JP5080922B2 - Non-chromium resin coated metal plate with excellent end face corrosion resistance - Google Patents

Non-chromium resin coated metal plate with excellent end face corrosion resistance Download PDF

Info

Publication number
JP5080922B2
JP5080922B2 JP2007249237A JP2007249237A JP5080922B2 JP 5080922 B2 JP5080922 B2 JP 5080922B2 JP 2007249237 A JP2007249237 A JP 2007249237A JP 2007249237 A JP2007249237 A JP 2007249237A JP 5080922 B2 JP5080922 B2 JP 5080922B2
Authority
JP
Japan
Prior art keywords
fine particles
resin
metal plate
rust preventive
coated metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007249237A
Other languages
Japanese (ja)
Other versions
JP2009078450A (en
Inventor
辰彦 岩
忠繁 中元
雅司 今堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007249237A priority Critical patent/JP5080922B2/en
Priority to TW097131568A priority patent/TWI383887B/en
Priority to CN2008102134607A priority patent/CN101397669B/en
Priority to KR1020080094231A priority patent/KR101031678B1/en
Publication of JP2009078450A publication Critical patent/JP2009078450A/en
Application granted granted Critical
Publication of JP5080922B2 publication Critical patent/JP5080922B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe

Description

本発明は、クロメート処理が施されていなくても、耐食性、特に、端面の耐食性に優れた樹脂塗装金属板に関するものである。   The present invention relates to a resin-coated metal plate that is excellent in corrosion resistance, in particular, end surface corrosion resistance, even if it is not subjected to chromate treatment.

樹脂塗装金属板の切断面(端面)や疵部は、金属板の金属基材部分が露出しており、亜鉛めっきや樹脂皮膜による防錆効果が発揮されにくい部分であるが、樹脂皮膜に防錆顔料を添加しておくと、亜鉛めっき表面から溶出するZnイオンと防錆顔料中の金属とが不働態皮膜を形成して、亜鉛の腐食を抑制し、ある程度の耐食性は確保される。   The cut surface (end face) and collar of the resin-coated metal plate are exposed to the metal base of the metal plate and are difficult to exert the rust-preventing effect of galvanizing or resin film. When a rust pigment is added, Zn ions eluted from the galvanized surface and the metal in the rust preventive pigment form a passive film, thereby suppressing corrosion of zinc and ensuring a certain degree of corrosion resistance.

例えば、特許文献1には、クロメート系防錆顔料に加え、バナジウム/リン酸塩系防錆顔料を樹脂皮膜中に含有させることで、端面の耐食性を向上させる技術が開示されている。この特許文献1では、リン酸イオンと溶解してきた亜鉛とが難解性の皮膜を形成する機能(デポジション機能)と、バナジン酸イオンの作用で、亜鉛の腐食電位よりも少し貴なレドックス電位を示す機能(オキシダイザー機能)等により、500時間の塩水噴霧試験で良好な耐食性を発揮したことが示されている。   For example, Patent Document 1 discloses a technique for improving the corrosion resistance of the end face by including a vanadium / phosphate anticorrosive pigment in a resin film in addition to a chromate anticorrosive pigment. In Patent Document 1, a function (deposition function) in which phosphate ions and dissolved zinc form a refractory film and a redox potential slightly higher than the corrosion potential of zinc due to the action of vanadate ions. According to the function (oxydizer function) and the like shown, it was shown that good corrosion resistance was exhibited in a 500 hour salt spray test.

また、特許文献2には、クロメート系防錆顔料と亜リン酸塩系防錆顔料を併用したプライマー組成物が示されている。リン酸塩系の皮膜が端面耐食性(750時間の塩水噴霧試験)を向上させることが記載されている。   Patent Document 2 discloses a primer composition using a chromate rust preventive pigment and a phosphite rust preventive pigment in combination. It is described that a phosphate-based film improves end face corrosion resistance (750 hour salt spray test).

これらの特許文献1,2に記載の技術は、いずれもクロメート系防錆顔料を用いるものであり、昨今のクロムフリーといった時流に逆らうものであった。このため、本出願人は、特許文献3において、クロム化合物を用いずに、端面耐食性に優れた表面処理亜鉛めっき鋼板を提供することのできる技術を開示している。この特許文献3の技術は、樹脂皮膜中に、酸化マグネシウム等のアルカリ土類金属(水)酸化物を存在させることで、腐食環境下でアルカリイオンとして溶解させてpHの低下を抑え、Znの溶出をコントロールする緩衝作用を発揮させるものであり、周囲環境が酸性と中性とに変化するような場合にも、長期的に端面耐食性を発揮させるところに特徴がある。   These techniques described in Patent Documents 1 and 2 both use a chromate-based anticorrosive pigment, and are against the current trend of chromium-free. For this reason, the present applicant discloses, in Patent Document 3, a technique capable of providing a surface-treated galvanized steel sheet having excellent end face corrosion resistance without using a chromium compound. In the technique of Patent Document 3, alkaline earth metal (water) oxide such as magnesium oxide is present in the resin film, so that it is dissolved as alkali ions in a corrosive environment to suppress a decrease in pH. It is intended to exhibit a buffering action that controls elution, and is characterized by long-term endurance corrosion resistance even when the surrounding environment changes between acidic and neutral.

しかしながら、樹脂塗装金属板の端面耐食性には、さらなる改善が求められている。例えば、常に水に曝されているようなウエットな環境下にある端面や疵部においては、Znイオンや防錆顔料中の金属イオンが水によって流失するため不働態皮膜を形成することができず、短時間で赤錆が発生してしまうが、このような場合であっても、良好な端面耐食性を示す樹脂塗装金属板が求められているのである。上記従来技術は、このような過酷な環境を想定しての端面耐食性向上技術とは言えない。
特開平6−9902号公報 特開平11−158417号公報 特開2006−28582号公報
However, further improvement is required for the end surface corrosion resistance of the resin-coated metal plate. For example, at end faces and ridges in a wet environment that is always exposed to water, Zn ions and metal ions in the rust preventive pigment are washed away by water, so a passive film cannot be formed. Although red rust is generated in a short time, even in such a case, there is a demand for a resin-coated metal plate exhibiting good end face corrosion resistance. The above prior art cannot be said to be an end face corrosion resistance improvement technique assuming such a severe environment.
JP-A-6-9902 Japanese Patent Laid-Open No. 11-158417 JP 2006-28582 A

そこで本発明では、例えば、常に水に曝されているようなウエットな環境下にある端面や疵部においても赤錆の発生時間を遅延させることができる非クロム系の樹脂塗装金属板の提供を課題として掲げた。   Therefore, in the present invention, for example, it is an object to provide a non-chromium-based resin-coated metal plate capable of delaying the occurrence of red rust even in end surfaces and ridges in a wet environment that is always exposed to water. As listed.

上記課題を解決した本発明は、非クロム系下地処理皮膜の上に下塗り塗膜および/または上塗り塗膜が形成された非クロム系樹脂塗装金属板であって、この下塗り塗膜および/または上塗り塗膜は、多孔質無機微粒子と金属化合物系防錆顔料とが複合化された徐放性防錆微粒子を、徐放性防錆微粒子以外の塗膜成分100質量部に対し、5〜40質量部含有し、樹脂塗装金属板に1mm×1mmのマス目を100個刻んだ後、40℃の炭酸塩pH標準液へ浸漬したときに、上記防錆顔料から溶出する金属イオンの溶出速度が0.001〜1.0mg/l・m2・hrであるところに特徴を有する端面耐食性に優れた非クロム系樹脂塗装金属板である。 The present invention, which has solved the above problems, is a non-chromium resin-coated metal plate in which an undercoating film and / or an overcoating film is formed on a non-chromic base treatment film, the undercoating film and / or overcoating. The coating film comprises 5 to 40 masses of sustained release rust preventive fine particles in which porous inorganic fine particles and metal compound rust preventive pigments are combined with respect to 100 parts by mass of coating film components other than the sustained release rust preventive fine particles. The metal ion elution rate from the rust preventive pigment is 0 when the resin coated metal plate is engraved with 100 squares of 1 mm × 1 mm and then immersed in a carbonate pH standard solution at 40 ° C. It is a non-chromium resin-coated metal plate having excellent end face corrosion resistance and having a characteristic of 0.001 to 1.0 mg / l · m 2 · hr.

徐放性防錆微粒子は、平均粒子径が1〜10μmであると、耐食性と加工性とのバランスが一層良好となる。   When the average particle diameter of the sustained-release rust-preventing fine particles is 1 to 10 μm, the balance between corrosion resistance and workability is further improved.

徐放性防錆微粒子を40℃のpH10の水酸化ナトリウム水溶液へ浸漬したときの金属イオンの溶出速度が0.005〜0.5mg/l・g・hrであると、上記塗膜からの金属イオンの溶出速度を好適範囲に設定しやすいため好ましい。   When the release rate of metal ions when the sustained-release rust-preventing fine particles are immersed in an aqueous sodium hydroxide solution having a pH of 10 at 40 ° C. is 0.005 to 0.5 mg / l · g · hr, the metal from the coating film This is preferable because the elution rate of ions can be easily set within a suitable range.

