JP5081860B2 - Continuous swallowing motion measuring device and continuous swallowing motion measuring method - Google Patents
Continuous swallowing motion measuring device and continuous swallowing motion measuring method Download PDFInfo
- Publication number
- JP5081860B2 JP5081860B2 JP2009106002A JP2009106002A JP5081860B2 JP 5081860 B2 JP5081860 B2 JP 5081860B2 JP 2009106002 A JP2009106002 A JP 2009106002A JP 2009106002 A JP2009106002 A JP 2009106002A JP 5081860 B2 JP5081860 B2 JP 5081860B2
- Authority
- JP
- Japan
- Prior art keywords
- swallowing
- optical sensor
- movement
- sensor
- thyroid cartilage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/42—Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
- A61B5/4205—Evaluating swallowing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4514—Cartilage
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4519—Muscles
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Gastroenterology & Hepatology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Endocrinology (AREA)
- Physiology (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Description
本発明は、人がビール等の飲料を飲み込むときに喉に生ずる嚥下運動の測定装置及び嚥下運動を測定する方法に関する。 The present invention relates to a measuring device for swallowing motion that occurs in the throat when a person swallows a beverage such as beer and a method for measuring swallowing motion.
人が食物を飲み込む動作に関連して、食物の特性や人の嚥下運動の能力を評価することを目的として実際の嚥下運動を測定する試みがなされている。 In connection with the action of a person swallowing food, attempts have been made to measure actual swallowing movements in order to evaluate food characteristics and human swallowing ability.
嚥下運動、即ち、食物を飲み込む動作を検査・測定する方法としては、VF法(ビデオレントゲン検査法)や超音波検査法などの画像診断法がある。前者は、被験者に造影剤を含む食品を飲み込んでもらい、口腔から咽頭、食道上部にかけてのX線動画像を記録し、観察する。後者は、超音波断層装置を用い、プローブを下顎から頸部にかけて当て、口腔内器官の運動や声帯の内転運動などをリアルタイムで観察・評価する。しかしながら、これらの方法では、画像による直接の診断はできるが、嚥下運動を定量化することが出来ない。従って、治療やリハビリテーションに利用する場合、変化する症状に応じて治療方針を設定するために経時的かつ定量的に症状を評価することが必要であるが、そのような評価を行うことには利用出来ない。また、X線は治療目的以外に健常者には使用することができず、上記X線を用いた検査・測定方法を、例えば、飲料の飲み込み時における喉越し感や食品の飲込み易さ等を研究するための嚥下運動測定に利用することは出来ない。 As a method for inspecting and measuring swallowing movement, that is, an operation for swallowing food, there are image diagnostic methods such as a VF method (video x-ray examination method) and an ultrasonic examination method. The former asks the subject to swallow food containing the contrast agent, and records and observes X-ray motion images from the oral cavity to the pharynx and the upper part of the esophagus. The latter uses an ultrasonic tomography device and applies a probe from the lower jaw to the neck, and observes and evaluates the movement of the oral organ and the adduction of the vocal cords in real time. However, these methods allow direct diagnosis by image, but cannot quantify swallowing movement. Therefore, when used for treatment and rehabilitation, it is necessary to evaluate symptoms over time and quantitatively in order to set a treatment policy according to changing symptoms. I can't. In addition, X-rays cannot be used for healthy persons other than for therapeutic purposes, and the above-described inspection / measurement methods using X-rays include, for example, a sense of feeling over the throat when swallowing beverages, ease of swallowing foods, etc. Cannot be used to measure swallowing movements to study
近年、この点に対処した嚥下運動測定方法として、複数の圧力センサを用いた検出部を前頸部に貼り付け、嚥下時の喉頭の上下運動を定量的に測定する装置が開発され、検討されている(例えば、非特許文献1参照)。 In recent years, as a swallowing motion measurement method that addresses this point, a device that quantitatively measures the vertical movement of the larynx during swallowing by attaching a detection unit using multiple pressure sensors to the front neck has been developed and studied. (For example, refer nonpatent literature 1).
図1は、食物を飲み込むときの喉頭運動、舌骨上筋群筋電図及び嚥下音を測定するために開発された嚥下運動測定装置1の構成図である。 FIG. 1 is a configuration diagram of a swallowing movement measuring apparatus 1 developed for measuring laryngeal movement, suprahyoid electromyogram and swallowing sound when food is swallowed.
この装置1は、図示されるように、計測部10と分析部20により構成される。計測部1は圧力センサ11、筋電位計電極12、及びマイクロフォン13を有し、圧力センサ11は歪アンプ14、筋電位計電極12は筋電計15に、また、マイクロフォン13はチャージアンプ16に接続される。 As shown in the figure, the apparatus 1 includes a measurement unit 10 and an analysis unit 20. The measuring unit 1 includes a pressure sensor 11, a myoelectric meter electrode 12, and a microphone 13, the pressure sensor 11 is a strain amplifier 14, the myoelectric meter electrode 12 is a myoelectric meter 15, and the microphone 13 is a charge amplifier 16. Connected.
分析部20は歪アンプ14、筋電計15及びチャージアンプ16から出力されるアナログ信号を夫々デジタル信号に変換するA/D変換器21、A/D変換器21からの信号を各種演算処理するパーソナルコンピュータ22からなる。 The analysis unit 20 performs various arithmetic processes on the signals from the A / D converter 21 and the A / D converter 21 that convert analog signals output from the strain amplifier 14, the electromyograph 15 and the charge amplifier 16 into digital signals, respectively. It consists of a personal computer 22.
このシステムは、喉頭の一部である甲状軟骨(いわゆる「喉仏」)の上下運動を圧力センサ11により、舌骨上筋群筋活動を筋電位計電極12により、また嚥下音をマイクロフォン13により、同時に測定するようにしたものである。 This system uses the pressure sensor 11 to move the thyroid cartilage (so-called “throat Buddha”), which is a part of the larynx, the muscle activity of the suprahyoid muscle group by the myoelectric meter electrode 12, and the swallowing sound by the microphone 13. Measurements are made at the same time.
圧力センサ11は図2に示すように、左右で対となるセンサを縦方向(上下方向)に3対、計6個のセンサをウレタンホーム11aに固定し、これをレジン基部11bに取り付けたものである。ウレタンホーム11aにはこれを首に装着するときに固定できるように両面テープ11cを貼り付けている。また、レジン基部11bにはバンド11dが取り付けられており、これを用いてセンサが前頸部に位置するように頸部に装着する。 As shown in FIG. 2, the pressure sensors 11 have three pairs in the vertical direction (up and down direction) and a total of six sensors fixed to the urethane home 11a and attached to the resin base 11b. It is. Double-sided tape 11c is affixed to the urethane home 11a so that it can be fixed when it is worn on the neck. In addition, a band 11d is attached to the resin base 11b, and the sensor is attached to the neck so that the sensor is located on the front neck.
筋電位計電極(表面電極)12は頸二腹筋前腹相当部に貼付し、不関電極(基準電極)は両耳朶に取り付けた。この筋電位計12は物を飲み込むときにどの位筋肉に力がかかるかを計測することができる。計測する筋は舌骨上筋群である。 A myoelectric meter electrode (surface electrode) 12 was attached to the front part of the cervical abdominal muscle, and an indifferent electrode (reference electrode) was attached to the earlobe. This myoelectric meter 12 can measure how much force is applied to the muscle when swallowing an object. The muscle to be measured is the suprahyoid muscle group.
マイクロフォン13は輪状軟骨の横に位置するように取付ける。 The microphone 13 is attached so as to be located beside the cricoid cartilage.
図3は圧力センサ11の前頸部への取付け状態と嚥下運動の検出原理を説明する図である。また、図4は、圧力サンサ、筋電計電極及びマイクロフォンから得られる信号波形を示す。 FIG. 3 is a view for explaining the attachment state of the pressure sensor 11 to the front neck and the principle of detection of swallowing motion. FIG. 4 shows signal waveforms obtained from the pressure sensor, the electromyograph electrode, and the microphone.
圧力センサ11は、図3に示すように、3対のセンサのうち一番下のセンサが甲状軟骨の嚥下運動をしていない通常の位置に位置するようにして取り付ける。 As shown in FIG. 3, the pressure sensor 11 is attached so that the lowermost sensor of the three pairs of sensors is located at a normal position where the thyroid cartilage is not swallowing.
図3及び図4を参照して食塊を口腔から咽頭に流しこもうとするときの嚥下運動を説明する。 With reference to FIG. 3 and FIG. 4, the swallowing motion when the bolus is about to flow from the oral cavity to the pharynx will be described.
まず、舌を用いて食塊を口腔から流し込もうとするとき、筋電計出力に現れるように、舌骨上筋群が活動を開始する(p1)。それに続いて喉頭の一部である甲状軟骨が上昇を開始する(図3(a))。それによって、圧力センサ対2の出力電圧が上昇し(p3)、次に圧力センサ対3が上昇する(p4)。喉頭の下方への運動時にはその逆を示し、甲状軟骨がもとの位置に戻る(p7)。マイクロフォンから得られる嚥下音は、出力波形に見られるように、喉頭挙上開始後しばらくして開始する(p8)。 First, when trying to pour a bolus from the oral cavity using the tongue, the suprahyoid muscle group starts to act so as to appear in the electromyograph output (p1). Subsequently, thyroid cartilage, which is part of the larynx, begins to rise (FIG. 3 (a)). As a result, the output voltage of the pressure sensor pair 2 rises (p3), and then the pressure sensor pair 3 rises (p4). When moving down the larynx, the opposite is shown, and the thyroid cartilage returns to its original position (p7). The swallowing sound obtained from the microphone starts as soon as the laryngeal elevation starts, as seen in the output waveform (p8).
以上のように、嚥下運動測定装置を使用し、食物を飲み込むときの嚥下運動を、咽頭運動、舌骨上筋群筋電図、嚥下音を電気信号として取り出し、これを、例えば、食物の種類によりどのような変化が生じるか、あるいは、飲み込む人によってどのような差異が生じるか等の分析評価への利用可能性が期待されている。 As described above, using the swallowing movement measuring device, swallowing movement when swallowing food is extracted as pharyngeal movement, suprahyoid electromyogram, swallowing sound as an electrical signal, for example, the type of food It is expected to be usable for analysis and evaluation such as what kind of change occurs due to the above, or what kind of difference occurs depending on the swallowing person.
ところで、食物の中でも、ビール等の飲料では、飲み込む動作に伴って感じる喉越し感、飲み込み易さ・ドリンカビリティーといった感覚も商品の特性を評価するうえで重要な評価項目である。例えば、「ビールは喉越しで味わう」と言われているように喉をゴクゴク鳴らしながら飲むビールは格別である。 By the way, among foods, beverages such as beer are also important evaluation items for evaluating the characteristics of products, such as feelings over the throat and ease of swallowing / drinkability, which are felt with swallowing movements. For example, beer that drinks whispering in the throat is said to be exceptional as it is said that “beer tastes over the throat”.
このような飲み込み動作に伴う人の感覚を客観的に評価出来るかを検討するため、本発明者らは、上記の嚥下運動測定装置を利用出来ないか検討した結果、上記測定装置を改良してビール等の飲料を「ゴク、ゴク、ゴク・・・・・」と連続的に飲み込む時の喉頭の運動(以下「連続嚥下運動」という)を測定できる装置を開発した。即ち、本発明は上記測定装置の改良にあり、従来の測定装置が1回の飲み込み動作を測定対象にしていたのに対し、本発明では「ゴク、ゴク、ゴク・・・・」という連続嚥下運動を測定できるようにしたものである。 In order to examine whether or not the human senses associated with such swallowing operations can be objectively evaluated, the present inventors have examined whether or not the above swallowing movement measuring device can be used, and as a result, improved the measuring device. We have developed a device that can measure the laryngeal movement (hereinafter referred to as “continuous swallowing movement”) when a beverage such as beer is swallowed continuously as “gok, gok, gok ...”. That is, the present invention resides in the improvement of the above-described measuring device, and the conventional measuring device is intended to measure one swallowing operation, whereas in the present invention, the continuous swallowing “gok, gok, gok ...”. It is designed to measure movement.
本発明者らの研究によると、連続嚥下運動では、1回の飲み込み動作と異なり喉頭の上下運動の位置がより上方に移動しており、上記測定装置では喉頭の正確な運動を測定出来ないことが確認された。また、上記従来の測定装置の検出部固定方法では1回の飲み込み動作で検出部の位置がずれてしまい、連続動作の測定が不可能になるという問題を有していた。そこで、本発明では、検出部を改良して連続飲み込み動作を測定可能とすると共に、検出部の被験者への固定方法を改良して連続飲み込み動作によって検出部の取付位置がズレないようにしたことにある。 According to the study of the present inventors, in the continuous swallowing movement, the position of the vertical movement of the larynx is moved upwards unlike a single swallowing movement, and the above measurement device cannot measure the accurate movement of the larynx. Was confirmed. Further, the above-described conventional method for fixing the detection unit of the measuring apparatus has a problem that the position of the detection unit is displaced by a single swallowing operation, making it impossible to measure continuous operation. Therefore, in the present invention, the detection unit is improved so that continuous swallowing operation can be measured, and the method of fixing the detection unit to the subject is improved so that the mounting position of the detection unit is not displaced by the continuous swallowing operation. It is in.
本発明の連続嚥下運動測定装置は、食物の飲込み時における甲状軟骨の上下運動方向に沿って配列された複数の圧力センサと、前記圧力センサを被験者の前頸部に当接して固定するための圧力センサ装着具を備え、
前記圧力センサ装着具は、前記圧力センサを固定する固定手段と、前記固定手段を支持する圧力センサ支持具と、前記圧力センサ支持具を被験者の前頸部に保持する保持バンドを備えることを特徴とする。
The continuous swallowing movement measuring apparatus according to the present invention is configured to abut a plurality of pressure sensors arranged along the vertical movement direction of the thyroid cartilage when food is swallowed, and to fix the pressure sensors in contact with the front neck of the subject. Equipped with a pressure sensor mounting tool
The pressure sensor mounting device includes: a fixing unit that fixes the pressure sensor; a pressure sensor support that supports the fixing unit; and a holding band that holds the pressure sensor support on a front neck of a subject. And
本発明の他の態様は、
食物の飲込み時における甲状軟骨の上下運動方向に沿って配列された複数の圧力センサと、前記圧力センサを被験者の前頸部に当接して固定するための圧力センサ装着具を備え、
前記圧力センサ装着具は、前記圧力センサを固定する固定手段と、前記固定手段を支持する圧力センサ支持具と、前記圧力センサ支持具を被験者の前頸部に保持する保持バンドを備えることを特徴とする連続嚥下運動測定装置であって、
前記嚥下運動測定装置は、被験者の舌骨上筋群の筋に作用する力を測定する筋電位計電極と、嚥下音を測定するための振動ピックアップを更に備えた嚥下運動測定装置である。
Another aspect of the present invention is:
A plurality of pressure sensors arranged along the direction of vertical movement of the thyroid cartilage at the time of food ingestion, and a pressure sensor mounting device for abutting and fixing the pressure sensor to the front neck of the subject,
The pressure sensor mounting device includes: a fixing unit that fixes the pressure sensor; a pressure sensor support that supports the fixing unit; and a holding band that holds the pressure sensor support on a front neck of a subject. A continuous swallowing movement measuring device,
The swallowing motion measuring device is a swallowing motion measuring device further comprising a myoelectric meter electrode for measuring a force acting on a muscle of a subject's suprahyoid muscle group and a vibration pickup for measuring a swallowing sound.
また、本発明の他の態様は、連続嚥下運動時において甲状軟骨が最上位位置近傍に有ることを認識する圧力センサを含む複数の圧力センサを支持し、当該圧力センサを甲状軟骨の上下運動方向に沿って配置する圧力センサ装着具を、前記圧力センサの最下位のセンサが被験者の甲状軟骨の近傍に位置するよう前頸部に当接させて装着する段階と、被験者が飲料を連続して飲むときの各圧力センサからの出力信号の変化を読み取る段階と、前記各圧力センサからの出力信号のピークの周期に基づいて飲料を連続して飲み時の被験者の甲状軟骨の上下動を測定する連続嚥下運動測定方法である。 Further, another aspect of the present invention supports a plurality of pressure sensors including a pressure sensor for recognizing that the thyroid cartilage is in the vicinity of the uppermost position during continuous swallowing, and the pressure sensor is used in the vertical movement direction of the thyroid cartilage. A pressure sensor mounting tool disposed along the front neck so that the lowest sensor of the pressure sensor is positioned in the vicinity of the subject's thyroid cartilage; Reading the change in the output signal from each pressure sensor when drinking, and measuring the vertical movement of the subject's thyroid cartilage during drinking continuously based on the peak period of the output signal from each pressure sensor It is a continuous swallowing movement measurement method.
本発明の他の態様は、被験者の前頸部の頸二腹筋前腹相当部に筋電位測定用表面電極を当接して固定する段階と、被験者が飲料を連続して飲む時の前記表面電極から舌骨上筋群の運動により生じる電気信号を得る段階と、前記得られた電気信号により舌骨上筋群筋の運動量の大きさを判定する段階と、からなる連続嚥下運動測定方法である。 Another aspect of the present invention includes a step of abutting and fixing a surface electrode for measuring myoelectric potential to an anterior abdominal part of the neck of the subject's front neck, and the surface electrode when the subject continuously drinks a beverage Is a method for measuring continuous swallowing movement, comprising: obtaining an electrical signal generated by the movement of the suprahyoid muscle group from the above; and determining the magnitude of the amount of exercise of the suprahyoid muscle group muscle based on the obtained electrical signal. .
本発明の他の態様は、被験者の前頸部の輪状軟骨の横に位置する部位に振動ピックアップを取り付ける段階と、
被験者が飲料を連続して飲む時の前記振動ピックアップから嚥下音を測定する段階と、 前記嚥下音の測定値のピークの周期を測定する段階と、からなる連続嚥下運動測定方法である。
Another aspect of the present invention is the step of attaching a vibration pickup to a site located beside the cricoid cartilage in the front neck of the subject;
A method for measuring continuous swallowing movement, comprising: a step of measuring a swallowing sound from the vibration pickup when a subject continuously drinks a beverage; and a step of measuring a peak period of a measurement value of the swallowing sound.
本発明の他の態様は、食物の飲込み時における甲状軟骨の上下運動方向に沿って配列された複数の反射型光センサと、前記センサを被験者の前頸部に所定間隔を置いて固定するためのセンサ装着具を備え、前記センサ装着具は、前記光センサを固定する固定板と、前記固定板を被験者の前頸部に保持する保持バンドを備えることを特徴とする連続嚥下運動測定装置である。 According to another aspect of the present invention, a plurality of reflective optical sensors arranged along the vertical movement direction of the thyroid cartilage when food is swallowed, and the sensors are fixed to the subject's front neck at predetermined intervals. A continuous swallowing motion measuring device comprising: a sensor mounting tool for fixing the optical sensor; and a holding band for holding the fixing plate on a front neck of a subject. It is.
本発明の他の態様は、上記連続嚥下運動測定装置において、前記反射型光センサは、赤外線発光ダイオードからなる発光素子と、赤外線検出フォトトランジスタからなる。 Another aspect of the present invention is the above-described continuous swallowing movement measuring apparatus, wherein the reflective optical sensor includes a light emitting element including an infrared light emitting diode and an infrared detection phototransistor.
また、本発明の更なる他の態様は、反射型光センサを支持し、当該光センサを甲状軟骨の上下運動方向に沿って配置する光センサ装着具を、前記光センサの最下位のセンサが被験者の甲状軟骨の近傍に位置するよう前頸部に当接させて装着する段階と、被験者が飲料を連続して飲むときの各光センサからの出力信号に基づき前記光センサと前頸部表面との距離を把握する段階と、前記距離の最小となる部位の位置の変化を読み取る段階と、前記最小となる部位の移動周期に基づいて飲料を連続して飲み時の被験者の甲状軟骨の上下動を測定する連続嚥下運動測定方法である。 Still another aspect of the present invention provides an optical sensor mounting tool that supports a reflective optical sensor and arranges the optical sensor along the vertical movement direction of the thyroid cartilage. The step of attaching to the front neck so as to be positioned in the vicinity of the subject's thyroid cartilage, and the light sensor and the front neck surface based on output signals from each light sensor when the subject continuously drinks the beverage And a step of reading a change in the position of the part where the distance is minimum, and a top and bottom of the subject's thyroid cartilage when drinking the beverage continuously based on the movement period of the minimum part. It is a continuous swallowing movement measuring method for measuring movement.
本発明の連続嚥下運動測定装置及び連続嚥下運動測定方法によれば、連続飲み込み動作を測定可能とすると共に、連続飲み込み動作によって検出部の取付位置がずれることなく、的確な嚥下運動の測定が可能となる。 According to the continuous swallowing motion measuring device and the continuous swallowing motion measuring method of the present invention, it is possible to measure the continuous swallowing motion, and it is possible to accurately measure the swallowing motion without shifting the mounting position of the detection unit by the continuous swallowing motion. It becomes.
また、本発明の連続嚥下運動測定装置を使用して飲料を連続的に飲むときの甲状軟骨の運動、舌骨上筋群筋の運動及び嚥下音を的確に計測することが可能となり、またこれらの計測データを被験者の嚥下運動の評価や診断に適用することにより被験者の嚥下能力の診断や食物、飲料の評価や開発に資することができる。 In addition, it becomes possible to accurately measure the movement of the thyroid cartilage, the movement of the suprahyoid muscle group muscle and the swallowing sound when drinking a beverage continuously using the continuous swallowing movement measuring device of the present invention. By applying this measurement data to the evaluation and diagnosis of the swallowing movement of the subject, it is possible to contribute to the diagnosis of the swallowing ability of the subject and the evaluation and development of food and beverages.
また、反射型光センサを使用する連続嚥下運動測定装置によれば、光センサを使用して非接触により嚥下運動を測定することにより、測定装置の頚部への装着によって生じる頸部を圧迫することがなくなり、より自然な状態で嚥下運動を測定することが可能となる。また、各センサは固定板に取付け、喉頭部とは接触しないため、嚥下運動に伴い、センサ自体が動くことはないため、センサの位置が安定し、高い精度で測定が可能となる。 In addition, according to the continuous swallowing movement measuring device using the reflective optical sensor, the swallowing movement is measured in a non-contact manner using the optical sensor, thereby compressing the neck generated by the attachment of the measuring device to the neck. The swallowing movement can be measured in a more natural state. Further, since each sensor is attached to a fixed plate and does not come into contact with the larynx, the sensor itself does not move with swallowing movement, so that the position of the sensor is stable and measurement can be performed with high accuracy.
以下、図面5乃至図13を参照して、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. 5 to 13.
図5は、本発明の実施形態に係る嚥下運動を測定する嚥下運動測定装置のブロック構成図である。本実施形態の嚥下運動測定装置100は基本的構成は図1に示した嚥下運動測定装置と同様であり、計測部110と分析部120から構成される。計測部110は圧力サンサ111、小型生体電極112、振動ピックアップ(マイクロフォン)113を有し、夫々、増幅器114,115,116へ接続され、分析部120のアナログ/デジタル変換器121を介してパーソナルコンピュータ122に入力される。 FIG. 5 is a block configuration diagram of a swallowing movement measuring apparatus that measures swallowing movements according to the embodiment of the present invention. The basic configuration of the swallowing motion measuring apparatus 100 of the present embodiment is the same as that of the swallowing motion measuring apparatus shown in FIG. 1, and includes a measuring unit 110 and an analyzing unit 120. The measurement unit 110 includes a pressure sensor 111, a small bioelectrode 112, and a vibration pickup (microphone) 113. The measurement unit 110 is connected to amplifiers 114, 115, and 116, and is connected to a personal computer via an analog / digital converter 121 of the analysis unit 120. 122 is input.
筋電位計表面電極112と振動ピックアップ113は図1の同じであり、 EMG表面電極112は頸二腹筋前腹相当部に貼付し、不関電極(基準電極)は両耳朶に取り付ける。振動ピックアップ113は、嚥下音を測定できるように、前頸部の輪状軟骨(図7参照)の横に位置するように貼り付ける。 The electromyograph surface electrode 112 and the vibration pickup 113 are the same as those shown in FIG. 1. The EMG surface electrode 112 is attached to the front part of the cervical abdominal muscle, and the indifferent electrode (reference electrode) is attached to the earlobe. The vibration pickup 113 is attached so as to be positioned beside the cricoid cartilage (see FIG. 7) in the front neck so that the swallowing sound can be measured.
嚥下運動測定装置100が嚥下運動測定装置1と異なる点は、以下に述べるように圧力センサ110にある。図6は圧力サンサを頸部に装着するための圧力センサ装着具130を示す。圧力センサ装着具130は顎載置台131aとセンサ取付け部131bを有するプラスティック製のセンサ固定具131と、センサ取付け部131bに固定されたウレタンフォーム132と、センサ固定部に取付けられた装着バンド134を有する。ウレタンフォーム132の前側表面の中央部には縦方向に4個の圧力センサs1,s2,s3,s4が固定されており、その両側には両面接着テープ133が貼着されている。 The difference between the swallowing motion measuring device 100 and the swallowing motion measuring device 1 is in the pressure sensor 110 as described below. FIG. 6 shows a pressure sensor mounting tool 130 for mounting the pressure sensor to the neck. The pressure sensor mounting tool 130 includes a plastic sensor fixing tool 131 having a chin rest 131a and a sensor mounting part 131b, a urethane foam 132 fixed to the sensor mounting part 131b, and a mounting band 134 attached to the sensor fixing part. Have. Four pressure sensors s1, s2, s3, and s4 are fixed in the longitudinal direction at the center of the front surface of the urethane foam 132, and double-sided adhesive tape 133 is attached to both sides thereof.
尚、顎載置台131aはセンサ取付け部131bに対し、軸131cにより回動可能に軸支されており、顎支持台131aの平面の角度を微調整ができるようにしている。
これは、甲状軟骨はそれが大きく突出している人からほとんど目立たないひとまで千差万別であり、特に甲状軟骨の目立たない人の場合は、各センサの出力が明確に得られない場合がある。そのような場合には頭を後ろに少し反らせて喉仏を前に突き出すようにすると甲状軟骨が明確になる場合があり、当該状態を、連続嚥下運動中維持するためにこの角度調整を用いる。 図7は本発明により嚥下運動測定装置100を使用して嚥下運動を測定する場合に圧力センサ装着具130及び筋電計112、振動ピックアップ113を被験者に装着した状態を示す。
The chin mounting table 131a is pivotally supported by a shaft 131c with respect to the sensor mounting portion 131b so that the angle of the plane of the chin supporting table 131a can be finely adjusted.
This is because the thyroid cartilage is very different from the person that it protrudes greatly to the person who is hardly conspicuous, especially in the case where the thyroid cartilage is not conspicuous, the output of each sensor may not be clearly obtained . In such a case, the thyroid cartilage may become clear when the head is slightly bent backwards and the throat is pushed forward, and this angle adjustment is used to maintain this state during continuous swallowing. FIG. 7 shows a state in which the pressure sensor wearing tool 130, the electromyograph 112, and the vibration pickup 113 are attached to the subject when the swallowing movement is measured using the swallowing movement measuring apparatus 100 according to the present invention.
図に示すように、圧力センサの前頸部への装着は、図6に示した圧力センサ装着具130を使用して行うが、ウレタンフォームに取付けられた圧力センサs1,s2,s3,s4を前頸部にあてがう。この場合、最下位のセンサs1が甲状軟骨に位置するようにしてあてがい、ウレタンフォームの前面の両面接着テープ133にその位置で固定する。さらに、この状態で、装着バンド134を使用して頸部に固定する。そして、被験者の顎を顎載置台131aに載せる。上述のように取り付けることにより、顎と首とで構成される角度を固定することが出来る。これは、測定中に頭を動かしてしまって、顎と首とで構成する角度が変化すると、甲状軟骨と圧力センサの相対位置がズレてしまい、測定不能となるからである。
また、顎と顎載置台131aとの間に適宜の厚さの低反発性のウレタンフォームを介在させて顎の位置を調整する。また、図示のように、顎載置台131aにゴムひもを取り付け、耳に係合させるようにして顎載置台131aの面を固定できるようにしている。
As shown in the figure, the pressure sensor is mounted on the front neck using the pressure sensor mounting tool 130 shown in FIG. 6, but the pressure sensors s1, s2, s3 and s4 attached to the urethane foam are attached. Apply to the front neck. In this case, the lowest sensor s1 is placed on the thyroid cartilage and fixed to the double-sided adhesive tape 133 on the front surface of the urethane foam at that position. Further, in this state, the wearing band 134 is used to fix to the neck. Then, the subject's chin is placed on the chin rest 131a. By attaching as described above, the angle formed by the jaw and the neck can be fixed. This is because if the head is moved during the measurement and the angle formed by the jaw and the neck changes, the relative position between the thyroid cartilage and the pressure sensor shifts, making measurement impossible.
Further, the position of the chin is adjusted by interposing a low-resilience urethane foam having an appropriate thickness between the chin and the chin rest 131a. Further, as shown in the drawing, a rubber band is attached to the chin mounting table 131a so that the surface of the chin mounting table 131a can be fixed so as to engage with the ear.
また、筋電計用の表面電極112は頸二腹筋前腹相当部に貼付し、不関電極(基準電極)は両耳朶に取り付ける。また、振動ピックアップ113は、輪状軟骨の横に位置する部位の頸部に取り付ける。
(実験例)
以上のように各センサ、検出器を取り付けた状態で、被験者にサンプルとして市販の天然水を連続して飲ませ、嚥下運動測定装置の計測の実験を実施した。図8乃至図10は、圧力センサ、筋電位計、振動ピックアップが夫々捉えた計測データを示す。尚、飲む時間は約10秒である。
In addition, the surface electrode 112 for the electromyograph is attached to the front part of the cervical abdominal muscle, and the indifferent electrode (reference electrode) is attached to the earlobe. In addition, the vibration pickup 113 is attached to the neck of a part located beside the cricoid cartilage.
(Experimental example)
With each sensor and detector attached as described above, the subject was allowed to continuously drink commercially available natural water as a sample, and a measurement experiment of the swallowing movement measuring device was performed. 8 to 10 show measurement data captured by the pressure sensor, myoelectric meter, and vibration pickup, respectively. The drinking time is about 10 seconds.
図8の圧力センサからの出力を見ると、4個のセンサs1,s2,s3,s4の出力の変化が周期的に現れることがわかる。これは、飲料を連続してゴクゴクと飲むときの咽頭(甲状軟骨)の周期的に行われる上下動を表すものである。 From the output from the pressure sensor in FIG. 8, it can be seen that changes in the outputs of the four sensors s1, s2, s3, and s4 appear periodically. This represents the vertical movement of the pharynx (thyroid cartilage) that occurs when the beverage is continuously squeezed.
図9は筋電位計からの出力を示し、舌骨上筋群の運動が周期的に現われる。なお、2系列の信号が現れているが、これは、左右に取り付けた筋電位計からの2系列の信号を示し、同周期で現れるピークを示している。 FIG. 9 shows the output from the myoelectric meter, and the movement of the suprahyoid muscle group appears periodically. In addition, although two series of signals appear, this shows two series of signals from the electromyographs attached to the left and right, and shows peaks that appear in the same period.
図10は振動ピックアップからの出力波形を示し、同様に、嚥下音が周期的に検出されている。 FIG. 10 shows an output waveform from the vibration pickup. Similarly, swallowing sounds are periodically detected.
ここで、図11及び前述の図8を参照して、嚥下運動と圧力センサs1,s2,s3,s4の出力の関係について説明する。 Here, the relationship between the swallowing motion and the outputs of the pressure sensors s1, s2, s3, and s4 will be described with reference to FIG. 11 and FIG. 8 described above.
物を飲み込むときの甲状軟骨の動きは、気管と食道の切り替えを行う蓋(喉頭蓋)と連動しており、物を飲み込む時には甲状軟骨は上がっていき(気管→食道)、その後もとの位置に戻る(食道→気管)。甲状軟骨の動きは喉の皮膚の突起状態が変わるので、皮膚に付けた圧力センサの出力により甲状軟骨の動きを検知することができる。 The movement of the thyroid cartilage when swallowing an object is linked to the lid (the epiglottis) that switches between the trachea and the esophagus, and when the object is swallowed, the thyroid cartilage rises (trachea → esophagus) and then returns to its original position. Return (esophagus-> trachea). Since the movement of the thyroid cartilage changes the protruding state of the throat skin, the movement of the thyroid cartilage can be detected by the output of the pressure sensor attached to the skin.
図11は、縦方向に整列させた圧力センサs1,s2,s3,s4の出力を甲状軟骨の動きと関連させて模式的に示したものである。物の飲み込みの開始前では甲状軟骨の頂部はセンサs1の位置にあり(図11a)、s1の出力が最も高い状態にある。この時、甲状軟骨の一部はセンサs2にも対応しているため、s2の出力も発生するが、そのレベルはs1よりも低い。そして、飲み込むとき、甲状軟骨が上昇し(図11b)、センサs2,s3,s4に順次出力ピークが移動する。そして、連続してゴクゴク飲むとき(連続嚥下運動)は、図11bの矢印の範囲で甲状軟骨が動く。この実施例では、連続嚥下運動時、甲状軟骨はセンサs2−s4間を移動しており、その移動に応じて各センサの出力ピークが順次現れる。なお、上述した圧力センサs1−s4の出力変化は、検出器の甲状軟骨に対する取付状態によっても異なるが、嚥下運動時における甲状軟骨の移動に応じて各センサが順次出力ピークを発生する状況に変わりはない。 FIG. 11 schematically shows the outputs of the pressure sensors s1, s2, s3, and s4 aligned in the vertical direction in relation to the movement of the thyroid cartilage. Before the start of swallowing, the top of the thyroid cartilage is at the position of the sensor s1 (FIG. 11a), and the output of s1 is in the highest state. At this time, since a part of the thyroid cartilage also corresponds to the sensor s2, an output of s2 is also generated, but its level is lower than s1. Then, when swallowed, the thyroid cartilage rises (FIG. 11b), and the output peak sequentially moves to the sensors s2, s3, and s4. Then, when drinking continuously (continuous swallowing exercise), the thyroid cartilage moves within the range of the arrow in FIG. 11b. In this embodiment, during continuous swallowing, the thyroid cartilage moves between the sensors s2 to s4, and the output peaks of the sensors appear sequentially according to the movement. The output change of the pressure sensors s1 to s4 described above varies depending on the attachment state of the detector to the thyroid cartilage, but changes to a situation where each sensor sequentially generates an output peak according to the movement of the thyroid cartilage during swallowing exercise. There is no.
以上の実験により、飲料を連続的に飲み込むときの嚥下運動を電気的に計測することが可能となることがわかった。本実施形態による嚥下運動測定装置おいては、圧力センサは上述の構造の圧力センサ装着具130に取り付けているため、連続して飲み込む場合にしようしても、各センサの位置がずれることがなく、適確に信号の変化を計測することができ、従って、嚥下運動を正確に計測することが可能となる。 From the above experiment, it was found that the swallowing motion when the beverage is swallowed continuously can be electrically measured. In the swallowing movement measuring apparatus according to the present embodiment, since the pressure sensor is attached to the pressure sensor mounting tool 130 having the above-described structure, the position of each sensor does not shift even when swallowing continuously. The change of the signal can be accurately measured, and therefore the swallowing movement can be accurately measured.
次に、上述の連続嚥下運動測定装置を使用して、飲料を連続的に飲込む時の甲状軟骨、舌骨上筋群筋活動量及び嚥下音を測定し、当該測定結果を考察する。 Next, using the above-described continuous swallowing movement measuring device, thyroid cartilage, suprahyoid muscle activity amount and swallowing sound when a drink is continuously swallowed are measured, and the measurement results are considered.
一般に飲料を飲む場合、例えば、飲料が水の場合、ジュースの場合、或いはビールなど、その種類によって感じる喉越し、飲みやすさに違いがあることは誰しも感じることであるが、これを客観的に評価する手法は、未だ確率していない。本発明者らは、上述の嚥下運動測定装置を利用して飲料の喉越し、飲込み易さ、ドリンカビリティの客観的評価について考察した。 In general, when drinking a drink, for example, when the drink is water, juice, or beer, everyone feels that there is a difference in throat and ease of drinking depending on the type, but this is objective. There is still no probable method for evaluating it. The present inventors considered the objective evaluation of the drink throat, ease of swallowing, and drinkability by using the above-described swallowing movement measuring device.
先ず、飲料のサンプルとして、天然水、ジュース、ビールを選び、これを上述の本発明による嚥下運動測定装置を使用して複数(10名)の被験者に連続的に飲ませて甲状軟骨上下動時間周期、舌骨上筋群筋活動量、嚥下音時間周期の計測データを得て、その結果を分析した。 First, natural water, juice, and beer are selected as beverage samples, and these are continuously swallowed by a plurality of (10 subjects) using the above-described swallowing movement measuring apparatus according to the present invention, and the thyroid cartilage vertical movement time is selected. The measurement data of period, suprahyoid muscle activity, and swallowing sound time period were obtained and analyzed.
先ず、筋電位計の計測値からはビールを飲むときに筋肉にかかる力(舌骨上筋群筋活動量)が分かる。図12は各飲料の10名の被験者の筋活動量の平均値を表したもので、このグラフから水の筋活動量の平均値はジュース、ビールより小さく、水とジュース、水とビールの間に有意差が認められた。つまり、水をゴクゴク飲むときより、ジュースやビールを飲むときの方が筋肉に力がかかっていることがわかる。 First, the force applied to the muscle when drinking beer (upper hyoid muscle group muscle activity amount) is known from the measured value of the myoelectric meter. FIG. 12 shows the average value of muscle activity of 10 subjects of each drink. From this graph, the average value of muscle activity of water is smaller than that of juice and beer, and between water and juice and between water and beer. A significant difference was observed. In other words, when you drink juice or beer, you can see that your muscles are stronger than when you drink water.
この舌骨上筋群筋活動量が小さい方が飲みやすいという意味付けを行うことができ、この観点からすれば、ビール、ジュースは水に比べて飲みにくいということがいえる。一方、この飲みにくさは、舌骨上筋群筋の活発な運動を表すことになり、「スッキリ感」や「のみごたえ感」の指標を確立する上で要素の1つに成り得る可能性がある。 This means that it is easier to drink if the amount of muscle activity in the suprahyoid muscle is smaller. From this point of view, it can be said that beer and juice are harder to drink than water. On the other hand, this difficulty of drinking represents the active movement of the suprahyoid muscle group muscles, and may be one of the factors in establishing the indicators of "clean feeling" and "feeling of sensation" There is.
次に、図13は振動ピックアップから得られる嚥下音時間周期(図10におけるピークが現れる周期)の平均値を調べた結果である。水とジュース、水とビールとの間に有意差が認められ、水をゴクゴク飲む時よりもジュース、ビールを飲む時の方が嚥下音時間周期が短くなることが確認された。つまり、水よりもビール、ジュースを飲む時の方が「ゴクゴク」と音がよく鳴ることが示唆された。 Next, FIG. 13 shows the result of examining the average value of the swallowing sound time period (period in which the peak in FIG. 10 appears) obtained from the vibration pickup. Significant differences were observed between water and juice, and water and beer, and it was confirmed that the swallowing sound period was shorter when drinking juice and beer than when drinking water. In other words, it was suggested that the sound of “gokugoku” sounds better when drinking beer and juice than water.
飲料を連続的に飲む場合の、「ゴクゴク」という音が頻繁に発生することは、例えば、「ビールは喉越しで味わう」といわれるように、喉をゴクゴク鳴らしながらビールを飲む」感覚に通じるものであり、ビールの「喉越し感」を客観的に表すデータの1つと成り得る可能性が考えられる。 The frequent occurrence of a squeaky sound when drinking beverages continuously leads to the feeling of drinking beer while squeaking the throat, for example, “beer tastes over the throat” Therefore, there is a possibility that it can be one of the data that objectively represents the “feeling over the throat” of beer.
図14は、圧力センサからの計測データに基づいて得られる甲状軟骨上下時間周期と飲料の種類との関係について調べた結果である。ここでは、水、ジュース、ビールについて、被験者10名に「飲みやすさ」についての官能評価を行い(飲みやすい順に順位をつけてもらう)、その順位と甲状軟骨上下時間周期との関係を示したものである。 FIG. 14 shows the results of examining the relationship between the thyroid cartilage vertical period obtained based on the measurement data from the pressure sensor and the type of beverage. Here, sensory evaluation of “ease of drinking” was performed on 10 subjects for water, juice, and beer (the order was given in the order of easy drinking), and the relationship between the order and the thyroid cartilage time period was shown. Is.
官能評価の順位は、1位が水、2位がジュース、3位がビールとなった。この官能検査の飲みやすさと甲状軟骨上下時間周期とを比較すると、3位と評価された甲状軟骨上下時間周期が最も長く、1位、2位のサンプルと有意差が認められた。したがって、この甲状軟骨上下時間周期を飲料の「飲みやすさ」の指標を確立する上で要素の1つに成り得る可能性がある。 The ranking of sensory evaluation was 1st for water, 2nd for juice, and 3rd for beer. Comparing the ease of swallowing of this sensory test with the thyroid cartilage up-and-down time period, the thyroid cartilage up-and-down time period evaluated as 3rd was the longest, and a significant difference was recognized from the 1st and 2nd samples. Therefore, there is a possibility that this thyroid cartilage time period can be one of the factors in establishing an index of “ease of drinking” of a beverage.
以上のように、本実施例による連続嚥下運動測定装置は、これを使用して、飲料を連続的に飲むときの甲状軟骨の運動、舌骨上筋群筋の運動及び嚥下音を的確に計測することが可能となり、またこれらの計測データを被験者の嚥下運動の評価や診断に適用することにより被験者の嚥下能力の診断や食物、飲料の評価や開発に資することができる。 As described above, the continuous swallowing movement measuring apparatus according to the present embodiment uses this to accurately measure the movement of the thyroid cartilage, the movement of the suprahyoid muscles and the swallowing sound when drinking beverage continuously. Moreover, by applying these measurement data to the evaluation and diagnosis of the subject's swallowing movement, it is possible to contribute to the diagnosis of the subject's swallowing ability and the evaluation and development of food and beverages.
上述の例は、飲料のサンプルとして、天然水、ジュース、ビールを選び、舌骨上筋群筋の運動、嚥下音時間周期及び甲状軟骨上下時間周期について調べたものであるが、次に、飲料のサンプルとして、発泡アルコール飲料を種類を変えて実施した実験結果について説明する。発泡性アルコール飲料として、ビールA(飲料A)、ビールB(飲料B)、ビール様アルコール飲料(飲料C)をサンプルとして選び,先ず、各サンプルの特徴を官能検査によって判断することとした。
図15A、図15Bに、飲料A,B,Cの各サンプルについて、被験者10名について実施した官能評価の結果を示す。即ち図15Aに、各被験者によりそれぞれの飲料について、「喉越しのスッキリ感」、「喉越しの爽快感」、「ゴクゴク飲める」、「量が飲めそう」について、評価してもらい、評価の方法として、−2点から+2点の段階で点をつけて評価させたものである。また、図15Bは、「飲みやすい」、「もう1杯のみたい」及び「のみごたえがある」について、同様に評価させた結果である。
In the above example, natural water, juice, and beer were selected as beverage samples, and the movement of the suprahyoid muscle group muscles, the swallowing sound period, and the thyroid cartilage time period were examined. As a sample, the results of experiments conducted with different types of sparkling alcoholic beverages will be described. As effervescent alcoholic beverages, beer A (beverage A), beer B (beverage B), and beer-like alcoholic beverage (beverage C) were selected as samples, and first, the characteristics of each sample were determined by sensory inspection.
15A and 15B show the results of sensory evaluation performed on 10 subjects for each sample of beverages A, B, and C. FIG. That is, in FIG. 15A, each subject evaluates each drink for “a refreshing feeling over the throat”, “an exhilarating feeling over the throat”, “you can drink a lot”, and “you can drink the amount”. As a result, the evaluation was made by assigning points in the stage from -2 points to +2 points. FIG. 15B is a result of the same evaluation for “easy to drink”, “like another cup”, and “feels good”.
当該図15(A)、図15(B)の官能検査結果より、各飲料の特徴を纏めると以下のとおりとなった。
飲料Aについて:
官能検査結果によると、「喉越しのスッキリ感」、「喉越しの爽快感」、「ゴクゴク飲める」、「飲み易い」の評価はマイナスである。一方、「飲み応えがある」についてはサンプルの中で最も高い評価である。即ち、発泡アルコール飲料の中では芳醇で濃厚なタイプということが出来る。
From the sensory test results of FIGS. 15A and 15B, the characteristics of each beverage are summarized as follows.
About beverage A:
According to the sensory test results, the evaluations of “refreshing feeling over the throat”, “exhilarating feeling over the throat”, “drinkable”, “easy to drink” are negative. On the other hand, “having a drink” is the highest evaluation among the samples. That is, it can be said that it is a rich and rich type among sparkling alcoholic beverages.
飲料Bについて:
今回の3つのサンプルの中では、「飲み易さ」、「喉越しのスッキリ感」、「喉越しの爽快感」、「ゴクゴク飲める」等、飲み易さに関連する評価は飲料Aよりも高い。しかしながら「飲み応えがある」に関しては飲料Aには及ばないものの飲料Cよりは明らかに高い評価である。即ち、飲み易さと飲み応えという相反する要素が適度にバランスしたものという特徴が明らかになった。
About beverage B:
Among these three samples, “ease of drinking”, “refreshing feeling over the throat”, “exhilarating feeling over the throat”, “drinking comfortably”, etc. are higher than beverage A. . However, “drinking response” is clearly higher than beverage C although it does not reach beverage A. In other words, it has become clear that there is a moderate balance between the conflicting factors of ease of drinking and drinking response.
飲料Cについて:
「飲み易さ」、「喉越しのスッキリ感」、「喉越しの壮快感」、「ゴクゴク飲める」、「もう一杯飲みたい」といった飲み易さに係る評価は3サンプル中最も高い。一方、「飲み応えがある」については飲料A,Bに比べて低い評価であった。このことから、当該サンプルは、スッキリとした軽快感の高い飲み易い発泡アルコール飲料という特徴が明らかになった。
次に上述のような夫々異なる特徴を有する各サンプルについて、官能検査に参加した10名の被験者における舌骨上筋群筋の運動、嚥下音時間周期及び甲状軟骨上下時間周期について調べた。
About beverage C:
The evaluation regarding the ease of drinking such as “easy to drink”, “fresh feeling over the throat”, “splendid feeling over the throat”, “can drink and drink”, “want to drink another” is the highest among the three samples. On the other hand, “there is a drinking response” was lower than beverages A and B. This revealed that the sample was characterized as a sparkling alcoholic beverage that was refreshing and light and easy to drink.
Next, for each sample having different characteristics as described above, the movement of the suprahyoid muscle group muscle, the swallowing sound time period, and the thyroid cartilage vertical time period in 10 subjects who participated in the sensory test were examined.
図16は、各飲料A、B、Cについての舌骨上筋群の運動量の平均値を表したものである。当該グラフから、飲むに当たり、喉の筋肉の活動量が大きい順に、飲料A,B,Cとなった。当該舌骨上筋群の運動量が大きいということは上記官能検査の項目である「飲み応えがある」あるいは逆に「飲み易さ」との関連性が予測され、上記官能検査結果である飲料Aの「飲み応えがある」という評価と飲料Cの「飲み易さ」という評価と本舌骨上筋群の運動量との関連性には興味深いものがあることが分かった。 FIG. 16 represents the average value of the amount of exercise of the suprahyoid muscle group for each of the beverages A, B, and C. From the graph, when drinking, beverages A, B, and C were ordered in descending order of the amount of activity in the throat muscles. A large amount of movement of the suprahyoid muscle group is predicted to be related to “there is a drinking response” which is the item of the sensory test, or conversely “ease of drinking”. It was found that there is an interesting relationship between the evaluation of “there is a drinking response” and the evaluation of “ease of drinking” of beverage C and the momentum of the suprahyoid muscle group.
図17は、振動ピックアップから得られる嚥下音時間周期の平均値を調べたものである。この嚥下音時間周期は、図13において説明したように、嚥下音時間周期の短い方が、飲料を飲むときに喉をスムーズに流れることを示し、「飲み易い」ことが予測される。当該測定テーターを見ると、飲料A,B,Cの各データには大きな差はないが、「飲み応えがある」飲料Aが大きく、上記官能検査で最も「飲み易い」と評価された飲料Cが最も小さい値となった当該データーとは関連性が有るものと推測される。 FIG. 17 shows the average value of the swallowing sound time period obtained from the vibration pickup. As described with reference to FIG. 13, this swallowing sound time period indicates that the shorter swallowing sound time period flows smoothly through the throat when drinking a beverage, and is predicted to be “easy to drink”. Looking at the measurement data, there is no significant difference in the data of beverages A, B, and C. However, beverage A that has “drinking response” is large, and beverage C that has been evaluated as “easy to drink” by the sensory test. Is estimated to be related to the data with the smallest value.
図18は、圧力センサの計測データに基づいて得られた甲状軟骨上下時間周期について調べた結果である。グラフに示されるように、飲料C(ビール様アルコール飲料)の周期が最も短く、飲料Bとの差は小さいが、飲料Aが最も長い値となった。当該データは喉仏の動きのスムーズさを評価出来ることが予想されており、当該時間周期が短いほど喉を飲料がスムーズに流れる状況であることが推察され、上記官能検査の結果である「飲み応えがある」飲料A(ビール)の周期が最も長く、「飲み易い」と評価された飲料Cの周期が最も短いという当該データとの関連性については興味深いものがある。 FIG. 18 shows the results of examining the thyroid cartilage up-and-down time period obtained based on the measurement data of the pressure sensor. As shown in the graph, the cycle of the beverage C (beer-like alcoholic beverage) is the shortest and the difference from the beverage B is small, but the beverage A has the longest value. The data is expected to be able to evaluate the smoothness of the movement of the throat, and it is assumed that the shorter the time period, the more smoothly the beverage flows through the throat. There is an interesting relationship with the data that “the beverage B (beer) has the longest cycle” and the beverage C that is “easy to drink” has the shortest cycle.
以上のように、従来、飲料の「飲み応え」、「喉越し感」、「飲みやすさ」など、感覚的に捉えた飲料の評価方法を数値データとして客観的に表す指標の1つと成り得る可能性があり、飲料の開発や飲料の品質表示の指標として利用できる可能性がある。 As described above, conventionally, it can be one of the indexes that objectively express the evaluation method of a drink sensed sensuously such as “drinking response”, “feeling over the throat”, “ease of drinking” as numerical data. There is a possibility that it can be used as an index for beverage development and beverage quality display.
なお、上記実施形態の連続嚥下運動測定装置は、嚥下運動における喉仏の動きを複数の圧力センサを使用してピックアップした例について述べたものであるが、次に、圧力センサに代えて非接触センサである小型の反射型光センサを用いて嚥下運動の喉仏の動きを測定する第2の実施例について述べる。 The continuous swallowing movement measuring device of the above embodiment describes an example in which the movement of the throat in the swallowing movement is picked up using a plurality of pressure sensors. Next, a non-contact sensor is used instead of the pressure sensor. A second embodiment for measuring the movement of the throat of the swallowing movement using a small reflective optical sensor will be described.
先ず、図19により本実施例で使用する反射型光センサを使用する嚥下運動測定システムについて説明する。 First, a swallowing movement measuring system using a reflective optical sensor used in this embodiment will be described with reference to FIG.
嚥下運動測定システムは反射型光センサからなるセンサ部210と、コントロール回路部220と、データ処理部230により構成される。本システムは、下記に示すように、コントロール回路部のパルス発生回路からの出力パルスに応じて光センサより光を発生し、反射面で反射した光を光センサの受光部にて検知し、その光の強度を電圧検出回路で検出・増幅し、A/D変換器を介してパーソナルコンピュータに入力し、その検出電圧からセンサ反射面からの距離を算出、表示・分析するものである。 The swallowing movement measurement system includes a sensor unit 210 including a reflective optical sensor, a control circuit unit 220, and a data processing unit 230. As shown below, this system generates light from the optical sensor in response to the output pulse from the pulse generation circuit of the control circuit unit, detects the light reflected by the reflecting surface at the light receiving unit of the optical sensor, and The intensity of light is detected and amplified by a voltage detection circuit, input to a personal computer via an A / D converter, and the distance from the sensor reflection surface is calculated from the detected voltage, and is displayed and analyzed.
センサ部210は発光素子11と受光素子212を備え、発光素子により発光した光を被測定部位に照射し、測定部位により反射した光を受光素子で受光するように構成したものである。尚、本実施例では発光素子として赤外線発光ダイオード(LED)が使用される。 The sensor unit 210 includes a light emitting element 11 and a light receiving element 212, and is configured to irradiate light to be measured with a light emitting element and to receive light reflected by the measuring part with the light receiving element. In this embodiment, an infrared light emitting diode (LED) is used as the light emitting element.
コントロール回路部220はパルス発生回路221と検出回路222を有する。パルス発生回路221無安定マルチバイブレータで矩形波を発生し、それを単安定マルチバイブレータで入力することにより周期10ms、幅0.1msの周期パルスを発生するようにしたもので、このパルスでミラー定電流回路を駆動し、発光素子(LED)を発光させる。 The control circuit unit 220 includes a pulse generation circuit 221 and a detection circuit 222. A pulse generator circuit 221 generates a rectangular wave with an astable multivibrator and inputs it with a monostable multivibrator to generate a periodic pulse with a period of 10 ms and a width of 0.1 ms. The current circuit is driven to cause the light emitting element (LED) to emit light.
検出回路222は受光素子(フォトトランジスタ)の出力電圧を検出電圧検出回路からなり、サンプルホールド回路と、ノイズ成分を除去するローパスフィルタ(LPF)と、検出電圧を増幅する非反転増幅回路から構成されている。 The detection circuit 222 includes a detection voltage detection circuit for the output voltage of the light receiving element (phototransistor), and includes a sample hold circuit, a low-pass filter (LPF) for removing noise components, and a non-inverting amplification circuit for amplifying the detection voltage. ing.
サンプルホールド回路は、駆動パルスが1のとき、フォトトランジスタ出力をサンプルし、0のときホールドする。その信号から1次のLPFによるサンプルパルとノイズ成分を除去する。尚、そのカットオフ周波数は140Hzとした。 The sample hold circuit samples the phototransistor output when the drive pulse is 1, and holds it when it is 0. The sample pal and noise components due to the primary LPF are removed from the signal. The cut-off frequency was 140 Hz.
データ処理部230は、A/D変換器231とパーソナルコンピュータ232を有する。 The data processing unit 230 includes an A / D converter 231 and a personal computer 232.
検出回路で検出された出力電圧は、データ処理部230に送られ、A/D変換器231を介してパーソナルコンピュータ232に送られ処理される。 The output voltage detected by the detection circuit is sent to the data processing unit 230 and sent to the personal computer 232 via the A / D converter 231 for processing.
図20、図21は、本実施例で用いる反射型光線センサ210の特性を調べた実験結果を示す。図20のグラフはセンサと反射面と距離を変化させたとき、距離とセンサの出力電圧の関係を示したものである。グラフからわかるように、出力電圧は、距離が離れるに従い、始めは急速に低下するが、それ以上では増加する。出力は距離が1mm付近で最小となった。 20 and 21 show the experimental results of examining the characteristics of the reflective light sensor 210 used in this example. The graph of FIG. 20 shows the relationship between the distance and the output voltage of the sensor when the distance between the sensor and the reflecting surface is changed. As can be seen from the graph, the output voltage decreases rapidly as the distance increases, but increases beyond that. The output was minimized when the distance was around 1 mm.
当該出力電圧特性から、センサ反射面間距離測定に適した特性は、センサ反射面間距離対出力電圧特性の安定した変化部分、即ち、センサ反射面間距離が1mm未満の出力電圧特性、あるいはセンサ反射面間距離が5mm以上15mm以下の場合の出力電圧特性を利用することが適切であることがわかる。本発明に係る測定の場合、光センサを後述するように前頸部に装着して、非接触で嚥下運動を測定するものであり、しかも、甲状軟骨の高さを考慮すると、上記前者の出力電圧特性を利用することは不可能であることが解る。
従って、本実施例の場合、センサ甲状軟骨間距離を最低約5mmとし、図20の出力電圧特性の、センサ反射面間距離が5mm以上15mm以下の安定した特性部分を用いることにする。この状態を想定して、センサ反射面の距離を5mm以上、15mm以下の部分についての出力電圧特性を図21に示す。図21は、横軸に出力電圧、縦軸にセンサ反射面間の距離として示した特性曲線である。
From the output voltage characteristic, the characteristic suitable for measuring the distance between the sensor reflecting surfaces is a stable changing portion of the distance between the sensor reflecting surfaces to the output voltage characteristic, that is, the output voltage characteristic having a distance between the sensor reflecting surfaces of less than 1 mm, or the sensor. It can be seen that it is appropriate to use the output voltage characteristics when the distance between the reflecting surfaces is 5 mm or more and 15 mm or less. In the case of the measurement according to the present invention, an optical sensor is attached to the front neck as described later, and swallowing movement is measured in a non-contact manner. It can be seen that it is impossible to use voltage characteristics.
Therefore, in this embodiment, the distance between the sensor thyroid cartilages is set to a minimum of about 5 mm, and the stable characteristic portion of the output voltage characteristic of FIG. 20 having the distance between the sensor reflecting surfaces of 5 mm to 15 mm is used. Assuming this state, FIG. 21 shows output voltage characteristics of a portion where the distance of the sensor reflection surface is 5 mm or more and 15 mm or less. FIG. 21 is a characteristic curve with the horizontal axis representing the output voltage and the vertical axis representing the distance between the sensor reflecting surfaces.
次に、上述の光センサを人間の喉頭部に装着して測定するための嚥下運動測定装置について説明する。 Next, a swallowing movement measuring apparatus for mounting and measuring the above-described optical sensor on a human larynx will be described.
図22は、本実施例で使用する反射型光センサ210を示す図で、発光素子と受光素子の電極に接続される配線と共に示されている。 FIG. 22 is a diagram showing a reflective optical sensor 210 used in the present embodiment, and is shown together with wirings connected to electrodes of a light emitting element and a light receiving element.
図23は、図22に示される光センサを前頸部に装着するための光センサ装着具250のセンサ固定板251を示す。 FIG. 23 shows a sensor fixing plate 251 of the optical sensor mounting tool 250 for mounting the optical sensor shown in FIG. 22 on the front neck.
図24は光センサ装着具250全体を示し、光センサ装着具250は、センサ固定板251とこれに整列して装着される反射型光センサ210と、センサ固定板251を前頸部に固定するためのバンド252からなる。センサ固定板251は撓みのない硬質のものが使用される。センサ固定板251には、光センサ210の両側に柔軟性を持つプラスチックからなるパッド253が取り付けられる。このパッド253は光センサ装着具250を喉頭部に装着したとき、光センサ210を喉頭部表面から一定の間隔を保持する、即ち、非接触の状態にすると共に、喉頭部に安定した状態で装着するためのものである。また、パッド253には光センサ列に沿って遮光用ウレタンフォーム254が固定されており、光センサ251への外光の進入を防ぐようにしている。 FIG. 24 shows the entire optical sensor mounting device 250. The optical sensor mounting device 250 fixes the sensor fixing plate 251 and the reflective optical sensor 210 mounted in alignment therewith, and the sensor fixing plate 251 to the front neck. Band 252 for the purpose. The sensor fixing plate 251 is a hard plate that does not bend. Pads 253 made of plastic having flexibility are attached to both sides of the optical sensor 210 on the sensor fixing plate 251. When the optical sensor mounting device 250 is mounted on the larynx, the pad 253 keeps the optical sensor 210 at a certain distance from the laryngeal surface, that is, in a non-contact state and is mounted on the larynx in a stable state. Is to do. In addition, a light-blocking urethane foam 254 is fixed to the pad 253 along the optical sensor row so as to prevent external light from entering the optical sensor 251.
本実施例においては、光センサ210は12個使用される。各光センサ210は図19で説明したように、コントロール回路部220からの配線が接続され、受光素子212で受光した得られた出力電圧はデータ処理部に送られる。 In this embodiment, twelve optical sensors 210 are used. As described with reference to FIG. 19, each optical sensor 210 is connected to the wiring from the control circuit unit 220, and the obtained output voltage received by the light receiving element 212 is sent to the data processing unit.
図25は図24で示した光センサ装着具250を実際に被験者の前頸部に装着した状態を示す。尚、センサ装着具250の喉頭部への装着に際しては、図26に示すように、光センサ210の列が丁度、喉頭部の位置に整列するようにし、12個の光センサの最下部が、喉頭部の略近傍に位置するようにして装着される。そして、この場合、前述のように、光センサと甲状軟骨との間隔は通常の状態で、5mmの間隔が生じるように設定される。 FIG. 25 shows a state where the optical sensor wearing tool 250 shown in FIG. 24 is actually attached to the front neck of the subject. When mounting the sensor mounting device 250 on the larynx, as shown in FIG. 26, the row of the optical sensors 210 is just aligned with the position of the larynx, and the bottom of the 12 optical sensors are It is mounted so as to be located in the vicinity of the larynx. In this case, as described above, the distance between the optical sensor and the thyroid cartilage is set so that a distance of 5 mm is generated in a normal state.
この状態で、先に説明した実施例と同様に、飲料を連続してごくごくと飲ませ、各光センサの出力値を観察した。尚、図26(a)は嚥下前の喉頭部の位置を、(b)、は嚥下後の喉頭部の位置が上昇した状態を示している。 In this state, the beverage was drunk continuously in the same manner as in the example described above, and the output value of each photosensor was observed. FIG. 26A shows the position of the larynx before swallowing, and FIG. 26B shows the state where the position of the larynx after swallowing has risen.
図27は、飲料を連続して飲ませたときの12個の光センサの出力の変化を経時的に示したもので((a)〜(c))である。図中、(a)は飲み込み開始前の状態で、矢印で示す位置でセンサと反射面、即ち前頸部との距離が最も小さいことを示しており、このことは、この部分に喉頭部が位置していることを示している。 FIG. 27 shows changes over time in the outputs of the twelve optical sensors when the beverage is continuously drunk ((a) to (c)). In the figure, (a) shows the state before the start of swallowing, and shows that the distance between the sensor and the reflecting surface, that is, the front neck, is the smallest at the position indicated by the arrow. It shows that it is located.
次に、(b)は飲み込み開始後の状態を示すもので、センサと喉頭部との最も接近する箇所が矢印の位置に移動している。即ち、喉頭部が飲み込むにつれて、上方に移動した結果を示していると見るこができる。更に(c)は飲み込み開始後、喉頭部が最も上方に位置している状態が計測されている。更に、飲料を連続して飲むときは、図25の(b)〜(c)の変化が繰り返し観察されることとなる。 Next, (b) shows the state after the start of swallowing, and the closest point between the sensor and the larynx has moved to the position of the arrow. That is, it can be seen that the result of moving upward as the larynx swallows is shown. Further, (c) shows a state in which the larynx is located at the uppermost position after the start of swallowing. Furthermore, when drinking a drink continuously, the change of (b)-(c) of FIG. 25 will be observed repeatedly.
以上の測定結果から、本実施例の反射型光センサを使用した嚥下運動測定装置によって、前述の圧力センサを使用する嚥下運動測定装置と同様に、被験者の嚥下運動の能力や評価を行うことが可能となる。 From the above measurement results, the swallowing movement measuring device using the reflective optical sensor of the present embodiment can perform the ability and evaluation of the swallowing movement of the subject as in the swallowing movement measuring apparatus using the pressure sensor described above. It becomes possible.
本実施例においては、光センサを使用して非接触により嚥下運動を測定することにより、測定装置の頚部への装着によって生じる頸部を圧迫することがなくなり、より自然な状態で嚥下運動を測定することが可能となる。また、各センサは固定板に取付け、喉頭部とは接触しないため、嚥下運動に伴い、センサ自体が動くことはないため、センサの位置が安定し、高い精度で測定が可能となる。 In this example, measuring the swallowing movement without contact using an optical sensor eliminates pressure on the neck caused by wearing the measuring device on the neck, and measures swallowing movement in a more natural state. It becomes possible to do. Further, since each sensor is attached to a fixed plate and does not come into contact with the larynx, the sensor itself does not move with swallowing movement, so that the position of the sensor is stable and measurement can be performed with high accuracy.
尚、上述の光センサによる嚥下運動測定装置も、前述の実施例と同様に、筋電位計や、振動ピックの検出手段を併用して使用できることは言うまでもない。また、上記個々の検査手段の内、いずれか1つを備えた連続嚥下運動測定装置であっても、本発明の主旨を逸脱するものでない。 Needless to say, the swallowing movement measuring apparatus using the above-described optical sensor can also be used in combination with a myoelectric meter or a vibration pick detecting means, as in the above-described embodiment. Moreover, even if it is a continuous swallowing exercise | movement measuring apparatus provided with any one among said each test | inspection means, it does not deviate from the main point of this invention.
100 嚥下運動測定装置
110 計測部
111 圧力センサ
112 筋電位計電極
113 振動ピックアップ
114、115、116 アンプ
120 分析部
121 A/D変換器
122 パーソナルコンピュータ
130 圧力センサ装着具
131 圧力センサ固定具
131a 顎載置台
131b センサ取付け部
132 ウレタンフォーム
133 両面接着テープ
200 嚥下運動測定システム
210 センサ部
211 発光素子
212 受光素子
220 コントロール制御部
230 データ処理部
250 光センサ装着装置
251 センサ固定板
253 パッド
DESCRIPTION OF SYMBOLS 100 Swallowing movement measuring apparatus 110 Measurement part 111 Pressure sensor 112 Myoelectric meter electrode 113 Vibration pick-up 114,115,116 Amplifier 120 Analysis part 121 A / D converter 122 Personal computer 130 Pressure sensor mounting tool 131 Pressure sensor fixing tool 131a Jaw mounting Table 131b Sensor mounting part 132 Urethane foam 133 Double-sided adhesive tape 200 Swallowing movement measurement system 210 Sensor part 211 Light emitting element 212 Light receiving element 220 Control control part 230 Data processing part 250 Optical sensor mounting device 251 Sensor fixing plate 253 Pad
Claims (4)
前記センサ装着具は、前記反射型光センサを固定する固定板と、前記固定板を被験者の前頸部に保持する保持バンドを備えることを特徴とする連続嚥下運動測定装置。 A plurality of reflective photosensors arranged along the vertical movement direction of thyroid cartilage when food is swallowed, and a sensor mounting tool for fixing the reflective photosensors to a subject's front neck at a predetermined interval With
The said sensor mounting tool is provided with the fixed plate which fixes the said reflection type optical sensor, and the holding | maintenance band which hold | maintains the said fixed plate in a test subject's front neck part, The continuous swallowing movement measuring apparatus characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009106002A JP5081860B2 (en) | 2004-08-05 | 2009-04-24 | Continuous swallowing motion measuring device and continuous swallowing motion measuring method |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004229079 | 2004-08-05 | ||
JP2004229079 | 2004-08-05 | ||
JP2004255966 | 2004-09-02 | ||
JP2004255966 | 2004-09-02 | ||
JP2009106002A JP5081860B2 (en) | 2004-08-05 | 2009-04-24 | Continuous swallowing motion measuring device and continuous swallowing motion measuring method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005042545A Division JP4727253B2 (en) | 2004-08-05 | 2005-02-18 | Continuous swallowing motion measuring device and continuous swallowing motion measuring method |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011111215A Division JP5355622B2 (en) | 2004-08-05 | 2011-05-18 | Beverage evaluation method |
JP2012159340A Division JP5250142B2 (en) | 2004-08-05 | 2012-07-18 | Continuous swallowing motion measuring device and continuous swallowing motion measuring method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009160459A JP2009160459A (en) | 2009-07-23 |
JP5081860B2 true JP5081860B2 (en) | 2012-11-28 |
Family
ID=40963691
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009106002A Expired - Fee Related JP5081860B2 (en) | 2004-08-05 | 2009-04-24 | Continuous swallowing motion measuring device and continuous swallowing motion measuring method |
JP2011111215A Expired - Fee Related JP5355622B2 (en) | 2004-08-05 | 2011-05-18 | Beverage evaluation method |
JP2012159340A Expired - Fee Related JP5250142B2 (en) | 2004-08-05 | 2012-07-18 | Continuous swallowing motion measuring device and continuous swallowing motion measuring method |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011111215A Expired - Fee Related JP5355622B2 (en) | 2004-08-05 | 2011-05-18 | Beverage evaluation method |
JP2012159340A Expired - Fee Related JP5250142B2 (en) | 2004-08-05 | 2012-07-18 | Continuous swallowing motion measuring device and continuous swallowing motion measuring method |
Country Status (1)
Country | Link |
---|---|
JP (3) | JP5081860B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014168490A (en) * | 2013-03-01 | 2014-09-18 | Nagano Prefecture | Sensor sheet, and device and method for measurement of swallowing activity |
KR20220122067A (en) * | 2021-02-26 | 2022-09-02 | 동서대학교 산학협력단 | Diagnostic device for dysphagia using near infrared technology |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5081860B2 (en) * | 2004-08-05 | 2012-11-28 | サッポロビール株式会社 | Continuous swallowing motion measuring device and continuous swallowing motion measuring method |
JP2012200300A (en) * | 2011-03-24 | 2012-10-22 | Mie Prefecture | Swallowing movement measurement system |
JP5892486B2 (en) * | 2011-12-27 | 2016-03-23 | ライオン株式会社 | Information processing apparatus and information processing method |
US20180242900A1 (en) * | 2015-08-21 | 2018-08-30 | Sumitomo Electric Industries, Ltd. | Swallowing movement monitoring sensor |
JP2017119100A (en) * | 2015-12-24 | 2017-07-06 | 国立大学法人神戸大学 | Deglutition movement measurement device and deglutition movement measurement method |
JP6814006B2 (en) * | 2016-09-27 | 2021-01-13 | サッポロビール株式会社 | Throat measuring instrument, throat measuring system, and throat measuring method |
KR20180041345A (en) * | 2016-10-14 | 2018-04-24 | 주식회사 싸이버메딕 | Training device for intensifying laryngeal pressure |
CN110430854A (en) * | 2017-01-13 | 2019-11-08 | 埃尔瓦有限公司 | It obtains with negative pressure treatment sleep apnea, and using sleep apnea equipment and sleep apnea event and the relevant information of sleep apnea and keeps sleep apnea event and sleep apnea therapy related with subject's life style and health |
JP2019136230A (en) * | 2018-02-08 | 2019-08-22 | 帝人フロンティア株式会社 | Swallowing detection sensor and swallowing detection system |
JP7075804B2 (en) * | 2018-04-16 | 2022-05-26 | 長谷川香料株式会社 | Analysis method and prediction method of flavor preference of food and drink |
JP2021062133A (en) * | 2019-10-16 | 2021-04-22 | スターメディカル株式会社 | Deglutition function measurement apparatus and deglutition function measurement system |
CN110742618A (en) * | 2019-10-29 | 2020-02-04 | 南通大学 | Intelligent swallowing detection system |
JP7533919B2 (en) | 2020-03-11 | 2024-08-14 | 国立大学法人岩手大学 | Eating and swallowing function evaluation system |
FR3124372B1 (en) * | 2021-06-28 | 2024-01-12 | Swallis Medical | Device for capturing pharyngolaryngeal activity |
JP7269672B2 (en) * | 2021-07-02 | 2023-05-09 | 株式会社Dis | EMS exercise device with chin support |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3093828B2 (en) * | 1991-08-08 | 2000-10-03 | ヤルコニー シリット | Analysis and treatment of impaired function |
JP2003111748A (en) * | 2001-10-04 | 2003-04-15 | Nippon Riko Igaku Kenkyusho:Kk | Swallowing sound obtaining device |
JP4727253B2 (en) * | 2004-08-05 | 2011-07-20 | サッポロビール株式会社 | Continuous swallowing motion measuring device and continuous swallowing motion measuring method |
JP5081860B2 (en) * | 2004-08-05 | 2012-11-28 | サッポロビール株式会社 | Continuous swallowing motion measuring device and continuous swallowing motion measuring method |
-
2009
- 2009-04-24 JP JP2009106002A patent/JP5081860B2/en not_active Expired - Fee Related
-
2011
- 2011-05-18 JP JP2011111215A patent/JP5355622B2/en not_active Expired - Fee Related
-
2012
- 2012-07-18 JP JP2012159340A patent/JP5250142B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014168490A (en) * | 2013-03-01 | 2014-09-18 | Nagano Prefecture | Sensor sheet, and device and method for measurement of swallowing activity |
KR20220122067A (en) * | 2021-02-26 | 2022-09-02 | 동서대학교 산학협력단 | Diagnostic device for dysphagia using near infrared technology |
Also Published As
Publication number | Publication date |
---|---|
JP2011200662A (en) | 2011-10-13 |
JP5355622B2 (en) | 2013-11-27 |
JP2012223605A (en) | 2012-11-15 |
JP2009160459A (en) | 2009-07-23 |
JP5250142B2 (en) | 2013-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4727253B2 (en) | Continuous swallowing motion measuring device and continuous swallowing motion measuring method | |
JP5081860B2 (en) | Continuous swallowing motion measuring device and continuous swallowing motion measuring method | |
US11559247B2 (en) | Apparatuses for detecting and/or diagnosing swallowing disorders | |
JP5055502B2 (en) | Biopsy device | |
JP5022782B2 (en) | Biopsy device | |
JP4011071B2 (en) | Swallowing sound analysis system | |
Vaiman et al. | Surface electromyographic studies of swallowing in normal subjects: a review of 440 adults. Report 1. Quantitative data: timing measures | |
TW388705B (en) | Tactile sense detector, tactile sense telling device, information input device, tactile sense reproducer, tactile sense transmission system, a sphygmopalpation device, a sphygmopalpation education device and a sphygmopalpation information transmission | |
Li et al. | Development of a system to monitor laryngeal movement during swallowing using a bend sensor | |
JP2004057585A (en) | Mastication monitoring device | |
JP2012075758A (en) | Dysphagia detecting system | |
JP2015100382A (en) | Swallowing ability examination device | |
EP1182967B1 (en) | Method and apparatus for evaluating myoelectric signals and identifying artifact | |
JP2008109950A (en) | Swallowing function evaluation device, operation method and program of swallowing function evaluation device, computer-readable recording medium and storage apparatus | |
JP6073709B2 (en) | Sensor sheet, swallowing activity measuring device, and swallowing activity measuring method | |
Liu et al. | In situ quantitative assessment of food oral processing parameters: A review of feasible techniques and devices | |
Ohashi et al. | Comparison of electromyography, sound, bioimpedance, and high-resolution manometry for differentiating swallowing and vocalization events | |
Shin et al. | Automatic clinical assessment of swallowing behavior and diagnosis of silent aspiration using wireless multimodal wearable electronics | |
Ozdemirkiran et al. | An EMG screening method (dysphagia limit) for evaluation of neurogenic dysphagia in childhood above 5 years old | |
Tamura et al. | Review of monitoring devices for food intake | |
Fukuhara et al. | Basic Characteristics of Submental Mechanomyography and Electromyography Measured Simultaneously During Tongue Lift Using a Novel Muscle Function Measurement Device | |
Lecci et al. | Reliability and Predictive Validity of a Gait Assessment using Inertial Measurement Units: The Importance of Standardizing Walking Surface and Footwear | |
Miyaoka et al. | Generalization of the bolus volume effect on piezoelectric sensor signals during pharyngeal swallowing in normal subjects | |
JP2011019867A (en) | Instrument for measuring amount of saliva |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120522 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120718 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120807 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120903 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150907 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5081860 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |