JP5080224B2 - Solvent resistant silicone rubber composition - Google Patents

Solvent resistant silicone rubber composition Download PDF

Info

Publication number
JP5080224B2
JP5080224B2 JP2007313117A JP2007313117A JP5080224B2 JP 5080224 B2 JP5080224 B2 JP 5080224B2 JP 2007313117 A JP2007313117 A JP 2007313117A JP 2007313117 A JP2007313117 A JP 2007313117A JP 5080224 B2 JP5080224 B2 JP 5080224B2
Authority
JP
Japan
Prior art keywords
silicone rubber
solvent
rubber composition
resistant silicone
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007313117A
Other languages
Japanese (ja)
Other versions
JP2009138038A (en
Inventor
正則 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momentive Performance Materials Japan LLC
Original Assignee
Momentive Performance Materials Japan LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Momentive Performance Materials Japan LLC filed Critical Momentive Performance Materials Japan LLC
Priority to JP2007313117A priority Critical patent/JP5080224B2/en
Publication of JP2009138038A publication Critical patent/JP2009138038A/en
Application granted granted Critical
Publication of JP5080224B2 publication Critical patent/JP5080224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、ポリオルガノシロキサンの付加反応によって硬化する耐溶剤性シリコーンゴム組成物、及び当該組成物の硬化物からなる耐溶剤性シリコーンゴム製品に関する。   The present invention relates to a solvent-resistant silicone rubber composition that is cured by an addition reaction of polyorganosiloxane, and a solvent-resistant silicone rubber product that includes a cured product of the composition.

シリコーンゴムは、耐熱性、耐寒性、耐候性、電気絶縁性に優れた材料として知られており、種々の産業分野において、O−リング、パッキン、ガスケット等の部品に使用されている。しかしながら、シリコーンゴムは、溶剤に浸漬すると膨張しやすく、耐溶剤性に劣るため、用途が制限されていた。特に、近年では、自動車のエンジンオイルは寒冷地でも使用可能なように低粘度化している。そのため、エンジンオイルと接触する部分にシリコーンゴムを用いるといっそう膨張しやすくなってきており、このことは、自動車産業におけるシリコーンゴムの使用の大きな障害になっていた。   Silicone rubber is known as a material excellent in heat resistance, cold resistance, weather resistance, and electrical insulation, and is used in parts such as O-rings, packings, and gaskets in various industrial fields. However, silicone rubber is easily expanded when immersed in a solvent and has poor solvent resistance, so its use has been limited. In particular, in recent years, engine oil for automobiles has been made to have a low viscosity so that it can be used even in cold regions. For this reason, the use of silicone rubber in the portion in contact with the engine oil has made it easier to expand, which has been a major obstacle to the use of silicone rubber in the automotive industry.

上記の欠点を克服するために、シリコーンゴムにペルフルオロアルキル含有基を導入し、フッ素化シリコーンゴムとすることが提案されている(例えば、特許文献1及び2参照)。しかしながら、フッ素化によって、非極性溶剤やエンジンオイルに対する耐性は得られるが、ケトン、低級アルコール等の極性溶剤には膨張しやすくなるという問題が新たに発生する。また、フッ素化シリコーンゴムは作業性に劣る上、環境の観点からも、フッ素のようなハロゲンの使用は好ましいとはいえない。   In order to overcome the above drawbacks, it has been proposed to introduce a perfluoroalkyl-containing group into a silicone rubber to obtain a fluorinated silicone rubber (see, for example, Patent Documents 1 and 2). However, although resistance to nonpolar solvents and engine oil can be obtained by fluorination, a new problem arises that polar solvents such as ketones and lower alcohols are likely to expand. Further, the fluorinated silicone rubber is inferior in workability, and from the viewpoint of the environment, it is not preferable to use a halogen such as fluorine.

一方、フッ素化せずに、シリコーンゴムの耐溶剤性を改善する試みとして、多孔性シリカの使用が提案されている(例えば、特許文献3参照)。しかしながら、十分な改善の効果は得られていない。   On the other hand, the use of porous silica has been proposed as an attempt to improve the solvent resistance of silicone rubber without fluorination (see, for example, Patent Document 3). However, a sufficient improvement effect has not been obtained.

特開昭63−205359号公報JP-A-63-205359 特開平5−186700号公報JP-A-5-186700 特開平7−3161号公報Japanese Patent Laid-Open No. 7-3161

本発明の課題は、加熱硬化により、良好な耐溶剤性を有する硬化物を形成する耐溶剤性シリコーンゴム組成物を提供することである。本発明のさらなる課題は、このような組成物の硬化物からなる耐溶剤性シリコーンゴム製品を提供することである。なお、本明細書において、耐溶剤性とは、極性溶剤、非極性溶剤及びエンジンオイル等の燃料油に接触した場合に、膨張しにくい性質をいう。   An object of the present invention is to provide a solvent-resistant silicone rubber composition that forms a cured product having good solvent resistance by heat curing. A further object of the present invention is to provide a solvent resistant silicone rubber product comprising a cured product of such a composition. In the present specification, the solvent resistance refers to a property that hardly expands when it comes into contact with a fuel oil such as a polar solvent, a nonpolar solvent, and engine oil.

本発明者は、上記の課題を解決するために研究を重ねた結果、ベースポリマーの直鎖状ポリオルガノシロキサンのシロキサン単位数の平均値を特定の範囲内とし、かつ特定の平均粒径及びアスペクト比を有するマイカ粉を併用した、シリコーンゴム組成物によって、その課題が解決されうることを見出し、本発明を完成するに至った。本発明のシリコーンゴム組成物においては、ベースポリマーのシロキサン単位数の平均値を特定の範囲内にすることで、硬化物の架橋点間の平均長さを小さくすることができ、これに加えて、層状構造のマイカを配合することで、硬化物の見掛け上の架橋密度を上げることができる。これらが相俟って、本発明のシリコーンゴム組成物の硬化物中への溶剤の侵入が防止され、耐溶剤性が発揮されると考えられる。   As a result of repeated studies to solve the above-mentioned problems, the present inventors have determined that the average value of the number of siloxane units of the linear polyorganosiloxane of the base polymer is within a specific range, and has a specific average particle diameter and aspect ratio. The present inventors have found that the problem can be solved by a silicone rubber composition using a mica powder having a ratio in combination, and have completed the present invention. In the silicone rubber composition of the present invention, by setting the average value of the number of siloxane units in the base polymer within a specific range, the average length between the crosslinking points of the cured product can be reduced. The apparent crosslink density of the cured product can be increased by blending mica having a layered structure. Together, these are considered to prevent solvent penetration into the cured product of the silicone rubber composition of the present invention and to exhibit solvent resistance.