徐放性防錆微粒子に複合化されている防錆顔料は、酸化マグネシウム、水酸化マグネシウム、リン酸マグネシウム、炭酸マグネシウム、塩化マグネシウム、蓚酸マグネシウム、硫酸マグネシウムおよびこれらの水和物よりなる群から選択される1種以上のマグネシウム化合物であるか、トリポリリン酸アルミニウム、リン酸アルミニウムおよびリン酸アルミニウム二水和物よりなる群から選択される1種以上のアルミニウム化合物であると、優れた防錆効果を発揮するため好ましい。   The rust preventive pigment compounded with the sustained release rust preventive fine particles is selected from the group consisting of magnesium oxide, magnesium hydroxide, magnesium phosphate, magnesium carbonate, magnesium chloride, magnesium oxalate, magnesium sulfate and hydrates thereof. An excellent rust-preventing effect when it is at least one magnesium compound selected from the group consisting of aluminum tripolyphosphate, aluminum phosphate and aluminum phosphate dihydrate. It is preferable because it exhibits.

徐放性防錆微粒子に用いられる多孔質無機微粒子が、多孔質シリカ微粒子であると、防錆顔料との複合化が容易であるため好ましい。また、下塗り塗膜および/または上塗り塗膜には、さらに、防錆顔料が含まれていてもよく、端面耐食性がより一層向上する。   It is preferable that the porous inorganic fine particles used for the sustained release rust preventive fine particles are porous silica fine particles because they can be easily combined with the rust preventive pigment. Further, the undercoat and / or the topcoat may further contain a rust preventive pigment, and the end surface corrosion resistance is further improved.

本発明は、樹脂塗装金属板の樹脂塗膜が徐放性防錆微粒子を含有しているので、常に水に曝されているようなウエットな環境下にある端面や疵部においても、この徐放性防錆微粒子から防錆成分が水に徐々に溶出し、赤錆の発生を長時間に亘って抑制する。よって、本発明の金属板は、エアコンの室外機等、比較的過酷な腐食環境下で使用されるPCM(プレコート金属板)として有用である。   In the present invention, since the resin coating film of the resin-coated metal plate contains sustained-release rust-preventing fine particles, even on the end face and the heel part in a wet environment that is always exposed to water, The rust-preventing components are gradually eluted into the water from the release rust-preventing fine particles, and the occurrence of red rust is suppressed for a long time. Therefore, the metal plate of the present invention is useful as a PCM (pre-coated metal plate) used in a relatively severe corrosive environment such as an outdoor unit of an air conditioner.

本発明は、非クロム系下地処理皮膜の上に下塗り塗膜および/または上塗り塗膜が形成された非クロム系樹脂塗装金属板であって、この下塗り塗膜および/または上塗り塗膜は、多孔質無機微粒子と金属化合物系防錆顔料とが複合化された徐放性防錆微粒子を、徐放性防錆微粒子以外の塗膜成分100質量部に対し、5〜40質量部含有し、樹脂塗装金属板に1mm×1mmのマス目を100個刻んだ後、40℃の炭酸塩pH標準液へ浸漬したときに、上記防錆顔料から溶出する金属イオンの溶出速度が0.001〜1.0mg/l・m2・hrであるところに特徴を有する。 The present invention relates to a non-chromium resin-coated metal plate in which an undercoat film and / or a topcoat film is formed on a non-chromium base treatment film, and the undercoat film and / or the overcoat film are porous. 5-40 parts by mass of sustained-release rust-preventing fine particles in which fine inorganic fine particles and metal compound rust-preventive pigments are combined with respect to 100 parts by mass of coating film components other than the sustained-release rust-proof fine particles, When 100 squares of 1 mm × 1 mm are cut on a coated metal plate and then immersed in a carbonate pH standard solution at 40 ° C., the elution rate of metal ions eluted from the rust preventive pigment is 0.001 to 1. It is characterized by 0 mg / l · m 2 · hr.

本発明の樹脂塗装金属板は、非クロム系樹脂塗装金属板である。非クロム系というのは、クロメート系下地処理を施していないという意味である。本発明に用いられる金属板の種類は、特に限定されず、鋼板または非鉄金属板の金属板、これらに単一金属または各種合金のめっきを施しためっき金属板等が含まれる。具体的には、例えば、熱延鋼板、冷延鋼板、ステンレス鋼板等の鋼板;溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板、電気Zn−Ni合金めっき鋼板等のめっき鋼板;アルミニウム、チタン、亜鉛等の非鉄金属板またはこれらにめっきが施されためっき非鉄金属板等が挙げられる。上記の金属板には、非クロム系下地処理が施される。下地処理としては非クロム系であればよく、例えば、リン酸塩処理、酸洗処理、アルカリ処理、電解還元処理、シランカップリング処理、無機シリケート処理等が挙げられる。リン酸塩処理であれば、0.05〜3.0g/m2の付着量とすることが好ましい。 The resin-coated metal plate of the present invention is a non-chromium resin-coated metal plate. Non-chromium means that no chromate base treatment is applied. The type of the metal plate used in the present invention is not particularly limited, and includes a metal plate of a steel plate or a non-ferrous metal plate, a plated metal plate obtained by plating a single metal or various alloys on these, and the like. Specifically, for example, steel sheets such as hot-rolled steel sheets, cold-rolled steel sheets, and stainless steel sheets; plated steel sheets such as hot-dip galvanized steel sheets, alloyed hot-dip galvanized steel sheets, electrogalvanized steel sheets, and electric Zn-Ni alloy-plated steel sheets; Examples thereof include non-ferrous metal plates such as aluminum, titanium, and zinc, or plated non-ferrous metal plates obtained by plating them. The metal plate is subjected to non-chromium base treatment. The base treatment may be non-chromic, and examples thereof include phosphate treatment, pickling treatment, alkali treatment, electrolytic reduction treatment, silane coupling treatment, and inorganic silicate treatment. In the case of phosphating, it is preferable to set the adhesion amount to 0.05 to 3.0 g / m 2 .

本発明の樹脂塗装金属板は、下塗り塗膜および/または上塗り塗膜を有している。すなわち、上塗り塗膜のみの構成でもよいし、下塗り塗膜の上に上塗り塗膜を有する二層構成でもよい。また、さらに他の塗膜を積層したものであってもよい。   The resin-coated metal plate of the present invention has an undercoat film and / or a topcoat film. That is, the composition of only the top coat film or the two-layer structure having the top coat film on the undercoat film may be used. Moreover, what laminated | stacked another coating film may be used.

下塗り塗膜および上塗り塗膜の主成分は有機樹脂である。樹脂としては、例えば、ポリエステル系樹脂、アクリル系樹脂、ウレタン系樹脂、ポリオレフィン系樹脂、フッ素系樹脂、シリコーン系樹脂、およびこれら樹脂の混合物または変性した樹脂等が挙げられる。なかでも、有機溶剤可溶型(非晶性)のポリエステル樹脂が好ましい。有機溶剤可溶型のポリエステル樹脂としては、東洋紡績社製の「バイロン(登録商標)」シリーズが、豊富な種類のものを入手することができる点で好適である。ポリエステル樹脂は、メラミン樹脂やエポキシ樹脂等で架橋してもよい。メラミン樹脂としては、住友化学社製の「スミマール(登録商標)」シリーズや、サイテック社製の「サイメル(登録商標)」シリーズがある。エポキシ樹脂としては、例えば、ジャパンエポキシレジン社製の「jER(登録商標)」シリーズがある。架橋剤は、乾燥後の樹脂皮膜中に架橋剤(反応後)が質量で0.5〜30%(より好ましくは5〜25%)となるように、配合することが好ましい。   The main component of the undercoat film and the topcoat film is an organic resin. Examples of the resin include polyester resins, acrylic resins, urethane resins, polyolefin resins, fluorine resins, silicone resins, and mixtures or modified resins of these resins. Of these, organic solvent-soluble (amorphous) polyester resins are preferred. As the organic solvent-soluble polyester resin, “Byron (registered trademark)” series manufactured by Toyobo Co., Ltd. is preferable in that a wide variety of types can be obtained. The polyester resin may be crosslinked with a melamine resin or an epoxy resin. Examples of the melamine resin include “Sumimar (registered trademark)” series manufactured by Sumitomo Chemical Co., Ltd. and “Cymel (registered trademark)” series manufactured by Cytec. Examples of the epoxy resin include “jER (registered trademark)” series manufactured by Japan Epoxy Resin. The crosslinking agent is preferably blended in the dried resin film so that the crosslinking agent (after reaction) is 0.5 to 30% (more preferably 5 to 25%) by mass.

