JP5081046B2 - Acetic acid or formic acid detector tube, indoor air quality monitoring method and building material quality evaluation method - Google Patents
Acetic acid or formic acid detector tube, indoor air quality monitoring method and building material quality evaluation method Download PDFInfo
- Publication number
- JP5081046B2 JP5081046B2 JP2008104938A JP2008104938A JP5081046B2 JP 5081046 B2 JP5081046 B2 JP 5081046B2 JP 2008104938 A JP2008104938 A JP 2008104938A JP 2008104938 A JP2008104938 A JP 2008104938A JP 5081046 B2 JP5081046 B2 JP 5081046B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- acetic acid
- formic acid
- tube
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 title claims description 114
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 title claims description 63
- 238000000034 method Methods 0.000 title claims description 34
- 235000019253 formic acid Nutrition 0.000 title claims description 32
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 title claims description 31
- 239000004566 building material Substances 0.000 title claims description 23
- 238000012544 monitoring process Methods 0.000 title claims description 6
- 238000013441 quality evaluation Methods 0.000 title claims description 3
- 238000001514 detection method Methods 0.000 claims description 80
- 239000002253 acid Substances 0.000 claims description 60
- 239000002245 particle Substances 0.000 claims description 42
- 239000003795 chemical substances by application Substances 0.000 claims description 33
- 239000003153 chemical reaction reagent Substances 0.000 claims description 25
- 238000002845 discoloration Methods 0.000 claims description 23
- 239000000126 substance Substances 0.000 claims description 22
- 230000002378 acidificating effect Effects 0.000 claims description 19
- 239000002585 base Substances 0.000 claims description 16
- 239000007793 ph indicator Substances 0.000 claims description 10
- 230000002209 hydrophobic effect Effects 0.000 claims description 9
- 239000003513 alkali Substances 0.000 claims description 8
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 claims description 8
- OBRMNDMBJQTZHV-UHFFFAOYSA-N cresol red Chemical compound C1=C(O)C(C)=CC(C2(C3=CC=CC=C3S(=O)(=O)O2)C=2C=C(C)C(O)=CC=2)=C1 OBRMNDMBJQTZHV-UHFFFAOYSA-N 0.000 claims description 6
- 239000008187 granular material Substances 0.000 claims description 6
- 239000004115 Sodium Silicate Substances 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 4
- 235000019795 sodium metasilicate Nutrition 0.000 claims description 4
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 4
- NUIURNJTPRWVAP-UHFFFAOYSA-N 3,3'-Dimethylbenzidine Chemical compound C1=C(N)C(C)=CC(C=2C=C(C)C(N)=CC=2)=C1 NUIURNJTPRWVAP-UHFFFAOYSA-N 0.000 claims description 3
- FTEGMIZQLGXBNA-UHFFFAOYSA-N 4-(4-amino-3-methylnaphthalen-1-yl)-2-methylnaphthalen-1-amine Chemical compound C1=CC=CC2=C(N)C(C)=CC(C=3C4=CC=CC=C4C(N)=C(C)C=3)=C21 FTEGMIZQLGXBNA-UHFFFAOYSA-N 0.000 claims description 3
- 239000004035 construction material Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 95
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 27
- 238000005259 measurement Methods 0.000 description 25
- 238000009423 ventilation Methods 0.000 description 12
- 238000000576 coating method Methods 0.000 description 8
- 239000004576 sand Substances 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000011088 calibration curve Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000005273 aeration Methods 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000008119 colloidal silica Substances 0.000 description 2
- 150000001875 compounds Chemical group 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000004255 ion exchange chromatography Methods 0.000 description 2
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 239000002516 radical scavenger Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- 240000001973 Ficus microcarpa Species 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000009435 building construction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Description
本発明は、空気中の極微量の酸性ガス(酢酸、蟻酸)を簡易に定量できるようにした酸性ガス検知管、ならびにそれを用いた室内空気質の監視方法、および建材品質の評価方法に関する。 The present invention relates to an acid gas detector tube capable of easily quantifying a very small amount of acid gas (acetic acid, formic acid) in the air, a method for monitoring indoor air quality, and a method for evaluating building material quality.
美術館や博物館では酢酸、蟻酸などの化学物質が空気中に存在すると美術品や展示品に悪影響を与える。また電子デバイス関連のクリーンルームではこれらの化学物質は悪臭となり作業者への影響が懸念される。
そのため、美術館、博物館、クリーンルーム等の建築物を施工する際には上記のような好ましくない化学物質の室内濃度をできるだけ低減することが要求され、施工者側は材料選定、施工中の空気中濃度の管理を厳格に行う必要がある。また、引渡し時の濃度測定を実施する必要がある。
一方、ユーザ側では施設管理において化学物質の室内濃度を低濃度に維持するよう努める必要があり、具体的には上記化学物質の空気中濃度を定期的に測定し、美術品や製品に与える影響を把握している。
In art museums and museums, the presence of chemicals such as acetic acid and formic acid in the air adversely affects art and exhibits. Also, in the clean room related to electronic devices, these chemical substances are offensive odor and there is concern about the impact on workers.
Therefore, when constructing buildings such as museums, museums, clean rooms, etc., it is required to reduce the indoor concentration of such undesirable chemical substances as much as possible. It is necessary to strictly manage this. In addition, it is necessary to measure the concentration at the time of delivery.
On the other hand, it is necessary for the user to make efforts to maintain the indoor concentration of chemical substances at a low level in facility management. Specifically, the concentration of the above chemical substances in the air is periodically measured to affect the effects of artworks and products. I know.
表1には、美術館の室内における有害物質の空気中濃度の管理基準を例示する。この基準では各物質の空気中濃度をランクI〜Vの5段階に区分けしており、酸性ガス(酢酸、蟻酸)についてはランクI〜IIであることが推奨されている。すなわち、酢酸、蟻酸とも空気中濃度が200μg/m3未満(0.082ppm未満)であることが望まれる。 Table 1 exemplifies management standards for the concentration of harmful substances in the air in museum rooms. In this standard, the concentration of each substance in the air is classified into five stages of ranks I to V, and it is recommended that acid gases (acetic acid and formic acid) are ranks I to II. That is, it is desirable that the concentration in the air of both acetic acid and formic acid is less than 200 μg / m 3 (less than 0.082 ppm).