すなわち、本発明は、(A)式(I):

(式中、
Rは、独立して、R又はRであり、Rのうち、少なくとも2個はRであり、
は、独立して、C−Cアルケニル基であり、
は、独立して、C−Cアルキル基又はフェニル基であり、
nは、平均値で10〜2000である)で示される直鎖状ポリオルガノシロキサン 100重量部;
(B)ケイ素原子に結合した水素原子を分子中に2個を越える数で有するポリオルガノハイドロジェンシロキサン (A)に存在するアルケニル基1個に対するケイ素原子に結合した水素原子の数が、0.5〜10.0になる量;
(C)白金族金属化合物 白金族金属原子を、(A)の量に対して0.1〜1,000重量ppm含有する量;並びに
(D)平均粒径1〜100μmであり、かつアスペクト比10〜500であるマイカ粉 20〜200重量部
を含む、耐溶剤性シリコーンゴム組成物に関し、当該組成物の硬化物からなる耐溶剤性シリコーンゴム製品に関する。
That is, the present invention provides (A) Formula (I):

(Where
R is independently R 1 or R 2 , of which at least two are R 1 ,
R 1 is independently a C 2 -C 6 alkenyl group,
R 2 is independently a C 1 -C 6 alkyl group or a phenyl group,
n is an average value of 10 to 2000) 100 parts by weight of a linear polyorganosiloxane represented by:
(B) Polyorganohydrogensiloxane having more than two hydrogen atoms bonded to silicon atoms in the molecule The number of hydrogen atoms bonded to silicon atoms for one alkenyl group present in (A) is 0.00. An amount of 5 to 10.0;
(C) Platinum group metal compound An amount containing 0.1 to 1,000 ppm by weight of platinum group metal atom relative to the amount of (A); and (D) An average particle diameter of 1 to 100 μm and an aspect ratio The present invention relates to a solvent-resistant silicone rubber composition containing 20 to 200 parts by weight of mica powder, which is 10 to 500, and relates to a solvent-resistant silicone rubber product made of a cured product of the composition.

本発明のシリコーンゴム組成物を加熱硬化させて、良好な耐溶剤性を有する硬化物を得ることができる。本発明のシリコーンゴム組成物の硬化物からなるシリコーンゴム製品は、優れた耐溶剤性を有し、かつシリコーンゴム本来の耐熱性、耐寒性、耐候性、電気絶縁性も期待できるため、有用性が高い。特に、エンジンオイル等の燃料油と接触しても膨張しにくいことから、自動車、車輌、船舶、飛行機や化学プラント等の部品に好適に用いることができる。   The silicone rubber composition of the present invention can be cured by heating to obtain a cured product having good solvent resistance. The silicone rubber product comprising the cured product of the silicone rubber composition of the present invention has excellent solvent resistance and can be expected to have the inherent heat resistance, cold resistance, weather resistance, and electrical insulation properties of the silicone rubber. Is expensive. In particular, since it does not easily expand even when it comes into contact with fuel oil such as engine oil, it can be suitably used for parts such as automobiles, vehicles, ships, airplanes and chemical plants.

本発明で用いられる(A)成分は、式(I):   The component (A) used in the present invention has the formula (I):

(式中、
Rは、独立して、R又はRであり、Rのうち、少なくとも2個はRであり、
は、独立して、C−Cアルケニル基であり、
は、独立して、C−Cアルキル基又はフェニル基であり、
nは、平均値で10〜2000である)で示される直鎖状ポリオルガノシロキサンである。
(Where
R is independently R 1 or R 2 , of which at least two are R 1 ,
R 1 is independently a C 2 -C 6 alkenyl group,
R 2 is independently a C 1 -C 6 alkyl group or a phenyl group,
n is an average value of 10 to 2000).

この(A)成分は、本発明の耐溶剤性シリコーンゴム組成物においてベースポリマーとなる成分であり、式(I)中のRと(B)成分中のヒドロシリル基との付加反応により、網状構造を形成して硬化物を形成することができる。(A)成分のシロキサン単位数の平均値nを10〜2000とすることにより、架橋点間の平均長さを小さくすることができる。nは、より好ましくは、20〜1500であり、さらに好ましくは30〜1200である。 This component (A) is a component that becomes a base polymer in the solvent-resistant silicone rubber composition of the present invention, and is formed into a network by an addition reaction between R 1 in the formula (I) and a hydrosilyl group in the component (B). A structure can be formed to form a cured product. By setting the average value n of the number of siloxane units of the component (A) to 10 to 2000, the average length between crosslinking points can be reduced. n is more preferably 20 to 1500, and still more preferably 30 to 1200.

式(I)において、RはC−Cアルケニル基であり、これらは、分岐状であっても、直鎖状であってもよく、ビニル、アリル、3−ブテニル、5−ヘキセニルなどが例示される。合成が容易で、組成物の流動性や、硬化物の耐熱性を損ねないという点から、ビニル基が最も好ましい。Rは、式(I)中に、少なくとも2個存在する。このとき、Rは分子中のどのシロキサン単位に存在してもよいが、良好な反応性を得るために、Rの少なくとも一部は、分子末端に存在することが好ましく、それぞれの末端に1個ずつ、合計2個のRが存在することがより好ましい。 In the formula (I), R 1 is a C 2 -C 6 alkenyl group, which may be branched or linear, such as vinyl, allyl, 3-butenyl, 5-hexenyl, etc. Is exemplified. A vinyl group is most preferred because it is easy to synthesize and does not impair the fluidity of the composition or the heat resistance of the cured product. There are at least two R 1 s in formula (I). At this time, R 1 may be present in any siloxane unit in the molecule, but in order to obtain good reactivity, at least a part of R 1 is preferably present at the molecular end, and at each end, More preferably, there are two R 1 , one by one.

式(I)において、RはC−Cアルキル基又はフェニル基である。C−Cアルキル基は、分岐状であっても、直鎖状であってもよく、メチル、エチル、プロピルなどが例示され、合成及び取扱いが容易で、熱的性質及び機械的性質の優れた硬化物を与えることから、メチル基が特に好ましい。 In the formula (I), R 2 is a C 1 -C 6 alkyl group or a phenyl group. The C 1 -C 6 alkyl group may be branched or linear, and examples thereof include methyl, ethyl, propyl, etc., which are easy to synthesize and handle, and have thermal and mechanical properties. A methyl group is particularly preferred because it provides an excellent cured product.

耐溶剤性向上の点から、(A)成分は、Rのうち、フェニル基が10〜50モル%であることが好ましく、より好ましくは30〜50モル%である。 From the viewpoint of improving solvent resistance, the component (A) in R 2 is preferably 10 to 50 mol%, more preferably 30 to 50 mol% of the phenyl group.