本発明の樹脂塗装金属板では、下塗り塗膜および/または上塗り塗膜中に、多孔質無機微粒子と金属化合物系防錆顔料とが複合化された徐放性防錆微粒子が含まれている。「多孔質無機微粒子と金属化合物系防錆顔料とが複合化された」とは、多孔質無機微粒子の孔の中やその表面に金属化合物系防錆顔料が付着している状態を指す。「徐放性防錆微粒子」とは、上記複合化によって、金属化合物系防錆顔料自体の水への溶出速度よりも、当該徐放性防錆微粒子からの金属化合物系防錆顔料の溶出速度が小さくなっていることを意味する。   In the resin-coated metal plate of the present invention, sustained-release rust-preventing fine particles in which porous inorganic fine particles and metal compound-based anti-rust pigments are combined are included in the undercoat and / or topcoat. “The composite of the porous inorganic fine particles and the metal compound rust preventive pigment” refers to a state in which the metal compound rust preventive pigment is adhered in the pores or on the surface of the porous inorganic fine particles. "Sustained release rust preventive fine particles" means the dissolution rate of metal compound rust preventive pigment from the sustained release rust preventive fine particles rather than the dissolution rate of metal compound rust preventive pigment itself into water by the above-mentioned compounding. Means that is getting smaller.

防錆顔料は、腐食環境下(pH8.5〜10.5)で防錆成分である金属イオンが溶出することで、pH変化の緩衝作用を有すると共に、Znめっき表面から溶出するZnイオンと不働態皮膜を形成して亜鉛の腐食を抑制し、耐食性を発現する。不働態皮膜を形成する防錆成分の金属イオンとZnイオンの比率は一定である。よって、腐食環境下において防錆成分の金属イオンの溶出速度が大きいと、Znイオンと反応しなかった金属イオンも溶出・流失してしまい、新たに不働態皮膜を形成するための金属イオンが不足してしまうため、腐食が進行する。しかし、徐放性防錆微粒子が塗膜中に含まれていると、塗膜が水に接しても防錆顔料由来の金属イオンの溶出および流失を低レベルにコントロールできるため、長期間に亘って塗膜から金属イオンが溶出することとなって、端面や疵部の赤錆の発生を抑制することができる(端面耐食性の発現)。   The rust preventive pigment has a buffer action of pH change by elution of metal ions, which are rust preventive components, in a corrosive environment (pH 8.5 to 10.5), and is free from Zn ions eluted from the surface of the Zn plating. Forms a working film to suppress corrosion of zinc and develop corrosion resistance. The ratio of metal ions and Zn ions of the rust preventive component that forms the passive film is constant. Therefore, if the elution rate of metal ions, which are anticorrosive components, is high in a corrosive environment, metal ions that did not react with Zn ions will also be eluted and washed away, and there will be insufficient metal ions to form a new passive film. Therefore, corrosion progresses. However, if the sustained-release rust-preventing fine particles are contained in the coating film, elution and loss of metal ions derived from the rust-preventing pigment can be controlled to a low level even when the coating film is in contact with water. As a result, metal ions are eluted from the coating film, and the occurrence of red rust on the end face and the buttock can be suppressed (expression of end face corrosion resistance).

この端面耐食性を長期間に亘って有効に維持するには、樹脂塗装金属板に1mm×1mmのマス目を100個刻んだ後、40℃の炭酸塩pH標準液(pH10.01)へ浸漬したときに、上記防錆顔料から溶出する金属イオンの溶出速度が0.001〜1.0mg/l・m2・hrでなければならない。この溶出速度が0.001mg/l・m2・hr未満では、腐食環境下における金属イオンが少なすぎて、端面や疵部の赤錆発生を長期間に亘って防止することが難しい。しかし、金属イオンの溶出速度が1.0mg/l・m2・hrを超えると、端面耐食性の持続性を得ることができない。より好ましい溶出速度の下限は0.005mg/l・m2・hrであり、上限は0.5mg/l・m2・hrである。なお、従来のシリカ系防錆剤(カルシウムイオン交換シリカ)では、腐食環境下での溶出速度は2.2mg/l・m2・hrであり、本発明の徐放性防錆微粒子に比べ遙かに大きいため、本発明のような端面耐食性の持続性向上効果を得ることはできない。なお、上記溶出速度の測定に際し、マス目は素地金属板にまで達するように刻む。炭酸塩pH標準液は、炭酸水素ナトリウム0.21質量%(0.02490mol/l)と炭酸ナトリウムを0.26質量%(0.02491mol/l)有する水溶液であり、例えば関東化学社などから市販されている。 In order to maintain this end face corrosion resistance effectively over a long period of time, 100 squares of 1 mm × 1 mm are cut into a resin-coated metal plate and then immersed in a 40 ° C. carbonate pH standard solution (pH 10.01). Sometimes, the elution rate of metal ions eluted from the rust preventive pigment must be 0.001 to 1.0 mg / l · m 2 · hr. When the elution rate is less than 0.001 mg / l · m 2 · hr, the amount of metal ions in the corrosive environment is too small, and it is difficult to prevent red rust from occurring on the end face and the collar portion over a long period of time. However, if the elution rate of metal ions exceeds 1.0 mg / l · m 2 · hr, endurance corrosion resistance cannot be obtained. The lower limit of the dissolution rate is more preferably 0.005 mg / l · m 2 · hr, and the upper limit is 0.5 mg / l · m 2 · hr. The conventional silica-based rust preventive agent (calcium ion exchanged silica) has an elution rate of 2.2 mg / l · m 2 · hr in a corrosive environment, which is much lower than that of the sustained-release rust preventive fine particles of the present invention. Therefore, the endurance improvement effect of the end face corrosion resistance as in the present invention cannot be obtained. When measuring the elution rate, the grid is cut so as to reach the base metal plate. The carbonate pH standard solution is an aqueous solution having 0.21% by mass (0.02490 mol / l) of sodium bicarbonate and 0.26% by mass (0.02491 mol / l) of sodium bicarbonate, and is commercially available from, for example, Kanto Chemical Co., Inc. Has been.

上記溶出速度は、実際の腐食環境を想定して樹脂塗装金属板からの金属イオンの溶出速度を規定したが、本発明の徐放性防錆微粒子そのものを40℃のpH10の水酸化ナトリウム水溶液へ浸漬したときの金属イオンの溶出速度は、0.005〜0.5mg/l・g・hrであることが好ましい。この範囲であれば、樹脂塗装金属板からの金属イオンの溶出速度を上記好適範囲に設定しやすいからである。   The elution rate is defined as the elution rate of metal ions from the resin-coated metal plate assuming an actual corrosive environment, but the sustained-release rust preventive fine particles themselves of the present invention are converted into an aqueous solution of sodium hydroxide having a pH of 10 at 40 ° C. The elution rate of metal ions when immersed is preferably 0.005 to 0.5 mg / l · g · hr. This is because, within this range, the elution rate of metal ions from the resin-coated metal plate can be easily set within the above preferred range.

徐放性防錆微粒子は、多孔質無機微粒子と金属化合物系防錆顔料とを複合化することにより得られる。多孔質無機微粒子としては、シリカ、酸化チタン、酸化鉄、酸化コバルト、酸化亜鉛、酸化ニッケル、酸化マンガン、アルミナ等の金属酸化物;水酸化鉄、水酸化ニッケル、水酸化アルミニウム、水酸化カルシウム、水酸化クロム等の金属水酸化物;炭酸カルシウム、炭酸バリウム等の炭酸塩;ケイ酸カルシウム、ケイ酸バリウム、ケイ酸マグネシウム等のケイ酸塩;リン酸カルシウム、リン酸バリウム、リン酸マグネシウム、リン酸ジルコニウム、アパタイト等のリン酸塩;等からなるものが好ましい。特に、耐食性の点からは、シリカ微粒子が好ましい。   Sustained release rust preventive fine particles can be obtained by combining porous inorganic fine particles and metal compound rust preventive pigments. Porous inorganic fine particles include metal oxides such as silica, titanium oxide, iron oxide, cobalt oxide, zinc oxide, nickel oxide, manganese oxide, and alumina; iron hydroxide, nickel hydroxide, aluminum hydroxide, calcium hydroxide, Metal hydroxides such as chromium hydroxide; carbonates such as calcium carbonate and barium carbonate; silicates such as calcium silicate, barium silicate and magnesium silicate; calcium phosphate, barium phosphate, magnesium phosphate and zirconium phosphate And phosphates such as apatite; In particular, silica fine particles are preferable from the viewpoint of corrosion resistance.

多孔質無機微粒子の平均粒径は、1〜10μmが好ましい。1μmより小さいと、多孔質無機微粒子の製造が難しくなることと、耐食性が低下するため好ましくない。10μmを超えると、加工性が低下する傾向にあるため好ましくない。より好ましい平均粒子径は、1〜3μmである。なお、多孔質無機微粒子の平均粒径と、複合化後の徐放性防錆微粒子の平均粒径はほとんど変化がない。よって、徐放性防錆微粒子の好ましい平均粒径も1〜10μm(より好ましくは1〜3μm)である。平均粒径は、例えば、走査型電子顕微鏡(倍率5000倍)を用い、視野中に観察される微粒子の平均値を算出することによって求められる。あるいは、島津製作所製「SA−P3」を用い、遠心沈降法によって算出することもできる。   The average particle size of the porous inorganic fine particles is preferably 1 to 10 μm. If it is smaller than 1 μm, it is not preferable because it becomes difficult to produce porous inorganic fine particles and the corrosion resistance is lowered. If it exceeds 10 μm, the workability tends to decrease, which is not preferable. A more preferable average particle diameter is 1 to 3 μm. The average particle diameter of the porous inorganic fine particles and the average particle diameter of the sustained-release rust-preventing fine particles after the composite are hardly changed. Therefore, the preferable average particle diameter of the sustained release rust preventive fine particles is also 1 to 10 μm (more preferably 1 to 3 μm). The average particle diameter is obtained, for example, by calculating an average value of fine particles observed in the visual field using a scanning electron microscope (magnification 5000 times). Alternatively, “SA-P3” manufactured by Shimadzu Corporation can be used to calculate by the centrifugal sedimentation method.