従来、このような極微量の酸性ガスの濃度を計測するには化学分析を伴う精密法によるのが一般的であった。この精密法は被測定空気を長時間サンプリングし、その後実験室に持ち帰り、化学分析機器(イオンクロマトグラフィー)で分析し定量する方法である。サンプリングは超純水に被測定空気を吸引し、目的の酸性物質を溶解・捕集させるが、極微量であるため感度アップを図るために2〜24時間のサンプリング時間を要するのが通常である。また、持ち帰った超純水試料を精密に化学分析して、その分析結果に基づいて空気中濃度を算出する必要がある。このため、精密法による測定では測定準備から結果が出るまでに、通常、数週間の時間を要する。またサンプリングや分析の操作には専門の化学知識が要求され、測定コストも高い。したがって、精密法による濃度測定は、現場・施設の担当者が任意のタイミングで簡便に実施することが困難である。 Conventionally, in order to measure the concentration of such a very small amount of acid gas, it is common to use a precision method involving chemical analysis. This precision method is a method in which the air to be measured is sampled for a long time and then taken back to the laboratory, where it is analyzed and quantified with a chemical analyzer (ion chromatography). Sampling sucks the air to be measured in ultrapure water and dissolves and collects the target acidic substance. However, since it is extremely small, it usually takes 2 to 24 hours to increase the sensitivity. . In addition, it is necessary to perform chemical analysis of the ultrapure water sample brought back and calculate the concentration in the air based on the analysis result. For this reason, in the measurement by the precision method, it usually takes several weeks to obtain the result from the measurement preparation. In addition, sampling and analysis operations require specialized chemical knowledge, and measurement costs are high. Therefore, it is difficult for the person in charge at the site / facility to easily perform concentration measurement by a precision method at an arbitrary timing.
一方、空気中に存在する特定のガス濃度を簡便に知る方法として、ガス検知管を用いる手法が広く利用されている。ガス検知管はガラス管等の透明管の中に特定のガスと反応して変色する検知剤が仕込まれたものである。この管内に一定量の被測定空気を流し、検知剤が変色する領域の長さ(変色長さ)を読み取ることによって、その変色長さを当該特定ガスの空気中濃度に換算することができるようにしてある。しかしながら、空気中濃度が200μg/m3未満というような微量の酸性ガスを定量できる検知管はまだ実用化されていない。例えば、既存の酸性ガス検知管として光明理化学工業社製;型式216Sが知られているが、このタイプの測定可能範囲は、酢酸、蟻酸の空気中濃度が1〜50ppm(2452〜122620μg/m3)の範囲である。 On the other hand, a method using a gas detection tube is widely used as a method for easily knowing the concentration of a specific gas present in the air. The gas detector tube is a transparent tube such as a glass tube in which a detector that reacts with a specific gas and changes color is charged. By flowing a certain amount of air to be measured in this tube and reading the length of the region where the detection agent changes color (discoloration length), the discoloration length can be converted into the concentration of the specific gas in the air. It is. However, a detector tube capable of quantifying a small amount of acidic gas having an air concentration of less than 200 μg / m 3 has not been put into practical use. For example, as an existing acid gas detector tube, manufactured by Komyo Chemical Co., Ltd .; Model 216S is known. The measurable range of this type is that the concentration of acetic acid and formic acid in the air is 1 to 50 ppm (2452 to 122620 μg / m 3). ).
上述のように、美術館等の室内における酸性ガスの濃度を管理するためには、200μg/m3未満の酸性ガスを検知する必要がある。また、建材の酸性ガス放出特性を評価するためにも、200μg/m3未満の酸性ガス濃度が検知できる測定手法の採用が望まれる。しかし、そのような微量の酸性ガスを定量するためには精密法に頼らざるを得ないのが現状である。
本発明はこのような現状に鑑み、極微量の酸性ガスの空気中濃度を、より短時間、低コストで簡便に測定できる技術を提供しようというものである。
As described above, in order to manage the concentration of acid gas in a room such as a museum, it is necessary to detect acid gas of less than 200 μg / m 3 . In addition, in order to evaluate the acid gas release characteristics of building materials, it is desired to adopt a measurement method capable of detecting an acid gas concentration of less than 200 μg / m 3 . However, in order to quantify such a small amount of acid gas, it is currently necessary to rely on a precision method.
In view of such a current situation, the present invention intends to provide a technique that can easily measure the concentration of an extremely small amount of acidic gas in the air in a shorter time and at a lower cost.
発明者らは詳細な研究の結果、改良された新たなガス検知管によって上記目的が達成できることを見出した。
すなわち、本発明では、管の内径が一定になっている部分に特定のガスと反応して変色する検知試薬を含有した粒体(以下「検知剤」という)が装填され、一定量の被測定空気を管内に一方向に通気させたときの検知剤の変色長さを視認することにより前記特定ガスの空気中濃度を検知するようにしたガス検知管において、
検知試薬は、酢酸または蟻酸と反応して変色するアルカリとpH指示薬を成分とするものであり、
検知剤は、平均粒径250〜350μmの基体粒子(例えばケイ砂粒子)の表面に前記検知試薬をコーティングした粒体であり、
25℃の空気中濃度換算で10〜1200μg/m3の酢酸または蟻酸を含有する被測定空気を管内に100〜400mL/minの流量範囲で連続的に合計5L以上通気させたときに、変色長さが2〜80mmの範囲となることを特徴とする酸性ガス検知管が提供される。ここで、検知対象である酸性ガスは酢酸または蟻酸である(以下において同様)。
As a result of detailed studies, the inventors have found that the above object can be achieved by a new and improved gas detector tube.
That is, in the present invention, a part containing a detection reagent that changes color by reacting with a specific gas (hereinafter referred to as “detection agent”) is loaded in a portion where the inner diameter of the tube is constant, and a certain amount of the object to be measured In the gas detection tube adapted to detect the concentration of the specific gas in the air by visually recognizing the color change length of the detection agent when air is passed in one direction in the tube,
The detection reagent is composed of an alkali that changes color by reacting with acetic acid or formic acid and a pH indicator.
The detection agent is a granule in which the detection reagent is coated on the surface of base particles (for example, silica sand particles) having an average particle size of 250 to 350 μm,
Discoloration length when air to be measured containing 10-1200 μg / m 3 acetic acid or formic acid in terms of air concentration at 25 ° C. is continuously vented through the pipe at a flow rate of 100-400 mL / min for a total of 5 L or more. An acid gas detector tube is provided in which the length is in the range of 2 to 80 mm. Here, the acidic gas to be detected is acetic acid or formic acid (the same applies hereinafter).
検知試薬のアルカリとしてメタ珪酸ナトリウムが使用されているものが挙げられる。
検知試薬のpH指示薬としてクレゾールレッドが使用されているものが挙げられる。
前記検知剤としては、特に、表面に疎水層を形成した平均粒径250〜350μmの基体粒子(例えばケイ砂粒子)の、その疎水層の上に前記検知試薬をコーティングした粒体が好適な対象となる。
What uses sodium metasilicate as an alkali of a detection reagent is mentioned.
Examples include those in which cresol red is used as the pH indicator of the detection reagent.