(A)成分は、23℃における粘度が0.01〜500Pa・sであることが好ましい。粘度がこの範囲にあると、組成物の流動性が良好で、優れた作業性を示す一方、優れた機械的強度、及び適度の弾性と硬さを示す硬化物を与えることができる。粘度は、シロキサン単位数の平均値n及びRの種類を変化させることにより調節できる。一般に、nが大きい程、粘度は高くなり、Rに導入されるフェニル基が多い程、粘度は高くなる。(A)成分の粘度は、より好ましくは、0.05〜100Pa・sであり、さらに好ましくは0.1〜20Pa・sである。 The component (A) preferably has a viscosity at 23 ° C. of 0.01 to 500 Pa · s. When the viscosity is in this range, the composition has good fluidity and exhibits excellent workability, while giving a cured product having excellent mechanical strength and moderate elasticity and hardness. The viscosity can be adjusted by varying the mean value n and the type of R 2 of the number of siloxane units. Generally, the larger n, the higher the viscosity, and the more phenyl groups introduced into R 2 , the higher the viscosity. (A) The viscosity of a component becomes like this. More preferably, it is 0.05-100 Pa.s, More preferably, it is 0.1-20 Pa.s.

本発明で用いられる(B)成分のポリオルガノハイドロジェンシロキサンは、分子中に含まれるヒドロシリル基が、(A)成分中のRとの間で付加反応することにより、(A)成分の架橋剤として機能するものである。そのような、架橋剤として機能する(B)成分は、硬化物を網状化するために、該付加反応に関与するケイ素原子に結合した水素原子を、分子中に2個を越える数、好ましくは3個以上有している。 In the polyorganohydrogensiloxane of the component (B) used in the present invention, the hydrosilyl group contained in the molecule undergoes an addition reaction with R 1 in the component (A), thereby cross-linking the component (A). It functions as an agent. Such a component (B) functioning as a crosslinking agent has more than two hydrogen atoms bonded to silicon atoms involved in the addition reaction in order to reticulate the cured product, preferably Have 3 or more.

(B)成分は、代表的には、一般式(II):
(RSiO(4−c−d)/2 (II)
(式中、
は、脂肪族不飽和炭素−炭素結合を含まない、非置換又は置換の1価の炭化水素基を表し;
cは、0〜2の整数であり;
dは、1又は2であり、ただし、c+dは1〜3の整数である)
で示される単位を、分子中に2個を越える数、好ましくは3個以上有する。
The component (B) is typically represented by the general formula (II):
(R 3 ) c H d SiO (4-cd) / 2 (II)
(Where
R 3 represents an unsubstituted or substituted monovalent hydrocarbon group not containing an aliphatic unsaturated carbon-carbon bond;
c is an integer from 0 to 2;
d is 1 or 2, provided that c + d is an integer of 1 to 3)
In the molecule, the number of units is more than 2, preferably 3 or more.

及び(B)成分の他のシロキサン単位のケイ素原子に結合した有機基としては、前述の(A)成分におけるRと同様のものが例示され、それらの中でも、合成が容易な点から、メチル基が最も好ましい。また、合成が容易なことから、dは1が好ましい。 Examples of the organic group bonded to the silicon atom of R 3 and the other siloxane unit of component (B) are the same as those of R 2 in component (A) described above, and among these, from the viewpoint of easy synthesis The methyl group is most preferred. Further, d is preferably 1 because synthesis is easy.

(B)成分におけるシロキサン骨格は、直鎖状、分岐状又は環状のいずれであってもよい。また、これらの混合物を用いてもよい。   The siloxane skeleton in the component (B) may be linear, branched or cyclic. Moreover, you may use these mixtures.

(B)成分の重合度は特に限定されないが、同一のケイ素原子に2個以上の水素原子が結合したポリオルガノハイドロジェンシロキサンは合成が困難なので、3個以上のシロキサン単位からなることが好ましく、硬化温度に加熱しても揮発せず、かつ流動性に優れて(A)成分と混合しやすいことから、シロキサン単位の数は、6〜200個がさらに好ましく、10〜150個が特に好ましい。   The degree of polymerization of the component (B) is not particularly limited, but a polyorganohydrogensiloxane in which two or more hydrogen atoms are bonded to the same silicon atom is difficult to synthesize, and therefore preferably comprises three or more siloxane units. The number of siloxane units is more preferably 6 to 200, and particularly preferably 10 to 150, since it does not volatilize even when heated to the curing temperature, and is excellent in fluidity and easily mixed with the component (A).

(B)成分の配合量は、優れた機械的性質を有する硬化物が得られることから、(A)成分中のR基に対する(B)成分中のケイ素原子に結合した水素原子の比(H/Vi)が、0.5〜10.0、好ましくは1.0〜5.0となるような量である。H/Viが0.5未満では、硬化物の機械的強度が不足し、10.0を越えると、硬化の際に発泡する傾向があり、硬化物の耐熱性が著しく悪化する。 The blending amount of the component (B) is a ratio of hydrogen atoms bonded to silicon atoms in the component (B) to R 1 groups in the component (A) because a cured product having excellent mechanical properties can be obtained ( H / Vi) is such an amount that it is 0.5 to 10.0, preferably 1.0 to 5.0. When H / Vi is less than 0.5, the mechanical strength of the cured product is insufficient, and when it exceeds 10.0, the cured product tends to foam and the heat resistance of the cured product is significantly deteriorated.

本発明で用いられる(C)成分の白金族金属化合物は、(A)成分中のRと(B)成分中のヒドロシリル基との間の付加反応を促進させるための触媒である。白金族金属化合物としては、白金、ロジウム、パラジウムのような白金族金属原子の化合物が用いられ、塩化白金酸、塩化白金酸とアルコールの反応生成物、白金−オレフィン錯体、白金−ビニルシロキサン錯体、白金−ケトン錯体、白金−ホスフィン錯体のような白金化合物;ロジウム−ホスフィン錯体、ロジウム−スルフィド錯体のようなロジウム化合物;パラジウム−ホスフィン錯体のようなパラジウム化合物などが例示される。 The platinum group metal compound of component (C) used in the present invention is a catalyst for promoting the addition reaction between R 1 in component (A) and the hydrosilyl group in component (B). As the platinum group metal compound, a compound of a platinum group metal atom such as platinum, rhodium, palladium is used, and chloroplatinic acid, a reaction product of chloroplatinic acid and an alcohol, a platinum-olefin complex, a platinum-vinylsiloxane complex, Examples include platinum compounds such as platinum-ketone complexes and platinum-phosphine complexes; rhodium compounds such as rhodium-phosphine complexes and rhodium-sulfide complexes; and palladium compounds such as palladium-phosphine complexes.