多孔質無機微粒子の多孔質度合いは、比表面積で100〜800m2/gが好ましい。防錆顔料との複合化後に、適切な溶出速度となるからである。このような多孔質無機微粒子としては、例えば、「ゴッドボール(登録商標)」シリーズ(鈴木油脂工業社製)や、多孔質シリカ微粒子(エネックス社製;SE MCB−FP/2)が入手可能である。上記「ゴッドボール(登録商標)」には、非中空シリカタイプのE−2C(平均粒子径0.9〜1.4μm、比表面積350〜500m2/g)、E−6C(平均粒子径2.0〜2.5μm、比表面積250〜400m2/g)、E−2C(平均粒子径0.9〜1.4μm、比表面積350〜500m2/g)、E−16C(平均粒子径4.0〜5.3μm、比表面積300〜550m2/g)、D−11C(平均粒子径3.0〜4.0μm、比表面積280〜500m2/g);中空シリカタイプのB−6C(平均粒子径2.0〜2.5μm、比表面積250〜400m2/g)、B−25C(平均粒子径8.0〜10.0μm、比表面積400〜550m2/g);超多孔質シリカタイプのAF−6C(平均粒子径2.5〜3.5μm、比表面積600〜700m2/g)、AF−16C(平均粒子径4.0〜5.3μm、比表面積600〜700m2/g)、SF−16C(平均粒子径4.0〜5.3μm、比表面積600〜700m2/g)等がある。 The degree of porosity of the porous inorganic fine particles is preferably 100 to 800 m 2 / g in terms of specific surface area. This is because an appropriate dissolution rate is obtained after compounding with the rust preventive pigment. As such porous inorganic fine particles, for example, “Godball (registered trademark)” series (manufactured by Suzuki Oil & Fats Industries Co., Ltd.) and porous silica fine particles (manufactured by Enex; SE MCB-FP / 2) are available. is there. The above “Godball (registered trademark)” includes non-hollow silica type E-2C (average particle size 0.9 to 1.4 μm, specific surface area 350 to 500 m 2 / g), E-6C (average particle size 2). 0.0 to 2.5 μm, specific surface area 250 to 400 m 2 / g), E-2C (average particle size 0.9 to 1.4 μm, specific surface area 350 to 500 m 2 / g), E-16C (average particle size 4) 0.0-5.3 μm, specific surface area 300-550 m 2 / g), D-11C (average particle size 3.0-4.0 μm, specific surface area 280-500 m 2 / g); hollow silica type B-6C ( Average particle diameter 2.0-2.5 μm, specific surface area 250-400 m 2 / g), B-25C (average particle diameter 8.0-10.0 μm, specific surface area 400-550 m 2 / g); superporous silica Type AF-6C (average particle size 2.5-3.5 μm, specific surface Product 600-700 m 2 / g), AF-16C (average particle size 4.0-5.3 μm, specific surface area 600-700 m 2 / g), SF-16C (average particle size 4.0-5.3 μm, ratio) Surface area of 600 to 700 m 2 / g).

金属化合物系防錆顔料としては、水への溶解度があまり大きくなくて、溶出速度が小さいものが好ましい。端面耐食性を長期に亘って発揮させることができる。具体的には、酸化マグネシウム、水酸化マグネシウム、リン酸マグネシウム、炭酸マグネシウム、塩化マグネシウム、蓚酸マグネシウム、硫酸マグネシウムおよびこれらの水和物等のマグネシウム化合物;トリポリリン酸アルミニウム、リン酸アルミニウム、リン酸アルミニウム二水和物等のアルミニウム化合物が好適である。   As the metal compound-based anticorrosive pigment, those having a low solubility in water and a low elution rate are preferable. End surface corrosion resistance can be exhibited over a long period of time. Specifically, magnesium compounds such as magnesium oxide, magnesium hydroxide, magnesium phosphate, magnesium carbonate, magnesium chloride, magnesium oxalate, magnesium sulfate and hydrates thereof; aluminum tripolyphosphate, aluminum phosphate, aluminum phosphate Aluminum compounds such as hydrates are preferred.

複合化に際しての多孔質無機微粒子と金属化合物系防錆顔料との質量比率は、95:5〜50:50が好ましい。防錆顔料が5質量%未満では、充分な端面耐食性およびその持続性を得ることが困難な場合がある。また、多孔質無機微粒子の構造上、防錆顔料を50質量%を超えて複合化させるのが困難な場合がある。   The mass ratio of the porous inorganic fine particles and the metal compound-based anticorrosive pigment upon complexing is preferably 95: 5 to 50:50. If the rust preventive pigment is less than 5% by mass, it may be difficult to obtain sufficient end face corrosion resistance and its durability. In addition, due to the structure of the porous inorganic fine particles, it may be difficult to make the antirust pigment more than 50% by mass.

徐放性防錆微粒子は、多孔質無機微粒子より小径(必要により破砕して)の金属化合物系防錆顔料を、多孔質無機微粒子と共に機械的に混合することにより得ることができる。高剪断力で混合することが好ましく、この混合の間に、多孔質無機微粒子の孔の中に防錆顔料が入り込み、両者が複合化されると考えられる。混合の際には、適宜、加熱・加圧してもよい。本発明では、水への溶解度が小さく、溶出速度の小さい金属化合物系防錆顔料を使用するため、防錆顔料の水溶液中に多孔質無機微粒子を浸漬して複合化するのは困難であるが、pHを調整したり、他の溶媒を用いることにより防錆顔料を溶液化すれば、この溶液中に多孔質微粒子を浸漬した後乾燥させることで、両者の複合化が可能である。   The sustained-release rust preventive fine particles can be obtained by mechanically mixing a metal compound-based rust preventive pigment having a smaller diameter than that of the porous inorganic fine particles (if crushed if necessary) together with the porous inorganic fine particles. It is preferable to mix with a high shearing force. During this mixing, it is considered that the rust preventive pigment enters the pores of the porous inorganic fine particles, and both are combined. During mixing, heating and pressurization may be performed as appropriate. In the present invention, since a metal compound type anticorrosive pigment having a low solubility in water and a low elution rate is used, it is difficult to immerse the porous inorganic fine particles in an aqueous solution of the anticorrosive pigment to form a composite. If the rust preventive pigment is made into a solution by adjusting the pH or using another solvent, both can be combined by immersing the porous fine particles in this solution and then drying.

徐放性防錆微粒子は、塗膜成分100質量部に対し、5〜40質量部含まれていると、良好な端面耐食性およびその持続性を得ることができる。すなわち、塗膜形成用組成物の固形分のうち、徐放性防錆微粒子以外の固形分100質量部に対し、徐放性防錆微粒子を5〜40質量部添加して、塗膜を形成すればよい。徐放性防錆微粒子は下塗り塗膜と上塗り塗膜のいずれか一方または両方に含まれていてもよい。耐食性の観点からは、両方の塗膜に含まれている方が好ましい。   When the sustained-release rust-preventing fine particles are contained in an amount of 5 to 40 parts by mass with respect to 100 parts by mass of the coating film component, good end face corrosion resistance and its sustainability can be obtained. That is, among the solid content of the coating film forming composition, 5 to 40 parts by mass of the sustained release rust preventive fine particles are added to 100 parts by mass of the solid content other than the sustained release rust preventive fine particles to form a coating film do it. The sustained-release rust-preventing fine particles may be contained in one or both of the undercoat film and the topcoat film. From the viewpoint of corrosion resistance, it is preferable to be contained in both coating films.

本発明の樹脂塗装金属板を製造するには、塗膜形成用組成物を調製し、これを金属板に塗布・乾燥する方法を採用するのが好ましい。塗膜形成用組成物は、ベースとなる有機樹脂と徐放性防錆微粒子、必要により添加される架橋剤等を、有機溶剤等で希釈して塗工に適した粘度にしたものを用いる。有機溶剤としては特に限定されないが、トルエン、キシレン等の芳香族系炭化水素;酢酸エチル、酢酸ブチル等の脂肪族エステル類;シクロヘキサン等の脂環族炭化水素類;ヘキサン、ペンタン等の脂肪族炭化水素類等;メチルエチルケトン、シクロヘキサノン等のケトン類等が挙げられる。塗工適性を考慮すると、原料組成物は、その粘度がフォードカップNo.4で30〜100秒程度になるように調整するか、または固形分濃度を5〜45質量%程度に調整することが推奨される。   In order to produce the resin-coated metal plate of the present invention, it is preferable to employ a method of preparing a coating film forming composition and applying and drying the composition to a metal plate. The coating film-forming composition is prepared by diluting a base organic resin, sustained-release rust-preventing fine particles, and a crosslinking agent added as necessary with an organic solvent or the like to a viscosity suitable for coating. The organic solvent is not particularly limited, but aromatic hydrocarbons such as toluene and xylene; aliphatic esters such as ethyl acetate and butyl acetate; alicyclic hydrocarbons such as cyclohexane; aliphatic carbonization such as hexane and pentane. Hydrogen etc .; Ketones such as methyl ethyl ketone and cyclohexanone are listed. In consideration of coating suitability, the raw material composition has a viscosity of Ford Cup No. 4 is adjusted to be about 30 to 100 seconds, or it is recommended to adjust the solid content concentration to about 5 to 45% by mass.

上記塗膜形成用組成物には、さらに、公知の防錆顔料を添加しても構わない。また、艶消し剤、体質顔料、沈降防止剤、ワックス等、樹脂塗装金属板分野で用いられる各種公知の添加剤を添加してもよい。   You may add a well-known antirust pigment to the said composition for coating-film formation further. Various known additives used in the field of resin-coated metal plates, such as matting agents, extender pigments, anti-settling agents, and waxes, may also be added.

上記塗膜形成用組成物を金属板に塗布する方法は特に限定されず、バーコーター法、ロールコーター法、スプレー法、カーテンフローコーター法等が採用可能である。塗布後には乾燥を行うが、架橋剤添加系においては、架橋剤が反応し得る温度で加熱乾燥を行うことが好ましい。具体的には、100〜250℃で、1〜5分程度加熱乾燥を行うとよい。   The method for applying the coating film forming composition to the metal plate is not particularly limited, and a bar coater method, a roll coater method, a spray method, a curtain flow coater method, and the like can be employed. Although drying is performed after coating, in a crosslinking agent addition system, it is preferable to perform drying by heating at a temperature at which the crosslinking agent can react. Specifically, heat drying is preferably performed at 100 to 250 ° C. for about 1 to 5 minutes.

下塗り塗膜、上塗り塗膜の厚みは特に限定されないが、いずれも1〜100μm程度が好ましく、5〜30μm程度がより好ましい。   The thicknesses of the undercoat film and the topcoat film are not particularly limited, but both are preferably about 1 to 100 μm, and more preferably about 5 to 30 μm.

以下実施例によって本発明をさらに詳述するが、下記実施例は本発明を制限するものではなく、本発明の趣旨を逸脱しない範囲の変更実施は本発明に含まれる。なお以下特にことわりのない場合、「%」は「質量%」を、「部」は「質量部」をそれぞれ示すものとする。実施例で用いた評価方法は、以下の通りである。   The present invention will be described in more detail with reference to the following examples. However, the following examples are not intended to limit the present invention, and modifications within the scope of the present invention are included in the present invention. Unless otherwise specified, “%” indicates “mass%” and “part” indicates “part by mass”. The evaluation methods used in the examples are as follows.

〔クロスカットの耐食性〕
供試材(50mm×120mm)に、カッターナイフでクロスカット(60°、60mm)を入れ、JIS Z2371に従って塩水噴霧試験を実施して、500時間後のクロスカット部からの塗膜の膨れ幅を測定した。評価基準は、下記の通りとした。
◎:膨れ幅が1mm以下
○:膨れ幅が1mm超、3mm以下
△:膨れ幅が3mm超、5mm以下
×:膨れ幅が5mm超
[Cross-cut corrosion resistance]
Put a cross cut (60 °, 60 mm) with a cutter knife in the test material (50 mm x 120 mm), conduct a salt spray test in accordance with JIS Z2371, and determine the swollen width of the coating film from the cross cut part after 500 hours. It was measured. The evaluation criteria were as follows.
◎: Swelling width is 1 mm or less ○: Swelling width is more than 1 mm, 3 mm or less △: Swelling width is more than 3 mm, 5 mm or less ×: Swelling width is more than 5 mm

〔端面耐食性〕
JIS Z2371に従って塩水噴霧試験を実施して、500時間後の端面部からの塗膜の膨れ幅を測定した。評価基準は、下記の通りとした。
◎:膨れ幅が1mm以下
○:膨れ幅が1mm超、3mm以下
△:膨れ幅が3mm超、5mm以下
×:膨れ幅が5mm超
(End surface corrosion resistance)
A salt spray test was performed according to JIS Z2371, and the swollen width of the coating film from the end face portion after 500 hours was measured. The evaluation criteria were as follows.
◎: Swelling width is 1 mm or less ○: Swelling width is more than 1 mm, 3 mm or less △: Swelling width is more than 3 mm, 5 mm or less ×: Swelling width is more than 5 mm

〔人工雨水滴下試験〕
供試材を50mm×120mmにカットして、図1に示すように長手方向の一端を、横断面が半円となるように、樋状に曲げた。樋部の両端はシールした。樋部の中央部に円形(φ=6mm)の切込みを入れ、この半円の周囲部の端面を露出させた。人工雨水を、供試材上方から0.16〜0.17ml/minで滴下した。人工雨水の組成は表1に示す通りであり、硫酸でpH4.7に調整した。これは、環境庁調査の国内降雨の平均イオン組成に準じたものである。試験雰囲気は、40℃、95%RHとした。試験装置の下部にガーゼを置き、半円切込み部の赤錆発生状態と、ガーゼへの赤錆流れ落ち状態とを、24時間ごとに目視で確認した。この確認時に赤錆が発生していたら、その時間を赤錆発生時間とした。
(Artificial rainwater dripping test)
The test material was cut into 50 mm × 120 mm, and one end in the longitudinal direction was bent into a bowl shape so that the cross section was a semicircle as shown in FIG. Both ends of the buttocks were sealed. A circular (φ = 6 mm) cut was made in the center of the collar, and the end face of the periphery of this semicircle was exposed. Artificial rainwater was added dropwise from above the test material at 0.16 to 0.17 ml / min. The composition of artificial rainwater is as shown in Table 1, and the pH was adjusted to 4.7 with sulfuric acid. This is in accordance with the average ionic composition of domestic rainfall surveyed by the Environment Agency. The test atmosphere was 40 ° C. and 95% RH. A gauze was placed at the bottom of the test apparatus, and the red rust generation state at the semicircular cut and the red rust flow-down state on the gauze were visually confirmed every 24 hours. If red rust was generated at the time of this confirmation, the time was defined as the red rust generation time.

〔加工性A〕
供試材を50mm×50mmにカットし、評価する面を外側にして折り曲げ、低温(0℃)雰囲気下、万力で180゜(0T曲げ)折り曲げ加工した後、折り曲げ部の塗膜に生じたクラックの発生状態を目視およびルーペ(倍率10倍)で観察した。評価基準は下記の通りとした。
◎:クラックの発生なし(目視およびルーペのいずれで観察しても、クラックがない)
○:クラックの発生僅少(目視では認められないが、ルーペで観察するとクラックがわずかに確認できる)
△:クラック発生(亀裂の小さなクラックが目視で認められる)
×:クラック大(亀裂の大きなクラックが目視で認められる)
[Machinability A]
The test material was cut into 50 mm × 50 mm, bent with the surface to be evaluated outside, bent at 180 ° (0T bending) in a vise under a low temperature (0 ° C.) atmosphere, and then formed on the coating film at the bent portion. The state of occurrence of cracks was observed visually and with a magnifying glass (magnification 10 times). The evaluation criteria were as follows.
◎: No cracking (no cracks observed visually or with a loupe)
○: Little occurrence of cracks (not visually recognized, but a slight crack can be confirmed by observing with a magnifying glass)
Δ: Crack generation (small cracks are visually recognized)
X: Large crack (a large crack is visually recognized)

〔加工性B〕
低温(0℃)雰囲気下ではなく、常温(20℃)雰囲気下で行った以外は、加工性Aと同様にして折り曲げ部のクラック発生状態を観察した。評価基準も同じである。
[Workability B]
The crack generation state of the bent portion was observed in the same manner as the workability A, except that it was performed in a normal temperature (20 ° C.) atmosphere instead of a low temperature (0 ° C.) atmosphere. The evaluation criteria are the same.

〔溶出速度測定試験〕
供試材をφ50mmの円形状にカットし、1mm×1mmの碁盤目をカッターナイフで100個刻んだ。40℃、95%RHの雰囲気下で、炭酸塩pH標準液(pH=10.01、炭酸水素ナトリウム+炭酸ナトリウム水溶液)100mlに浸漬させた。この水溶液を24時間ごとに10mlずつ採取して、碁盤目刻み部と端面から溶出したイオン量をICP発光分析法で定量分析し、防錆成分の溶出速度を測定した。
[Elution rate measurement test]
The test material was cut into a circular shape with a diameter of 50 mm, and 100 grids of 1 mm × 1 mm were cut with a cutter knife. It was immersed in 100 ml of a carbonate pH standard solution (pH = 10.01, sodium hydrogen carbonate + sodium carbonate aqueous solution) in an atmosphere of 40 ° C. and 95% RH. 10 ml of this aqueous solution was sampled every 24 hours, and the amount of ions eluted from the grid notch and the end face was quantitatively analyzed by ICP emission spectrometry to measure the elution rate of the rust preventive component.

〔徐放性防錆微粒子Aの製造〕
中空多孔質シリカ微粒子(「ゴッドボール(登録商標)B−6C」:鈴木油脂工業社製:平均粒子径約2.0μm(2〜2.5μm))50部と、酸化マグネシウム(「スターマグL−10」相当の高活性品:神島化学工業社製:平均粒子径0.63μm)50部とを混合し、徐放性防錆微粒子Aを製造した。なお、酸化マグネシウムは予め粉砕してから中空多孔質シリカ微粒子と混合した。混合に際しては、加温しながら高剪断力で混合した。
[Manufacture of sustained-release antirust fine particles A]
Hollow porous silica fine particles (“Godball (registered trademark) B-6C”: manufactured by Suzuki Yushi Kogyo Co., Ltd .: average particle diameter of about 2.0 μm (2 to 2.5 μm)) and magnesium oxide (“Starmag L- 10 "high active product: manufactured by Kamishima Chemical Industry Co., Ltd .: average particle size 0.63 μm) was mixed with 50 parts to produce sustained-release rust preventive fine particles A. The magnesium oxide was previously pulverized and then mixed with the hollow porous silica fine particles. During mixing, the mixture was mixed with high shearing force while heating.

〔徐放性防錆微粒子Bの製造〕
酸化マグネシウムに変えて、トリポリリン酸アルミニウム(「K−WAHITE #G105」:平均粒子径2.3μm:テイカ社製)を用いた以外は、徐放性防錆微粒子Aと同様にして、徐放性防錆微粒子Bを製造した。
[Manufacture of sustained release antirust fine particles B]
Similar to the sustained-release rust preventive fine particles A, except that aluminum tripolyphosphate (“K-WAHITE # G105”: average particle size 2.3 μm: manufactured by Teica) was used instead of magnesium oxide. Rust-proof fine particles B were produced.

〔徐放性防錆微粒子Cの製造〕
酸化マグネシウムに変えて、炭酸マグネシウム(工業用(軽質):協和化学工業社製)を用いた以外は、徐放性防錆微粒子Aと同様にして、徐放性防錆微粒子Cを製造した。
[Manufacture of sustained release rust preventive fine particles C]
Sustained release rust preventive fine particles C were produced in the same manner as the sustained release rust preventive fine particles A except that magnesium carbonate (industrial (light): manufactured by Kyowa Chemical Industry Co., Ltd.) was used instead of magnesium oxide.

〔徐放性防錆微粒子Dの製造〕
酸化マグネシウムに変えて、水酸化マグネシウム(「10A」:神島化学工業社製:平均粒子径3.5μm)を用いた以外は、徐放性防錆微粒子Aと同様にして、徐放性防錆微粒子Dを製造した。
[Manufacture of sustained release rust preventive fine particles D]
Controlled release rust preventive rust in the same manner as controlled release rust preventive fine particles A, except that magnesium hydroxide (“10A”: manufactured by Kamishima Chemical Industry Co., Ltd .: average particle size 3.5 μm) was used instead of magnesium oxide. Fine particles D were produced.

〔徐放性防錆微粒子Eの製造〕
酸化マグネシウムに変えて、リン酸マグネシウム(御国色素社製)を用いた以外は、徐放性防錆微粒子Aと同様にして、徐放性防錆微粒子Eを製造した。
[Manufacture of sustained-release antirust fine particles E]
Sustained release rust preventive fine particles E were produced in the same manner as the sustained release rust preventive fine particles A except that magnesium phosphate (manufactured by Gokoku Dye Co., Ltd.) was used instead of magnesium oxide.

〔徐放性防錆微粒子Fの製造〕
酸化マグネシウムに変えて、バナジン酸カルシウム(新興化学工業社製)を用いた以外は、徐放性防錆微粒子Aと同様にして、徐放性防錆微粒子Fを製造した。
[Manufacture of sustained release antirust fine particles F]
Sustained release rust preventive fine particles F were produced in the same manner as the sustained release rust preventive fine particles A except that calcium vanadate (manufactured by Shinsei Chemical Industry Co., Ltd.) was used instead of magnesium oxide.

実験No.1(防錆成分の溶出速度)
上記各徐放性防錆微粒子A〜Fを、40℃、pH10に調整したNaOH水溶液中に2%となるように添加して、攪拌し、24時間目から120時間目まで24時間ごとに水溶液中の溶出イオン量をICP発光分析法で定量分析し、微粒子からの防錆成分の溶出速度を測定した。結果を表2に示した。
Experiment No. 1 (Elution rate of rust preventive component)
Each of the above-mentioned sustained-release rust-preventing fine particles A to F is added to a NaOH aqueous solution adjusted to 40 ° C. and pH 10 so as to be 2%, stirred, and an aqueous solution every 24 hours from 24 hours to 120 hours. The amount of ions dissolved therein was quantitatively analyzed by ICP emission spectrometry, and the elution rate of the anticorrosive component from the fine particles was measured. The results are shown in Table 2.

実験No.2(溶出速度の影響)
金属板として、板厚が0.8mm、めっき付着量が片面45g/m2ずつの溶融亜鉛めっき鋼板を用いた。このめっき鋼板の表裏面に、非クロメート系下地処理剤である日本パーカライジング社製の「CTE220」を、付着量が100mg/m2となるように塗装した。焼き付け条件は、到達板温100℃、加熱時間12秒、焼き付け時風速5m/秒とした。
Experiment No. 2 (Effect of dissolution rate)
As the metal plate, a hot dip galvanized steel plate having a plate thickness of 0.8 mm and a plating adhesion amount of 45 g / m 2 on one side was used. “CTE220” manufactured by Nihon Parkerizing Co., Ltd., which is a non-chromate base treatment agent, was applied to the front and back surfaces of this plated steel sheet so that the adhesion amount was 100 mg / m 2 . The baking conditions were an ultimate plate temperature of 100 ° C., a heating time of 12 seconds, and a wind speed during baking of 5 m / second.

ベース樹脂(「バイロン(登録商標)300」:東洋紡績社製の有機溶剤可溶型ポリエステル樹脂:Tg7℃:分子量(Mn)23×103)57部、架橋剤として、メラミン樹脂(「サイメル(登録商標)325」:サイテック社製)25部と、エポキシ樹脂(「jER(登録商標)1001」(ジャパンエポキシレジン社製)3部、体質顔料として、二酸化チタン(「JR−603」:テイカ社製:平均粒子径0.28μm)14.5部と、シリカ系クレー(「クレー1号」:丸尾カルシウム社製)0.5部をよく混合した。この混合物の固形分100部に対して、表3,4に示した徐放性防錆微粒子を20部配合して、下塗り塗膜用樹脂組成物を調製した。 Base resin ("Byron (registered trademark) 300": 57 parts of organic solvent-soluble polyester resin manufactured by Toyobo Co., Ltd .: Tg 7 ° C .: molecular weight (Mn) 23 × 10 3 ), and melamine resin (“Cymel ( (Registered trademark) 325 ": made by Cytec Co., Ltd.) 25 parts, epoxy resin (" jER (registered trademark) 1001 "(produced by Japan Epoxy Resin Co., Ltd.), 3 parts, titanium dioxide (" JR-603 ": Teika Corporation) Product: 14.5 parts of average particle size 0.28 μm) and 0.5 part of silica-based clay (“Clay No. 1” manufactured by Maruo Calcium Co., Ltd.) were mixed well. 20 parts of the sustained release rust preventive fine particles shown in Tables 3 and 4 were blended to prepare a resin composition for an undercoat coating film.

上記下地処理後の金属板の片面に、この下塗り塗膜用樹脂組成物を、乾燥後の厚みが10μmとなるようにバーコート塗装を行った。焼き付け条件は、到達板温210℃、乾燥時間50秒、焼き付け時風速5m/秒とした。   The undercoat film resin composition was bar-coated on one side of the metal plate after the base treatment so that the thickness after drying was 10 μm. The baking conditions were an ultimate plate temperature of 210 ° C., a drying time of 50 seconds, and a baking wind speed of 5 m / second.

ポリエステル・メラミン系塗料(「FLC5000」:日本ファインコーティングス社製)100部(固形分)に対し、二酸化チタン(「JR−603」:テイカ社製:平均粒子径0.28μm)15部、シリカ系クレー(「クレー1号」:丸尾カルシウム社製)50部と、表3,4に示した徐放性防錆微粒子を20部添加して、上塗り塗膜用樹脂組成物を調製した。   15 parts of titanium dioxide ("JR-603": manufactured by Teika Co., Ltd .: average particle size 0.28 μm) per 100 parts (solid content) of polyester / melamine paint ("FLC5000": manufactured by Nihon Fine Coatings), silica 50 parts of clay (“Clay No. 1” manufactured by Maruo Calcium Co., Ltd.) and 20 parts of sustained-release rust preventive fine particles shown in Tables 3 and 4 were added to prepare a resin composition for a top coat film.

下塗り塗膜形成後の板の両面に、この上塗り塗膜用樹脂組成物を、乾燥後の厚みが17μmとなるようにバーコート塗装を行った。焼き付け条件は、到達板温210℃、乾燥時間50秒、焼き付け時風速:5m/秒とした。下塗り塗膜と上塗り塗膜が形成された面の評価結果を表3に示した。   Bar coating was performed on both surfaces of the plate after the formation of the undercoat coating film so that the thickness after drying of the resin composition for an overcoating film was 17 μm. The baking conditions were an ultimate plate temperature of 210 ° C., a drying time of 50 seconds, and a wind speed during baking of 5 m / second. Table 3 shows the evaluation results of the surface on which the undercoat film and the topcoat film were formed.

なお、下塗り塗膜を形成せずに、下地処理後の金属板の両面に上塗り塗膜用樹脂組成物を塗布した樹脂塗装金属板も上記と同様に製造した。評価結果を表4に示した。   In addition, the resin coating metal plate which apply | coated the resin composition for top coat films on both surfaces of the metal plate after base treatment without forming an undercoat coating film was also manufactured similarly to the above. The evaluation results are shown in Table 4.

実験No.3(徐放性防錆微粒子の平均粒子径の影響)
徐放性防錆微粒子Aを作る際に、中空多孔質シリカ微粒子の平均粒子径を変えることにより、平均粒子径が0.5〜20μmの徐放性防錆微粒子を製造した。それぞれの徐放性防錆微粒子を、実験No.2と同様に、20部ずつ下塗り塗膜用樹脂組成物と上塗り塗膜用樹脂組成物に配合し、下塗り塗膜と上塗り塗膜が形成された樹脂塗装金属板を製造した。評価結果を表5に示した。なお、比較例3は、徐放性防錆微粒子を20部使用するのに変えて、中空多孔質シリカ微粒子と複合化されていない酸化マグネシウム(「スターマグL−10」:神島化学工業社製)を10部用いた例である。
Experiment No. 3 (Effect of average particle size of sustained-release antirust fine particles)
When the sustained-release rust-preventing fine particles A were produced, by changing the average particle size of the hollow porous silica fine particles, sustained-release rust-proof fine particles having an average particle size of 0.5 to 20 μm were produced. Each sustained-release rust-preventing fine particle was subjected to Experiment No. In the same manner as in No. 2, 20 parts of the resin composition for the undercoat film and the resin composition for the topcoat film were blended to produce a resin-coated metal plate on which the undercoat film and the topcoat film were formed. The evaluation results are shown in Table 5. In addition, the comparative example 3 changed to using 20 parts of sustained-release antirust fine particles, and magnesium oxide which is not compounded with the hollow porous silica fine particles ("Starmag L-10": manufactured by Kamishima Chemical Co., Ltd.) Is an example using 10 parts.

実験No.4(徐放性防錆微粒子の添加量の影響)
徐放性防錆微粒子Aの添加量を表6,7に示したように変更した以外は実験No.2と同様にして、下塗り塗膜と上塗り塗膜が形成された樹脂塗装金属板(表6)と、上塗り塗膜のみが形成された樹脂塗装金属板(表7)を製造した。評価結果を表6,7に示した。
Experiment No. 4 (Effect of added amount of sustained-release antirust fine particles)
Except for changing the addition amount of the sustained-release rust-preventing fine particles A as shown in Tables 6 and 7, Experiment No. In the same manner as in Example 2, a resin-coated metal plate (Table 6) on which an undercoat film and a topcoat film were formed, and a resin-coated metal plate (Table 7) on which only a topcoat film was formed were produced. The evaluation results are shown in Tables 6 and 7.

実験No.5(徐放性防錆微粒子の種類の影響)
徐放性防錆微粒子の種類を表8,9に示したように変更した以外は実験No.2と同様にして、下塗り塗膜と上塗り塗膜が形成された樹脂塗装金属板(表8)と、上塗り塗膜のみが形成された樹脂塗装金属板(表9)を製造した。評価結果を表8,9に示した。
Experiment No. 5 (Influence of the type of sustained-release anticorrosive fine particles)
Except for changing the kind of sustained-release rust-preventing fine particles as shown in Tables 8 and 9, the experiment No. In the same manner as in Example 2, a resin-coated metal plate (Table 8) on which an undercoat film and a topcoat film were formed, and a resin-coated metal plate (Table 9) on which only a topcoat film was formed were produced. The evaluation results are shown in Tables 8 and 9.

実験No.6(徐放性防錆微粒子の種類の影響)
徐放性防錆微粒子の種類を表10,11に示したように変更した以外は実験No.2と同様にして、下塗り塗膜と上塗り塗膜が形成された樹脂塗装金属板(表10)と、上塗り塗膜のみが形成された樹脂塗装金属板(表11)を製造した。評価結果を表10,11に示した。
Experiment No. 6 (Influence of the type of sustained-release anticorrosive fine particles)
Except for changing the kind of sustained-release rust-preventing fine particles as shown in Tables 10 and 11, Experiment No. In the same manner as in No. 2, a resin-coated metal plate (Table 10) on which an undercoat film and a topcoat film were formed and a resin-coated metal plate (Table 11) on which only an upper coat film was formed were produced. The evaluation results are shown in Tables 10 and 11.

実験No.7(非徐放性防錆顔料の影響)
実験No.2で調製した下塗り塗膜用樹脂組成物の100部に対し、さらに防錆顔料として、表12に示した量の酸化マグネシウム(「スターマグL−10」:神島化学工業社製)を追加添加した以外は実験No.2と同様にして、下塗り塗膜と上塗り塗膜が形成された樹脂塗装金属板を製造した。従って、表12の溶出速度の測定の際の溶出イオン量には、追加添加した酸化マグネシウムの溶出分も加わっていることになる。評価結果を表12に示した。
Experiment No. 7 (Influence of non-sustained-release antirust pigment)
Experiment No. In addition to the 100 parts of the resin composition for the undercoat coating film prepared in 2, an amount of magnesium oxide ("Starmag L-10" manufactured by Kamishima Chemical Industry Co., Ltd.) in the amount shown in Table 12 was additionally added as a rust preventive pigment. Except for Experiment No. In the same manner as in Example 2, a resin-coated metal plate on which an undercoat film and an overcoat film were formed was produced. Therefore, the elution amount of magnesium oxide additionally added is added to the elution ion amount in the measurement of the elution rate in Table 12. The evaluation results are shown in Table 12.

人工雨水滴下試験の測定方法の説明図である。It is explanatory drawing of the measuring method of an artificial rainwater dropping test.

Claims (6)

非クロム系下地処理皮膜の上に下塗り塗膜および/または上塗り塗膜が形成された非クロム系樹脂塗装金属板であって、
この下塗り塗膜および/または上塗り塗膜は、多孔質無機微粒子と金属化合物系防錆顔料とが複合化された平均粒子径が1〜10μmである徐放性防錆微粒子を、徐放性防錆微粒子以外の塗膜成分100質量部に対し、5〜40質量部含有し、
樹脂塗装金属板に1mm×1mmのマス目を100個刻んだ後、40℃の炭酸塩pH標準液へ浸漬したときに、上記防錆顔料から溶出する金属イオンの溶出速度が0.001〜1.0mg/l・m2・hrであることを特徴とする端面耐食性に優れた非クロム系樹脂塗装金属板。
A non-chromium resin-coated metal plate in which an undercoat film and / or a topcoat film is formed on a non-chromium base treatment film,
This undercoat and / or topcoat is formed from sustained release rust-preventing fine particles having an average particle size of 1 to 10 μm , which is a composite of porous inorganic fine particles and metal compound-based rust preventive pigments. Containing 5 to 40 parts by mass with respect to 100 parts by mass of coating film components other than rust fine particles,
When 100 squares of 1 mm × 1 mm are cut on a resin-coated metal plate and then immersed in a 40 ° C. carbonate pH standard solution, the elution rate of metal ions eluted from the rust preventive pigment is 0.001 to 1. A non-chromium resin-coated metal plate having excellent end surface corrosion resistance, characterized by 0.0 mg / l · m 2 · hr.
徐放性防錆微粒子を、40℃のpH10の水酸化ナトリウム水溶液に浸漬したときの金属イオンの溶出速度が0.005〜0.5mg/l・g・hrである請求項1に記載の非クロム系樹脂塗装金属板。 2. The non-removal according to claim 1, wherein the elution rate of metal ions when the sustained-release rust-preventing fine particles are immersed in an aqueous sodium hydroxide solution having a pH of 10 at 40 ° C. is 0.005 to 0.5 mg / l · g · hr. Chrome resin coated metal plate. 徐放性防錆微粒子に複合化されている防錆顔料が、酸化マグネシウム、水酸化マグネシウム、リン酸マグネシウム、炭酸マグネシウム、塩化マグネシウム、蓚酸マグネシウム、硫酸マグネシウムおよびこれらの水和物よりなる群から選択される1種以上のマグネシウム化合物である請求項1または2に記載の非クロム系樹脂塗装金属板。 Rust preventive pigment compounded with sustained release rust preventive fine particles is selected from the group consisting of magnesium oxide, magnesium hydroxide, magnesium phosphate, magnesium carbonate, magnesium chloride, magnesium oxalate, magnesium sulfate and hydrates thereof chromium-resin coated metal sheet according to claim 1 or 2 is one or more magnesium compounds. 徐放性防錆微粒子に複合化されている防錆顔料が、トリポリリン酸アルミニウム、リン酸アルミニウムおよびリン酸アルミニウム二水和物よりなる群から選択される1種以上のアルミニウム化合物である請求項1または2に記載の非クロム系樹脂塗装金属板。 2. The rust preventive pigment compounded with sustained release rust preventive fine particles is one or more aluminum compounds selected from the group consisting of aluminum tripolyphosphate, aluminum phosphate and aluminum phosphate dihydrate. Or a non-chromium resin-coated metal plate according to 2; 徐放性防錆微粒子に用いられる多孔質無機微粒子が、多孔質シリカ微粒子である請求項1〜のいずれかに記載の非クロム系樹脂塗装金属板。 The non-chromium resin-coated metal plate according to any one of claims 1 to 4 , wherein the porous inorganic fine particles used for the sustained-release anticorrosive fine particles are porous silica fine particles. 下塗り塗膜および/または上塗り塗膜には、さらに、防錆顔料が含まれている請求項1〜のいずれかに記載の非クロム系樹脂塗装金属板。 The non-chromium resin-coated metal sheet according to any one of claims 1 to 5 , wherein the undercoat film and / or the topcoat film further contains a rust preventive pigment.
JP2007249237A 2007-09-26 2007-09-26 Non-chromium resin coated metal plate with excellent end face corrosion resistance Expired - Fee Related JP5080922B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007249237A JP5080922B2 (en) 2007-09-26 2007-09-26 Non-chromium resin coated metal plate with excellent end face corrosion resistance
TW097131568A TWI383887B (en) 2007-09-26 2008-08-19 Chromium-free resin-precoated metal sheet excellent in edge corrosion resistance
CN2008102134607A CN101397669B (en) 2007-09-26 2008-09-04 Non-chromium resin coating metal plate with excellent end face corrosion resistance
KR1020080094231A KR101031678B1 (en) 2007-09-26 2008-09-25 Chromium-free resin-precoated metal sheet excellent in edge corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007249237A JP5080922B2 (en) 2007-09-26 2007-09-26 Non-chromium resin coated metal plate with excellent end face corrosion resistance

Publications (2)

Publication Number Publication Date
JP2009078450A JP2009078450A (en) 2009-04-16
JP5080922B2 true JP5080922B2 (en) 2012-11-21

Family

ID=40516505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007249237A Expired - Fee Related JP5080922B2 (en) 2007-09-26 2007-09-26 Non-chromium resin coated metal plate with excellent end face corrosion resistance

Country Status (4)

Country Link
JP (1) JP5080922B2 (en)
KR (1) KR101031678B1 (en)
CN (1) CN101397669B (en)
TW (1) TWI383887B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5721696B2 (en) * 2010-03-11 2015-05-20 ライオン株式会社 Cosmetic composition
JP5490086B2 (en) * 2011-12-22 2014-05-14 Basfジャパン株式会社 Chromium-free coating composition and coating film obtained by coating the same
CN103287018B (en) * 2012-03-01 2016-04-06 株式会社神户制钢所 Pigmentary resin coated metal plate
JP7112350B2 (en) * 2018-03-29 2022-08-03 株式会社神戸製鋼所 Painted galvanized steel sheet
JP7166955B2 (en) * 2018-03-29 2022-11-08 株式会社神戸製鋼所 Painted galvanized steel sheet
JP7112349B2 (en) * 2018-03-29 2022-08-03 株式会社神戸製鋼所 Painted galvanized steel sheet
JP7235556B2 (en) * 2018-03-29 2023-03-08 株式会社神戸製鋼所 Painted galvanized steel sheet
CN108941960A (en) * 2018-09-10 2018-12-07 镇江朝阳机电科技有限公司 A kind of welding procedure of safety tongs base
WO2021163120A1 (en) 2020-02-10 2021-08-19 Synmatter Llc Multifunctional smart particles
AU2021203776A1 (en) * 2020-12-10 2022-06-30 Nippon Paint Industrial Coatings Co., Ltd. Corrosion-resistant coating composition and method for producing corrosion-resistant coating film
JP6838195B1 (en) * 2020-12-10 2021-03-03 日本ペイント・インダストリアルコ−ティングス株式会社 Method for manufacturing rust preventive paint composition and rust preventive coating film

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09504820A (en) * 1993-11-05 1997-05-13 ミネソタ マイニング アンド マニュファクチャリング カンパニー Anticorrosion adhesive composition and method for producing the same
JP2000167482A (en) * 1998-11-30 2000-06-20 Nippon Steel Corp Precoated metal sheet having excellent adhesion property with coating film
JP2001170556A (en) 1999-12-17 2001-06-26 Nkk Corp Coated steel sheet excellent in rust preventing property of cut end
JP3548979B2 (en) * 2000-07-12 2004-08-04 日新製鋼株式会社 Painted metal plate using non-chromium compound rust preventive pigment for coating film
JP3389191B2 (en) 2000-02-03 2003-03-24 日新製鋼株式会社 Painted steel plate using non-chromium compound rust preventive pigment for coating film
JP2002212765A (en) * 2001-01-10 2002-07-31 Kansai Paint Co Ltd Rust preventive and coating material composition
JP3875860B2 (en) * 2001-07-16 2007-01-31 Jfeスチール株式会社 Pre-coated steel sheet with excellent environmental harmony, processed part corrosion resistance and processed part adhesion
DE10202545A1 (en) * 2002-01-24 2003-08-07 Basf Coatings Ag Corrosion-inhibiting mixture and coating materials containing the corrosion-inhibiting mixture
JP2003251742A (en) 2002-03-01 2003-09-09 Yodogawa Steel Works Ltd Coated steel sheet of environment-compatible type
JP2003293162A (en) * 2002-04-08 2003-10-15 Nisshin Steel Co Ltd Coated plated steel sheet having excellent corrosion resistance
JP4066910B2 (en) 2003-07-10 2008-03-26 日鉄住金鋼板株式会社 Painted steel sheet not containing chromium
JP4410626B2 (en) * 2004-07-15 2010-02-03 株式会社神戸製鋼所 Surface-treated galvanized steel sheet with excellent end face corrosion resistance
JP4246689B2 (en) * 2004-11-19 2009-04-02 新日本製鐵株式会社 Pre-coated metal plate with excellent corrosion resistance

Also Published As

Publication number Publication date
CN101397669B (en) 2011-11-23
TWI383887B (en) 2013-02-01
JP2009078450A (en) 2009-04-16
KR20090032014A (en) 2009-03-31
CN101397669A (en) 2009-04-01
TW200927480A (en) 2009-07-01
KR101031678B1 (en) 2011-04-29

Similar Documents

Publication Publication Date Title
JP5080922B2 (en) Non-chromium resin coated metal plate with excellent end face corrosion resistance
JP5952485B2 (en) Aluminum-containing galvanized steel sheet and method for producing the same
JP5299531B2 (en) Chrome-free painted steel plate with excellent red rust resistance
JP4970773B2 (en) Metal surface treatment agent, metal material surface treatment method and surface treatment metal material
JP2011219791A (en) Coated plated steel material for concrete structure
JP5380033B2 (en) Painted metal material with excellent corrosion resistance and paint adhesion
JP4509425B2 (en) Paint surface treatment agent, surface treatment method, metal material, processing method, and metal product
JP5582109B2 (en) Clear coat steel plate with excellent red rust resistance
JP5398310B2 (en) Painted steel sheet and exterior member
JP4891271B2 (en) Manufacturing method of coated steel sheet with excellent corrosion resistance
JP4947025B2 (en) Chrome-free painted steel plate with excellent red rust resistance
JP5187221B2 (en) Chrome-free coated steel sheet and casing made using the same
JP5103096B2 (en) Painted steel sheet with excellent end face corrosion resistance
JP5124296B2 (en) Painted steel sheet with excellent corrosion resistance
JP3555604B2 (en) Surface treated steel sheet excellent in corrosion resistance and formability and method for producing the same
JP4283698B2 (en) Precoated steel sheet having excellent end face corrosion resistance and method for producing the same
JP5225212B2 (en) Painted steel sheet and exterior member using the same
JP2002225176A (en) Coated cold-rolled steel panel excellent in corrosion resistance
JPH0941168A (en) Zinc-inorganic based surface treated steel sheet excellent in flaw resistance and corrosion resistance
JP2006028582A (en) Surface-treated galvanized steel sheet having superior corrosion resistance at end face
TWI431158B (en) Non-chromate-type pre-coated steel plate with excellent red rust and corrosion resistance
JP3600759B2 (en) Phosphate-treated galvanized steel sheet excellent in workability and method for producing the same
JP5531986B2 (en) Chrome-free coated steel sheet and casing made using the same
JP2004027330A (en) Organic composite galvanized steel plate
JP2005305807A (en) Chromium-free coated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees