopy). Here, ESCALAB 220i-XL manufactured by VG Scientific was used as an ESCA measuring device.

内部応力[MPa]は,作成されたシリコン酸化物(SiOx)の内部応力(ここでは,圧縮応力)を表し,応力測定用のダミー基板にシリコン酸化物の膜を形成し,基板の撓み(曲率)の大きさを検出することで測定した(基板曲率測定法)。   The internal stress [MPa] represents the internal stress (here, compressive stress) of the prepared silicon oxide (SiOx), a silicon oxide film is formed on a dummy substrate for stress measurement, and the substrate is bent (curvature). ) Was measured by detecting the size of the substrate (substrate curvature measurement method).

密着強度は,マイクロスクラッチ法(JIS R 3255に準拠)によって測定した。マイクロスクラッチ法は,圧子針(ダイヤモンド圧子)を水平に微小振動させながら荷重を連続的に増大させ,薄膜が損傷(剥離,破壊等)したときの荷重から,薄膜の付着性(密着強度)を試験する方法である。   The adhesion strength was measured by the micro scratch method (conforming to JIS R 3255). In the micro scratch method, the load is continuously increased while the indenter needle (diamond indenter) is vibrated horizontally, and the adhesion (adhesion strength) of the thin film is determined from the load when the thin film is damaged (peeling, breaking, etc.). How to test.

密着力は,次のような手法で試験した(密着力試験)。
基板上に1μm厚の有機絶縁層134,無機絶縁層151を順に成膜し,フォトリソグラフィーによって10mm角の碁盤目状にパターニングを行う。しかるのちに,CT24ニチバン(株)製のテープを用いて,テープ剥離試験を行った。
ここで,「○」は密着力が良好であり,密着力の試験の結果,剥がれが生じなかったことを表す。「×」,「△」は何れも,密着力が不良であり,密着力の試験中に剥がれが生じたことを表す。この内,「×」,「△」,は,剥がれの量の大小に対応する(「×」は剥がれが大きい)。
The adhesion was tested by the following method (adhesion test).
An organic insulating layer 134 having a thickness of 1 μm and an inorganic insulating layer 151 are sequentially formed on the substrate and patterned into a 10 mm square grid pattern by photolithography. After that, a tape peeling test was performed using CT24 Nichiban Co., Ltd. tape.
Here, “◯” indicates that the adhesion is good, and as a result of the adhesion test, no peeling occurred. “X” and “Δ” both indicate that the adhesion was poor and peeling occurred during the adhesion test. Among these, “×” and “Δ” correspond to the amount of peeling (“×” means that peeling is large).

絶縁性は,次のような手法で試験した。
Si基板上に無機絶縁層151を成膜した後,0.3μmの厚さのpure-Al(以下,p-Al)膜を形成する。次に,フォトリソグラフィーによって,p-Al膜を200μm角のパッド状にパターニングして,多数のAlパッドを形成する。このとき,Alパッド間の間隔は200μmとした。Alパッド間に10Vの電圧を印加し,絶縁抵抗を測定した。
「○」,「×」はそれぞれ絶縁性の良好,不良を表す。絶縁性の判断としては,100GΩを基準として,それ以上である場合を○,それ以下である場合を×とした。組成比Rを小さくしていくと,電気的物性が絶縁性材料から半導体材料へと変化していくため,抵抗値が低下していく。
The insulation was tested by the following method.
After the inorganic insulating layer 151 is formed on the Si substrate, a pure-Al (hereinafter, p-Al) film having a thickness of 0.3 μm is formed. Next, the p-Al film is patterned into a 200 μm square pad shape by photolithography to form a large number of Al pads. At this time, the interval between the Al pads was set to 200 μm. A voltage of 10 V was applied between the Al pads, and the insulation resistance was measured.
“◯” and “×” indicate good and bad insulation, respectively. For the determination of insulation, the case of 100 GΩ or more was rated as “◯” and the case of less than “X” was evaluated as “X”. As the composition ratio R is decreased, the electrical property changes from an insulating material to a semiconductor material, and thus the resistance value decreases.

表1から判るように,(O/Si)組成比Rが,内部応力,密着強度,密着力,絶縁性に影響を与えていることが判る。
組成比Rが次の範囲の時に,密着力,絶縁性の双方が良好であった。
0.5<R≦1.71
組成比Rが1.72以上の場合,密着力が不十分で試験中に剥がれが生じた。組成比Rが0.5以下の場合,絶縁性が不足していた。
As can be seen from Table 1, it can be seen that the (O / Si) composition ratio R affects internal stress, adhesion strength, adhesion strength, and insulation.
When the composition ratio R was in the following range, both adhesion and insulation were good.
0.5 <R ≦ 1.71
When the composition ratio R was 1.72 or more, the adhesion was insufficient and peeling occurred during the test. When the composition ratio R was 0.5 or less, the insulation was insufficient.