これらのうち、触媒活性が良好な点から、塩化白金酸とアルコールの反応生成物及び白金−ビニルシロキサン錯体が好ましく、短時間に硬化して接着性を発現する必要がある場合には、白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体及び白金−1,3,5,7−テトラビニル−1,3,5,7−テトラメチルシクロテトラシロキサンが好ましい。しかし、必要な硬化速度は、硬化物を設ける部位の形状や、それに伴って必要な作業時間によっても異なるので、(C)成分と硬化遅延剤との組合せで、任意に選択することができる。   Of these, the reaction product of chloroplatinic acid and alcohol and a platinum-vinylsiloxane complex are preferred because of their good catalytic activity. When it is necessary to cure in a short time and develop adhesiveness, platinum- 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex and platinum-1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane are preferred. However, the necessary curing speed varies depending on the shape of the site where the cured product is provided and the required working time, and therefore can be arbitrarily selected depending on the combination of the component (C) and the curing retarder.

(C)成分の配合量は、優れた硬化速度が得られることから、(A)成分と(B)成分の合計量に対して、白金族金属原子換算で通常0.1〜1,000重量ppmであり、好ましくは0.5〜200重量ppmである。0.1重量ppm未満では硬化速度が遅く、1,000重量ppmをこえても、それに見合う硬化速度の上昇が得られない。   (C) Since the compounding quantity of a component can obtain the outstanding hardening rate, it is 0.1-1,000 weight normally in conversion of a platinum group metal atom with respect to the total amount of (A) component and (B) component. ppm, preferably 0.5 to 200 ppm by weight. If it is less than 0.1 ppm by weight, the curing rate is slow, and even if it exceeds 1,000 ppm by weight, an increase in the curing rate commensurate with it cannot be obtained.

本発明で用いられる(D)成分は、(A)成分と相俟って、本発明のシリコーンゴム組成物の硬化物の耐溶剤性を向上させる成分である。(D)成分は、耐溶剤性向上の観点から、平均粒径は1〜100μmであり、アスペクト比は10〜500である。作業性の点から、平均粒径は1〜60μmであることが好ましく、溶剤への膨潤性抑制や作業性の点から、アスペクト比は、20〜250が好ましい。マイカは、一般に扁平な粉末であり、ここで、マイカ粉の平均粒径は、扁平面の最大径の平均値をいい、アスペクト比は、マイカ粉の長径と厚みの割合の値をいう。(D)成分としては、白雲母、金雲母、黒雲母のような天然マイカのほか、合成マイカを挙げることができる。不純物が少なく、硬化物たるゴム状弾性体に優れた機械的性質を与えることから、白雲母が好ましい。   (D) component used by this invention is a component which improves the solvent resistance of the hardened | cured material of the silicone rubber composition of this invention combined with (A) component. The component (D) has an average particle size of 1 to 100 μm and an aspect ratio of 10 to 500 from the viewpoint of improving solvent resistance. From the viewpoint of workability, the average particle diameter is preferably from 1 to 60 μm, and from the viewpoint of suppression of swelling to a solvent and workability, the aspect ratio is preferably from 20 to 250. Mica is generally a flat powder. Here, the average particle size of mica powder refers to the average value of the maximum diameter of the flat surface, and the aspect ratio refers to the value of the ratio of the long diameter and thickness of mica powder. Examples of the component (D) include natural mica such as muscovite, phlogopite, biotite, and synthetic mica. Mica is preferred because it has few impurities and gives excellent mechanical properties to the rubber-like elastic body as a cured product.

(D)成分の配合量は、硬化物に十分な耐溶剤性と適切な硬さを付与する点から、(A)成分100重量部に対して20〜200重量部であり、40〜200重量部が好ましい。   (D) The compounding quantity of component is 20-200 weight part with respect to 100 weight part of (A) component from the point which provides sufficient solvent resistance and appropriate hardness to hardened | cured material, and 40-200 weight Part is preferred.

本発明のシリコーンゴム組成物には、必要に応じて、(C)成分の触媒能を阻害しない範囲で、接着性付与剤を配合することができる。接着性付与剤としては、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピル(メチル)ジメトキシシランのような3−グリシドキシプロピル基含有アルコキシシラン類;2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチル(メチル)ジメトキシシランのような2−(3,4−エポキシシクロヘキシル)エチル基含有アルコキシシラン類;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2−メトキシエトキシ)シラン、メチルビニルジメトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、メチルアリルジメトキシシランのようなアルケニルアルコキシシラン類;3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピル(メチル)ジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−メタクリロキシプロピル(メチル)ジメトキシシランのような(メタ)アクリロキシプロピルアルコキシシラン類;ケイ素原子に結合した水素原子と、ケイ素原子に結合した下記一般式(III):   If necessary, the silicone rubber composition of the present invention can be blended with an adhesion-imparting agent as long as the catalytic ability of the component (C) is not impaired. Examples of the adhesion-imparting agent include 3-glycidoxypropyl group-containing alkoxy such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and 3-glycidoxypropyl (methyl) dimethoxysilane. Silanes; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl (methyl) dimethoxysilane Such 2- (3,4-epoxycyclohexyl) ethyl group-containing alkoxysilanes; vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, methylvinyldimethoxysilane, allyltrimethoxysilane, allyltri Ethoxy Alkenylalkoxysilanes such as methyl and allyldimethoxysilane; 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, 3-acryloxypropyl (methyl) dimethoxysilane, 3-methacryloxypropyltrimethoxy (Meth) acryloxypropylalkoxysilanes such as silane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropyl (methyl) dimethoxysilane; hydrogen atoms bonded to silicon atoms and the following general bonds bonded to silicon atoms Formula (III):

(式中、Qは、ケイ素原子とエステル結合の間に2個以上の炭素原子を有する炭素鎖を形成する、直鎖状又は分岐状のアルキレン基を表し;Qは、酸素原子と側鎖のケイ素原子の間に3個以上の炭素原子を有する炭素鎖を形成する、直鎖状又は分岐状のアルキレン基を表し;Rは、炭素数1〜6の非置換又は置換のアルキル基を表す)で示される側鎖とを有する有機ケイ素化合物;アルミニウムトリエトキシド、アルミニウムトリプロポキシド、アルミニウムトリブトキシドのようなアルミニウムアルコキシド;チタンテトラエトキシド、チタンテトラプロポキシド、チタンテトライソプロポキシド、チタンテトラブトキシド、チタンテトライソブトキシド、チタンテトライソプロペニルオキシドのようなチタンアルコキシド;ジルコニウムテトライソプロポキシド、ジルコニウムテトラブトキシドのようなジルコニウムアルコキシド;マレイン酸ジアリル、トリアリルイソシアナートのような極性基含有有機化合物などが例示される。 (Wherein Q 1 represents a linear or branched alkylene group forming a carbon chain having two or more carbon atoms between a silicon atom and an ester bond; Q 2 represents an oxygen atom and a side. Represents a linear or branched alkylene group which forms a carbon chain having 3 or more carbon atoms between silicon atoms in the chain; R 4 represents an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms; An aluminum silicon alkoxide such as aluminum triethoxide, aluminum tripropoxide, aluminum tributoxide; titanium tetraethoxide, titanium tetrapropoxide, titanium tetraisopropoxide, Titanium alkoxides such as titanium tetrabutoxide, titanium tetraisobutoxide, titanium tetraisopropenyl oxide; Tetra isopropoxide, zirconium alkoxides such as zirconium tetrabutoxide; diallyl maleate, polar group-containing organic compounds such as triallyl isocyanate, and the like are exemplified.

上記一般式(III)で示される側鎖において、Qとしては、エチレン、トリメチレン、2−メチルエチレン、テトラメチレンなどのアルキレン基が例示され、合成及び取扱いが容易なことから、エチレン基及び2−メチルエチレン基が好ましい。Qとしては、トリメチレン、2−メチルトリメチレン、テトラメチレンなどのアルキレン基が例示され、合成及び取扱いが容易なことから、トリメチレン基が好ましい。Rとしては、メチル、エチル、プロピル、イソプロピル、ブチルなどのアルキル基;及び2−メトキシエチル等のアルコキシで置換されたアルキル基が例示され、良好な接着性を与え、かつ加水分解によって生じるアルコールが揮発しやすいことから、メチル基及びエチル基が好ましく、メチル基が特に好ましい。このような側鎖を有する有機ケイ素化合物として、式(IV): In the side chain represented by the above general formula (III), Q 1 is exemplified by an alkylene group such as ethylene, trimethylene, 2-methylethylene, tetramethylene, and the like. -A methylethylene group is preferred. Examples of Q 2 include an alkylene group such as trimethylene, 2-methyltrimethylene, and tetramethylene, and a trimethylene group is preferable because synthesis and handling are easy. Examples of R 4 include alkyl groups such as methyl, ethyl, propyl, isopropyl, and butyl; and alkyl groups substituted with alkoxy such as 2-methoxyethyl, and alcohols that give good adhesion and are generated by hydrolysis Are easy to volatilize, methyl group and ethyl group are preferable, and methyl group is particularly preferable. As an organosilicon compound having such a side chain, formula (IV):

で示される環状シロキサン化合物が例示される。接着性付与剤の配合量は、接着性付与剤の種類及び基材によっても異なるが、(A)成分100重量部に対して通常0.5〜20重量部の範囲であり、特に接着性の観点から1〜20重量部が好ましく、2〜15重量部がさらに好ましい。 The cyclic siloxane compound shown by these is illustrated. The compounding amount of the adhesion-imparting agent varies depending on the kind of the adhesion-imparting agent and the substrate, but is usually in the range of 0.5 to 20 parts by weight with respect to 100 parts by weight of the component (A), and particularly the adhesiveness. From the viewpoint, 1 to 20 parts by weight is preferable, and 2 to 15 parts by weight is more preferable.

本発明のシリコーンゴム組成物の保存性や作業性を改善するために、硬化抑制剤を配合することができる。上記マレイン酸ジアリルは、接着性付与剤としてだけでなく、硬化抑制剤としても有効である。そのほか、硬化抑制剤としては、3−メチル−1−ブチン−3−オール、3−メチル−1−ペンチン−3−オール、3,5−ジメチル−1−ヘキシン−3−オール、1−エチニル−1−シクロヘキサン−1−オールのようなアセチレンアルコール類が例示される。   In order to improve the storage stability and workability of the silicone rubber composition of the present invention, a curing inhibitor can be blended. The diallyl maleate is effective not only as an adhesion-imparting agent but also as a curing inhibitor. In addition, as the curing inhibitor, 3-methyl-1-butyn-3-ol, 3-methyl-1-pentyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, 1-ethynyl- Acetylene alcohols such as 1-cyclohexane-1-ol are exemplified.

本発明のシリコーンゴム組成物は、硬化して、耐溶剤性に優れた硬化物を形成するが、硬化前の段階で適度の流動性を与え、硬化物に、その用途に応じて要求される高い機械的強度を付与するために、(D)成分以外にも無機質充填剤を添加することができる。無機質充填剤としては、平均粒径0.1μm未満、比表面積30mm2/g以上の補強性充填剤;及び平均粒径0.1〜50μmの非補強性充填剤が挙げられる。補強性充填剤としては、煙霧質シリカ、アークシリカのような乾式法シリカ;及び沈殿シリカのような湿式法シリカなどが例示され、これらはそのまま用いてもよく、ヘキサメチルジシラザンのような疎水化剤で表面処理を行って用いてもよい。非補強性充填剤としては、けいそう土、粉砕石英、溶融石英、酸化チタン、酸化アルミニウム、酸化亜鉛、アルミノケイ酸、炭酸カルシウム、有機酸表面処理炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、ケイ酸カルシウム、タルク、酸化第二鉄などが例示され、押出し作業性と、硬化物に必要な物性に応じて選択される。また、目的に応じてカーボンブラックのような導電性充填剤を配合してもよい。 The silicone rubber composition of the present invention is cured to form a cured product excellent in solvent resistance, but gives appropriate fluidity at the stage before curing, and the cured product is required depending on its use. In order to impart high mechanical strength, an inorganic filler can be added in addition to the component (D). Examples of the inorganic filler include reinforcing fillers having an average particle size of less than 0.1 μm and a specific surface area of 30 mm 2 / g or more; and non-reinforcing fillers having an average particle size of 0.1 to 50 μm. Examples of reinforcing fillers include dry silica such as fumed silica and arc silica; and wet silica such as precipitated silica. These may be used as they are, and hydrophobic such as hexamethyldisilazane. You may use it after surface-treating with an agent. Non-reinforcing fillers include diatomaceous earth, ground quartz, fused quartz, titanium oxide, aluminum oxide, zinc oxide, aluminosilicate, calcium carbonate, organic acid surface treated calcium carbonate, magnesium carbonate, zinc carbonate, calcium silicate, Examples include talc and ferric oxide, which are selected according to the extrusion workability and the physical properties required for the cured product. Further, a conductive filler such as carbon black may be blended depending on the purpose.

さらに、本発明のシリコーンゴム組成物に、目的に応じて、顔料、チクソトロピー性付与剤、押出し作業性を改良するための粘度調整剤、紫外線防止剤、防かび剤、耐熱性向上剤、難燃化剤など、各種の添加剤を加えてもよい。また、場合によっては、トルエン、キシレンのような有機溶媒に溶解ないし分散させた形態としてもよい。   Further, according to the purpose, the silicone rubber composition of the present invention includes a pigment, a thixotropy imparting agent, a viscosity modifier for improving extrusion workability, an ultraviolet ray inhibitor, a fungicide, a heat resistance improver, a flame retardant. Various additives such as an agent may be added. In some cases, it may be dissolved or dispersed in an organic solvent such as toluene or xylene.

本発明のシリコーンゴム組成物は、(A)〜(D)成分、及びさらに必要に応じて配合される他の成分を、万能混練機、ニーダーなどの混合手段によって均一に混練して調製することができる。また、長期間安定して貯蔵するために、(B)成分と(C)成分が別個の予備配合物に含まれるように、適宜、2個の予備配合物を調製して保存しておき、使用直前に定量混合器のミキシングヘッドのような混合手段によって均一に混合してシリコーンゴム組成物を調製し、減圧で脱泡して使用に供してもよい。   The silicone rubber composition of the present invention is prepared by uniformly kneading the components (A) to (D) and other components blended as necessary with a mixing means such as a universal kneader or a kneader. Can do. Moreover, in order to stably store for a long period of time, two pre-blends are appropriately prepared and stored so that the (B) component and the (C) component are included in separate pre-blends, Immediately before use, the silicone rubber composition may be prepared by mixing uniformly by a mixing means such as a mixing head of a quantitative mixer, and defoamed under reduced pressure for use.

本発明のシリコーンゴム組成物は、加熱硬化させて、ゴム状弾性体である硬化物を得ることができる。硬化物の形成方法は、特に限定されず、例えば、適切な型中に、本発明のシリコーンゴム組成物を注入した後、加熱硬化させて硬化物を形成することができる。あるいは適切な基材の上に、本発明のシリコーンゴム組成物を塗布し、加熱硬化させて硬化物を形成してもよい。本発明のシリコーンゴム組成物の硬化条件は、主に(C)成分と反応抑制剤の種類及び添加量によって、室温から250℃の間の温度で任意に設定できる。加熱時間は、120分以下とすることが好ましく、より好ましくは60分以下、さらに好ましくは30分以下である。しかしながら、部材の大きさや加熱炉の能力によって、硬化条件は適宜調整することができる。   The silicone rubber composition of the present invention can be cured by heating to obtain a cured product that is a rubber-like elastic body. The formation method of hardened | cured material is not specifically limited, For example, after inject | pouring the silicone rubber composition of this invention in a suitable type | mold, it can be heat-hardened and hardened | cured material can be formed. Alternatively, the silicone rubber composition of the present invention may be applied on an appropriate substrate and cured by heating to form a cured product. The curing conditions of the silicone rubber composition of the present invention can be arbitrarily set at a temperature between room temperature and 250 ° C. depending mainly on the type and amount of the component (C) and reaction inhibitor. The heating time is preferably 120 minutes or less, more preferably 60 minutes or less, and even more preferably 30 minutes or less. However, the curing conditions can be appropriately adjusted depending on the size of the member and the capacity of the heating furnace.

本発明のシリコーンゴム組成物の硬化物からなるシリコーンゴム製品は、優れた耐溶剤性を有し、かつシリコーンゴム本来の耐熱性、耐寒性、耐候性、電気絶縁性も期待できるため、有用性が高い。特に、エンジンオイル等の燃料油と接触しても膨張しにくいため、自動車、車輌、船舶、飛行機や化学プラント等の部品に好適に用いることができる。具体的には、O−リング、パッキン、ガスケット等のシール材やオイルタンクの内貼り材、電気電子基板へのコーティング材、電子部品のポッティング材への応用が挙げられる。   The silicone rubber product comprising the cured product of the silicone rubber composition of the present invention has excellent solvent resistance and can be expected to have the inherent heat resistance, cold resistance, weather resistance, and electrical insulation properties of the silicone rubber. Is expensive. In particular, since it does not easily expand even when it comes into contact with fuel oil such as engine oil, it can be suitably used for parts such as automobiles, vehicles, ships, airplanes and chemical plants. Specific examples include application to sealing materials such as O-rings, packings, gaskets, internal materials for oil tanks, coating materials for electric / electronic substrates, and potting materials for electronic components.

以下、実施例及び比較例によって、本発明をさらに詳細に説明する。これらの例において、部は重量部を示し、粘度は23℃における粘度を示す。本発明は、これらの実施例によって限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. In these examples, parts indicate parts by weight, and the viscosity indicates the viscosity at 23 ° C. The present invention is not limited by these examples.

実施例及び比較例に、(A)及び(B)成分として、下記のポリシロキサンを用いた。以下、シロキサン単位を、次のような記号で示す。単位式において、中間シロキサン単位は単に単位数を示すものであり、複数の種類の中間シロキサン単位を含む場合、中間シロキサン単位はランダムに配列されている。
単位: (CH3)2HSiO1/2
単位: (CH3)2(CH2=CH)SiO1/2
D単位: −(CH3)2SiO−
ff単位: −(CSiO−
Q単位: SiO4/2(4官能性)
A−1:両末端がM単位で封鎖され、中間単位がD単位からなり、23℃における粘度が3Pa・sである直鎖状ポリメチルビニルシロキサン(シロキサン単位数の平均値550);
A−2:両末端がM単位で封鎖され、中間単位がD単位60モル%とDff単位40モル%からなり、粘度が3Pa・sである直鎖状ポリメチルビニルフェニルシロキサン(シロキサン単位の平均値30);
B−1:単位式M で示される分岐状ポリメチルハイドロジェンシロキサン
In Examples and Comparative Examples, the following polysiloxanes were used as the components (A) and (B). Hereinafter, siloxane units are indicated by the following symbols. In the unit formula, the intermediate siloxane unit simply indicates the number of units. When a plurality of types of intermediate siloxane units are included, the intermediate siloxane units are randomly arranged.
MH unit: (CH 3 ) 2 HSiO 1/2
M V unit: (CH 3) 2 (CH 2 = CH) SiO 1/2 -
D unit: - (CH 3) 2 SiO-
D ff Unit: - (C 6 H 5) 2 SiO-
Q unit: SiO 4/2 (tetrafunctional)
A-1: both terminals blocked with M V unit, becomes the intermediate unit from D units, linear polymethylvinylsiloxane having a viscosity at 23 ° C. is at 3 Pa · s (mean 550 number siloxane units);
A-2: both terminals blocked with M V unit, consists 60 mol% intermediate units D units and D ff unit 40 mol%, the linear polymethyl vinyl siloxanes (siloxane units viscosity is 3 Pa · s Average value 30);
B-1: Branched polymethylhydrogensiloxane represented by the unit formula MH 8 Q 4

実施例及び比較例に、(C)成分として、下記の白金錯体を用いた。
C−1:塩化白金酸−ビニルテトラマー錯体(白金原子換算2重量%)。
In Examples and Comparative Examples, the following platinum complex was used as the component (C).
C-1: Chloroplatinic acid-vinyltetramer complex (2% by weight in terms of platinum atom).

実施例及び比較例に、下記の充填剤を用いた。
D−1:平均粒径5μm、アスペクト比65の白雲母粉
D−2:平均粒径22μm、アスペクト比70の白雲母粉
D−3:平均粒径50μm、アスペクト比80の白雲母粉
D−4:平均粒径2μm、不定形の石英粉
The following fillers were used in Examples and Comparative Examples.
D-1: muscovite powder having an average particle diameter of 5 μm and an aspect ratio of 65 D-2: muscovite powder having an average particle diameter of 22 μm and an aspect ratio of 70 D-3: muscovite powder having an average particle diameter of 50 μm and an aspect ratio of 80 D- 4: Average particle size of 2 μm, amorphous quartz powder

硬化抑制剤として、以下を用いた。
E−1:1−エチニル−1−シクロヘキサノール
The following was used as a curing inhibitor.
E-1: 1-ethynyl-1-cyclohexanol

実施例1〜6及び比較例1
(予備配合物Iの調製)
撹拌装置を付した容器に、表1に示すA−1〜A−2の量の半分と、表1に示すD−1〜D−4の量の半分とを配合し、ついで表1に示すC−1及びE−1の全量を添加し、均一になるまで混合して、予備配合物Iを調製した。
Examples 1 to 6 and Comparative Example 1
(Preparation of Preliminary Formula I)
In a container equipped with a stirrer, half of the amount of A-1 to A-2 shown in Table 1 and half of the amount of D-1 to D-4 shown in Table 1 are blended, and then shown in Table 1. Premix I was prepared by adding all of C-1 and E-1 and mixing until uniform.

(予備配合物IIの調製)
同様の装置に、A−1〜A−2の残りの量と、表1に示すB−1の全量と、D−1〜D−4の残りの量を配合し、均一になるまで混合して、予備配合物IIを調製した。
(Preparation II preparation)
In the same apparatus, mix the remaining amount of A-1 to A-2, the total amount of B-1 shown in Table 1, and the remaining amount of D-1 to D-4, and mix until uniform. Preformulation II was prepared.

(組成物の調製及びシリコーンゴムシートの作製)
定量混合機の2個の容器に、予備配合物I及び予備配合物IIをそれぞれ仕込み、ミキシングへッドに等量の両予備配合物を供給して、均質に混合し、減圧下で脱泡してシリコーンゴム組成物を調製した。ついでシリコーンゴム組成物を、表面にポリテトラフルオロエチレン処理を施したステンレス鋼製金型に注型し、150℃で30分加熱して硬化させることにより、厚さ1.0mmのシリコーンゴムシートを作製した。
(Preparation of composition and production of silicone rubber sheet)
Preliminary formulation I and preliminary formulation II are charged in two containers of a quantitative mixer, respectively, and equal amounts of both preliminary formulations are supplied to the mixing head, mixed uniformly, and degassed under reduced pressure. Thus, a silicone rubber composition was prepared. Next, the silicone rubber composition was poured into a stainless steel mold having a polytetrafluoroethylene treatment on the surface and cured by heating at 150 ° C. for 30 minutes to obtain a silicone rubber sheet having a thickness of 1.0 mm. Produced.

実施例1〜2、比較例1のシリコーンゴムシート(厚さ1.0mm)を、JISK6249に準じて2号ダンベルで打ち抜き、各試験片を作成した後、23℃でキシレン、n−ヘキサン、2−プロパノール又はアセトン中に浸漬した。72時間後に各試験片を取り出し、浸漬前後の体積変化率を測定した。測定結果を表1に示す。また、比較例1、実施例2及び5について、キシレン及びn−ヘキサンへの浸漬前後の写真を示す。   The silicone rubber sheets (thickness: 1.0 mm) of Examples 1 and 2 and Comparative Example 1 were punched out with a No. 2 dumbbell according to JISK6249 to prepare each test piece, and then xylene, n-hexane, 2 -Soaked in propanol or acetone. Each test piece was taken out after 72 hours, and the volume change rate before and after immersion was measured. The measurement results are shown in Table 1. Moreover, about the comparative example 1 and Example 2 and 5, the photograph before and behind immersion in xylene and n-hexane is shown.

表1に示されるように、実施例1〜6は、比較例1に比べて体積変化率が小さく、優れた耐溶剤性を示した。実施例1〜3と実施例4〜6との対比から、同じ種類のマイカを使用した場合には、Rにフェニル基が導入されたベースポリマーを使用することにより、体積変化率の抑制効果を一層向上できることがわかった。 As Table 1 shows, Examples 1-6 had a small volume change rate compared with the comparative example 1, and showed the outstanding solvent resistance. From comparison of Examples 1-3 with Examples 4-6, when using the same type of mica is that by using a base polymer phenyl group is introduced into R 2, the effect of suppressing the volume change rate It was found that can be further improved.

本発明のシリコーンゴム組成物を加熱硬化させて、良好な耐溶剤性を有する硬化物を得ることができる。本発明のシリコーンゴム組成物の硬化物からなるシリコーンゴム製品は、優れた耐溶剤性を有し、かつシリコーンゴム本来の耐熱性、耐寒性、耐候性、電気絶縁性も期待できるため、有用性が高い。特に、エンジンオイル等の燃料油と接触しても膨張しにくいことから、自動車、車輌、船舶、飛行機や化学プラント等の部品に好適に用いることができる。   The silicone rubber composition of the present invention can be cured by heating to obtain a cured product having good solvent resistance. The silicone rubber product comprising the cured product of the silicone rubber composition of the present invention has excellent solvent resistance and can be expected to have the inherent heat resistance, cold resistance, weather resistance, and electrical insulation properties of the silicone rubber. Is expensive. In particular, since it does not easily expand even when it comes into contact with fuel oil such as engine oil, it can be suitably used for parts such as automobiles, vehicles, ships, airplanes and chemical plants.

キシレン浸漬前後の比較例1、実施例2及び5の試験片Test pieces of Comparative Example 1, Examples 2 and 5 before and after immersion in xylene n−ヘキサン浸漬前後の比較例1、実施例2及び5の試験片Test pieces of Comparative Example 1, Examples 2 and 5 before and after immersion in n-hexane

Claims (7)

(A)式(I):

(式中、
Rは、独立して、R又はRであり、Rのうち、少なくとも2個はRであり、
は、独立して、C−Cアルケニル基であり、
は、独立して、C−Cアルキル基又はフェニル基であり、 のうち、10〜50モル%がフェニル基であり、
nは、平均値で10〜2000である)で示される直鎖状ポリオルガノシロキサン 100重量部;
(B)ケイ素原子に結合した水素原子を分子中に2個を越える数で有するポリオルガノハイドロジェンシロキサン (A)に存在するアルケニル基1個に対するケイ素原子に結合した水素原子の数が、0.5〜10.0になる量;
(C)白金族金属化合物 白金族金属原子を、(A)の量に対して0.1〜1,000重量ppm含有する量;並びに
(D)平均粒径1〜100μmであり、かつアスペクト比10〜500であるマイカ粉 20〜200重量部
を含む、耐溶剤性シリコーンゴム組成物。
(A) Formula (I):

(Where
R is independently R 1 or R 2 , of which at least two are R 1 ,
R 1 is independently a C 2 -C 6 alkenyl group,
R 2 is independently a C 1 -C 6 alkyl group or a phenyl group, and 10 to 50 mol% of R 2 is a phenyl group,
n is an average value of 10 to 2000) 100 parts by weight of a linear polyorganosiloxane represented by:
(B) Polyorganohydrogensiloxane having more than two hydrogen atoms bonded to silicon atoms in the molecule The number of hydrogen atoms bonded to silicon atoms for one alkenyl group present in (A) is 0.00. An amount of 5 to 10.0;
(C) Platinum group metal compound An amount containing 0.1 to 1,000 ppm by weight of platinum group metal atom relative to the amount of (A); and (D) An average particle diameter of 1 to 100 μm and an aspect ratio A solvent-resistant silicone rubber composition comprising 20 to 200 parts by weight of mica powder that is 10 to 500.
(A)におけるRが、ビニル基である、請求項1記載の耐溶剤性シリコーンゴム組成物。 The solvent-resistant silicone rubber composition according to claim 1, wherein R 1 in (A) is a vinyl group. (A)におけるnが、20〜1500である、請求項1又は2記載の耐溶剤性シリコーンゴム組成物。   The solvent resistant silicone rubber composition according to claim 1 or 2, wherein n in (A) is 20 to 1500. (A)におけるRのうち、30〜50モル%がフェニル基である、請求項1〜3のいずれか1項記載の耐溶剤性シリコーンゴム組成物。 The solvent resistant silicone rubber composition according to any one of claims 1 to 3, wherein 30 to 50 mol% of R 2 in (A) is a phenyl group. 請求項1〜4のいずれか1項記載の耐溶剤性シリコーンゴム組成物の硬化物からなる耐溶剤性シリコーンゴム製品。   A solvent-resistant silicone rubber product comprising a cured product of the solvent-resistant silicone rubber composition according to any one of claims 1 to 4. 自動車用、車輌用、船舶用、飛行機用又は化学プラント用の部品である、請求項5記載の耐溶剤性シリコーンゴム製品。   The solvent-resistant silicone rubber product according to claim 5, which is a part for automobiles, vehicles, ships, airplanes or chemical plants. O−リング、パッキン又はガスケットである、請求項5又は6記載の耐溶剤性シリコーンゴム製品。   The solvent-resistant silicone rubber product according to claim 5 or 6, which is an O-ring, packing or gasket.
JP2007313117A 2007-12-04 2007-12-04 Solvent resistant silicone rubber composition Active JP5080224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007313117A JP5080224B2 (en) 2007-12-04 2007-12-04 Solvent resistant silicone rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007313117A JP5080224B2 (en) 2007-12-04 2007-12-04 Solvent resistant silicone rubber composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012176819A Division JP2012237007A (en) 2012-08-09 2012-08-09 Solvent resistant silicone rubber composition

Publications (2)

Publication Number Publication Date
JP2009138038A JP2009138038A (en) 2009-06-25
JP5080224B2 true JP5080224B2 (en) 2012-11-21

Family

ID=40868980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007313117A Active JP5080224B2 (en) 2007-12-04 2007-12-04 Solvent resistant silicone rubber composition

Country Status (1)

Country Link
JP (1) JP5080224B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5117320B2 (en) * 2008-08-21 2013-01-16 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Polyorganosiloxane composition
JP5562728B2 (en) * 2010-06-08 2014-07-30 信越化学工業株式会社 Oil-resistant addition-curable silicone composition and oil-resistant silicone rubber
JP2012237007A (en) * 2012-08-09 2012-12-06 Momentive Performance Materials Inc Solvent resistant silicone rubber composition
JP6470157B2 (en) * 2015-09-30 2019-02-13 関西ペイント株式会社 Resin composition for sealing light emitting device
WO2018092490A1 (en) * 2016-11-17 2018-05-24 信越化学工業株式会社 Addition-curable liquid silicone rubber composition for automobile oil filter sealing member, and automobile oil filter sealing member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380770A (en) * 1992-04-09 1995-01-10 General Electric Company Heat cured silicone rubber compositions containing a potassium aluminosilicate filler which provides resistance to hydrocarbon oils and adjustable shrinkage
JP3111837B2 (en) * 1994-10-31 2000-11-27 信越化学工業株式会社 Fire resistant silicone rubber composition
JP2002105317A (en) * 2000-09-28 2002-04-10 Dow Corning Toray Silicone Co Ltd Composition for fire-resistant silicone rubber and fire- resistant silicone rubber
JP2005008657A (en) * 2003-06-16 2005-01-13 Ge Toshiba Silicones Co Ltd Low-moisture permeable polyorganosiloxane composition

Also Published As

Publication number Publication date
JP2009138038A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
JP5002075B2 (en) Curable polyorganosiloxane composition
JP4804775B2 (en) Curable polyorganosiloxane composition for seal and gasket
JPWO2009044763A1 (en) Sealant for display element
JP5068988B2 (en) Adhesive polyorganosiloxane composition
JP5080224B2 (en) Solvent resistant silicone rubber composition
JP5031436B2 (en) Low moisture permeability polyorganosiloxane composition
JP6947124B2 (en) Curable Silicone Gel Composition and Silicone Gel Cured Product
JP2004323764A (en) Adhesive polyorganosiloxane composition
JP2006022223A (en) Curable fluoropolyether composition
JP3154208B2 (en) Silicone rubber composition
JP4522816B2 (en) Adhesive polyorganosiloxane composition having flame retardancy
JPH07304952A (en) Tackifier for curable organosiloxane composition
JP5060165B2 (en) Low moisture permeability polyorganosiloxane composition
JP4553562B2 (en) Adhesive polyorganosiloxane composition
CN113015775B (en) Adhesive polyorganosiloxane composition
JP2005008657A (en) Low-moisture permeable polyorganosiloxane composition
KR102679282B1 (en) Thermally conductive silicone composition
JP5117320B2 (en) Polyorganosiloxane composition
JP5545924B2 (en) Room temperature curable polyorganosiloxane composition
JP5562728B2 (en) Oil-resistant addition-curable silicone composition and oil-resistant silicone rubber
JP2012237007A (en) Solvent resistant silicone rubber composition
JP7399563B2 (en) Addition-curing silicone adhesive composition
WO2021241036A1 (en) Two-pack type addition curable silicone rubber composition
JP3385801B2 (en) Silicone rubber composition for high pressure insulator.
JP3360264B2 (en) Silicone rubber composition for high voltage electrical insulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5080224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250