As the detection agent, in particular, a base particle (for example, silica sand particle) having an average particle diameter of 250 to 350 μm having a hydrophobic layer formed on the surface thereof is preferably a granule in which the detection reagent is coated on the hydrophobic layer. It becomes.
本発明の酸性ガス検知管は、管内の検知剤より前段に、NO2を捕集する物質を含有した粒体(以下「NO2捕集剤」という)が装填されているものが好適な対象となる。NO2を捕集する物質は、ジフェニルアミン、3,3'−ジメチルベンジン、3,3'−ジメチルナフチジンの1種以上を成分とするものが挙げられる。 The acid gas detection tube of the present invention is preferably a target in which particles containing a substance that collects NO 2 (hereinafter referred to as “NO 2 collection agent”) are loaded before the detection agent in the tube. It becomes. Examples of the substance that collects NO 2 include those containing at least one of diphenylamine, 3,3′-dimethylbenzidine, and 3,3′-dimethylnaphthidine as components.
また本発明では、前記の酸性ガス検知管を用いて建築物室内に存在する酸性ガスの空気中濃度を、時期を隔てて複数回検知することにより、当該室内の酸性ガスの空気中濃度の経時変化を監視する室内空気質の監視方法が提供される。 In the present invention, the acid gas detector tube is used to detect the concentration of acid gas existing in the building room in the air a plurality of times at different times, so that the acid gas concentration in the room over time can be detected over time. A room air quality monitoring method for monitoring changes is provided.
さらに本発明では、建材試料を入れた容器中の空気を連続的に採取して請求項1〜6のいずれかに記載の酸性ガス検知管に通気し、その検知管を用いて採取空気中の酸性ガス濃度を検知することにより建材から放出される酸性ガス量を評価する建材品質の評価方法が提供される。 Furthermore, in this invention, the air in the container which put the building material sample is extract | collected continuously, it ventilates in the acidic gas detection tube in any one of Claims 1-6, and in the collection | recovery air using the detection tube A construction material quality evaluation method for evaluating the amount of acid gas released from building materials by detecting the acid gas concentration is provided.
本発明の酸性ガス検知管を用いると、200μg/m3未満という微量の酸性ガスの空気中濃度を知ることが可能である。従来の精密法に比べると、極めて迅速かつ簡便に測定できる。特別な化学知識も要求されないため、施工現場や美術館・博物館などの担当者が、濃度を測定したい時間および場所を自由に選択して、自ら測定作業を行うことができる。そのため、室内酸性ガス濃度の経時変化をきめ細かく把握することが容易となり、濃度が増大したときには速やかに対策をとることが可能になる。また、美術館などの施工中の濃度管理や、酸性ガスの放散の少ない材料選定などにも有効である。 When the acidic gas detection tube of the present invention is used, it is possible to know the concentration of a small amount of acidic gas in the air of less than 200 μg / m 3 . Compared with conventional precision methods, it can be measured very quickly and easily. Since no special chemical knowledge is required, the person in charge at the construction site, art museum or museum can freely select the time and place where the concentration is to be measured and perform the measurement work by himself / herself. For this reason, it becomes easy to grasp the change in the indoor acid gas concentration with time, and when the concentration increases, it is possible to take quick measures. It is also effective for concentration management during construction of museums, and for selecting materials that emit less acid gas.
上記以外にも、本発明は例えば以下のような場面での適用が期待される。
・重要文化財の展示に際し、酸性ガスが及ぼす影響の判断
・半導体、フラットパネルディスプレイなどの電子製品劣化時における酸性ガス濃度の把握
・半導体製造工場などにおける製造ライン発停の判断
・クリーンルームなどに設置されたケミカルフィルタの寿命判定
In addition to the above, the present invention is expected to be applied in the following situations, for example.
-Judgment of the effect of acid gas on the display of important cultural properties-Grasping acid gas concentration when semiconductors, flat panel displays and other electronic products deteriorate-Judgment of production line start / stop at semiconductor manufacturing factories-Installation in clean rooms Of the life of a chemical filter
図1に、本発明の酸性ガス検知管の構成を模式的に例示する。
この検知管は、管の内径が一定になっている部分を有する透明管1の、その内径一定部分に検知試薬を含有した検知剤2が装填されている。被測定空気は矢印で示した一方向に管内を通る。検知剤2のより前段には、好ましくはNO2を捕集する物質を含有したNO2捕集剤3が装填されている。これらの粒体の間および後段には保護材4、4’が装填され、前段側は例えばフッ素樹脂からなる球状栓5で、また後段側は多孔体からなる止栓6でそれぞれ粒体が流動しないように拘束してある。検知管の製造時に透明管1の両端部が溶封され、使用前には密封状態となっている。
FIG. 1 schematically illustrates the configuration of the acid gas detection tube of the present invention.
This detection tube is loaded with a
使用時には破線11および12の箇所で透明管の両端部を破断して、被測定空気吸入口21および吸引ポンプ接続口22を形成する。そして、吸引ポンプ接続口22を吸引ポンプに接続し、被測定空気吸入口21から被測定空気を吸い込んで透明管1の内部を通気させる。被測定空気中に酸性ガス(酢酸または蟻酸)が存在すると、検知剤2の粒子の隙間を通る際に検知試薬と反応し、反応した部分の検知試薬が変色する。一定量の空気を通気させたときの変色長さによって酸性ガスの空気中濃度が検知される。透明管1の表面には酸性ガス濃度を読み取るための目盛り7が必要に応じて付してある。
以下、本発明を特定するための事項について説明する。
At the time of use, both ends of the transparent tube are broken at the
Hereinafter, matters for specifying the present invention will be described.
〔検知試薬〕
検知試薬は、酢酸または蟻酸と反応するアルカリと、pH指示薬を成分とするものである。すなわち、酢酸あるいは蟻酸がアルカリと反応してpH指示薬が呈色する原理を利用する。pH指示薬には中性付近に変色範囲を持つものを使用することが望ましい。例えばクレゾールレッドが好適である。クレゾールレッドは、中性付近で黄色に変色する。この場合の呈色原理は次式のように模式的に示すことができる。
CH3COOH(酢酸) or HCOOH(蟻酸) + Alkali + pH Indicator → Yellow reaction product
[Detection reagent]
The detection reagent contains an alkali that reacts with acetic acid or formic acid and a pH indicator as components. That is, the principle that acetic acid or formic acid reacts with an alkali and a pH indicator is colored is used. It is desirable to use a pH indicator having a color change range near neutrality. For example, cresol red is suitable. Cresol red turns yellow near neutrality. The coloration principle in this case can be schematically shown as follows:
CH 3 COOH (acetic acid) or HCOOH (formic acid) + Alkali + pH Indicator → Yellow reaction product
アルカリとしては種々のものが使用できるが、例えば、メタ珪酸ナトリウムを挙げることができる。この場合、例えば酢酸との反応は以下のようになる。
2CH3COOH + Na2SiO3 → 2CH3COONa + SiO2 + H2O
このとき、pH指示薬がクレゾールレッドであれば、検知試薬は淡桃色から薄黄色に変色する。
Various alkalis can be used, and examples thereof include sodium metasilicate. In this case, for example, the reaction with acetic acid is as follows.
2CH 3 COOH + Na 2 SiO 3 → 2CH 3 COONa + SiO 2 + H 2 O
At this time, if the pH indicator is cresol red, the detection reagent turns from pale pink to light yellow.
〔検知剤〕
従来一般的な酸性ガス検知管の場合、検知剤の隙間を通気させる被測定空気の量は1L以下(例えば200mL)と少量である。しかしながら、本発明では、空気中に極微量に存在する酸性ガスを検知する必要性から、後述のように、合計5L以上の空気を連続的に検知剤の隙間を通気させる。このような状況を考慮して種々検討した結果、検知剤として平均粒径250〜350μmの基体粒子の表面に前記検知試薬をコーティングした粒体を使用するのが好適であることが明らかになった。BET比表面積が0.05〜0.1m2/gであることがより好ましい。
[Detection agent]
In the case of a conventional general acid gas detection tube, the amount of air to be measured that allows the detection agent to pass through the gap is as small as 1 L or less (for example, 200 mL). However, in the present invention, since it is necessary to detect an extremely small amount of acidic gas in the air, a total of 5 L or more of air is continuously passed through the gap between the detection agents as described later. As a result of various investigations in consideration of such a situation, it has become clear that it is preferable to use a granule in which the surface of a base particle having an average particle size of 250 to 350 μm is coated with the detection reagent as a detection agent. . More preferably, the BET specific surface area is 0.05 to 0.1 m 2 / g.
特に、検知剤の基体粒子として、破砕したケイ砂を分級して平均粒径250〜350μmに整粒したものを使用すると、管内に装填された検知剤の粒子の隙間を空気が良好に分散しながら流れやすくなり、空気の流れが粒体中で短絡したり偏流が生じたりする現象が効果的に回避できる。 In particular, when the crushed silica sand is classified and the average particle diameter is adjusted to 250 to 350 μm as the base particle of the detection agent, the air is well dispersed in the gap between the detection agent particles loaded in the tube. However, it is possible to effectively avoid the phenomenon that the air flow is short-circuited or drifted in the particles.
また、基体粒子は、表面に疎水層を形成したものを使用することが好ましい。疎水層を形成した基体粒子の表面に検知試薬をコーティングすると、親水性の強い有機酸に対して検出感度が向上する。また測定時における湿度の影響が緩和される。疎水層は例えば有機溶媒に分散させたコロイダルシリカを基体粒子表面にコーティングすることにより形成させることができる。 Moreover, it is preferable to use the base particles having a hydrophobic layer formed on the surface. When the detection reagent is coated on the surface of the base particle on which the hydrophobic layer is formed, the detection sensitivity is improved for highly hydrophilic organic acids. Moreover, the influence of humidity during measurement is reduced. The hydrophobic layer can be formed, for example, by coating the surface of the base particles with colloidal silica dispersed in an organic solvent.
基体粒子の平均粒径が350μmを超えて大きい場合は、反応密度が粗となって変色の境界が不明確となりやすく、変色長さを正確に読み取ることが難しくなる。逆に基体粒子の平均粒径が250μm未満である場合は、変色の境界は明確になるが、感度が落ちるようになり、極微量濃度の酸性ガスを検知することが難しくなる場合がある。 When the average particle diameter of the substrate particles is larger than 350 μm, the reaction density is coarse and the boundary of discoloration tends to be unclear, making it difficult to accurately read the discoloration length. On the other hand, when the average particle diameter of the base particles is less than 250 μm, the color change boundary becomes clear, but the sensitivity is lowered, and it may be difficult to detect an extremely small amount of acidic gas.
〔対象となる被測定空気〕
25℃の空気中濃度換算で10〜1200μg/m3の酢酸または蟻酸を含有する被測定空気が測定対象となる。美術館等の室内環境の変化をモニターするためには、空気中濃度が10μg/m3以上〜200μg/m3未満の微量の酸性ガスを検知する必要がある。また、建材の酸性ガス放出特性を把握するためにもこの程度の感度が求められる。一方、建築物施工時の室内環境の経時変化や、美術館等の室内環境の経時変化を把握するためには、200μg/m3以上〜1200μg/m3以下の濃度範囲についても対応できるものであることが望まれる。したがって、本発明の酸性ガス検知管は、10〜1200μg/m3という広い濃度範囲をカバーできるものが対象となる。なお、多くの実験の結果、蟻酸は検知管に印刷されている濃度目盛を換算することで定量できることが確認されている。酢酸と蟻酸の両方が含まれる被測定空気の場合は、定量値は酢酸と蟻酸の合計量(ppmまたはμg/m3)として読み取ることができる。
[Target air to be measured]
The air to be measured containing 10 to 1200 μg / m 3 of acetic acid or formic acid in terms of the concentration in air at 25 ° C. is the measurement target. To monitor changes in the indoor environment of such museums, it is necessary that the concentration in the air to detect the 10 [mu] g / m 3 or more ~200μg / m 3 of less than trace amounts of acid gases. Moreover, this level of sensitivity is also required in order to understand the acid gas release characteristics of building materials. On the other hand, changes over time and the indoor environment during building construction, in order to grasp the temporal change of the indoor environment of museums is to cope also 200 [mu] g / m 3 or more ~1200μg / m 3 range of concentrations It is desirable. Therefore, the acidic gas detection tube of the present invention is intended to cover a wide concentration range of 10 to 1200 μg / m 3 . As a result of many experiments, it has been confirmed that formic acid can be quantified by converting the concentration scale printed on the detector tube. In the case of air to be measured containing both acetic acid and formic acid, the quantitative value can be read as the total amount of acetic acid and formic acid (ppm or μg / m 3 ).
〔変色長さおよび通気量〕
本発明の検知管は、被測定空気を管内に100〜400mL/minの流量範囲で連続的に合計5L以上通気したときに、10〜1200μg/m3の酸性ガス濃度において変色長さを2〜80mmの範囲とすることが可能な特性を有している。変色長さが2mm未満の場合は精度の高い定量が困難である。一方、変色長さが過剰に長くなっても測定精度の向上には繋がらず、被測定空気の通気量が多くなって不経済となる。種々検討の結果、変色長さが80mm以内の範囲で十分に高精度の定量が可能である。
[Discoloration length and air flow]
The detection tube of the present invention has a discoloration length of 2 to 2 at an acidic gas concentration of 10 to 1200 μg / m 3 when the air to be measured is continuously vented through the tube at a flow rate of 100 to 400 mL / min for a total of 5 L or more. It has characteristics that can be in the range of 80 mm. When the discoloration length is less than 2 mm, accurate quantification is difficult. On the other hand, if the discoloration length is excessively long, it does not lead to improvement in measurement accuracy, and the amount of air to be measured increases, which is uneconomical. As a result of various studies, it is possible to quantify sufficiently accurately within a range where the discoloration length is within 80 mm.