また,密着強度は密着力と対応し,密着強度が40mN以上の場合に,密着力試験に合格した。
内部応力も密着力に対応し,圧縮応力が170MPa以上の場合に,密着力試験に合格した。
The adhesion strength corresponds to the adhesion strength, and the adhesion strength test was passed when the adhesion strength was 40 mN or more.
The internal stress also corresponds to the adhesion force, and passed the adhesion test when the compressive stress was 170 MPa or more.

(その他の実施形態)
本発明の実施形態は上記の実施形態に限られず拡張,変更可能であり,拡張,変更した実施形態も本発明の技術的範囲に含まれる。
(Other embodiments)
Embodiments of the present invention are not limited to the above-described embodiments, and can be expanded and modified. The expanded and modified embodiments are also included in the technical scope of the present invention.

本発明の一実施形態に係る配線基板の断面図である。It is sectional drawing of the wiring board which concerns on one Embodiment of this invention. 本発明の比較例に係る配線基板の断面図である。It is sectional drawing of the wiring board which concerns on the comparative example of this invention. 図1の配線基板を製造する手順を表すフロー図である。It is a flowchart showing the procedure which manufactures the wiring board of FIG. 図3の手順で製造される配線基板を表す断面図である。It is sectional drawing showing the wiring board manufactured by the procedure of FIG. 図3の手順で製造される配線基板を表す断面図である。It is sectional drawing showing the wiring board manufactured by the procedure of FIG. 図3の手順で製造される配線基板を表す断面図である。It is sectional drawing showing the wiring board manufactured by the procedure of FIG. 図3の手順で製造される配線基板を表す断面図である。It is sectional drawing showing the wiring board manufactured by the procedure of FIG. 図3の手順で製造される配線基板を表す断面図である。It is sectional drawing showing the wiring board manufactured by the procedure of FIG. 図3の手順で製造される配線基板を表す断面図である。It is sectional drawing showing the wiring board manufactured by the procedure of FIG.

符号の説明Explanation of symbols

100 配線基板
110 基板
121-124 配線層
131-134 有機絶縁層
135 開口
141-143 層間接続部
151 無機絶縁層
153 開口
100 Wiring substrate 110 Substrate 121-124 Wiring layer 131-134 Organic insulating layer 135 Opening 141-143 Interlayer connection 151 Inorganic insulating layer 153 Opening

Claims (6)

基板上に配線層と,有機絶縁層とを少なくとも1層ずつ交互に積層してなり,かつ直下の配線層を露出する開口を有する最上層の有機絶縁層がポリイミド系樹脂からなる積層体と,
前記積層体の最上層の有機絶縁層上,前記最上層の開口の側面上,及び前記開口から露出される配線層の少なくとも一部上,を連続して覆うように配置され,シリコンの原子数に対する酸素の原子数の比が,0.5より大きく,1.71以下である,酸化シリコンからなる無機絶縁層と,
を具備することを特徴とする配線基板。
A wiring layer on a substrate, formed by laminating an organic insulating layer are alternately one by at least one layer, and the uppermost layer of the organic insulating layer having an opening exposing the wiring layer immediately below consists of polyimide resin, and laminates ,
Arranged so as to continuously cover the uppermost organic insulating layer , the side surface of the opening of the uppermost layer, and at least part of the wiring layer exposed from the opening. An inorganic insulating layer made of silicon oxide in which the ratio of the number of oxygen atoms to is greater than 0.5 and less than or equal to 1.71,
A wiring board comprising:
前記無機絶縁層と前記最上層の有機絶縁層とが,40mN以上の密着強度で密着している
ことを特徴とする請求項1記載の配線基板。
The wiring board according to claim 1, wherein the inorganic insulating layer and the uppermost organic insulating layer are in close contact with each other with an adhesive strength of 40 mN or more.
前記無機絶縁層が,130MPa以上の圧縮応力を有する
ことを特徴とする請求項1または2に記載の配線基板。
The wiring board according to claim 1, wherein the inorganic insulating layer has a compressive stress of 130 MPa or more.
基板上に配線層と,有機絶縁層とを少なくとも1層ずつ交互に積層し,かつ直下の配線層を露出する開口を有する最上層の有機絶縁層をポリイミド系樹脂で構成した積層体を形成するステップと,
前記積層体の最上層の有機絶縁層上,前記最上層の開口の側面上,及び前記開口から露出される配線層の少なくとも一部上,を連続して覆うように配置され,シリコンの原子数に対する酸素の原子数の比が,0.5より大きく,1.71以下である,酸化シリコンからなる無機絶縁層をシランガス(SiH),酸素ガス(O)をガス種とするCVDによって形成するステップと,
を具備することを特徴とする配線基板の製造方法。
Form a laminate in which at least one wiring layer and one organic insulating layer are alternately stacked on a substrate, and the uppermost organic insulating layer having an opening exposing the wiring layer directly below is made of a polyimide resin. Steps,
Arranged so as to continuously cover the uppermost organic insulating layer , the side surface of the opening of the uppermost layer, and at least part of the wiring layer exposed from the opening. An inorganic insulating layer made of silicon oxide having a ratio of the number of oxygen atoms to 0.5 to 1.71 is formed by CVD using silane gas (SiH 4 ) and oxygen gas (O 2 ) as gas species Steps to do,
A method for manufacturing a wiring board, comprising:
前記ポリイミド系樹脂が,感光性ポリイミド材料である
ことを特徴とする請求項4記載の配線基板の製造方法。
The method for manufacturing a wiring board according to claim 4, wherein the polyimide resin is a photosensitive polyimide material.
前記形成された無機絶縁層と前記最上層の有機絶縁層とが,40mN以上の密着強度で密着している
ことを特徴とする請求項4または5に記載の配線基板の製造方法。
The method for manufacturing a wiring board according to claim 4, wherein the formed inorganic insulating layer and the uppermost organic insulating layer are adhered with an adhesion strength of 40 mN or more.
JP2007213354A 2007-08-20 2007-08-20 Wiring board and manufacturing method thereof Active JP5092621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007213354A JP5092621B2 (en) 2007-08-20 2007-08-20 Wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007213354A JP5092621B2 (en) 2007-08-20 2007-08-20 Wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009049153A JP2009049153A (en) 2009-03-05
JP5092621B2 true JP5092621B2 (en) 2012-12-05

Family

ID=40501113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007213354A Active JP5092621B2 (en) 2007-08-20 2007-08-20 Wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5092621B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5868187B2 (en) * 2012-01-10 2016-02-24 株式会社日立製作所 Electronic circuit board and semiconductor device
FR3061404B1 (en) * 2016-12-27 2022-09-23 Packaging Sip METHOD FOR THE COLLECTIVE MANUFACTURING OF HERMETIC ELECTRONIC MODULES
JP7172105B2 (en) * 2018-04-09 2022-11-16 大日本印刷株式会社 Wiring substrate, semiconductor device having wiring substrate, and method for manufacturing semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2827430B2 (en) * 1990-04-02 1998-11-25 松下電器産業株式会社 Manufacturing method of multilayer printed wiring board
JP2817530B2 (en) * 1992-08-19 1998-10-30 日本電気株式会社 Manufacturing method of polyimide multilayer wiring board
JP2002299802A (en) * 2001-04-03 2002-10-11 Matsushita Electric Ind Co Ltd Flexible printed wiring board and its manufacturing method
JP3951696B2 (en) * 2001-12-12 2007-08-01 凸版印刷株式会社 Multilayer circuit board
CN100555589C (en) * 2005-06-29 2009-10-28 皇家飞利浦电子股份有限公司 Make the method for semiconductor subassembly

Also Published As

Publication number Publication date
JP2009049153A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
EP3472855B1 (en) Depositing a passivation layer on a graphene sheet
KR100225148B1 (en) Electrostatic chuck and fabricating method therefor
TWI278263B (en) Circuit board structure and method for fabricating the same
CN107394037A (en) Piezoelectricity MEMS
WO2012137923A1 (en) Transfer sheet provided with transparent conductive film mainly composed of graphene, method for manufacturing same, and transparent conductor
TWI310584B (en) Mask, method for producing the same, deposition method, electronic device, and electronic apparatus
WO2007043056A3 (en) Novel integrated circuit support structures and the fabrication thereof
CN103531553A (en) Substrate, method of manufacturing substrate, semiconductor device, and electronic apparatus
JP5092621B2 (en) Wiring board and manufacturing method thereof
CN108987357A (en) Semiconductor device and its manufacturing method
US20110127886A1 (en) Piezoelectric actuator and method for producing a piezoelectric actuator
US20130048358A1 (en) Wiring structure and manufacturing method thereof, and electronic apparatus and manufacturing method thereof
JP2003218292A (en) Spring structure with stress-balancing layer
JP2008172151A (en) Multilayer wiring circuit board
US20210234106A1 (en) Multi-layer film, display panel and manufacturing method thereof, and display apparatus
JP2022050582A (en) Mounting board and manufacturing method thereof
JP3120783B2 (en) Method of manufacturing mask for LIGA process
CN114953744B (en) Ink jet head and method for manufacturing the same
US8273256B2 (en) Method for manufacturing wiring structure of wiring board
Salowitz Integration and deployment of thick film piezoelectric actuators/sensors on organic stretchable substrates
KR101272664B1 (en) Multilayer printed circuit board including metal pattern including a seed layer and a plating layer, and method for manufacturing the same
JP4865686B2 (en) Acceleration sensor manufacturing method and acceleration sensor
WO2024089744A1 (en) Method for producing wiring structure
KR20120020857A (en) Face contact probe sheet, method of manufacturing the face contact probe sheet thereof
JP2011066068A (en) Semiconductor device, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R150 Certificate of patent or registration of utility model

Ref document number: 5092621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3