JP5085181B2 - 耐火物の厚み検出方法および耐火物の劣化判断方法 - Google Patents

耐火物の厚み検出方法および耐火物の劣化判断方法 Download PDF

Info

Publication number
JP5085181B2
JP5085181B2 JP2007116728A JP2007116728A JP5085181B2 JP 5085181 B2 JP5085181 B2 JP 5085181B2 JP 2007116728 A JP2007116728 A JP 2007116728A JP 2007116728 A JP2007116728 A JP 2007116728A JP 5085181 B2 JP5085181 B2 JP 5085181B2
Authority
JP
Japan
Prior art keywords
refractory
thickness
electromotive force
furnace
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007116728A
Other languages
English (en)
Other versions
JP2008275203A (ja
Inventor
泰次郎 松井
裕行 井上
法生 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007116728A priority Critical patent/JP5085181B2/ja
Publication of JP2008275203A publication Critical patent/JP2008275203A/ja
Application granted granted Critical
Publication of JP5085181B2 publication Critical patent/JP5085181B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、たとえば鉄鋼窯炉設備や溶融炉等の高温炉の炉壁に取り付けて、当該炉壁を構成する耐火物の厚みを検出する方法、および耐火物の劣化判断方法に関するものである。
例えば鉄鋼業で使用される窯炉設備等の高温炉では、一般にその炉壁は複数層の耐火物により構成されているが、操業に伴い耐火物は徐々に損耗して劣化する。したがって、これら耐火物の残存厚み(残厚)を検出して管理することは、たとえば高炉において溶銑による鉄皮の溶損、溶銑の流出等の防止にとって重要であり、また他の炉についてもその設備診断のために極めて重要である。
この点に関し、従来は、たとえばレーザー光を用いて、高温炉の耐火物の厚みを測定することが提案されている(非特許文献1)。
また、非特許文献2に示したように、レーザー光を利用した三角測量を測定原理とするレーザー距離計を混銑車内に挿入し、3次元的に操作して全域の距離を測定し、そのデータをマイクロコンピューターにより処理することによりプロフィールを出力する装置が提案されている。このレーザー距離計の測定原理は、測定対象に対してレーザーを照射し、その照射スポットを一次元イメージセンサ上に結像する。測定距離の変化によりレーザースポットを受光する一次元イメージセンサ上の位置が変化する。この位置と距離の対応をあらかじめとることにより距離を測定するものである。(非特許文献2)。
日本鉄鋼協会第145回西山記念技術講座 「鉄鋼業における耐火物技術の展望」 P.228(1991) 柳本ら:「混銑車耐火物プロフィール測定装置」 耐火物, 41(1989)P.197
しかしながら、非特許文献1、2の技術では、例えば炉内に溶鋼が存在する場合には、耐火物の厚みを測定することができず、操業中の炉については連続して耐火物の厚みを測定することができなかった。更に、炉の開口部が小さい脱ガス設備や開口部のない加熱炉のような密閉設備については、炉内測定箇所へレーザー照射できないために測定困難であった。
そこで本発明は、熱電素子のもつ発電機能とその特性に着目し、熱間で使用される炉または容器の耐火物で構成された壁に設置し、該炉または容器を熱間で使用して発電させ、そのときの電力量の値に基き、耐火物の劣化状況をリアルタイムで連続的に耐火物厚みを検出することができる方法を提供するものである。
発明者らは熱電発電素子の起電力は、温度差によってその出力が変化することに着目し、また一方耐火物の厚みは、それが薄くなってくると、表面側の温度が上昇することに着目して、以下のような発明を提案する。
すなわち本発明は、ステーブを備えた高のステーブよりも内側を構成する耐火物の厚みを検出する方法であって、熱電変換素子の両面に絶縁基板を配置した熱電発電モジュールを、前記ステーブとその内側の耐火物との間に取り付け、前記取り付けにあたっては、前記熱電発電モジュールにおける一の絶縁基板を前記ステーブの内側の耐火物の外側表面に密着させ、他の絶縁基板を前記ステーブの内側面に密着させる。そして取り付けた前記熱電変換素子によって発生する起電力を測定し、予め求めておいた前記耐火物の厚みと起電力との関係から、前記測定結果に基づいて前記耐火物の厚みを検出することを特徴としている。
前記したように、この種の耐火物の厚みは、損耗等により薄くなってくると、その分表面側の温度が上昇する。本発明によれば、後述の実施の形態で詳述するように、耐火物の厚みが薄くなるにしたがって、2つの絶縁基板での温度差は、次第に大きくなる。絶縁基板間の温度差が大きくなると起電力は大きくなるので、予め前記耐火物の厚みと起電力との関係を調べておくことにより、前記起電力を測定することで、耐火物の厚みを常時検出することができる。また熱電変換素子が直接炉内のガスと接触することはないので、熱電変換素子が炉内内容物やガスにより腐食するおそれはない。なお熱電発電モジュールの取り付けにあたっては、たとえば適宜の接着剤を用いて取り付けるだけでよい。
本発明における熱電変換素子は、Na O−CoO系セラミックス熱電材料としてもよい。
また熱電発電モジュールを、複数個所に設置して、耐火物の厚みを複数個所で検出するようにしてもよい。このように複数で耐火物の厚みを検出することで、二次元的、あるいは三次元的に炉や容器の耐火物の厚みを検出することができる。
前記したようにして耐火物の厚みを検出する場合、当該厚みの検出とともに、熱電変換素子によって発生する起電力を用いて水の電気分解を行い、水素と酸素を発生させるようにしてもよい。
また本発明の別な観点によれば、前記した耐火物の厚み検出方法によって検出した耐火物の厚みが所定値以下となったときに、当該耐火物が劣化したと判断することを特徴とする、耐火物の劣化判断方法が提供される。
本発明によれば、極めて簡単に耐火物の厚みを検出することができ、しかも炉や容器内に溶銑や溶鋼があっても、常時連続して耐火物の厚みを検出することができる。また熱電変換素子を取り付けたことにより、炉内、容器内から炉外、容器外への熱流束を大きくすることになり、炉内や容器内の耐火物の温度分布を低下させ、耐火物の損耗速度低減に寄与できる。さらに可動部がなく、騒音や振動が生じないばかりでなく、長期間にわたってメンテナンスの必要もない。
以下、本発明の好ましい実施の形態について説明すると、図1は、転炉1の断面を模式的に示しており、この転炉1の炉壁は、炉内側から順に、耐火物としてのウエアライニング層2、パーマネントライニング層3、鉄皮4によって構成されている。かかる構成を有する転炉1のウエアライニング層2の厚みを測定する場合、熱電発電モジュール11を鉄皮4の表面に、接着剤等で貼り付ける。熱電発電モジュール11を鉄皮4の表面に貼り付けた状態では、図2に示したように、高温側となる絶縁基板12は、鉄皮4の表面に密着しており、一方低温側となる絶縁基板13は、大気中に露出している。
熱電発電モジュール11は、図2にその構造を示したように、高温側の絶縁基板12、低温側の絶縁基板13間に、薄い多数の金属板14、15を介して、多数の熱電変換素子16を配置した構成を有している。熱電変換素子16に使用する熱電変換素子としては、高温域で使用可能なFe−Si系、中温域で使用可能なPb−Te系、低温域で使用可能なBi−Te系などが挙げられるが、毒性がなく、また稀少元素系でもなく、しかも耐高温性にすぐれ、安全かつ安価なセラミックス系である500℃耐用の、NaO−CoO系等のセラミックス熱電材料が好ましい。
熱電変換素子16の両面に発生した電位差による起電力は、金属板15に接続されたリード線21、22から取り出され、電圧計23によって測定される
このような熱電発電モジュール11を転炉1の外側表面の鉄皮4に貼り付けた場合、炉内の熱は、ウエアライニング層2、パーマネントライニング層3、鉄皮4へと順次伝導していくが、鉄皮4の表面に密着している絶縁基板12と、大気に露出している絶縁基板13との間には温度差が生ずる。この温度差によって、熱電変換素子16の両面に電位差が発生し、リード線21、22に電流が流れ、そのときの電圧、すなわち起電力が電圧計23によって測定される。
そして転炉1の操業回数を重ねるにつれて、溶鋼と直接接触しているウエアライニング層2が損耗していき、ウエアライニング層2が薄くなると、それにつれて鉄皮4の表面温度も上昇していき、絶縁基板12、13間の温度差が大きくなる。その結果、起電力も大きくなる。図3に、NaO−CoO系等のセラミックス熱電材料の温度差と起電力の一例を示したが、同図のグラフから、温度差によって起電力が変化することが確認できる。
したがって、たとえばあらかじめウエアライニング層2の厚みと温度差との関係を調べ、当該関係と、図3に示したような熱電変換素子の温度差と起電力の関係とを照合することで、起電力の変化と厚みの変化との関係を求めることができる。その結果、電圧計23によってモニタリングしている起電力に基づいて、前記した起電力の変化と厚みの変化との関係から、ウエアライニング層2の厚みを連続的に検出することができる。
また予め、ウエアライニング層2の厚みによって劣化度合いを定めておけば、起電力に基づいて検出したウエアライニング層2の厚みから、当該ウエアライニング層2の劣化状況を直ちに判断することができる。
一方、理論的には熱電変換素子16を取り付けたことにより、当該取り付け部分の炉内から炉外への熱流束は大きくなる。熱電変換素子の発電効率は10%程度で電力として取り出されるエネルギーの比率は低いが、前記炉外への熱流束の増大によって炉内耐火物の温度分布を低下させることとなり、ウエアライニング層2の損耗速度低減にも寄与できる。
ところで前記したように、熱電変換素子16からは、温度差による起電力が発生する。したがって発生した電力を他に活用することが有益である。発明者らは熱電変換素子によって発生する起電力は低い点に鑑み、電気分解に好適に活用できることを提案する。これを具体的に実現する場合、例えば図2の破線で示したように、リード線21、22に対して、引き出し線24、25を電圧計23に対して並列に接続し、引き出し線24、25に電極26、27を接続する。そしてこれら電極26、27を貯留タンク28内の電解質の水29内に配置すればよい。これによって、電圧計23による測定に影響を与えず、電極26、27から酸素と水素を発生させることができる。発生した酸素、水素は、例えば適宜の回収経路(図示せず)によって、各々独立して回収することで、酸素と水素を得る事ができる。
このように、本発明によれば、低い値の起電力であっても、これを有効に活用することができる。しかも電解質の水を対象とするため、例えば、海水を利用でき、環境的にもクリーンである。また水素、酸素を独立して得ることができるから、工業的に利用価値が高い。
前記した例では、転炉1のウエアライニング層2の厚みを検出するものであり、熱電発電モジュール11の低温側の絶縁基板13は、大気中に露出させていたが、たとえば高炉では、部位によって耐火物の外側に冷却ジャケットが設けられている。かかる場合には、熱電発電モジュール11は、冷却ジャケットと耐火物との間に配置するのが好ましい。これを図4に基づいて説明すると、図4は、高炉の炉壁の断面を模式的に示しており、この例では炉側から順に、耐火物としてのカーボンブロック31、スタンプ材32、冷却ジャケットとしてのステーブ33、背面キャスタブル34、鉄皮35が順に配置されている。
そして熱電発電モジュール11は、スタンプ材32とステーブ33との間に配置され、高温側の絶縁基板12は、スタンプ材32の表面に密着し、低温側の絶縁基板13は、ステーブ33の内側面に密着している。したがって、低温側の絶縁基板13はステーブ33によって常に強制的に冷却され、大気中に露出しているときよりも、さらに温度の上昇はないものである。
このように熱電発電モジュール11は、スタンプ材32とステーブ33との間に配置し、低温側の絶縁基板13は、ステーブ33の内側面に密着させることで、炉側からの熱が外側へと伝導していき、カーボンブロック31を経てスタンプ材32の温度が上昇したときの、高温側の絶縁基板12と低温側の絶縁基板13との温度差は、絶縁基板13が大気中に露出しているときよりも、さらに大きくなる。したがってその分発生する起電力は大きいものになる。それゆえ、起電力に基づいたカーボンブロック31の厚み、すなわち耐火物の厚みの検出を、より感度のよい状態で実施できる。
図5に、本実施例で用いた電気炉41を示した。この電気炉41は、図6にも示したように、最外層に鉄皮42が配置され、炉内側に位置する内壁43には熱伝導率が1.4W/m・Kの30mm厚みの耐火物43が設けられた構成を有している。そして炉内には電気ヒータ44が配設されている。この電気ヒータ44を作動させることで、電気炉41内を1500℃に加熱することができるようになっている。
このようないわば基本形の電気炉41において、実施の形態で用いた熱電発電モジュール11を鉄皮42の表面に取り付けてそのときの起電力を測定し、さらに耐火物43の内側表面に、図6に示したように、同一材料、同一厚みを有する耐火物45、46、47を順次配置して、各々そのときに発生する起電力を測定するようにした。そして耐火物43のみの場合には1層時、耐火物45を内側に重ねたときは2層時、さらに耐火物46を内側に重ねたときは3層時、そしてさらに耐火物47を内側に重ねたときは4層時として、各々の場合に測定した熱電発電モジュール11の起電力を表1に示す。
Figure 0005085181
この表から、熱電発電モジュール11の起電力は、電気炉41の内壁に配置した耐火物の積層数にほぼ一致していることが確認でき、これによって熱電発電モジュール11の起電力を測定することによって、電気炉41内の耐火物の厚みを検出することが確認できた。
次に図1に示した転炉1の外壁の鉄皮4に、熱電発電モジュール11を有機樹脂で固定し、転炉1の稼動後の起電力を連続的に測定した。このときの転炉1のウエアライニング層2は厚みが900mmで、材質はマグネシアが85質量%、カーボンが15質量%で、熱伝導率が2.3W/m・Kのものを使用した。またパーマネントライニング層3は、厚みが114mmで、材質はマグネシアが98質量%、熱伝導率が18W/m・Kのものを使用した。
そして炉内温度が溶鋼の溶製中には1630℃、待機中では820℃前後で、転炉1に対して繰り返し昇降温を繰り返し、そのときの熱電発電モジュール11の起電力を測定した。それによれば、起電力は微弱に変化したものの、稼動開始から徐々に起電力が増加する傾向を示し、炉内耐火物であるウエアライニング層2の損耗に伴い起電力が増加し、ウエアライニング層2の劣化、損耗レベルが連続的に検出することが可能であった。
図7は、転炉1の鉄皮4に熱電発電モジュール11を設置した炉内側の耐火物であるウエアライニング層2の残存厚みと、溶製中に熱電発電モジュール11によって測定された起電力の関係を示した結果を示している。なおウエアライニング層2の残存厚みは、待機中に炉内側からレーザーにて測定したウエアライニング層2とパーマネントライニング層3の合計厚みから、パーマネントライニング層3を除して算出した。
これによれば、残存しているウエアライニング層2の厚みが、転炉1の操業とともに減少し、それに伴って起電力が上昇していることがわかる。したがって、起電力を測定することで、ウエアライニング層2の厚みを連続して検出することが確認できる。
この実施例では、前記した実施例1で用いた電気炉41に対して、複数の熱電発電モジュールを取り付け、一部の耐火物の厚みを変えて、異なる厚みの耐火物と起電力の関係を調べるようにした。
すなわち、図8、図9に示したように、先の熱電発電モジュール11と同一構成の熱電発電モジュール51、52、53、54、55を、電気炉41の一側面の鉄皮42の、中心部および角隅部近傍に取り付けた。このとき電気炉41の耐火物構成は、内壁に熱伝導率が1.4W/m・Kの30mm厚みの耐火物43を1層ライニングした後に、熱電発電モジュール52、55が取り付けられている部位を除いた他の部位に、同一厚み、組成を有する耐火物45によって2層ライニングを施した。したがって、図9に示したように、熱電発電モジュール52、55が取り付けられている箇所を含む、電気炉41の前記一側面における略1/3強の領域(図9中の斜線で示した領域)は、耐火物43による1層ライニングであり、他の熱電発電モジュール51、53、54が取り付けられている部位は、
耐火物43、45による2層ライニングとなっている。
そして電気炉内を約1500℃になるように電気ヒーター44で加熱し、各熱電発電モジュール51、52、53、54、55の起電力を同時に測定した。測定結果を表2に示す。
Figure 0005085181
表2より、1層ライニング部位の熱電発電モジュール52、55による起電力は、2層ライニング部位の熱電発電モジュール51、53、54による起電力よりも高く、1層ライニング部位と2層ライニング部位との間には明確な起電力の差が観察された。従って炉の外壁に熱電発電モジュールを複数個取り付けた場合においても、各熱電モジュールの起電力を測定することで、電気炉41内壁のライニング層数が少ない部分(=耐火物の厚み)を検知することができた。
本発明は、内部が高温で、操業とともに内側の耐火物が損耗していく、高炉、転炉、電気炉、加熱炉、焼鈍炉などの炉や、混銑車、溶銑鍋、取鍋、タンディッシュなどの容器における、当該耐火物の残存厚みの検出や、当該耐火物の劣化判断に有用である。
検出対象の耐火物を有する転炉の断面を模式的に示した説明図である。 図1に示した転炉の鉄皮に熱電発電モジュールを取り付けた様子を示す説明図である。 NaO−CoO系等のセラミックッス熱電材料の、温度差と起電力との関係を示すグラフである。 ステーブを有する高炉に対して熱電発電モジュールを取り付けた様子を示す説明図である。 実施例1で用いた電気炉の斜視図である。 図5に示した電気炉の平面断面を模式的に示した説明図である。 図5に示した転炉における耐火物残存厚みと熱電素子の起電力の関係を示すグラフである。 実施例2で用いた電気炉の斜視図である。 図8に示した電気炉の側面図である。 図8に示した電気炉の平面断面を模式的に示した説明図である。
符号の説明
1 転炉
2 ウエアライニング層
3 パーマネント層
4 鉄皮
11 熱電発電モジュール
12、13 絶縁基板
14、15 金属板
16 熱電変換素子
21、22 リード線
23 電圧計
24、25 引き出し線
26、27 電極
28 貯留タンク
29 水
31 カーボンブロック31
32 スタンプ材
33 ステーブ
34 背面キャスタブル
35 鉄皮
41 電気炉
42 鉄皮
43、45、46、47 耐火物
44 電気ヒータ
51、52、53、54、55 熱電発電モジュール

Claims (5)

  1. ステーブを備えた高のステーブよりも内側を構成する耐火物の厚みを検出する方法であって、
    熱電変換素子の両面に絶縁基板を配置した熱電発電モジュールを、前記ステーブとその内側の耐火物との間に取り付け、
    前記取り付けにあたっては、前記熱電発電モジュールにおける一の絶縁基板を前記ステーブの内側の耐火物の外側表面に密着させ、他の絶縁基板を前記ステーブの内側面に密着させるようにし、
    取り付けた前記熱電変換素子によって発生する起電力を測定し、
    予め求めておいた前記耐火物の厚みと起電力との関係から、前記測定結果に基づいて前記耐火物の厚みを検出することを特徴とする、耐火物の厚み検出方法。
  2. 前記熱電変換素子は、Na O−CoO系セラミックス熱電材料であることを特徴とする、請求項1に記載の耐火物の厚み検出方法。
  3. 前記熱電発電モジュールを、複数個所に設置して、前記耐火物の厚みを複数個所で検出することを特徴とする、請求項1又は2に記載の耐火物の厚み検出方法。
  4. 耐火物の厚みを検出するとともに、前記熱電変換素子によって発生する起電力を用いて、水の電気分解を行い、水素と酸素を発生させることを特徴とする、請求項1〜のいずれかに記載の耐火物の厚み検出方法。
  5. 請求項1〜のいずれかに記載の耐火物の厚み検出方法によって検出した耐火物の厚みが所定値以下となったときに、前記耐火物が劣化したと判断することを特徴とする、耐火物の劣化判断方法。
JP2007116728A 2007-04-26 2007-04-26 耐火物の厚み検出方法および耐火物の劣化判断方法 Active JP5085181B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007116728A JP5085181B2 (ja) 2007-04-26 2007-04-26 耐火物の厚み検出方法および耐火物の劣化判断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007116728A JP5085181B2 (ja) 2007-04-26 2007-04-26 耐火物の厚み検出方法および耐火物の劣化判断方法

Publications (2)

Publication Number Publication Date
JP2008275203A JP2008275203A (ja) 2008-11-13
JP5085181B2 true JP5085181B2 (ja) 2012-11-28

Family

ID=40053365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007116728A Active JP5085181B2 (ja) 2007-04-26 2007-04-26 耐火物の厚み検出方法および耐火物の劣化判断方法

Country Status (1)

Country Link
JP (1) JP5085181B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209312A1 (ko) * 2016-05-29 2017-12-07 박성재 내화물 어셈블리, 이를 이용한 내화물 통합관리 시스템 및 내화물 어셈블리 관리방법
CN111004882A (zh) * 2019-12-18 2020-04-14 上海大学 在线测量高炉炉缸炉墙厚度的方法及装置
CN111313760A (zh) * 2020-03-31 2020-06-19 浙江自立高温科技股份有限公司 温差发电装置、钢包随动设备以及供电方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101235879B1 (ko) 2011-03-31 2013-02-21 현대제철 주식회사 내화물 감시 장치
JP5599358B2 (ja) * 2011-04-15 2014-10-01 株式会社神戸製鋼所 溶鋼鍋の管理方法
CN109791021B (zh) * 2016-07-25 2021-03-19 应达公司 具有衬里磨损探测系统的电感应熔炉
WO2018143616A1 (ko) 2017-02-01 2018-08-09 엑셀로 주식회사 피가열부재 통합관리 시스템과 이의 제어방법
WO2018159863A1 (ko) * 2017-02-28 2018-09-07 박성재 피가열부재 통합관리 시스템과 이의 제어방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030989A (ja) * 1983-07-29 1985-02-16 新日本製鐵株式会社 溶融金属容器の放熱回収方法
JPS63175149U (ja) * 1986-08-05 1988-11-14
JPH10190073A (ja) * 1996-12-25 1998-07-21 Ngk Insulators Ltd 炉壁用熱電変換装置
JP3722674B2 (ja) * 2000-08-01 2005-11-30 株式会社タクマ 溶融炉の立下げ方法及びその装置
JP4253471B2 (ja) * 2001-06-07 2009-04-15 義臣 近藤 エネルギー変換システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209312A1 (ko) * 2016-05-29 2017-12-07 박성재 내화물 어셈블리, 이를 이용한 내화물 통합관리 시스템 및 내화물 어셈블리 관리방법
CN111004882A (zh) * 2019-12-18 2020-04-14 上海大学 在线测量高炉炉缸炉墙厚度的方法及装置
CN111313760A (zh) * 2020-03-31 2020-06-19 浙江自立高温科技股份有限公司 温差发电装置、钢包随动设备以及供电方法
CN111313760B (zh) * 2020-03-31 2021-08-03 浙江自立高温科技股份有限公司 温差发电装置、钢包随动设备以及供电方法

Also Published As

Publication number Publication date
JP2008275203A (ja) 2008-11-13

Similar Documents

Publication Publication Date Title
JP5085181B2 (ja) 耐火物の厚み検出方法および耐火物の劣化判断方法
RU2358831C2 (ru) Нагреваемый желоб для расплавленного металла
RU2344203C2 (ru) Электролизер и применяемые в нем конструкционные элементы
CA1076629A (en) Furnace wall structure capable of tolerating high heat load for use in electric arc furnace
EP2877819A1 (fr) Procédé et dispositif de mesure des niveaux de fonte et de laitier dans un haut-fourneau
KR20130018652A (ko) 야금 공정을 위한 공정과정 중 결정 시스템에 기초한 소프트 센서
JP5745588B2 (ja) 誘導加熱炉用坩堝
Kondaiah et al. Novel textured surfaces for superior corrosion mitigation in molten carbonate salts for concentrating solar power
JP5659462B2 (ja) 製鉄用容器の耐火物ライニング構造
IT201800007563A1 (it) Sistema e metodo di rilevamento di condizione di fusione di materiali metallici entro un forno, sistema e metodo di rilevamento di condizione di fusione di materiali metallici e agitazione elettromagnetica, e forno dotato di tali sistemi
JP7241749B2 (ja) 高炉状態監視
JP2018534516A (ja) 溶解炉
JP4056534B2 (ja) 炉底温度測定方法及び装置、並びに溶融炉の炉底監視方法及び装置
JP2013211471A (ja) 熱電発電装置
JP6380990B2 (ja) スラグ凝固層厚が調整された電気炉及びこれを用いた金属製錬方法
WO2010026266A1 (en) Thermoelectric device
JP2010025464A (ja) 竪型炉炉内溶融物レベル計測装置及びその計測方法
JP2014533328A (ja) 作動中のアルミニウム電解セルにおける表面形状の測定方法
US20110180120A1 (en) Thermomagnetic Generator
US20120018122A1 (en) Furnace and a Method for Cooling a Furnace
CN204718416U (zh) 一种阳极炉口和烟道口钢水套
An et al. Experimental investigation of the interaction kinetics between metallic melt and special concrete
JP7398032B2 (ja) 工業炉
CN114292973A (zh) 一种高炉炉衬中的耐火材料温度的估算监测方法
JPS6030989A (ja) 溶融金属容器の放熱回収方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120905

R151 Written notification of patent or utility model registration

Ref document number: 5085181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350