酸性ガスの濃度が同じであれば、合計通気量を多くするほど変色長さは長くなる。ただし、酸性ガス濃度10〜1200μg/m3の範囲において正確な定量を可能にするためには、上記の検知剤を装填したものにおいて、5L(リットル)以上の通気量を確保する必要がある。それより通気量が少ないと、酢酸あるいは蟻酸が検知剤より前段において極僅かにトラップされることによる影響が生じて、測定精度が低下しやすい。ただし、合計通気量は20L以下の範囲で調整すれば十分である。 If the concentration of the acid gas is the same, the discoloration length becomes longer as the total aeration amount is increased. However, in order to enable accurate quantification in the acidic gas concentration range of 10 to 1200 μg / m 3 , it is necessary to secure an air flow of 5 L (liters) or more in the sample loaded with the detection agent. If the air flow rate is smaller than that, acetic acid or formic acid is slightly trapped before the detection agent, and the measurement accuracy tends to be lowered. However, it is sufficient to adjust the total ventilation amount within a range of 20 L or less.
また、ガス流量(流速)も100mL/min以上とし、測定終了まで連続的に通気する必要がある。流量が100mL/min未満の場合や、途中で通気を止めた場合には測定精度が低下しやすく好ましくない。連続通気時間は15分以上とすることが望ましく、30分以上を確保することがより好ましい。あまり短時間の通気では高い測定精度を得ることが難しい。 In addition, the gas flow rate (flow velocity) must be 100 mL / min or more, and it is necessary to continuously vent until the measurement is completed. When the flow rate is less than 100 mL / min, or when ventilation is stopped in the middle, the measurement accuracy is liable to decrease, which is not preferable. The continuous ventilation time is desirably 15 minutes or longer, and more preferably 30 minutes or longer. It is difficult to obtain high measurement accuracy with a very short ventilation.
変色長さに関しては、検知試薬のコーティング量で基本的な特性が決まる。その上で、使用時の合計通気量によって、変色長さが80mm以内の範囲に収まるように調整することができる。具体的にはあるコーティング量で製造された検知管について、例えば合計通気量6Lのときの検量線と12Lのときの検量線を予め求めておき、酸性ガス濃度が極微量のときの超高感度検知には合計通気量を12Lとし、12Lではレンジオーバーとなる場合(例えば変色長さが80mmを超える場合)に合計通気量を6Lとする、といった使い方が適用できる。 Regarding the discoloration length, basic characteristics are determined by the coating amount of the detection reagent. In addition, the discoloration length can be adjusted to be within a range of 80 mm or less depending on the total ventilation amount at the time of use. Specifically, for a detection tube manufactured with a certain coating amount, for example, a calibration curve for a total ventilation amount of 6L and a calibration curve for 12L are obtained in advance, and ultra-high sensitivity when the acid gas concentration is extremely small. For the detection, the total ventilation rate is 12L, and when 12L is over the range (for example, when the discoloration length exceeds 80 mm), the total ventilation rate is 6L.
〔NO2捕集剤〕
発明者らの詳細な検討によれば、被測定空気の合計通気量が1L以下(例えば200mL程度)である従来の酸性ガス検知管の場合とは異なり、合計通気量が5L以上と多い場合には、精度の高い定量を実現するうえで、管内の検知剤より前段にNO2捕集剤を介在させることが非常に効果的であることが判明した。すなわち、被測定空気中にNO2ガスが0.03ppm以上共存している場合には、検知試薬の変色境界が不明瞭となり、実際の酸性ガス濃度よりも検知管の目盛り指示が大きく(変色長が長く)なる傾向が生じるのである。
[NO 2 collector]
According to the detailed examination by the inventors, unlike the case of the conventional acid gas detector tube in which the total ventilation rate of the air to be measured is 1 L or less (for example, about 200 mL), the total ventilation rate is 5 L or more. In order to achieve highly accurate quantitative determination, it has been found that it is very effective to interpose a NO 2 trapping agent before the detection agent in the tube. That is, when 0.02 ppm or more of NO 2 gas coexists in the air to be measured, the color change boundary of the detection reagent becomes unclear, and the scale indication of the detection tube is larger than the actual acid gas concentration (color change length). Tends to be longer).
NO2濃度0.03ppmは通常の大気中に存在するNO2の濃度レベルである。環境基準に設定されている0.04〜0.06ppmのNO2を除去できるフィルターを検知剤より前段に内蔵した構造の検知管とすることが、多量の被測定空気を通気させる必要のある本発明の酸性ガス検知管においては非常に好ましい。 The NO 2 concentration of 0.03 ppm is the concentration level of NO 2 present in normal air. It is necessary to ventilate a large amount of air to be measured by using a detector tube with a filter that can remove 0.02 to 0.06 ppm of NO 2 , which is set as an environmental standard, in front of the detector. The acid gas detector tube of the invention is very preferable.
NO2捕集剤は、NO2を捕集する物質を、平均粒径250〜350μmの基体粒子の表面にコーティングしたものが好適に採用できる。このような粒径の基体粒子を使用することによって、管内を通過する空気が粒子間に分散されやすくなり、NO2ガス成分を捕集する効率が高まる。基体として、破砕したケイ砂を分級して平均粒径250〜350μmに整粒したものが好適に使用できる。 As the NO 2 trapping agent, a material obtained by coating a surface of base particles having an average particle diameter of 250 to 350 μm with a substance that traps NO 2 can be suitably used. By using the base particles having such a particle size, the air passing through the tube is easily dispersed between the particles, and the efficiency of collecting the NO 2 gas component is increased. As the substrate, those obtained by classifying crushed quartz sand and adjusting the average particle size to 250 to 350 μm can be suitably used.
NO2を捕集する物質は、ジフェニルアミン、3,3'−ジメチルベンジン、3,3'−ジメチルナフチジンの1種以上の化合物を成分とするものが挙げられる。これらの化合物はNO2と反応することにより空気中のNO2ガス成分を捕集する。酸性ガス成分(酢酸、蟻酸)は反応することなく通過する。 Examples of the substance that collects NO 2 include those containing at least one compound of diphenylamine, 3,3′-dimethylbenzidine, and 3,3′-dimethylnaphthidine as a component. These compounds trapping NO 2 gas component in the air by reaction with NO 2. Acid gas components (acetic acid, formic acid) pass through without reacting.
〔室内空気質の監視〕
本発明のガス検知管を用いると、美術館、博物館など、酸性ガスを嫌う建築物室内において、空気質の経時変化を監視することができる。具体的には、本発明の酸性ガス検知管を用いて建築物室内に存在する酸性ガスの空気中濃度を、時期を隔てて定期的または不定期的に複数回検知することにより、当該室内の酸性ガスの空気中濃度の経時変化を把握することができる。測定の間隔はそれぞれの室内環境および測定目的に応じて設定すればよい。精密法とは異なり、その場で迅速に酸性ガスの空気中濃度が検知できるので、例えば測定間隔を数時間とすればその日の空気質の経時変化を知ることが可能となる。
[Monitoring indoor air quality]
By using the gas detection tube of the present invention, it is possible to monitor a change in air quality over time in a building room such as an art museum or a museum that dislikes acid gas. Specifically, the acid gas detector tube of the present invention is used to detect the concentration of acid gas present in the building room in the air regularly or irregularly multiple times at different times. It is possible to grasp the change with time of the concentration of acid gas in the air. What is necessary is just to set the space | interval of a measurement according to each indoor environment and the measurement objective. Unlike the precision method, the concentration of the acid gas in the air can be detected quickly on the spot. For example, if the measurement interval is set to several hours, it is possible to know the temporal change in the air quality of the day.
〔建材品質の評価〕
本発明のガス検知管の別の使用態様として、ある建材がどの程度の酸性ガスを放出する性質を有するものであるかを評価するための使用が挙げられる。この場合、評価する建材を閉鎖空間に一定時間放置したのち、本発明の酸性ガス検知管を用いて閉鎖空間内に存在する酸性ガスの空気中濃度を検知することにより建材から放出される酸性ガス量を評価することができる。これにより、その建材が特定の建築物に適用できるかどうかを迅速に判定することも可能である。
[Evaluation of building material quality]
As another use mode of the gas detector tube of the present invention, there is a use for evaluating how much acid gas a certain building material emits. In this case, after the building material to be evaluated is left in the closed space for a certain period of time, the acid gas released from the building material by detecting the concentration in the air of the acid gas present in the closed space using the acid gas detector tube of the present invention. The amount can be evaluated. Thereby, it is also possible to quickly determine whether the building material can be applied to a specific building.
〔酸性標準ガスによる検証試験〕
図1に示す構成の検知管を作製した。透明管1は従来一般的な検知管に使用されているガラス管であり、管の内径は3.5〜3.7mmである。検知試薬は、アルカリ成分としてメタ珪酸ナトリウム、pH指示薬としてクレゾールレッドを使用した。検知剤2の基体粒子には、破砕して分級した平均粒径250〜350μmのケイ砂を使用した。このケイ砂粒子の表面には有機溶媒に分散させたコロイダルシリカを基材粒子表面にコーティングすることにより疎水層を形成した。このケイ砂粒子の表面(疎水層の上)に検知試薬をコーティングした。コーティング量は、種々の予備実験の結果に基づいて、25℃、酢酸濃度200μg/m3の空気を流量200mL/min、合計通気量12Lで通気させたときの変色長さが30mmとなることを目標に設定した。検知剤2の装填長さは80mmとした。検知剤2の前段にはNO2捕集剤3を装填長さ15mmで装填した。NO2捕集剤3の基体粒子は破砕して分級した平均粒径250〜350μmのケイ砂とし、NO2を捕集する物質としてジフェニルアミンを基体表面にコーティングした。コーティング方法は上記の検知試薬の場合と同様であり、コーティング量は前記装填長さにおいて濃度0.06ppmのNO2を除去できるフィルターが構築されるように設定した。保護材4には分級した平均粒径250〜350μmのケイ砂を用い、4’には合成ゼオライトを用いた。前段の球状栓5はテフロン(登録商標)製で、後段の止栓6は綿栓である。
[Verification test with acid standard gas]
A detector tube having the configuration shown in FIG. 1 was produced. The transparent tube 1 is a glass tube conventionally used for a general detection tube, and the inner diameter of the tube is 3.5 to 3.7 mm. The detection reagent used sodium metasilicate as an alkali component and cresol red as a pH indicator. Silica sand having an average particle size of 250 to 350 μm, which was crushed and classified, was used as the base particles of the
この検知管について、パーミエーションチューブ法により種々の酢酸濃度に較正した酸性ガスを用い、25℃、流量200mL/min、合計通気量6Lおよび12Lで通気させたときの変色長さ測定し、酢酸濃度と変色長の関係を示す検量線を求めた。吸引ポンプは流量(流速)を一定にコントロールする機能を有し、所定の合計通気量(6Lまたは12L)になったときに吸引を自動的に停止する機能を有するものを用いた。
Using this acid tube calibrated to various acetic acid concentrations by the permeation tube method, the discoloration length was measured when vented at 25 ° C,
図2に、測定結果のプロットおよび検量線を例示する。図2からわかるように、この検知管において酢酸の空気中濃度が10〜1200μg/m3の範囲での精度の良い検知が可能であることが確認された。合計通気量を選択することで上記濃度範囲の変色長さは2〜50mmの範囲に収まり、十分に実用的である。酸性ガス濃度200μg/m3未満というの極微量の酸性ガスを検知する場合は合計通気量を多くすることが測定精度を向上させる上で有利である。上記の例で12Lの検量線を使用した場合でもサンプリング時間は1時間であり、精密法に比較すると非常に短時間である。 FIG. 2 illustrates a plot of measurement results and a calibration curve. As can be seen from FIG. 2, it was confirmed that this detector tube can detect the acetic acid with high accuracy in the air concentration range of 10 to 1200 μg / m 3 . By selecting the total air flow rate, the discoloration length in the above density range falls within the range of 2 to 50 mm, which is sufficiently practical. When detecting a very small amount of acid gas having an acid gas concentration of less than 200 μg / m 3, it is advantageous to increase the total ventilation rate in order to improve measurement accuracy. Even when a 12 L calibration curve is used in the above example, the sampling time is 1 hour, which is very short compared to the precision method.
〔温度・湿度による影響の検証〕
実施例1で作製した検知管について、パーミエーションチューブ法により種々の酢酸濃度に較正した5℃、20℃および35℃の酸性ガスにより、変色長さに及ぼす温度・湿度の影響を調べた。流量200mL/min、合計通気量12Lとした。図3に、湿度を50%RHと一定にした場合の温度の影響を例示する。図4に、酢酸濃度が370μg/m3の場合の湿度の影響を示す。
[Verification of temperature and humidity effects]
About the detector tube produced in Example 1, the influence of the temperature and humidity on discoloration length was investigated by the acidic gas of 5 degreeC, 20 degreeC, and 35 degreeC calibrated to the various acetic acid concentration by the permeation tube method. The flow rate was 200 mL / min, and the total aeration rate was 12 L. FIG. 3 illustrates the influence of temperature when the humidity is fixed at 50% RH. FIG. 4 shows the influence of humidity when the acetic acid concentration is 370 μg / m 3 .
温度については、低温ほど指示値が低くなり、高温ほど指示値が高くなる傾向が見られた(図3)。一方、湿度については、20〜80%RHの範囲であれば大きな変動はないことが確認された(図5)。一般的に美術館や博物館では展示品保護のために湿度は空調設備等により40〜60%RH程度に管理されているので、通常の使用において測定値に及ぼす湿度の影響は問題にならないと考えられる。したがって、製品仕様として適用湿度範囲を例えば20〜80%RHに設定し、かつ被測定空気の温度に応じて指示値を補正することにより精度の高い計測が可能となる。現場において簡便に温度による補正を行う方法としては、例えば、各温度における酸性ガス濃度と変色長さの関係を表示したテーブルを検知管の製品に付属して提供する手法や、いくつかの温度水準についての目盛りを検知管に付しておき、実際の温度における目盛り位置を比例配分によって見当付けられるようにしておく方法などが有効となる。 Regarding the temperature, there was a tendency that the indicated value was lower as the temperature was lower and the indicated value was higher as the temperature was higher (FIG. 3). On the other hand, it was confirmed that there was no significant variation in humidity within the range of 20 to 80% RH (FIG. 5). In general, in museums and museums, the humidity is controlled to about 40 to 60% RH by air-conditioning equipment to protect the exhibits, so the effect of humidity on the measured value is not considered to be a problem in normal use. . Therefore, it is possible to measure with high accuracy by setting the applicable humidity range as, for example, 20 to 80% RH as the product specification and correcting the indicated value according to the temperature of the air to be measured. As a method for simple correction based on temperature in the field, for example, there is a method of providing a table showing the relationship between acid gas concentration and discoloration length at each temperature attached to the detector tube product, and several temperature levels. It is effective to attach a scale on the detector tube so that the scale position at the actual temperature can be found by proportional distribution.
〔博物館の酸性ガス濃度測定〕
実施例1で作製した酸性ガス検知管に、図2に示した検量線に基づいて流量200mL/min、合計通気量12Lの場合の25℃における酸性ガス濃度を表示する目盛りを付した。この検知管を用いて、博物館の館内の種々の場所において酸性ガス濃度を測定した。その際、被測定空気の温度を実測し、実施例2の結果に基づく温度補正を行って得られた酸性ガス濃度の値から25℃換算の酸性ガス濃度の値を求めた。また同時に精密法による分析に供するための空気をサンプリングし、実験室に持ち帰ってイオンクロマトグラフィーにより25℃換算の酸性ガス濃度を求めた。
[Measurement of acid gas concentration in the museum]
A scale for displaying the acid gas concentration at 25 ° C. in the case of a flow rate of 200 mL / min and a total air flow of 12 L was attached to the acid gas detector tube produced in Example 1 based on the calibration curve shown in FIG. Using this detector tube, acid gas concentrations were measured at various locations in the museum. At that time, the temperature of the air to be measured was measured, and the value of the acid gas concentration converted to 25 ° C. was obtained from the value of the acid gas concentration obtained by performing the temperature correction based on the result of Example 2. At the same time, the air for use in the analysis by the precision method was sampled and brought back to the laboratory to obtain the acid gas concentration in terms of 25 ° C. by ion chromatography.
図5に、酸性ガス検知管による計測結果と精密法による計測結果の対応関係を示す。多少のバラツキは見られるが両者の計測値には良い相関関係(相関係数=0.96)が認められた。すなわち本発明の酸性ガス検知管によれば、10μg/m3以上〜200μg/m3未満といった極微量濃度の酸性ガスについての経時変化を迅速に監視することが可能である。
なお、現場の空気中には酸性ガス以外にアルカリ性のガス、有機ガスが混在しているが、これらのガスの存在が検知管の指示に影響を与えないことを確認することもできた。
FIG. 5 shows the correspondence between the measurement result obtained by the acid gas detector tube and the measurement result obtained by the precision method. Although there was some variation, a good correlation (correlation coefficient = 0.96) was observed between the measured values. That is, according to the acid gas detector tube of the present invention, it is possible to rapidly monitor the time course of the traces of the concentration of acid gases such as 10 [mu] g / m 3 or more ~200μg / m less than 3.
In addition to the acidic gas, alkaline gas and organic gas are mixed in the field air, but it was also confirmed that the presence of these gases does not affect the indication of the detector tube.
〔建材品質の評価〕
図6に示すように、ステンレス鋼製20L容器に建材試料を入れ、外部から流量0.5L/minで空気を導入しながら容器中の空気を連続的に採取して実施例1で作製した検知管の中に流量0.2L/minで1時間通気させた。容器中の建材試料は空気の流路となる位置に置かれている。一方、同じ建材試料について、図7に示すように24時間の通気を行って容器中の空気からガス成分を採取し、精密法による分析を行った。このような試験を種々の建材試料について実施し、建材試料の単位表面積から単位時間に放出される酸性ガス量について本発明の検知管法と精密法の対応関係を調べた。結果を図8に示す。
[Evaluation of building material quality]
As shown in FIG. 6, the building material sample was put in a stainless steel 20L container, and the air in the container was continuously collected while air was introduced from the outside at a flow rate of 0.5L / min. The tube was aerated at a flow rate of 0.2 L / min for 1 hour. The building material sample in the container is placed at a position to be an air flow path. On the other hand, the same building material sample was aerated for 24 hours as shown in FIG. 7 to collect gas components from the air in the container, and analyzed by a precision method. Such a test was carried out on various building material samples, and the correspondence between the detector tube method of the present invention and the precision method was examined for the amount of acid gas released from the unit surface area of the building material sample per unit time. The results are shown in FIG.
図8からわかるように、本発明の検知管法と精密法の計測値には良い相関関係(相関係数=0.97)が認められ、本発明の検知管を用いることによって迅速に建材品質を評価することが可能であることが確認された。 As can be seen from FIG. 8, there is a good correlation (correlation coefficient = 0.97) between the measurement values of the detection tube method and the precision method of the present invention, and the quality of building materials can be quickly increased by using the detection tube of the present invention. It was confirmed that it is possible to evaluate.
1 透明管
2 検知剤
3 NO2捕集剤
4、4’ 保護剤
5 球状栓
6 止栓
7 目盛り
21 被測定空気吸入口
22 吸引ポンプ接続口
1
Claims (8)
検知試薬は、酢酸または蟻酸と反応して変色するアルカリとpH指示薬を成分とするものであり、
検知剤は、平均粒径250〜350μmの基体粒子の表面に前記検知試薬をコーティングした粒体であり、
25℃の空気中濃度換算で10〜1200μg/m3の酢酸または蟻酸を含有する被測定空気を管内に100〜400mL/minの流量範囲で連続的に合計5L以上通気させたときに、変色長さが2〜80mmの範囲となることを特徴とする酢酸または蟻酸検知管。 Particles containing a detection reagent that changes color by reacting with a specific gas (hereinafter referred to as “detection agent”) are loaded into the part where the inner diameter of the tube is constant, and a certain amount of air to be measured is directed in one direction into the tube. In the gas detection tube adapted to detect the concentration of the specific gas in the air by visually recognizing the discoloration length of the detection agent when aerated.
The detection reagent is composed of an alkali that changes color by reacting with acetic acid or formic acid and a pH indicator.
The detection agent is a granule in which the detection reagent is coated on the surface of a base particle having an average particle diameter of 250 to 350 μm,
Discoloration length when air to be measured containing 10-1200 μg / m 3 acetic acid or formic acid in terms of air concentration at 25 ° C. is continuously vented through the pipe at a flow rate of 100-400 mL / min for a total of 5 L or more. An acetic acid or formic acid detector tube, wherein the length is in the range of 2 to 80 mm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008104938A JP5081046B2 (en) | 2008-04-14 | 2008-04-14 | Acetic acid or formic acid detector tube, indoor air quality monitoring method and building material quality evaluation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008104938A JP5081046B2 (en) | 2008-04-14 | 2008-04-14 | Acetic acid or formic acid detector tube, indoor air quality monitoring method and building material quality evaluation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009257838A JP2009257838A (en) | 2009-11-05 |
JP5081046B2 true JP5081046B2 (en) | 2012-11-21 |
Family
ID=41385454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008104938A Active JP5081046B2 (en) | 2008-04-14 | 2008-04-14 | Acetic acid or formic acid detector tube, indoor air quality monitoring method and building material quality evaluation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5081046B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5712744B2 (en) * | 2011-04-05 | 2015-05-07 | 三菱電機株式会社 | Air conditioner |
JP6018481B2 (en) * | 2012-11-05 | 2016-11-02 | 光明理化学工業株式会社 | Detector tube |
JP2016182537A (en) * | 2015-03-25 | 2016-10-20 | 宇部興産株式会社 | Processing method of 1,2,3-triazole compound |
JP6828912B2 (en) * | 2019-06-12 | 2021-02-10 | 株式会社ガステック | Oxygen detector tube |
JP7296106B2 (en) * | 2019-06-24 | 2023-06-22 | 光明理化学工業株式会社 | detector tube |
JPWO2021090826A1 (en) | 2019-11-06 | 2021-05-14 | ||
CN113984746A (en) * | 2021-10-21 | 2022-01-28 | 河南省奥瑞环保科技股份有限公司 | Method for preparing sulfur dioxide rapid gas detection tube by mixed carrier |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59194066U (en) * | 1983-06-10 | 1984-12-24 | 光明理化学工業株式会社 | Detection tube for hazardous gas qualitative analysis |
JPH0765991B2 (en) * | 1987-02-24 | 1995-07-19 | 液化炭酸株式会社 | Method and tool for detecting acidic and basic substances in atmosphere |
JP3675563B2 (en) * | 1996-04-08 | 2005-07-27 | 光明理化学工業株式会社 | Ozone remover and nitrogen dioxide detector tube using the same |
JP3483827B2 (en) * | 2000-04-25 | 2004-01-06 | 東京瓦斯株式会社 | Lifetime determination method for sulfur compound adsorbent in fuel gas |
JP2004085525A (en) * | 2002-06-24 | 2004-03-18 | Kajima Corp | Method for determining concentration of very small amount ammonia in air |
JP4402584B2 (en) * | 2004-12-28 | 2010-01-20 | 高圧ガス保安協会 | Detector tube, composite detector tube, and DME detection method |
JP4690149B2 (en) * | 2005-09-01 | 2011-06-01 | 光明理化学工業株式会社 | Analysis equipment |
-
2008
- 2008-04-14 JP JP2008104938A patent/JP5081046B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009257838A (en) | 2009-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5081046B2 (en) | Acetic acid or formic acid detector tube, indoor air quality monitoring method and building material quality evaluation method | |
Ahlquist et al. | A new instrument for evaluating the visual quality of air | |
CN105334147B (en) | Particulate matter on-line monitoring system and method based on β ray methods and light scattering method | |
US3068073A (en) | Determination of carbon dioxide | |
US8357542B2 (en) | Suspended particulate matter measurement apparatus and suspended particulate matter measurement method using the same | |
US20080014116A1 (en) | Passive type emission flux sampler | |
CN107607449A (en) | A kind of device and method for detecting particulate matter quality concentration | |
EP1500930A1 (en) | Method of measuring formaldehyde concentration of gas and measuring instrument | |
JP2009031227A (en) | Device for measuring suspended particular substances | |
KR20150120249A (en) | Method of measuring formaldehyde concentration of gasand measuring instrument | |
CN107314955A (en) | Judge the method for the bio-toxicity of PM2.5 fine particles | |
KR100737132B1 (en) | A measurement method and its installations of hazardous chemicals emission from construction materials by using the blank-chamber system | |
KR20060064586A (en) | Temperature and flow control system of mixed air for organic emissions from building materials | |
CN105823745A (en) | On-site emergency detection reagent for chromium in water and use method thereof | |
JP3889989B2 (en) | Method and apparatus for measuring formaldehyde concentration in gas | |
CN101241870A (en) | Device for measuring the wafer film thickness | |
CN204286886U (en) | Simple air sampling apparatus | |
JP2004085525A (en) | Method for determining concentration of very small amount ammonia in air | |
US20080133148A1 (en) | Method For Checking Indoor Environment | |
DE102017209923A1 (en) | A mouthpiece, device, system and method for testing the usability of a mouthpiece for measuring analytes in exhaled air | |
JP2008518199A (en) | Multifunctional reference system for determination of analytes by fluorescence | |
US20130224850A1 (en) | Device and method for detecting bacterial endospores that are suspended in the atmosphere | |
RU2527617C1 (en) | Analysis of automotive tire | |
RU2403076C2 (en) | METHOD OF EVALUATING PROTECTIVE PROPERTIES OF MATERIALS OF FACIAL PARTS OF GAS MASK WITH RESPECT TO β,β'-DICHLORDIETHYLSULFIDE BY APPLICATION OF ITS SIMULATOR BUTYL-β-CHLORETHYLSULFIDE | |
JP5181299B2 (en) | Material evaluation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120529 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120730 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120828 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120831 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150907 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5081046 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |