JP5078021B2 - Optical waveguide module and method for manufacturing optical waveguide module - Google Patents

Optical waveguide module and method for manufacturing optical waveguide module Download PDF

Info

Publication number
JP5078021B2
JP5078021B2 JP2008066715A JP2008066715A JP5078021B2 JP 5078021 B2 JP5078021 B2 JP 5078021B2 JP 2008066715 A JP2008066715 A JP 2008066715A JP 2008066715 A JP2008066715 A JP 2008066715A JP 5078021 B2 JP5078021 B2 JP 5078021B2
Authority
JP
Japan
Prior art keywords
optical element
optical waveguide
substrate
optical
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008066715A
Other languages
Japanese (ja)
Other versions
JP2009222935A (en
Inventor
光正 小柳
徹 田中
誉史 福島
誠 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Bakelite Co Ltd
Original Assignee
Tohoku University NUC
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Sumitomo Bakelite Co Ltd filed Critical Tohoku University NUC
Priority to JP2008066715A priority Critical patent/JP5078021B2/en
Publication of JP2009222935A publication Critical patent/JP2009222935A/en
Application granted granted Critical
Publication of JP5078021B2 publication Critical patent/JP5078021B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)

Description

本発明は、受光素子又は発光素子である光素子が実装された回路基板と、光素子同士の光接続用の光導波路とを一体化した構造の光導波路モジュールと、その製造方法に関する。   The present invention relates to an optical waveguide module having a structure in which a circuit board on which an optical element which is a light receiving element or a light emitting element is mounted, and an optical waveguide for optical connection between the optical elements, and a manufacturing method thereof.

近年、例えば、電子機器内の信号伝送の高速化、伝送量増大の要求に鑑みて、光導波路が設けられた回路基板(以下、光複合基板とも言う)を用いた光通信技術を機器内の信号伝送に応用することが普及しつつある(例えば特許文献1、2)。
光複合基板は、電子回路(導体回路)と光導波路とを持つ複合構造としたものが多用されており、この光複合基板に実装した受光素子と発光素子とを光導波路を介して光接続して、受光素子側と発光素子側との信号伝送を行えるようにしたモジュール(以下、光導波路モジュールともいう)としたものが広く用いられている。
2. Description of the Related Art In recent years, for example, in view of demands for high-speed signal transmission in electronic devices and an increase in transmission amount, optical communication technology using a circuit board provided with an optical waveguide (hereinafter also referred to as an optical composite substrate) has been developed. Application to signal transmission is becoming widespread (for example, Patent Documents 1 and 2).
An optical composite substrate having a composite structure having an electronic circuit (conductor circuit) and an optical waveguide is often used, and the light receiving element and the light emitting element mounted on the optical composite substrate are optically connected via the optical waveguide. Thus, a module that can perform signal transmission between the light receiving element side and the light emitting element side (hereinafter also referred to as an optical waveguide module) is widely used.

従来の光導波路モジュールは、例えば、特許文献1の図2、特許文献2の図3(d)等を参照して判るように、光導波路の光路を直角に曲げるミラーを設けて、光複合基板上に実装した光素子(受光素子、発光素子)と光導波路との光結合を実現した構成が一般的である。
特開2000−199827号公報 特開2002−182049号公報
The conventional optical waveguide module is provided with a mirror that bends the optical path of the optical waveguide at a right angle, as shown in FIG. 2 of Patent Document 1, FIG. 3D of Patent Document 2, and the like. A configuration in which optical coupling between an optical element (light receiving element or light emitting element) mounted above and an optical waveguide is realized is common.
JP 2000-199827 A JP 2002-182049 A

しかしながら、従来の光導波路モジュールは、ミラーに対する光素子の位置合わせに手間が掛かるといった問題があった。また、光素子を光複合基板上の導体回路と電気的に接続する作業において、前記ミラーに対する光素子の位置決め精度が保たれる必要があることから、光素子の実装作業の手間を増大させる原因にもなっていた。   However, the conventional optical waveguide module has a problem that it takes time to align the optical element with respect to the mirror. In addition, in the work of electrically connecting the optical element to the conductor circuit on the optical composite substrate, it is necessary to maintain the positioning accuracy of the optical element with respect to the mirror, which increases the labor for mounting the optical element. It was also.

また、光複合基板は、電子回路(導体回路)が形成された回路基板(1層又は多層)の片面に光導波路を設けた構造であり、従来の光導波路モジュールは、光素子を、光複合基板の光導波路を介して回路基板とは反対の側に実装した構造が多く提案されている(特許文献1,2も、これに該当する)。そして、光素子は、例えば、回路基板に実装されたLSIチップや、多層回路基板が構成する集積回路などと電気的に接続される。
信号伝送の高速化、伝送量増大の点では、高周波の信号特性を確保するために、回路基板の電子回路と光素子とを電気的に接続するための配線を出来るだけ短くしたいという要求がある。しかしながら、上述のように、光複合基板に対する光素子の実装位置が光導波路を介して回路基板とは反対の側である構造では、前記配線を、光導波路を回避して設ける必要があり、光複合基板の構造が複雑化する、配線長が長くなる、回路基板の回路設計上の制約が大きくなる、といった問題が発生する。このため、配線長を短くでき、しかも、光複合基板の構造を単純化でき、実際に生産レベルで対応できる技術の開発が求められていた。
An optical composite substrate has a structure in which an optical waveguide is provided on one side of a circuit substrate (single layer or multilayer) on which an electronic circuit (conductor circuit) is formed. A conventional optical waveguide module includes an optical element and an optical composite. Many structures have been proposed in which the substrate is mounted on the opposite side of the circuit board via the optical waveguide (Patent Documents 1 and 2 also correspond to this). The optical element is electrically connected to, for example, an LSI chip mounted on a circuit board or an integrated circuit formed by a multilayer circuit board.
In terms of increasing the speed of signal transmission and increasing the amount of transmission, there is a demand to shorten the wiring for electrically connecting the electronic circuit of the circuit board and the optical element as much as possible in order to ensure high-frequency signal characteristics. . However, as described above, in the structure in which the mounting position of the optical element with respect to the optical composite substrate is on the side opposite to the circuit board through the optical waveguide, the wiring must be provided so as to avoid the optical waveguide. Problems arise such that the structure of the composite substrate becomes complicated, the wiring length becomes long, and restrictions on the circuit design of the circuit substrate become large. For this reason, there has been a demand for the development of a technology that can shorten the wiring length, simplify the structure of the optical composite substrate, and can actually cope with the production level.

本発明は、前記課題に鑑みて、光導波路基板のミラー部と光素子との位置決め、回路基板に対する光素子の実装を簡単に実現でき、しかも、回路基板の電子回路と光素子との間の配線長の短縮、光導波路基板の構造の単純化を実現できる、光導波路モジュール、その製造方法の提供を目的としている。   In view of the above problems, the present invention can easily realize the positioning of the mirror portion of the optical waveguide substrate and the optical element and the mounting of the optical element on the circuit board, and between the electronic circuit of the circuit board and the optical element. An object of the present invention is to provide an optical waveguide module and a method for manufacturing the same, which can realize a reduction in wiring length and simplification of the structure of the optical waveguide substrate.

本発明は、プレート状のクラッド部内に線状のコア部を有する光導波路基板と、この光導波路基板に被着された回路基板とを具備し、前記回路基板には、受光素子又は発光素子である光素子が、該回路基板に貫設された光素子収納孔に収納して組み込まれ、前記光素子は、前記光導波路基板に対面する端面に受/発光部を有し、前記光導波路基板は、前記光素子の前記受/発光部に対応する位置に、該光導波路基板の前記光導波路と前記光素子の前記受/発光部との間の光路形成用のミラー部を有し、前記回路基板は、前記光導波路基板に臨む接合面に形成された配線部と、該回路基板に貫設され前記配線部に電気導通可能に接続された貫通配線と、前記配線部から前記接合面における前記光素子収納孔の開口部に張り出された突起状の端子部とを具備し、前記光素子の前記端面に設けられている電極パッドが前記端子部にボンディングされ電気導通可能に接続され、前記光素子の前記電極パッドと前記端子部とが導電性のボンディング用金属材料によってボンディングされており、前記光素子収納孔の断面寸法が、前記光素子における前記光素子収納孔の軸心に垂直の断面寸法を、前記電極パッドのコンタクト面の寸法の5〜195%だけ大きくした寸法になっており、前記光素子収納孔および前記光素子の前記断面の形状は矩形であり、前記光素子収納孔の対向する内面間の距離が、前記光素子の断面の対角線寸法よりも小さく、前記光素子は、前記光素子収納孔内で、前記光素子収納孔の断面寸法と光素子の断面寸法との差によって設定・規制されつつ回転移動可能であり、かつ前記光素子収納孔の軸心を中心とする軸回り方向の前記光素子の回転移動の全範囲で、前記光素子の全ての電極パッドのコンタクト面が、それぞれ前記端子部のコンタクト面に平面視において重なった部分を有する光導波路モジュールを提供する。
本発明は、前記光素子収納孔内面と前記光素子との間を埋める充填樹脂部を具備し、前記光素子の前記端面が、前記充填樹脂部から連続する透明樹脂層によって覆われていることが好ましい。
本発明は、前記回路基板の前記光導波路基板に臨む接合面に、前記光素子収納孔の前記接合面に開口する開口部を封止する透明の開口部封止部材が設けられていることが好ましい。
本発明は、前記回路基板の前記接合面に、電極パッドと、該電極パッドに実装された金属バンプとが設けられ、前記金属バンプは、前記光導波路基板に貫設されたバンプ収納孔を介して、前記光導波路基板から前記回路基板とは反対の側に突出されていることが好ましい。
本発明は、前記光導波路基板の前記ミラー部が、前記光導波路基板の前記回路基板とは反対の側から凹む凹部によって構成されていることが好ましい。
本発明は、前記光導波路モジュールを製造する方法であって、半導体基板に、該半導体基板の両面の一方又は両方に形成された配線部と、前記半導体基板に貫設された貫通配線と、前記半導体基板に貫設された貫通孔であり受光素子あるいは発光素子である光素子が組み込まれる光素子収納孔と、前記半導体基板の片面の前記配線部から前記光素子収納孔の片端の開口部内に張り出された突起状の端子部とが設けられた光素子収納孔付き基板の前記光素子収納孔に、前記光素子を組み込み、この光素子に設けられている電極パッドに予め実装しておいた金属バンプをリフローして、前記電極パッドを前記端子部に接続する光素子実装工程と、プレート状のクラッド部内に線状のコア部を有し、前記光素子収納孔付き基板の両面の内の前記端子部が張り出された配線部が形成されている面の側に被着した光導波路基板に、前記光素子実装工程の後に、前記光導波路基板の前記光導波路と前記光素子の前記光導波路基板に対面する端面に設けられている受/発光部との間の光路形成用のミラー部を形成するミラー部形成工程とを具備する光導波路モジュールの製造方法を提供する。
本発明の光導波路モジュールの製造方法は、前記電極パッドを前記端子部に接続した後に、前記光素子収納孔内面と前記光素子との間を埋める充填樹脂部を形成する充填樹脂部形成工程を行ってから、ミラー部形成工程を行うことが好ましい。
本発明の光導波路モジュールの製造方法は、前記充填樹脂部形成工程において、前記光素子収納孔付き基板の、前記光素子収納孔の前記端子部が設けられている開口部を、開口部封止部材を用いて塞いだ状態で、前記光素子収納孔内に液状の樹脂材料を注入して前記充填樹脂部を形成することが好ましい。
本発明の光導波路モジュールの製造方法は、前記充填樹脂部形成工程にて、前記充填樹脂部から連続して、前記光素子の前記端面を覆う透明樹脂層を形成することが好ましい。
本発明の光導波路モジュールの製造方法は、前記充填樹脂部形成工程の完了後、前記開口部封止部材を前記光素子収納孔付き基板から除去した後に、光素子収納孔付き基板に前記光導波路基板を被着してから、前記ミラー部形成工程を行うことが好ましい。
本発明の光導波路モジュールの製造方法は、透明の開口部封止部材を用い、前記充填樹脂部形成工程の完了後、前記開口部封止部材が付いたままの前記光素子収納孔付き基板に前記光導波路基板を被着してから、前記ミラー部形成工程を行うことが好ましい。
本発明の光導波路モジュールの製造方法は、前記光素子収納孔付き基板に被着した前記光導波路基板を前記開口部封止部材として用いて前記充填樹脂部形成工程を行うことが好ましい。
The present invention includes an optical waveguide substrate having a linear core portion in a plate-shaped cladding portion, and a circuit substrate attached to the optical waveguide substrate. The circuit substrate includes a light receiving element or a light emitting element. An optical element is housed and incorporated in an optical element housing hole penetrating the circuit board, and the optical element has a light receiving / emitting portion on an end surface facing the optical waveguide board, and the optical waveguide board Has a mirror part for forming an optical path between the optical waveguide of the optical waveguide substrate and the receiving / emitting part of the optical element at a position corresponding to the receiving / emitting part of the optical element, The circuit board includes a wiring portion formed on a bonding surface facing the optical waveguide substrate, a through-wiring that is provided in the circuit board and is electrically connected to the wiring portion, and the wiring portion extends from the wiring surface to the bonding surface. A protruding terminal projecting from the opening of the optical element housing hole And an electrode pad provided on the end face of the optical element is bonded to the terminal portion so as to be electrically conductive, and the electrode pad of the optical element and the terminal portion are for conductive bonding. Bonded with a metal material, the cross-sectional dimension of the optical element housing hole is perpendicular to the axis of the optical element housing hole in the optical element, and is 5 to 195% of the dimension of the contact surface of the electrode pad. The optical element storage hole and the cross-sectional shape of the optical element are rectangular, and the distance between the opposing inner surfaces of the optical element storage hole is a diagonal dimension of the cross-section of the optical element. less than, the optical device is in the optical element housing bore is rotatable movement set and regulated while the difference between the cross-sectional dimensions of the cross-sectional dimensions and the optical element of the optical element receiving hole, One in the entire range of rotational movement of the optical element around the axis direction around the axis of the optical element receiving hole, the contact surfaces of all the electrode pads of the optical element, respectively plane contact surface of the terminal portion Provided is an optical waveguide module having overlapping portions in view.
The present invention includes a filling resin portion that fills a space between the inner surface of the optical element housing hole and the optical element, and the end surface of the optical element is covered with a transparent resin layer continuous from the filling resin portion. Is preferred.
In the present invention, a transparent opening sealing member that seals an opening that opens to the bonding surface of the optical element housing hole is provided on a bonding surface of the circuit board facing the optical waveguide substrate. preferable.
In the present invention, an electrode pad and a metal bump mounted on the electrode pad are provided on the joint surface of the circuit board, and the metal bump is interposed through a bump housing hole penetrating the optical waveguide substrate. Preferably, the optical waveguide substrate protrudes from the side opposite to the circuit board.
In the present invention, it is preferable that the mirror portion of the optical waveguide substrate is constituted by a concave portion that is recessed from a side opposite to the circuit substrate of the optical waveguide substrate.
The present invention is a method of manufacturing the optical waveguide module, the semiconductor substrate, a wiring portion formed on one or both of the both sides of the semiconductor substrate, a through wiring penetrating the semiconductor substrate, An optical element housing hole into which an optical element that is a light receiving element or a light emitting element is a through-hole penetrating the semiconductor substrate, and from the wiring portion on one side of the semiconductor substrate to an opening at one end of the optical element housing hole The optical element is incorporated into the optical element accommodation hole of the substrate with the optical element accommodation hole provided with the protruding protrusion-shaped terminal portion, and is mounted in advance on an electrode pad provided on the optical element. An optical element mounting step of connecting the electrode pad to the terminal part by reflowing the metal bumps, and a linear core part in the plate-like clad part; The terminal of After the optical element mounting step, after the optical element mounting step, the optical waveguide of the optical waveguide substrate and the optical waveguide substrate of the optical element There is provided a method for manufacturing an optical waveguide module comprising a mirror part forming step of forming a mirror part for forming an optical path between a light receiving / emitting part provided on an end face facing each other.
The optical waveguide module manufacturing method of the present invention includes a filling resin portion forming step of forming a filling resin portion that fills a space between the inner surface of the optical element housing hole and the optical element after connecting the electrode pad to the terminal portion. After performing, it is preferable to perform a mirror part formation process.
In the method of manufacturing an optical waveguide module according to the present invention, in the filling resin portion forming step, the opening portion of the substrate with the optical element accommodation hole provided with the terminal portion of the optical element accommodation hole is sealed with the opening portion. It is preferable to form the filling resin portion by injecting a liquid resin material into the optical element housing hole in a state where the member is closed.
In the method for manufacturing an optical waveguide module of the present invention, it is preferable that a transparent resin layer covering the end face of the optical element is formed continuously from the filled resin portion in the filled resin portion forming step.
In the method for manufacturing an optical waveguide module of the present invention, after the filling resin portion forming step is completed, the opening sealing member is removed from the substrate with an optical element accommodation hole, and then the optical waveguide is attached to the substrate with an optical element accommodation hole. It is preferable to perform the mirror part forming step after depositing the substrate.
The method for manufacturing an optical waveguide module according to the present invention uses a transparent opening sealing member, and after the filling resin portion forming step is completed, the substrate with the optical element housing hole remains attached with the opening sealing member. It is preferable that the mirror part forming step is performed after the optical waveguide substrate is attached.
In the method of manufacturing an optical waveguide module according to the present invention, it is preferable that the filling resin portion forming step is performed using the optical waveguide substrate attached to the substrate with the optical element accommodation hole as the opening sealing member.

本発明によれば、光素子を、回路基板の光素子収納孔に収納して回路基板に組み込んで実装する構成であり、光素子収納孔を光素子を位置決めするための位置決め部として機能させることができる。このため、光導波路基板のミラー部と光素子との位置決め、回路基板に対する光素子の実装を簡単に実現できる。
また、光素子を回路基板に組み込む構成により、回路基板の電子回路と光素子との間を電気的に接続するための配線長を短くすることができる。これにより、高周波の信号特性を確保することが容易となり、信号伝送の高速化、伝送量増大を図ることができる。
また、本発明によれば、回路基板の電子回路と光素子との間を電気的に接続するための配線を、光導波路を回避するようにして設ける必要性が無くなるため、光導波路モジュールの構造を単純化することができる。これにより、光導波路モジュールの製造効率の向上、低コスト化を実現できる。
According to the present invention, the optical element is housed in the optical element housing hole of the circuit board and is mounted and mounted on the circuit board, and the optical element housing hole functions as a positioning portion for positioning the optical element. Can do. For this reason, the positioning of the mirror part of the optical waveguide substrate and the optical element and the mounting of the optical element on the circuit board can be easily realized.
Further, the configuration in which the optical element is incorporated into the circuit board can shorten the wiring length for electrically connecting the electronic circuit of the circuit board and the optical element. Thereby, it becomes easy to ensure high-frequency signal characteristics, and it is possible to increase the speed of signal transmission and increase the transmission amount.
Further, according to the present invention, it is not necessary to provide a wiring for electrically connecting the electronic circuit of the circuit board and the optical element so as to avoid the optical waveguide. Can be simplified. Thereby, the improvement of the manufacturing efficiency of an optical waveguide module and cost reduction are realizable.

以下、本発明を実施した光導波路モジュール、光導波路モジュールの製造方法について、図面を参照して説明する。
図1は本実施形態の光導波路モジュール1の構造を示す正断面図、図2は図1の光導波路モジュール1に電子デバイス5(LSI)を実装した状態(デバイス付き光導波路モジュール1A)を示す正断面図、図3は図1、図2の光導波路モジュール1の仮想線で示した領域Aを拡大して示した拡大断面図であり、光導波路モジュール1の回路基板3に形成された光素子収納孔31及び該光素子収納孔31に組み込まれた光素子4付近の構造を示す図、図4は前記光素子収納孔31に光素子4を組み込む前の回路基板3、光素子4の電極パッド44に実装された金属バンプ45を示す図である。
なお、図1、図2、図3、図4において、説明の便宜上、上側を「上」、下側を「下」として説明する。但し、これは本発明の構成要素の相対関係を簡単に説明するために便宜的に規定したものであり、本発明を実施する場合の製造時や使用時の方向を限定するものではない。
Hereinafter, an optical waveguide module embodying the present invention and a method for manufacturing the optical waveguide module will be described with reference to the drawings.
FIG. 1 is a front sectional view showing the structure of an optical waveguide module 1 of the present embodiment, and FIG. 2 shows a state (electronic waveguide module 1A with a device) in which an electronic device 5 (LSI) is mounted on the optical waveguide module 1 of FIG. FIG. 3 is an enlarged cross-sectional view showing an enlarged area A indicated by a virtual line of the optical waveguide module 1 in FIGS. 1 and 2, and light formed on the circuit board 3 of the optical waveguide module 1. FIG. 4 is a diagram showing the structure of the element housing hole 31 and the vicinity of the optical element 4 incorporated in the optical element housing hole 31, and FIG. 4 shows the circuit board 3 and the optical element 4 before the optical element 4 is assembled in the optical element housing hole 31. It is a figure which shows the metal bump 45 mounted in the electrode pad 44. FIG.
1, 2, 3, and 4, for convenience of explanation, the upper side is described as “upper” and the lower side is described as “lower”. However, this is defined for convenience in order to simply explain the relative relationship of the constituent elements of the present invention, and does not limit the direction during production or use when the present invention is carried out.

図1、図2に示すように、光導波路モジュール1は、光導波路基板2と、この光導波路基板2に被着された回路基板3と、この回路基板3に形成された光素子収納孔31内に組み込んで実装された発光素子又は受光素子である光素子4とを具備して構成されている。
図2は、前記光導波路モジュール1の前記回路基板3の前記光導波路基板2とは反対の側の面(以下、デバイス実装面3aとも言う)に電子デバイス5を実装した、デバイス付き光導波路モジュール1Aを示す。
なお、光素子収納孔31内に光素子4が組み込まれた回路基板3を、以下、光素子内蔵基板(図中、符号6)、と称して説明する場合がある。この光素子内蔵基板6は、光導波路基板2に重ね合わせるようにして被着されている。光導波路モジュール1は、いわば、光素子内蔵基板6と光導波路基板2とを一体化してなる複合形基板となっている。
As shown in FIGS. 1 and 2, the optical waveguide module 1 includes an optical waveguide substrate 2, a circuit substrate 3 attached to the optical waveguide substrate 2, and an optical element housing hole 31 formed in the circuit substrate 3. The optical element 4 is a light-emitting element or a light-receiving element that is incorporated and mounted therein.
2 shows an optical waveguide module with a device in which an electronic device 5 is mounted on the surface of the circuit board 3 of the optical waveguide module 1 opposite to the optical waveguide substrate 2 (hereinafter also referred to as a device mounting surface 3a). 1A is shown.
The circuit board 3 in which the optical element 4 is incorporated in the optical element housing hole 31 may be hereinafter referred to as an optical element built-in substrate (reference numeral 6 in the drawing). The optical element built-in substrate 6 is attached so as to overlap the optical waveguide substrate 2. The optical waveguide module 1 is a so-called composite substrate in which the optical element built-in substrate 6 and the optical waveguide substrate 2 are integrated.

また、光導波路モジュール1としては、光導波路基板2の一方の面に回路基板3、他方の面にシート状あるいはプレート状の基材が設けられた構成であっても良い。前記基材は、例えば、後述の3層構造の光導波路形成体の個々の層を形成する樹脂材料を含むワニスの塗布によって順次形成する際に用いる基材であっても良い。
この基材は、例えば、光導波路基板2の保護材、補強材等として機能させることができる。
The optical waveguide module 1 may have a configuration in which the circuit board 3 is provided on one surface of the optical waveguide substrate 2 and a sheet-like or plate-like base material is provided on the other surface. The base material may be, for example, a base material used when sequentially forming by applying a varnish containing a resin material for forming individual layers of an optical waveguide forming body having a three-layer structure described later.
This base material can function as, for example, a protective material or a reinforcing material for the optical waveguide substrate 2.

(光導波路基板)
光導波路基板2について説明する。
図5は光導波路基板2の構造を示す斜視図である。
図5に示すように、光導波路基板2は、プレート状のクラッド部21内に線状のコア部22を有する構造になっている。線状のコア部22の周囲はクラッド部21によって覆われている。
コア部22は直線状である必要はなく、クラッド部21内で湾曲していても良い。また、コア部22には分岐部が存在していても良く、これにより、コア部22を回路状に構成していても良い。
(Optical waveguide substrate)
The optical waveguide substrate 2 will be described.
FIG. 5 is a perspective view showing the structure of the optical waveguide substrate 2.
As shown in FIG. 5, the optical waveguide substrate 2 has a structure having a linear core portion 22 in a plate-like cladding portion 21. The periphery of the linear core portion 22 is covered with a clad portion 21.
The core part 22 does not need to be linear, and may be curved in the clad part 21. Moreover, the core part 22 may have a branch part, and thereby the core part 22 may be configured in a circuit shape.

前記光導波路基板2の製造方法としては、例えば、以下の(a)、(b)を採り得る。
(a) 図6(a)に示すように、コア部形成用の樹脂層であるコア層231の両面に、クラッド層232(クラッド部21の一部を形成するための樹脂層)が設けられた3層構造の光導波路形成体23を作成し、この光導波路形成体23に活性エネルギー線を照射してコア部22を形成する(図6(b))。
活性エネルギー線の照射によって、コア層231の一部がコア部22となり、コア層231のコア部22以外の部分と、コア層231の両側のクラッド層232とが、クラッド部21を構成する。
この製造方法の場合は、断面四角形(長方形。但し正方形を含む)のコア部22が得られる。
As a manufacturing method of the optical waveguide substrate 2, for example, the following (a) and (b) can be adopted.
(A) As shown to Fig.6 (a), the clad layer 232 (resin layer for forming a part of clad part 21) is provided in both surfaces of the core layer 231 which is a resin layer for core part formation. An optical waveguide forming body 23 having a three-layer structure is prepared, and the optical waveguide forming body 23 is irradiated with active energy rays to form the core portion 22 (FIG. 6B).
By irradiation with active energy rays, a part of the core layer 231 becomes the core part 22, and a part other than the core part 22 of the core layer 231 and the clad layers 232 on both sides of the core layer 231 constitute the clad part 21.
In the case of this manufacturing method, the core part 22 having a quadrangular cross section (rectangle, but including a square) is obtained.

コア層231を形成する材料としては、例えば、アクリル系樹脂、エポキシ系樹脂、ポリイミド系樹脂、ベンゾシクロブテン系樹脂、ノルボルネン系樹脂等の環状オレフィン系樹脂、といった樹脂材料が挙げられる。ベンゾシクロブテン系樹脂、ノルボルネン系樹脂等の環状オレフィン系樹脂を主材料とする樹脂組成物が好適であり、ノルボルネン系樹脂の付加重合体を主材料とする樹脂組成物が特に好ましい。
コア部22の形成のための活性エネルギー線としては、可視光、紫外光、赤外光、レーザー光等の活性エネルギー光線や、電子線、X線等が挙げられる。電子線は、例えば50〜200KGy程度の照射量で照射することができる。
クラッド層を構成する材料としては、コア層を構成する材料よりも屈折率が低いものであれば特に限定されない。具体的には、アクリル系樹脂、エポキシ系樹脂、ポリイミド系樹脂、ベンゾシクロブテン系樹脂、ノルボルネン系樹脂等の環状オレフィン系樹脂、といった樹脂材料が挙げられる。これらの中でも、ノルボルネン系樹脂の付加重合体を主材料とする樹脂組成物が特に好ましい。
コア層、クラッド層の形成材料としてノルボルネン系樹脂の付加重合体を主材料とする樹脂組成物を採用した場合は、透明性、絶縁性、柔軟性及び耐熱性が充分に得られる。また、他の樹脂を用いた場合との比較で、吸湿性を低くできる。また、ノルボルネン系樹脂の付加重合体を主材料とする樹脂組成物の場合、ノルボルネン系樹脂の付加重合体の側鎖の種類等によって、屈折率を調整することができる利点がある。
Examples of the material for forming the core layer 231 include resin materials such as acrylic resins, epoxy resins, polyimide resins, benzocyclobutene resins, and cyclic olefin resins such as norbornene resins. A resin composition mainly containing a cyclic olefin resin such as a benzocyclobutene resin or a norbornene resin is preferred, and a resin composition mainly containing an addition polymer of a norbornene resin is particularly preferred.
Examples of the active energy rays for forming the core portion 22 include active energy rays such as visible light, ultraviolet light, infrared light, and laser light, electron beams, and X-rays. An electron beam can be irradiated with an irradiation dose of, for example, about 50 to 200 KGy.
The material constituting the cladding layer is not particularly limited as long as the refractive index is lower than that of the material constituting the core layer. Specific examples include resin materials such as acrylic resins, epoxy resins, polyimide resins, benzocyclobutene resins, and cyclic olefin resins such as norbornene resins. Among these, a resin composition mainly comprising an addition polymer of norbornene resin is particularly preferable.
When a resin composition mainly composed of an addition polymer of norbornene-based resin is adopted as a material for forming the core layer and the clad layer, transparency, insulation, flexibility and heat resistance can be sufficiently obtained. In addition, the hygroscopicity can be reduced as compared with the case where other resins are used. In the case of a resin composition mainly composed of an addition polymer of norbornene resin, there is an advantage that the refractive index can be adjusted depending on the type of side chain of the addition polymer of norbornene resin.

3層構造の光導波路形成体23は、例えば、シート状あるいはプレート状の基材に、該光導波路形成体23の個々の層を形成する樹脂材料を含むワニスを塗布して、3層の各層を順次形成していくことで、得ることができる。この場合、例えば、回路基板3自体を基材として用いることも可能である。
光導波路モジュール1としては、光導波路基板2の一方の面に回路基板3、他方の面に3層構造の光導波路形成体23をその個々の層を形成する樹脂材料を含むワニスの塗布によって順次形成する際に用いる基材が設けられた構成であっても良い。
The optical waveguide forming body 23 having a three-layer structure is formed by, for example, applying a varnish containing a resin material for forming individual layers of the optical waveguide forming body 23 to a sheet-like or plate-like base material. Can be obtained by sequentially forming. In this case, for example, the circuit board 3 itself can be used as a base material.
As the optical waveguide module 1, a circuit board 3 is formed on one surface of an optical waveguide substrate 2, and an optical waveguide forming body 23 having a three-layer structure is applied on the other surface by applying a varnish containing a resin material forming the individual layers. The structure provided with the base material used when forming may be sufficient.

(b)予め形成しておいたコア部の周囲をクラッド材(クラッド部)で覆う。
この製造方法の場合は、コア部22の断面形状は自由となる。
(B) The periphery of the core part formed in advance is covered with a clad material (clad part).
In the case of this manufacturing method, the cross-sectional shape of the core part 22 becomes free.

光導波路基板2は、前記光素子内蔵基板6の光素子4の受/発光部401(発光素子41の発光部411又は受光素子42の受光部421)に対応する位置に、該光導波路基板2の光路(図3中、符号H1)を直角に曲げて、該光導波路基板2と前記光素子4(詳細には発光部411又は受光部421)との間の光路(図3中、符号H2)を形成するミラー部24を有する。
前記光素子4と光導波路基板2とは、ミラー部24を介して光結合される。
前記ミラー部24は、具体的には、前記光導波路基板2に前記回路基板3とは反対の側から凹むように形成された凹部によって構成されている。このミラー部24は、光導波路基板2のコア部22の途中に介在するように形成される。
The optical waveguide substrate 2 is disposed at a position corresponding to the light receiving / emitting section 401 (the light emitting section 411 of the light emitting element 41 or the light receiving section 421 of the light receiving element 42) of the optical element 4 of the optical element built-in substrate 6. The optical path (reference numeral H1 in FIG. 3) is bent at a right angle, and the optical path (reference numeral H2 in FIG. 3) between the optical waveguide substrate 2 and the optical element 4 (specifically, the light emitting section 411 or the light receiving section 421). ) To form a mirror portion 24.
The optical element 4 and the optical waveguide substrate 2 are optically coupled via a mirror part 24.
Specifically, the mirror part 24 is constituted by a recess formed in the optical waveguide substrate 2 so as to be recessed from the side opposite to the circuit board 3. The mirror portion 24 is formed so as to be interposed in the middle of the core portion 22 of the optical waveguide substrate 2.

なお、図1、図2では、光導波路基板2の複数箇所のミラー部24の形成位置を模式的に示しており、図中の全てのミラー部24を、分岐部を有していない一本のコア部22について形成する構成を意味するものでは無い。光導波路基板2に3以上のミラー部24が形成された態様は、分岐部を有するコア部22を持つ光導波路基板2、あるいは、複数本のコア部22を持つ光導波路基板2にて実現される。ミラー部24は、発光素子41と受光素子42とを光導波路基板2のコア部22を介して光接続するために設けられるものであり、光導波路基板2におけるミラー部24の形成位置は、発光素子41と受光素子42との光接続を実現し得るように設定される。   1 and 2 schematically show the formation positions of the mirror portions 24 at a plurality of locations on the optical waveguide substrate 2, and all the mirror portions 24 in the figure do not have a branching portion. It does not mean the structure formed about the core part 22 of. The aspect in which three or more mirror portions 24 are formed on the optical waveguide substrate 2 is realized by the optical waveguide substrate 2 having the core portion 22 having the branching portion or the optical waveguide substrate 2 having the plurality of core portions 22. The The mirror part 24 is provided for optically connecting the light emitting element 41 and the light receiving element 42 via the core part 22 of the optical waveguide substrate 2. It is set so that optical connection between the element 41 and the light receiving element 42 can be realized.

(光素子内蔵基板)
次に、光素子内蔵基板6について説明する。
既述の通り、光素子内蔵基板6は、回路基板3に形成された光素子収納孔31内に光素子4を組み込んで実装したものである。
(Optical element built-in substrate)
Next, the optical element built-in substrate 6 will be described.
As described above, the optical element built-in substrate 6 is mounted by incorporating the optical element 4 in the optical element accommodation hole 31 formed in the circuit board 3.

図1〜図4に示すように、回路基板3の前記光素子収納孔31は、回路基板3を貫通して、回路基板3の両面に開口、すなわち、前記光導波路基板2と接合されている接合面3b、及び、前記デバイス実装面3aに開口する貫通孔である。
この光素子収納孔31は、回路基板3の複数箇所に形成されている。
As shown in FIGS. 1 to 4, the optical element housing hole 31 of the circuit board 3 penetrates the circuit board 3 and is opened on both surfaces of the circuit board 3, that is, joined to the optical waveguide substrate 2. It is a through-hole opened to the bonding surface 3b and the device mounting surface 3a.
The optical element housing holes 31 are formed at a plurality of locations on the circuit board 3.

個々の光素子収納孔31には、光素子4として、発光素子41又は受光素子42が組み込まれている。
発光素子41は、例えば、VCSEL(Vertical Cavity Surface Emitting LASER)等の半導体レーザである。受光素子42は、例えばPD(フォトダイオード)である。
In each optical element housing hole 31, a light emitting element 41 or a light receiving element 42 is incorporated as the optical element 4.
The light emitting element 41 is a semiconductor laser such as a VCSEL (Vertical Cavity Surface Emitting LASER). The light receiving element 42 is, for example, a PD (photodiode).

図示例は、一つの回路基板3に、発光素子41が組み込まれた光素子収納孔31と、受光素子42が組み込まれた光素子収納孔31とが存在する構成を例示している。
また、各光素子4は、発光部411又は受光部421を光導波路基板2に対面配置させて、光素子収納孔31に組み込まれている。光素子内蔵基板6において、各光素子4の受/発光部401(発光部411又は受光部421)は、光導波路基板2のミラー部24に対応する位置に設けられ、ミラー部24を介して、光導波路基板2の光路H1と光結合される。
この光導波路モジュール1には、光導波路基板2(詳細には光導波路基板2の光路H1)を介して互いに光接続された発光素子41と受光素子42の対が存在する。
The illustrated example illustrates a configuration in which an optical element accommodation hole 31 in which a light emitting element 41 is incorporated and an optical element accommodation hole 31 in which a light receiving element 42 is incorporated exist in one circuit board 3.
Each optical element 4 is incorporated in the optical element housing hole 31 with the light emitting part 411 or the light receiving part 421 facing the optical waveguide substrate 2. In the optical element built-in substrate 6, the light receiving / emitting section 401 (the light emitting section 411 or the light receiving section 421) of each optical element 4 is provided at a position corresponding to the mirror section 24 of the optical waveguide substrate 2. The optical path H1 of the optical waveguide substrate 2 is optically coupled.
The optical waveguide module 1 includes a pair of a light emitting element 41 and a light receiving element 42 that are optically connected to each other via an optical waveguide substrate 2 (specifically, an optical path H1 of the optical waveguide substrate 2).

光素子4の受/発光部401(発光部411又は受光部421)は、光素子4の光導波路基板2に対面する端面43(以下、受/発光部設置面とも言う)に設けられている。
図7は、光素子4の受/発光部設置面43を示す。
図7に示すように、光素子4の受/発光部設置面43には、受/発光部401(発光部411又は受光部421)と、電極パッド44とが設けられている。受/発光部401は、受/発光部設置面43の中央部に設けられている。電極パッド44は、受/発光部設置面43において、受/発光部401の周囲の複数箇所に設けられている。
発光素子41においては、電極パッド44は、発光素子41への駆動用電気信号の入力端子として機能する。発光素子42においては、電極パッド44は、受光素子42から受光信号(電気信号)を出力するための出力端子として機能する。
The light receiving / emitting section 401 (light emitting section 411 or light receiving section 421) of the optical element 4 is provided on an end face 43 (hereinafter also referred to as a receiving / light emitting section installation surface) facing the optical waveguide substrate 2 of the optical element 4. .
FIG. 7 shows the light receiving / emitting part installation surface 43 of the optical element 4.
As shown in FIG. 7, the light receiving / light emitting portion installation surface 43 of the optical element 4 is provided with a light receiving / light emitting portion 401 (light emitting portion 411 or light receiving portion 421) and an electrode pad 44. The light receiving / light emitting unit 401 is provided at the center of the light receiving / light emitting unit installation surface 43. The electrode pads 44 are provided at a plurality of locations around the light receiving / light emitting unit 401 on the light receiving / light emitting unit installation surface 43.
In the light emitting element 41, the electrode pad 44 functions as an input terminal for an electric signal for driving to the light emitting element 41. In the light emitting element 42, the electrode pad 44 functions as an output terminal for outputting a light receiving signal (electric signal) from the light receiving element 42.

なお、受/発光部設置面43における受/発光部401の位置は、必ずしも受/発光部設置面43の中央部である必要は無い。受/発光部設置面43の中央部からずれた位置であっても良い。
また、受/発光部設置面43に設けられる受/発光部401の数は、ひとつだけの場合に限定されず、複数であっても良い(一例として図14(a)〜(c)を参照)。
Note that the position of the light receiving / light emitting unit 401 on the light receiving / light emitting unit installation surface 43 is not necessarily the center of the light receiving / light emitting unit installation surface 43. The position may be shifted from the center of the light receiving / light emitting unit installation surface 43.
Further, the number of light receiving / light emitting portions 401 provided on the light receiving / light emitting portion installation surface 43 is not limited to one, and may be plural (see FIGS. 14A to 14C as an example). ).

図8は、前記光素子収納孔31及び該光素子収納孔31に組み込まれた光素子4との関係を示す平面図(回路基板3のデバイス実装面3a側から見た構造を示す図)である。
図7、図8等に示すように、光素子4は、具体的には、角形(外観直方体状)のチップ形電子デバイスである。光素子収納孔31は、角穴状(図8において、具体的には、平面視正方形の貫通孔)である。光素子4は、受/発光部設置面43が、回路基板3の光素子収納孔31の軸心31aに対して垂直となるようにして光素子収納孔31内に組み込まれている。
FIG. 8 is a plan view showing a relationship between the optical element accommodation hole 31 and the optical element 4 incorporated in the optical element accommodation hole 31 (a view showing a structure viewed from the device mounting surface 3a side of the circuit board 3). is there.
As shown in FIGS. 7 and 8, the optical element 4 is specifically a rectangular (appearance rectangular parallelepiped) chip-type electronic device. The optical element housing hole 31 has a square hole shape (specifically, in FIG. 8, a square through-hole in plan view). The optical element 4 is incorporated in the optical element accommodation hole 31 so that the light receiving / emitting part installation surface 43 is perpendicular to the axis 31 a of the optical element accommodation hole 31 of the circuit board 3.

前記回路基板3は、前記接合面3bに形成された配線部32(導体回路)と、該回路基板3に貫設され前記配線部32に電気導通可能に接続された貫通配線33と、前記配線部32から前記接合面3bにおける前記光素子収納孔31の開口部に張り出された突起状の端子部34とを具備している。   The circuit board 3 includes a wiring part 32 (conductor circuit) formed on the joint surface 3b, a through-wiring 33 penetrating through the circuit board 3 and connected to the wiring part 32 so as to be electrically conductive, and the wiring And a protruding terminal portion 34 projecting from the portion 32 to the opening of the optical element housing hole 31 in the joint surface 3b.

図3等に示すように、光素子4は、受/発光部設置面43の電極パッド44を、回路基板3の前記端子部34に導電性のボンディング用金属材料(ボンディング金属部36)によってボンディングして回路基板3に組み込まれており、回路基板3の配線部32と電気的に接続されている。光素子4の電極パッド44と回路基板3の前記端子部34とはボンディングによって電気導通可能に接続されている。ボンディング金属部36は、導電性のボンディング用金属材料によって形成されている。
また、符号35は、貫通配線33の回路基板3のデバイス実装面3a側の端部と電子デバイス5の電極パッド(図示略)とをボンディングして電気的に接続したボンディング金金属部である。ボンディング金属部35は、導電性のボンディング用金属材料によって形成されている。このボンディングによって、貫通配線33が電子デバイス5の電子回路と電気的に接続されている。このため、回路基板3の前記端子部34を介して配線部32と電気的に接続された光素子4は、前記配線部32、貫通配線33を介して、電子デバイス5と電気的に接続される。
As shown in FIG. 3 and the like, the optical element 4 bonds the electrode pad 44 of the light receiving / emitting part installation surface 43 to the terminal part 34 of the circuit board 3 with a conductive bonding metal material (bonding metal part 36). The circuit board 3 is incorporated and electrically connected to the wiring portion 32 of the circuit board 3. The electrode pads 44 of the optical element 4 and the terminal portions 34 of the circuit board 3 are connected so as to be electrically conductive by bonding. The bonding metal portion 36 is formed of a conductive bonding metal material.
Reference numeral 35 denotes a bonding gold metal portion in which an end portion of the through wiring 33 on the device mounting surface 3a side of the circuit board 3 and an electrode pad (not shown) of the electronic device 5 are bonded and electrically connected. The bonding metal portion 35 is formed of a conductive bonding metal material. Through the bonding, the through wiring 33 is electrically connected to the electronic circuit of the electronic device 5. For this reason, the optical element 4 electrically connected to the wiring portion 32 via the terminal portion 34 of the circuit board 3 is electrically connected to the electronic device 5 via the wiring portion 32 and the through wiring 33. The

前記ボンディング用金属材料としては例えば半田を用いることができる。半田の場合、電極パッド44と端子部34とのボンディング、貫通配線33と電子デバイス5の電極パッドとのボンディングは半田付けである。   For example, solder can be used as the bonding metal material. In the case of solder, the bonding between the electrode pad 44 and the terminal portion 34 and the bonding between the through wiring 33 and the electrode pad of the electronic device 5 are soldering.

図4に示すように、光素子4としては、電極パッド44に金属バンプ45が実装されたフリップチップタイプのものを採用できる。この場合、光素子4を、回路基板3のデバイス実装面3a側から光素子収納孔31内に挿入して収納し、光素子4の前記金属バンプ45を回路基板3の前記端子部34に接触させ、この状態で金属バンプ45のリフロー、冷却固化することで、光素子4の電極パッド44を回路基板3の前記端子部34にボンディングすることができる。この場合、金属バンプ45のリフロー、冷却固化によってボンディング金属部36が形成される。
但し、光素子4の電極パッド44と回路基板3の前記端子部34とのボンディングを実現するための手法としては、これに限定されず、例えば、端子部34上に設置しておいた金属バンプのリフローによって実現することも可能である。
As shown in FIG. 4, the optical element 4 may be a flip chip type in which metal bumps 45 are mounted on electrode pads 44. In this case, the optical element 4 is inserted and accommodated in the optical element accommodation hole 31 from the device mounting surface 3 a side of the circuit board 3, and the metal bump 45 of the optical element 4 contacts the terminal portion 34 of the circuit board 3. In this state, by reflowing the metal bump 45 and cooling and solidifying, the electrode pad 44 of the optical element 4 can be bonded to the terminal portion 34 of the circuit board 3. In this case, the bonding metal portion 36 is formed by reflow of the metal bump 45 and cooling and solidification.
However, the method for realizing the bonding between the electrode pad 44 of the optical element 4 and the terminal portion 34 of the circuit board 3 is not limited to this, and for example, a metal bump installed on the terminal portion 34. It is also possible to realize by reflow.

電極パッド44と端子部34とのボンディング用の金属バンプはボンディング用金属材料によって形成されている。
ボンディング用金属材料としては、半田以外に、例えば、Au(金)、InAu合金、その他の低融点合金も採用可能である。ボンディング用金属材料は、全体が導電性の金属(合金を含む)からなるもの、あるいは、金属(合金を含む。導電性を有する)を主成分とするものを指す。後者は、例えばフラックス等の添加物を微量に含有したものである。
電極パッド44と端子部34とのボンディング用の金属バンプを構成するボンディング用金属材料としては、電極パッド44と端子部34とのろう接を実現できるものが好ましい。
Metal bumps for bonding the electrode pads 44 and the terminal portions 34 are formed of a bonding metal material.
As the metal material for bonding, for example, Au (gold), InAu alloy, and other low melting point alloys can be used in addition to solder. The metal material for bonding refers to a material made entirely of a conductive metal (including an alloy) or a material mainly composed of a metal (including an alloy; having conductivity). The latter contains a trace amount of additives such as flux.
As a bonding metal material that forms a metal bump for bonding the electrode pad 44 and the terminal portion 34, a material that can realize brazing between the electrode pad 44 and the terminal portion 34 is preferable.

貫通配線33と電子デバイス5の電極パッドとのボンディング用の金属材料(ボンディング用金属材料)としては、貫通配線33と電子デバイス5の電極パッドとのろう接を実現できるものが好ましく、電極パッド44と端子部34とのボンディング用の金属バンプ(ボンディング用金属材料)と同様のボンディング用金属材料を採用できる。
なお、図1の金属バンプ62、63(後述)についても、電極パッド44と端子部34とのボンディング用の金属バンプと同様のボンディング用金属材料からなるものを採用できる。
As a metal material (bonding metal material) for bonding the through wiring 33 and the electrode pad of the electronic device 5, a material that can realize brazing between the through wiring 33 and the electrode pad of the electronic device 5 is preferable. A bonding metal material similar to the metal bump (bonding metal material) for bonding between and the terminal portion 34 can be employed.
Note that the metal bumps 62 and 63 (described later) in FIG. 1 may be made of a bonding metal material similar to the metal bump for bonding the electrode pad 44 and the terminal portion 34.

図3、図8において、符号37は、前記光素子収納孔31内面(内周面)と前記光素子4(詳細には光素子4の外周面)との間を埋める充填樹脂部、符号38は光素子4の受/発光部設置面43を覆う透明樹脂層である。
図4において、符号7は、回路基板3の接合面3bに被着して、回路基板3の接合面3bにおける前記光素子収納孔31の開口部を塞ぐ、開口部封止部材である。この開口部封止部材7は、シート状又はプレート状に形成されており、充填樹脂部37、透明樹脂層38を形成するための液状の樹脂材料8を光素子収納孔31に注入する(図12参照)際に、回路基板3の接合面3bにおける前記光素子収納孔31の開口部を塞いで、該開口部からの樹脂材料8の漏出を防止するものである。
3 and 8, reference numeral 37 denotes a filling resin portion that fills a space between the inner surface (inner peripheral surface) of the optical element housing hole 31 and the optical element 4 (specifically, the outer peripheral surface of the optical element 4), and reference numeral 38. Is a transparent resin layer covering the light receiving / emitting part installation surface 43 of the optical element 4.
In FIG. 4, reference numeral 7 denotes an opening sealing member that adheres to the bonding surface 3 b of the circuit board 3 and closes the opening of the optical element housing hole 31 in the bonding surface 3 b of the circuit board 3. The opening sealing member 7 is formed in a sheet shape or a plate shape, and injects the liquid resin material 8 for forming the filling resin portion 37 and the transparent resin layer 38 into the optical element housing hole 31 (FIG. 12), the opening of the optical element housing hole 31 in the joint surface 3b of the circuit board 3 is closed to prevent leakage of the resin material 8 from the opening.

本発明に係る光導波路モジュール1の回路基板3の前記光素子収納孔31は、その断面寸法(軸心31a(中心軸線)方向に垂直の断面の寸法。以下、光素子収納孔31の断面寸法、とも言う)は、前記光素子4における前記光素子収納孔31の軸心31aに垂直の断面寸法(以下、光素子4の断面寸法、とも言う)よりも若干大きい(前記電極パッド44のコンタクト面44aの寸法の5〜195%だけ大きくした)寸法になっている。
光素子収納孔31の断面寸法と、光素子4の電極パッド44のコンタクト面44aとの関係については、後に詳述する。
The optical element accommodation hole 31 of the circuit board 3 of the optical waveguide module 1 according to the present invention has a cross-sectional dimension (a dimension of a cross section perpendicular to the direction of the axis 31a (center axis)). Is also slightly larger than the cross-sectional dimension perpendicular to the axis 31a of the optical element housing hole 31 in the optical element 4 (hereinafter also referred to as the sectional dimension of the optical element 4) (contact of the electrode pad 44). The dimension is increased by 5 to 195% of the dimension of the surface 44a.
The relationship between the cross-sectional dimension of the optical element housing hole 31 and the contact surface 44a of the electrode pad 44 of the optical element 4 will be described in detail later.

充填樹脂部37は、光素子収納孔31の内周面の全周(但し、光素子収納孔31の内周面に、図8に示す光素子4の断面の四隅の頂点のいずれか1以上が接触されている場合(例えば図9参照)は、この接触部分を除く)にわたって形成されている。
この充填樹脂部37は、光素子収納孔31内における光素子4の位置ずれ防止に有効に寄与する。
The filled resin portion 37 has an entire circumference of the inner peripheral surface of the optical element accommodation hole 31 (however, any one or more of the apexes at the four corners of the cross section of the optical element 4 shown in FIG. Is formed over the contact area (excluding this contact portion) (see, for example, FIG. 9).
The filling resin portion 37 effectively contributes to prevention of positional deviation of the optical element 4 in the optical element accommodation hole 31.

透明樹脂層38は、前記充填樹脂部37から連続して形成され、前記光素子4の前記受/発光部設置面43を覆っている。この透明樹脂層38は、光導波路基板2のミラー部24と光素子4の受/発光部401との間に伝送される光を透過する。光素子4の受/発光部401と光導波路基板2との間の光信号の伝送は、ミラー部24、透明樹脂層38を介してなされる。
また、この透明樹脂層38は、光素子4の受/発光部401と光導波路基板2との間に空気層が介在することを防止(あるいは、ミラー部24と光素子4(詳細には発光部411又は受光部421)との間の光路H2における空気中伝播部分を減少)して、損失低下に有効に寄与するものである。
The transparent resin layer 38 is formed continuously from the filling resin portion 37 and covers the light receiving / emitting portion installation surface 43 of the optical element 4. The transparent resin layer 38 transmits light transmitted between the mirror part 24 of the optical waveguide substrate 2 and the light receiving / emitting part 401 of the optical element 4. Transmission of an optical signal between the light receiving / emitting unit 401 of the optical element 4 and the optical waveguide substrate 2 is performed via the mirror unit 24 and the transparent resin layer 38.
In addition, the transparent resin layer 38 prevents an air layer from intervening between the light receiving / emitting part 401 of the optical element 4 and the optical waveguide substrate 2 (or the mirror part 24 and the optical element 4 (specifically, light emission). The portion of the light path H2 between the light receiving portion 411 and the light receiving portion 421) is effectively reduced and the loss is effectively reduced.

(電子デバイス)
次に、電子デバイス5について説明する。
図2において、電子デバイス5は、回路基板3のデバイス実装面3aの複数箇所に実装されている。
図示例の電子デバイス5は、電子回路が形成されている基板51を複数枚積層してチップ形に形成されている。この電子デバイス5は、基板51の電子回路52(導体回路)同士を電気的に接続してなる集積回路を具備する。図2中、符号53はビア配線である。以下、この電子デバイス5をLSIとも言う。
但し、回路基板3のデバイス実装面3aに実装する電子デバイスとしては、LSIに限定されず、例えば、パッケージ化されたICチップ、LSIチップ等であっても良い。
(Electronic device)
Next, the electronic device 5 will be described.
In FIG. 2, the electronic device 5 is mounted at a plurality of locations on the device mounting surface 3 a of the circuit board 3.
The electronic device 5 in the illustrated example is formed in a chip shape by laminating a plurality of substrates 51 on which electronic circuits are formed. The electronic device 5 includes an integrated circuit formed by electrically connecting electronic circuits 52 (conductor circuits) on a substrate 51. In FIG. 2, reference numeral 53 denotes a via wiring. Hereinafter, the electronic device 5 is also referred to as an LSI.
However, the electronic device mounted on the device mounting surface 3a of the circuit board 3 is not limited to an LSI, and may be, for example, a packaged IC chip, LSI chip, or the like.

電子デバイス5は、複数枚積層された基板51の内、積層の片端に位置する基板51が形成する下面5aに設けられている電極パッド(図示略)を、前記回路基板3の貫通配線33(あるいは、回路基板3のデバイス実装面3aに設けられている電子回路(導体回路))にボンディングすることで電気導通可能に接続して、回路基板3のデバイス実装面3aに実装されている。   In the electronic device 5, an electrode pad (not shown) provided on the lower surface 5 a formed by the substrate 51 located at one end of the stacked substrate 51 among the stacked substrates 51 is connected to the through wiring 33 ( Alternatively, they are connected to an electronic circuit (conductor circuit) provided on the device mounting surface 3 a of the circuit board 3 so as to be electrically conductive and mounted on the device mounting surface 3 a of the circuit board 3.

本実施形態では、図4に示すように、回路基板3のデバイス実装面3aに実装した金属バンプ351を、電子デバイス5の電極パッドと回路基板3の貫通配線33とを電気的に接続するためのボンディング用金属材料として利用する構成を例示するが、本発明はこれに限定されず、例えば、電子デバイス5の電極パッドに実装した金属バンプを、電子デバイス5の電極パッドと回路基板3の配線とを電気的に接続するためのボンディング用金属材料として利用することも可能である。電子デバイス5の電極パッドと回路基板3の貫通配線33とのボンディング用の金属バンプのリフロー、冷却固化によって、ボンディング金属部35が形成される。   In the present embodiment, as shown in FIG. 4, the metal bumps 351 mounted on the device mounting surface 3 a of the circuit board 3 are electrically connected to the electrode pads of the electronic device 5 and the through wiring 33 of the circuit board 3. However, the present invention is not limited to this. For example, a metal bump mounted on the electrode pad of the electronic device 5 is connected to the electrode pad of the electronic device 5 and the wiring of the circuit board 3. It is also possible to use as a metal material for bonding for electrically connecting the two. The bonding metal portion 35 is formed by reflowing and cooling and solidifying the metal bump for bonding between the electrode pad of the electronic device 5 and the through wiring 33 of the circuit board 3.

なお、回路基板3のデバイス実装面3aには、貫通配線33と電気的に接続した電子回路(導体回路)を設けても良い。この場合、貫通配線33と電子デバイス5の回路とを接続するための金属バンプ62を、貫通配線33のデバイス実装面3a側の端部からずらした位置にて、デバイス実装面3aの電子回路に設けるといったことも可能となる。   Note that an electronic circuit (conductor circuit) electrically connected to the through wiring 33 may be provided on the device mounting surface 3 a of the circuit board 3. In this case, the metal bump 62 for connecting the through wiring 33 and the circuit of the electronic device 5 is shifted from the end of the through wiring 33 on the device mounting surface 3a side to the electronic circuit on the device mounting surface 3a. It can also be provided.

LSI5は、発光素子41の駆動制御回路及び/又は受光素子42の出力信号用アンプとしての機能を具備する。図2に例示したLSI5は、回路基板3の貫通配線33、配線部32を介して、発光素子41及び受光素子42に電気的に接続されており、発光素子41の駆動制御回路、及び、受光素子42の出力信号用アンプとして機能する。
なお、回路基板3に実装するLSI5としては、発光素子41の駆動制御回路、及び、受光素子42の出力信号用アンプの内、一方の機能のみを具備する構成であっても良い。
The LSI 5 functions as a drive control circuit for the light emitting element 41 and / or an output signal amplifier for the light receiving element 42. The LSI 5 illustrated in FIG. 2 is electrically connected to the light emitting element 41 and the light receiving element 42 via the through wiring 33 and the wiring portion 32 of the circuit board 3, and the drive control circuit of the light emitting element 41 and the light receiving element It functions as an output signal amplifier of the element 42.
The LSI 5 mounted on the circuit board 3 may be configured to have only one function of the drive control circuit of the light emitting element 41 and the output signal amplifier of the light receiving element 42.

(電子デバイス用貫通配線)
図1,図2において、符号61は電子デバイス用貫通配線である。
この電子デバイス用貫通配線61は、回路基板3にその厚み方向(図1、図2の上下方向)に貫設されており、回路基板3のデバイス実装面3aに実装された電子デバイス5と、光導波路モジュール1の光導波路基板2の前記回路基板3とは反対の側に設けられた電子機器9(例えば、回路基板、半導体パッケージ等)とを電気的に接続するための接続配線として利用できる。
(Through wiring for electronic devices)
1 and 2, reference numeral 61 denotes a through wiring for an electronic device.
The through wiring 61 for electronic devices is provided in the circuit board 3 in the thickness direction (vertical direction in FIGS. 1 and 2), and the electronic device 5 mounted on the device mounting surface 3a of the circuit board 3; It can be used as a connection wiring for electrically connecting an electronic device 9 (for example, a circuit board, a semiconductor package, etc.) provided on the opposite side of the optical waveguide substrate 2 of the optical waveguide module 1 from the circuit board 3. .

図1に示すように、光導波路モジュール1は、回路基板3のデバイス実装面3aに、電子デバイス用貫通配線61と電子デバイス5とを接続するための金属バンプ62を具備し、回路基板3の接合面3bに、前記電子機器9と電子デバイス用貫通配線61とを接続するための金属バンプ63を具備している。
光導波路基板2には、接合面3b側の金属バンプ63を収納するためのバンプ収納孔25が貫設されており、接合面3b側の金属バンプ63は、前記バンプ収納孔25に収納されるとともに、このバンプ収納孔25から、前記光導波路基板2の前記回路基板3とは反対の側に突出されている。
したがって、この光導波路モジュール1では、図2に示すように、金属バンプ62によって電子デバイス用貫通配線61と接続した電子デバイス5と、金属バンプ63によって電子デバイス用貫通配線61と接続した電子機器9とを、電子デバイス用貫通配線61を介して電気的に接続できる。金属バンプ63は電子デバイス5に対する電気信号の入出力端子として用いることができる。
As shown in FIG. 1, the optical waveguide module 1 includes metal bumps 62 for connecting the electronic device through wiring 61 and the electronic device 5 on the device mounting surface 3 a of the circuit board 3. A metal bump 63 for connecting the electronic device 9 and the electronic device through wiring 61 is provided on the bonding surface 3b.
The optical waveguide substrate 2 is provided with bump housing holes 25 for housing the metal bumps 63 on the bonding surface 3 b side, and the metal bumps 63 on the bonding surface 3 b side are stored in the bump housing holes 25. At the same time, the optical waveguide substrate 2 protrudes from the bump housing hole 25 on the side opposite to the circuit substrate 3.
Therefore, in this optical waveguide module 1, as shown in FIG. 2, the electronic device 5 connected to the electronic device through wiring 61 by the metal bump 62 and the electronic device 9 connected to the electronic device through wiring 61 by the metal bump 63. Can be electrically connected through the through-hole wiring 61 for electronic devices. The metal bumps 63 can be used as input / output terminals for electrical signals to the electronic device 5.

なお、この光導波路モジュール1の回路基板3に形成された配線(貫通配線33、配線部32、端子部34、電子デバイス用貫通配線61を含む)は、銅あるいは銅合金等の導体金属によって形成されている。
導体金属としては、例えば、金、アルミニウム等も採用可能である。
また、回路基板3には、配線を形成する導体金属が半導体基板39中に拡散(金属が移行)することを防止する目的で拡散防止膜を設けることができる。拡散防止膜は、配線を形成する導体金属と半導体基板39との間に介在させる。拡散防止膜用の金属としては、Ta、TiN、SiNなどが挙げられる。
The wiring (including the through wiring 33, the wiring portion 32, the terminal portion 34, and the through wiring 61 for electronic devices) formed on the circuit board 3 of the optical waveguide module 1 is formed of a conductive metal such as copper or a copper alloy. Has been.
As the conductor metal, for example, gold, aluminum or the like can be used.
Further, the circuit board 3 can be provided with a diffusion preventing film for the purpose of preventing the conductor metal forming the wiring from diffusing (metal is transferred) into the semiconductor substrate 39. The diffusion prevention film is interposed between the conductor metal forming the wiring and the semiconductor substrate 39. Examples of the metal for the diffusion prevention film include Ta, TiN, SiN and the like.

この光導波路モジュール1、デバイス付き光導波路モジュール1Aによれば、光素子4を回路基板3の光素子収納孔31内に組み込んだ構成であるため、回路基板3のデバイス実装面3aに実装した電子デバイス5と光素子4との電気的接続を確保するための配線は、光導波路基板2を迂回する等の必要が無く、配線長を短くすることができる。配線長の短縮により、高周波の信号特性を確保することが容易となり、信号伝送の高速化、伝送量増大を図ることができる。
また、本発明によれば、回路基板の電子回路と光素子との間を電気的に接続するための配線の短縮、単純化によって、光導波路を回避するようにして設ける必要性が無くなるため、光導波路モジュール全体の構造を単純化することができる。これにより、光導波路モジュールの製造効率の向上、低コスト化も実現できる。
According to the optical waveguide module 1 and the device-equipped optical waveguide module 1A, since the optical element 4 is incorporated in the optical element housing hole 31 of the circuit board 3, the electron mounted on the device mounting surface 3a of the circuit board 3 is used. The wiring for securing the electrical connection between the device 5 and the optical element 4 does not need to bypass the optical waveguide substrate 2, and the wiring length can be shortened. By shortening the wiring length, it becomes easy to ensure high-frequency signal characteristics, and it is possible to increase the speed of signal transmission and increase the transmission amount.
In addition, according to the present invention, it is not necessary to provide an optical waveguide so as to be avoided by shortening and simplifying the wiring for electrically connecting the electronic circuit of the circuit board and the optical element. The entire structure of the optical waveguide module can be simplified. Thereby, the improvement of the manufacturing efficiency and cost reduction of an optical waveguide module are also realizable.

(製造方法)
次に、上述の光導波路モジュール1の製造方法の一例について説明する。
ここでは、図4に示すように、光素子4として、電極パッド44に金属バンプ45が実装されているものを用いる場合を説明する。
(Production method)
Next, an example of a method for manufacturing the above-described optical waveguide module 1 will be described.
Here, as shown in FIG. 4, a case will be described in which an optical element 4 having a metal bump 45 mounted on an electrode pad 44 is used.

ここで用いる回路基板3は、半導体基板39に、該半導体基板39の両面の一方又は両方(両面の内、少なくとも接合面3bとなる側の面)に形成された配線部32と、前記半導体基板39に貫設された貫通配線33と、光素子収納孔31と、前記配線部32から前記光素子収納孔31の前記接合面3b側の開口部内に張り出された突起状の端子部34とが設けられたもの(光素子収納孔付き基板)である。
また、この回路基板3は、デバイス実装面3aに、電子デバイス5の電極パッドと回路基板3の貫通配線33とを電気的に接続するための金属バンプ351が実装されている。
The circuit board 3 used here includes a wiring portion 32 formed on one or both sides of the semiconductor substrate 39 (a surface on at least the bonding surface 3b side of both sides) of the semiconductor substrate 39, and the semiconductor substrate 39 A through-wiring 33 penetrating through 39, an optical element housing hole 31, and a projecting terminal portion 34 projecting from the wiring portion 32 into the opening on the joint surface 3 b side of the optical element housing hole 31. Is provided (a substrate with an optical element accommodation hole).
In addition, the circuit board 3 has metal bumps 351 mounted on the device mounting surface 3 a for electrically connecting the electrode pads of the electronic device 5 and the through wiring 33 of the circuit board 3.

前記半導体基板39は、ここでは具体的にはシリコン基板である。
図4等において、符号39aは、半導体基板39の表面に形成された酸化膜(シリコン酸化膜)であり、貫通配線33、配線部32といった、回路基板3に形成された配線と半導体基板39との間の電気絶縁性を確保する。
Here, the semiconductor substrate 39 is specifically a silicon substrate.
In FIG. 4 and the like, reference numeral 39a denotes an oxide film (silicon oxide film) formed on the surface of the semiconductor substrate 39. The wiring formed on the circuit board 3 such as the through wiring 33 and the wiring portion 32, and the semiconductor substrate 39 Ensure electrical insulation between.

また、ここでは、回路基板3として、電子デバイス用貫通配線61、金属バンプ62、63を具備するものを用いる。回路基板3に被着状態に設ける光導波路基板2には、バンプ収納孔25を形成しておく。
但し、回路基板3の接合面3b側の金属バンプ63については、回路基板3に被着状態に設けた光導波路基板2にバンプ収納孔25を形成した後に、回路基板3に実装しても良い。
In addition, here, the circuit board 3 is provided with an electronic device through wiring 61 and metal bumps 62 and 63. A bump housing hole 25 is formed in the optical waveguide substrate 2 provided in a state of being attached to the circuit substrate 3.
However, the metal bumps 63 on the bonding surface 3b side of the circuit board 3 may be mounted on the circuit board 3 after the bump housing holes 25 are formed in the optical waveguide board 2 that is attached to the circuit board 3. .

なお、光導波路基板2にバンプ収納孔25を加工(形成)する手法としては、例えば、エキシマレーザーを用いたレーザー加工が好適である。この他、反応性イオンエッチング(Reactive Ion Etching;RIE)を用いる方法や、感光性を有する光導波路基板2の露光、現像による加工等も採用可能である。
レーザー加工では、ステンシルマスクの使用等によって、所望の大きさのバンプ収納孔25を容易に加工できる。反応性イオンエッチング、感光性を有する光導波路基板2の露光、現像では、フィルム状のマスクや、レジスト樹脂の使用等によって、所望の大きさのバンプ収納孔25を容易に加工できる。
As a method for processing (forming) the bump housing holes 25 in the optical waveguide substrate 2, for example, laser processing using an excimer laser is suitable. In addition, a method using reactive ion etching (RIE), exposure of the optical waveguide substrate 2 having photosensitivity, processing by development, and the like can be employed.
In laser processing, the bump housing hole 25 having a desired size can be easily processed by using a stencil mask. In the exposure and development of the optical waveguide substrate 2 having reactive ion etching and photosensitivity, a bump housing hole 25 having a desired size can be easily processed by using a film-like mask or a resist resin.

(光素子実装工程)
まず、前記回路基板3の前記光素子収納孔31に、前記光素子4を組み込み、この光素子4の電極パッド44に予め実装しておいた金属バンプ45をリフローして、前記電極パッド44を前記回路基板3の端子部34にボンディングする(光素子実装工程)。リフローした金属バンプ45の冷却固化によって、光素子4の電極パッド44と回路基板3の端子部34とがボンディングされる。
(Optical element mounting process)
First, the optical element 4 is incorporated into the optical element housing hole 31 of the circuit board 3, and the metal bumps 45 mounted in advance on the electrode pads 44 of the optical element 4 are reflowed, so that the electrode pads 44 are Bonding to the terminal portion 34 of the circuit board 3 (optical element mounting step). By cooling and solidifying the reflowed metal bumps 45, the electrode pads 44 of the optical element 4 and the terminal portions 34 of the circuit board 3 are bonded.

光素子実装工程において、金属バンプ45をリフローすることで、溶融状態のバンプ材料(ボンディング用金属材料)の表面張力によって、光素子4の複数の電極パッド44のコンタクト面44aと、回路基板3の複数の端子部34上にそれぞれ形成されたコンタクト面34aとが重なり合う(平面視における重なり。図9におけるコンタクト面44a、34a同士の重なり合い)ように、光素子収納孔31内での光素子4の位置が調整される(溶融状態のボンディング用金属材料の表面張力自体による光素子4のセルフアライメント)。   In the optical element mounting step, by reflowing the metal bumps 45, the contact surfaces 44 a of the plurality of electrode pads 44 of the optical element 4 and the circuit board 3 are caused by the surface tension of the molten bump material (bonding metal material). The contact surface 34a formed on each of the plurality of terminal portions 34 overlaps (overlap in plan view, the contact surfaces 44a and 34a in FIG. 9 overlap each other). The position is adjusted (self-alignment of the optical element 4 due to the surface tension of the molten bonding metal material itself).

既述の通り、本発明に係る光導波路モジュール1では、回路基板3の前記光素子収納孔31の断面寸法は、前記光素子4の断面寸法を、前記電極パッド44のコンタクト面44aの寸法の5〜195%だけ大きくした寸法になっている。図8、図9において、具体的には、光素子4は、前記光素子収納孔31の軸心31a(中心軸線)に垂直の断面形状が矩形(図8、図9では模式的に正方形の断面形状を図示している)であり、光素子収納孔31の軸心31a(中心軸線)に垂直の断面形状は、光素子4の断面形状よりも若干大きい相似形(矩形、さらに詳細には正方形)になっている。
光素子4を回路基板3の光素子収納孔31内に収納した段階(金属バンプ45のリフロー前)では、光素子4に、光素子収納孔31内での可動範囲が確保される。
As described above, in the optical waveguide module 1 according to the present invention, the cross-sectional dimension of the optical element housing hole 31 of the circuit board 3 is equal to the cross-sectional dimension of the optical element 4 and the dimension of the contact surface 44 a of the electrode pad 44. The size is increased by 5 to 195%. 8 and 9, specifically, the optical element 4 has a rectangular cross section perpendicular to the axis 31a (center axis) of the optical element housing hole 31 (typically square in FIGS. 8 and 9). The cross-sectional shape perpendicular to the axis 31a (center axis) of the optical element housing hole 31 is a similar shape (rectangle, more specifically, slightly larger than the cross-sectional shape of the optical element 4). Square).
At the stage where the optical element 4 is accommodated in the optical element accommodation hole 31 of the circuit board 3 (before the reflow of the metal bumps 45), the movable range in the optical element accommodation hole 31 is secured for the optical element 4.

図7に示す図示例の光素子4の複数の電極パッド44のコンタクト面44aは矩形(図示例では正方形)であり、その面積が互いに同じに揃えてある。また、図9に示す図示例の回路基板3の複数の端子部34は、コンタクト面34aの形状、面積が、それぞれ光素子4の電極パッド44のコンタクト面44aと同じに揃えてある。光素子4は、光素子収納孔31内での位置調整によって、全ての電極パッド44のコンタクト面44aを、一括して、回路基板3の複数の端子部34のコンタクト面34aに重なるように位置合わせすることができる。
前記光素子収納孔31の断面寸法は、前記光素子4の断面寸法に、光素子4の電極パッド44のコンタクト面44aの4辺の内の一辺の長さの5〜195%を加えた寸法になっている。
The contact surfaces 44a of the plurality of electrode pads 44 of the optical element 4 of the illustrated example shown in FIG. 7 are rectangular (squares in the illustrated example), and their areas are aligned with each other. In addition, in the plurality of terminal portions 34 of the circuit board 3 in the illustrated example shown in FIG. 9, the contact surface 34 a has the same shape and area as the contact surface 44 a of the electrode pad 44 of the optical element 4. The optical element 4 is positioned so that the contact surfaces 44 a of all the electrode pads 44 are collectively overlapped with the contact surfaces 34 a of the plurality of terminal portions 34 of the circuit board 3 by adjusting the position in the optical element housing hole 31. Can be combined.
The cross-sectional dimension of the optical element housing hole 31 is obtained by adding 5 to 195% of the length of one of the four sides of the contact surface 44a of the electrode pad 44 of the optical element 4 to the cross-sectional dimension of the optical element 4. It has become.

なお、光素子4の電極パッド44のコンタクト面44aが円形の場合には、光素子収納孔31の断面寸法は、光素子4の電極パッド44のコンタクト面44aの直径の5〜195%を前記光素子4の断面寸法に加えた寸法とする。   When the contact surface 44a of the electrode pad 44 of the optical element 4 is circular, the cross-sectional dimension of the optical element housing hole 31 is 5 to 195% of the diameter of the contact surface 44a of the electrode pad 44 of the optical element 4. The dimension is in addition to the cross-sectional dimension of the optical element 4.

金属バンプ45をリフローすると、溶融状態のバンプ材料(ボンディング用金属材料)の表面張力自体によって、光素子4の複数の電極パッド44のコンタクト面44aと、回路基板3の複数の端子部34上のコンタクト面34aとの重なりが合うように、光素子収納孔31内での光素子4の位置が調整される。ここで、金属バンプ45をリフローしたときの、光素子4の複数の電極パッド44のコンタクト面44aと、回路基板3の複数の端子部34のコンタクト面34aとの重なりは、必ずしも、光素子4の全ての電極パッド44のコンタクト面44aが、回路基板3の複数の端子部34のコンタクト面34aに完全に重なる(光素子4の全ての電極パッド44のコンタクト面44aの全体が端子部34のコンタクト面34a上に位置する)必要はなく、光素子4の1以上の電極パッド44に、そのコンタクト面44aが回路基板3の端子部34のコンタクト面34a上に位置していない部分が若干存在していても良い。   When the metal bump 45 is reflowed, the surface tension of the molten bump material (bonding metal material) itself causes contact surfaces 44a of the plurality of electrode pads 44 of the optical element 4 and the plurality of terminal portions 34 of the circuit board 3 to be formed. The position of the optical element 4 in the optical element accommodation hole 31 is adjusted so that the contact surface 34a overlaps. Here, when the metal bump 45 is reflowed, the overlap between the contact surfaces 44 a of the plurality of electrode pads 44 of the optical element 4 and the contact surfaces 34 a of the plurality of terminal portions 34 of the circuit board 3 is not necessarily limited to the optical element 4. The contact surfaces 44a of all the electrode pads 44 completely overlap the contact surfaces 34a of the plurality of terminal portions 34 of the circuit board 3 (the entire contact surfaces 44a of all the electrode pads 44 of the optical element 4 are the terminals 34). It is not necessary to be located on the contact surface 34 a, and there is a portion of the one or more electrode pads 44 of the optical element 4 where the contact surface 44 a is not located on the contact surface 34 a of the terminal portion 34 of the circuit board 3. You may do it.

回路基板3の複数の端子部34は、コンタクト面34aの形状、面積、設置間隔が、それぞれ光素子4の電極パッド44のコンタクト面44aと完全に一致している必要は無く、例えば、コンタクト面34aの大きさ(面積)が、光素子4の電極パッド44のコンタクト面44aに比べて若干大きい、あるいは、若干小さい構成であっても良い。
また、複数の端子部34のコンタクト面34aの形状、面積は、必ずしも互いに一致している必要は無く、若干のばらつきがあっても構わない。
The plurality of terminal portions 34 of the circuit board 3 do not have to have the shape, area, and installation interval of the contact surface 34a completely coincide with the contact surface 44a of the electrode pad 44 of the optical element 4, for example, the contact surface The size (area) of 34 a may be slightly larger or slightly smaller than the contact surface 44 a of the electrode pad 44 of the optical element 4.
Further, the shapes and areas of the contact surfaces 34a of the plurality of terminal portions 34 do not necessarily have to coincide with each other, and may vary slightly.

金属バンプ45のリフローによる光素子4のセルフアライメントを行うことで、光素子収納孔31内に収納した光素子4の位置が調整され、光素子4の全ての電極パッド44のコンタクト面44aが、回路基板3の複数の端子部34のコンタクト面34aに重なった範囲が充分に確保された状態を容易に得ることができる。このため、溶融状態のバンプ材料の冷却、固化によって、各電極パッド44と端子部34とのボンディング、電気的接続が確実になされる。   By performing self-alignment of the optical element 4 by reflow of the metal bump 45, the position of the optical element 4 accommodated in the optical element accommodation hole 31 is adjusted, and the contact surfaces 44a of all the electrode pads 44 of the optical element 4 are It is possible to easily obtain a state in which the range overlapping the contact surfaces 34a of the plurality of terminal portions 34 of the circuit board 3 is sufficiently secured. For this reason, the bonding and electrical connection of each electrode pad 44 and the terminal portion 34 are ensured by cooling and solidifying the molten bump material.

金属バンプ45のリフローによる光素子4のセルフアライメントが実現されるには、光素子収納孔31内に収納した光素子4の金属バンプ45のリフロー前に、光素子4の全ての電極パッド44の金属バンプ45が、回路基板3の端子部34に接触している必要がある。このため、回路基板3の前記光素子収納孔31の断面寸法は、光素子収納孔31内に収納した光素子4の全ての電極パッド44のコンタクト面44aが、それぞれ、端子部34のコンタクト面34aに重なった部分を有するように調整される。
回路基板3の前記光素子収納孔31の断面寸法が、前記光素子4における前記光素子収納孔31の軸心31a(中心軸線)に垂直の断面寸法に対して、前記電極パッド44のコンタクト面44aの寸法の5〜195%だけ大きくした寸法であれば、光素子収納孔31内に収納した光素子4の全ての電極パッド44のコンタクト面44aが、それぞれ、端子部34のコンタクト面34aに重なった部分を有する、という関係を実現できる。
In order to realize self-alignment of the optical element 4 by reflow of the metal bumps 45, before reflowing the metal bumps 45 of the optical element 4 accommodated in the optical element accommodation hole 31, all the electrode pads 44 of the optical element 4 are arranged. The metal bump 45 needs to be in contact with the terminal portion 34 of the circuit board 3. For this reason, the cross-sectional dimensions of the optical element accommodation holes 31 of the circuit board 3 are such that the contact surfaces 44a of all the electrode pads 44 of the optical elements 4 accommodated in the optical element accommodation holes 31 are contact surfaces of the terminal portions 34, respectively. It is adjusted so as to have a portion overlapping with 34a.
The contact surface of the electrode pad 44 has a cross-sectional dimension of the optical element housing hole 31 of the circuit board 3 that is perpendicular to the axial center 31 a (center axis) of the optical element housing hole 31 of the optical element 4. If the dimension is larger by 5 to 195% of the dimension of 44a, the contact surfaces 44a of all the electrode pads 44 of the optical element 4 accommodated in the optical element accommodating hole 31 are respectively contacted with the contact surfaces 34a of the terminal portion 34. The relationship of having overlapping parts can be realized.

図9に示すように、金属バンプ45のリフローによる光素子4のセルフアライメントが円滑に実現されるには、光素子収納孔31内に収納した光素子4に、金属バンプ45のリフロー時に、光素子収納孔31の軸心31a(中心軸線)に直交する面に沿った方向の移動、軸心31aを中心とする軸回り方向の回転移動、前記軸心31aに対する傾動(図10参照)が許容されている必要がある。
この点、光素子収納孔31に対する端子部34の位置は、光素子4の全ての電極パッド44のコンタクト面44aの中央部が端子部34のコンタクト面34aの中央部上に重なったとき(コンタクト面44a、34a同士が重なり合った面積が最大のとき。以下、このときの状態を、完全アライメント状態、とも言う)に、光素子4の外周(光素子収納孔31の軸心31aに直交する断面の外周)の全周にわたって、光素子収納孔31内面との間にギャップが確保されるように設定することが好ましい。本実施形態では、端子部34について、この位置設定を行った構成を例示する。
但し、本発明は、これに限定されるものでは無く、端子部34の位置設定の適宜変更も可能である。
As shown in FIG. 9, in order to smoothly realize the self-alignment of the optical element 4 due to the reflow of the metal bump 45, the optical element 4 accommodated in the optical element accommodation hole 31 is subjected to light when the metal bump 45 is reflowed. Allowed movement of the element housing hole 31 in a direction along a plane orthogonal to the axis 31a (center axis), rotational movement around the axis about the axis 31a, and tilting with respect to the axis 31a (see FIG. 10). Need to be.
In this regard, the position of the terminal portion 34 with respect to the optical element housing hole 31 is determined when the central portion of the contact surface 44a of all the electrode pads 44 of the optical element 4 overlaps the central portion of the contact surface 34a of the terminal portion 34 (contact When the area where the surfaces 44a and 34a overlap each other is the maximum, the state at this time is also referred to as a complete alignment state, and the cross section orthogonal to the outer periphery of the optical element 4 (the axis 31a of the optical element housing hole 31). The outer periphery of the optical element housing hole 31 is preferably set so as to ensure a gap over the entire circumference. In the present embodiment, a configuration in which this position setting is performed for the terminal portion 34 is illustrated.
However, the present invention is not limited to this, and the position setting of the terminal portion 34 can be appropriately changed.

回路基板3の前記光素子収納孔31の断面寸法と、前記光素子4における前記光素子収納孔31の軸心31a(中心軸線)に垂直の断面寸法との差が、光素子4の電極パッド44のコンタクト面44aの寸法の5%未満であると、光素子収納孔31の内周面と、この光素子収納孔31に収納した光素子4の外周面との間のギャップが小さすぎ、金属バンプ45のリフローによる光素子4のセルフアライメントが円滑に実現されなくなる可能性が大きくなる。また、光素子収納孔31への光素子4の挿入に手間が掛かるようになってくる。   The difference between the cross-sectional dimension of the optical element housing hole 31 of the circuit board 3 and the cross-sectional dimension of the optical element 4 perpendicular to the axis 31a (center axis) of the optical element housing hole 31 is the electrode pad of the optical element 4 The gap between the inner peripheral surface of the optical element storage hole 31 and the outer peripheral surface of the optical element 4 stored in the optical element storage hole 31 is too small if it is less than 5% of the dimension of the contact surface 44a of 44, The possibility that the self-alignment of the optical element 4 due to the reflow of the metal bumps 45 will not be realized smoothly increases. Further, it takes time to insert the optical element 4 into the optical element housing hole 31.

一方、回路基板3の前記光素子収納孔31の断面寸法と、前記光素子4における前記光素子収納孔31の軸心31a(中心軸線)に垂直の断面寸法との差が、光素子4の電極パッド44のコンタクト面44aの寸法の195%を超えていると、光素子収納孔31内に収納した光素子4の電極パッド44のコンタクト面44aと端子部34のコンタクト面34aとの重なりが極端に小さくなりすぎ、金属バンプ45のリフロー時に、溶融したバンプ材料(ボンディング用金属材料)の表面張力によるセルフアライメントが有効にならなくなるケースが生じやすくなる。この場合は、既述の完全アライメント状態となったとき、光素子4の外周と光素子収納孔31内面との間に、光素子4の電極パッド44のコンタクト面44aの寸法の195/2%の大きさのギャップが確保されることとなる。   On the other hand, the difference between the cross-sectional dimension of the optical element housing hole 31 of the circuit board 3 and the cross-sectional dimension of the optical element 4 perpendicular to the axis 31a (center axis) of the optical element housing hole 31 is If it exceeds 195% of the dimension of the contact surface 44 a of the electrode pad 44, the overlap between the contact surface 44 a of the electrode pad 44 of the optical element 4 accommodated in the optical element accommodation hole 31 and the contact surface 34 a of the terminal portion 34 will occur. When the metal bump 45 is reflowed, the case where the self-alignment due to the surface tension of the melted bump material (bonding metal material) is not effective is likely to occur. In this case, 195/2% of the dimension of the contact surface 44a of the electrode pad 44 of the optical element 4 between the outer periphery of the optical element 4 and the inner surface of the optical element housing hole 31 when the complete alignment state described above is achieved. A gap of a size of will be secured.

また、図9に示すように、回路基板3の断面矩形(図示例では正方形)の前記光素子収納孔31の断面寸法は、断面4辺の一辺の長さが、光素子4の光素子収納孔31の軸心31a(中心軸線)に垂直の断面(断面形状は矩形。図示例では正方形)の対角線寸法よりも小さい必要がある。   As shown in FIG. 9, the cross-sectional dimension of the optical element storage hole 31 having a rectangular cross section (square in the illustrated example) of the circuit board 3 is such that the length of one side of the four cross sections is the optical element storage of the optical element 4. It must be smaller than the diagonal dimension of the cross section (cross-sectional shape is rectangular, square in the illustrated example) perpendicular to the axial center 31a (center axis) of the hole 31.

光素子収納孔31の1辺の長さが、光素子4の断面の対角線寸法よりも大きいと、光素子収納孔31内に光素子4を収納したときに、光素子4を、光素子収納孔31内面(光素子4の光素子収納孔31内面への当接)によって、軸心31aを中心とする軸回り方向に位置決めする(金属バンプのリフロー前の、コンタクト面44a、34a同士の重なり合いを確保する)ことが難しくなる。また、金属バンプ45のリフロー時に、光素子4が、軸心31aを中心とする軸回り方向に自由に回転することで、光素子4の各電極パッド44のコンタクト面44aと端子部34のコンタクト面34aとの重なりが非常に小さくなってしまうケースや、重なりが無くなってしまうケースが発生しやすくなる。   If the length of one side of the optical element accommodation hole 31 is larger than the diagonal dimension of the cross section of the optical element 4, the optical element 4 is accommodated when the optical element 4 is accommodated in the optical element accommodation hole 31. Positioning in the direction around the axis about the axis 31a by the inner surface of the hole 31 (contact of the optical element 4 with the inner surface of the optical element housing hole 31) (overlap of the contact surfaces 44a and 34a before reflow of the metal bumps) To secure). Further, when the metal bump 45 is reflowed, the optical element 4 freely rotates in the direction around the axis centering on the axis 31 a, so that the contact surface 44 a of each electrode pad 44 of the optical element 4 and the contact of the terminal portion 34. A case where the overlap with the surface 34a becomes very small or a case where the overlap disappears easily occurs.

図9に示すように、光素子収納孔31の4面の内面の内の対向する内面間の距離が、光素子4の断面の対角線寸法よりも小さく、回路基板3の前記光素子収納孔31の断面寸法と前記光素子4の断面寸法との差によって、金属バンプ45のリフロー時の光素子4の前記軸心31aを中心とする軸回り方向の回転範囲が設定されていれば、溶融したバンプ材料(ボンディング用金属材料)の表面張力によるセルフアライメントによって、光素子4の各電極パッド44のコンタクト面44aと端子部34のコンタクト面34aとの重なりを充分に大きく確保することをより確実に実現できる。   As shown in FIG. 9, the distance between the opposing inner surfaces of the four inner surfaces of the optical element accommodation hole 31 is smaller than the diagonal dimension of the cross section of the optical element 4, and the optical element accommodation hole 31 of the circuit board 3. If the rotation range in the direction around the axis centering on the axis 31a of the optical element 4 when the metal bump 45 is reflowed is set by the difference between the sectional dimension of the optical element 4 and the sectional dimension of the optical element 4, the metal bump 45 is melted. By self-alignment due to the surface tension of the bump material (bonding metal material), it is more reliable to ensure a sufficiently large overlap between the contact surface 44a of each electrode pad 44 of the optical element 4 and the contact surface 34a of the terminal portion 34. realizable.

この回路基板3では、前記光素子収納孔31の断面寸法が、前記光素子4における前記光素子収納孔31の軸心31a(中心軸線)に垂直の断面寸法を、前記電極パッド44のコンタクト面44aの寸法の5〜195%だけ大きいため、光素子収納孔31の内面の精度によって光素子4を位置決めする構成(光素子収納孔31を、光素子4の嵌合によって、光素子4を位置決めする構成)に比べて、光素子収納孔31に光素子4を挿入して組み込む作業を簡単かつ円滑に行える。また、光素子収納孔31の内面の精度によって光素子4を位置決めする構成(光素子収納孔31を、光素子4の嵌合によって、光素子4を位置決めする構成)に比べて、光素子収納孔31内面の形成精度の要求がかなり低くて済むため、光素子収納孔31の加工の手間を大幅に低減できるといった利点もある。光素子収納孔31内面の形成精度が低くても、金属バンプ45をリフローするだけで、溶融したバンプ材料(ボンディング用金属材料)の表面張力によって、光素子4のセルフアライメントを実現できる。   In this circuit board 3, the cross-sectional dimension of the optical element accommodation hole 31 is perpendicular to the axial center 31 a (center axis) of the optical element accommodation hole 31 in the optical element 4, and the contact surface of the electrode pad 44. 44a is larger by 5 to 195% of the dimension, and therefore the optical element 4 is positioned by the accuracy of the inner surface of the optical element storage hole 31 (the optical element 4 is positioned by fitting the optical element 4 into the optical element storage hole 31). Compared to the configuration, the operation of inserting and incorporating the optical element 4 into the optical element housing hole 31 can be performed easily and smoothly. Compared to the configuration in which the optical element 4 is positioned by the accuracy of the inner surface of the optical element storage hole 31 (the configuration in which the optical element storage hole 31 is positioned by fitting the optical element 4), the optical element is stored. Since the requirement for the formation accuracy of the inner surface of the hole 31 is considerably low, there is an advantage that the labor for processing the optical element housing hole 31 can be greatly reduced. Even if the formation accuracy of the inner surface of the optical element housing hole 31 is low, the self-alignment of the optical element 4 can be realized only by reflowing the metal bump 45 by the surface tension of the melted bump material (bonding metal material).

また、金属バンプ35のリフローによって光素子4のセルフアライメントを実現できるので、光素子収納孔31に対する光素子4の挿入位置を調整する必要が無く、光素子収納孔31に対する光素子4の挿入作業を非常に簡単に行うことができる。
図11(a)に示すように、回路基板3の複数の光素子収納孔31にそれぞれ収納した光素子4の位置にはばらつきが許容される。そして、金属バンプ35のリフローによって、図11(b)に示すように、複数の光素子4を、光素子4の複数の電極パッド44のコンタクト面44aと端子部34のコンタクト面34aとの重なりを充分に大きく確保できるように、端子部34に対して位置合わせすることを、一括して、短時間に行うことができる。
Further, since the self-alignment of the optical element 4 can be realized by the reflow of the metal bumps 35, it is not necessary to adjust the insertion position of the optical element 4 with respect to the optical element accommodation hole 31, and the operation of inserting the optical element 4 into the optical element accommodation hole 31 is possible. Can be done very easily.
As shown in FIG. 11A, variation is allowed in the positions of the optical elements 4 respectively accommodated in the plurality of optical element accommodation holes 31 of the circuit board 3. 11B, the plurality of optical elements 4 are overlapped with the contact surfaces 44a of the plurality of electrode pads 44 of the optical element 4 and the contact surfaces 34a of the terminal portions 34. Alignment with respect to the terminal portion 34 can be performed in a short time in a short time so as to be sufficiently large.

(充填樹脂部形成工程)
光素子実装工程が完了したら、前記光素子収納孔31内面と前記光素子4との間を埋める充填樹脂部37を形成する充填樹脂部形成工程を行う。
この充填樹脂部形成工程は、回路基板3(光素子収納孔付き基板)の接合面3bにおける前記光素子収納孔31の開口部を、開口部封止部材(図12(a)、(b)の符号7の開口部封止部材,図13の光導波路基板2)を用いて塞いだ状態で、前記光素子収納孔31内に液状の樹脂材料8を注入(デバイス実装面3a側から光素子収納孔31に注入)して前記充填樹脂部37を形成する。このとき、回路基板3に実装済みの光素子4の受/発光部設置面43と開口部封止部材との間にギャップを確保することで、充填樹脂部37とともに、該充填樹脂部37から連続して、前記光素子4の前記受/発光部設置面43を覆う透明樹脂層38も形成する。この場合、充填樹脂部37と透明樹脂層38とは、同じ樹脂材料8によって形成される。
なお、回路基板3に実装済みの光素子4の受/発光部設置面43と開口部封止部材との間のギャップは、端子部34が、シート状又はプレート状の開口部封止部材が撓んで光素子収納孔31内に入り込むことを規制することにより確保できる。
(Filled resin part forming process)
When the optical element mounting step is completed, a filling resin portion forming step for forming a filling resin portion 37 that fills the space between the inner surface of the optical element housing hole 31 and the optical element 4 is performed.
In this filling resin portion forming step, the opening portion of the optical element accommodation hole 31 in the joint surface 3b of the circuit board 3 (substrate with the optical element accommodation hole) is formed as an opening sealing member (FIGS. 12A and 12B). The liquid resin material 8 is injected into the optical element housing hole 31 in a state where the optical element housing hole 31 is closed using the opening sealing member denoted by reference numeral 7 and the optical waveguide substrate 2 in FIG. 13 (from the device mounting surface 3a side to the optical element). The filling resin portion 37 is formed by injecting into the storage hole 31. At this time, by securing a gap between the light receiving / emitting part installation surface 43 of the optical element 4 mounted on the circuit board 3 and the opening sealing member, together with the filling resin part 37, the filling resin part 37 Continuously, a transparent resin layer 38 that covers the light receiving / emitting portion installation surface 43 of the optical element 4 is also formed. In this case, the filling resin portion 37 and the transparent resin layer 38 are formed of the same resin material 8.
Note that the gap between the light receiving / emitting part installation surface 43 of the optical element 4 mounted on the circuit board 3 and the opening sealing member is such that the terminal part 34 is formed by a sheet-like or plate-like opening sealing member. This can be ensured by restricting bending into the optical element housing hole 31.

充填樹脂部形成工程が完了したら、回路基板3の接合面3bに被着した光導波路基板2にミラー部24を形成するミラー部形成工程に移行する。
充填樹脂部形成工程が完了すると、既述の光素子内蔵基板6が得られる。
When the filling resin portion forming step is completed, the process proceeds to a mirror portion forming step in which the mirror portion 24 is formed on the optical waveguide substrate 2 attached to the bonding surface 3b of the circuit board 3.
When the filling resin portion forming step is completed, the above-described optical element built-in substrate 6 is obtained.

充填樹脂部37及び透明樹脂層38を形成する樹脂材料8としては、例えば、エポキシ樹脂等の、硬化後に透明性を確保できる紫外線硬化性樹脂を採用することが好ましい。
この場合、光素子収納孔31内に注入した樹脂材料8の硬化によって、充填樹脂部37及び透明樹脂層38を簡単に形成することができる。
As the resin material 8 that forms the filling resin portion 37 and the transparent resin layer 38, it is preferable to employ, for example, an ultraviolet curable resin that can ensure transparency after curing, such as an epoxy resin.
In this case, the filling resin portion 37 and the transparent resin layer 38 can be easily formed by curing the resin material 8 injected into the optical element housing hole 31.

この充填樹脂部形成工程では、図13に示すように、光素子実装工程の完了後に回路基板3の接合面3bに被着した光導波路基板2自体を開口部封止部材として用いても良いが、図12(a)に示すように、光導波路基板2以外のシート状又はプレート状の開口部封止部材7を回路基板3の接合面3bに被着して、光素子収納孔31内への液状の樹脂材料8の注入を行っても良い。   In this filling resin portion forming step, as shown in FIG. 13, the optical waveguide substrate 2 itself attached to the bonding surface 3b of the circuit substrate 3 after completion of the optical element mounting step may be used as the opening sealing member. 12A, a sheet-like or plate-like opening sealing member 7 other than the optical waveguide substrate 2 is attached to the joining surface 3b of the circuit board 3, and into the optical element housing hole 31. As shown in FIG. The liquid resin material 8 may be injected.

(充填樹脂部形成工程1)
まず、図12(a)、(b)を参照して、充填樹脂部形成工程を説明する。
図12(a)、(b)の場合、シート状又はプレート状の開口部封止部材7を回路基板3の接合面3bに被着して、回路基板3(光素子収納孔付き基板)の接合面3bにおける前記光素子収納孔31の開口部を塞いだ状態で、光素子収納孔31内に液状の樹脂材料8を注入した後、この樹脂材料8を硬化させて、充填樹脂部37及び透明樹脂層38を形成する(充填樹脂部形成工程)。
開口部封止部材7としては紫外線透過性のものを採用することが好ましく、これにより、光素子収納孔31内に注入した樹脂材料8を紫外線の照射によって硬化させる作業を、短時間で効率良く行うことができる。
開口部封止部材7としては、例えば、合成樹脂製の透明シート又は透明プレート、ガラス板等を採用することができる。合成樹脂製の透明シート又は透明プレートの形成材料としては、例えば、ポリイミド、ポリノルボルネン(PNB)、ベンゾシクロブテン(BCB)等を採用できる。
(Filled resin part forming step 1)
First, the filling resin portion forming step will be described with reference to FIGS. 12 (a) and 12 (b).
12A and 12B, a sheet-like or plate-like opening sealing member 7 is attached to the bonding surface 3b of the circuit board 3, and the circuit board 3 (substrate with optical element accommodation holes) is attached. After injecting the liquid resin material 8 into the optical element accommodation hole 31 in a state where the opening of the optical element accommodation hole 31 in the joint surface 3b is closed, the resin material 8 is cured to fill the filling resin portion 37 and The transparent resin layer 38 is formed (filled resin portion forming step).
As the opening sealing member 7, it is preferable to use a material that is transmissive to ultraviolet rays, whereby the work of curing the resin material 8 injected into the optical element housing hole 31 by irradiation with ultraviolet rays can be efficiently performed in a short time. It can be carried out.
As the opening sealing member 7, for example, a synthetic resin transparent sheet or transparent plate, a glass plate, or the like can be employed. For example, polyimide, polynorbornene (PNB), benzocyclobutene (BCB), or the like can be employed as a material for forming the synthetic resin transparent sheet or transparent plate.

充填樹脂部37及び透明樹脂層38の形成が完了したら、図12(b)に示すように、回路基板3から開口部封止部材7を除去した後、回路基板3の接合面3bに光導波路基板2を被着して、ミラー部24を形成するミラー部形成工程に移行する。
透明樹脂層38は、光素子4の受/発光部401を保護するための保護層、特に、光素子内蔵基板6を光導波路基板2と貼り合わせる前まで、光素子4の受/発光部401を、衝突物の衝突、埃の付着による汚染等から保護するための保護層として機能する。
また、回路基板3から開口部封止部材7を除去した後、例えば、回路基板3の接合面3b側での透明樹脂層38の平坦化処理等を行うことも可能である。
When the formation of the filling resin portion 37 and the transparent resin layer 38 is completed, the opening sealing member 7 is removed from the circuit board 3 as shown in FIG. The substrate 2 is attached, and the process proceeds to a mirror part forming step for forming the mirror part 24.
The transparent resin layer 38 is a protective layer for protecting the light receiving / emitting part 401 of the optical element 4, in particular, before the optical element built-in substrate 6 is bonded to the optical waveguide substrate 2. Functions as a protective layer for protecting against collisions of colliding objects, contamination due to dust adhesion, and the like.
In addition, after removing the opening sealing member 7 from the circuit board 3, for example, a flattening process of the transparent resin layer 38 on the bonding surface 3 b side of the circuit board 3 can be performed.

なお、この充填樹脂部形成工程1にて用いる開口部封止部材7としては、回路基板3の接合面3bにおける光素子収納孔31の開口部を封止して、光素子収納孔31に注入した液状の樹脂材料8の漏出を防止する点では、回路基板3の接合面3b全体に被着する必要は無く、例えば、回路基板3の接合面3bにおける光素子収納孔31の開口部よりも若干大きい程度のシート状又はプレート状の部材、光素子収納孔31の開口部に嵌合するキャップ状の部材等であっても良い。   In addition, as the opening sealing member 7 used in the filling resin portion forming step 1, the opening of the optical element storage hole 31 in the bonding surface 3 b of the circuit board 3 is sealed and injected into the optical element storage hole 31. In order to prevent leakage of the liquid resin material 8, it is not necessary to adhere to the entire bonding surface 3 b of the circuit board 3, for example, more than the opening of the optical element housing hole 31 in the bonding surface 3 b of the circuit board 3. It may be a slightly larger sheet-like or plate-like member, a cap-like member fitted into the opening of the optical element housing hole 31, or the like.

(充填樹脂部形成工程2)
図13の場合は、既述の通り、回路基板3の接合面3bに光導波路基板2を被着し、この光導波路基板2自体を開口部封止部材として用いて、充填樹脂部形成工程を行う。
この場合、光素子収納孔31内に注入した樹脂材料8を紫外線の照射によって硬化させることに鑑みて、光導波路基板2として、該光導波路基板2の断面方向への紫外線の透過が可能なものを採用し、回路基板3とは反対の側から光素子収納孔31内の樹脂材料8への紫外線照射を行う。
(Filled resin part forming step 2)
In the case of FIG. 13, as described above, the optical waveguide substrate 2 is attached to the joint surface 3b of the circuit substrate 3, and the optical waveguide substrate 2 itself is used as the opening sealing member, and the filling resin portion forming step is performed. Do.
In this case, in view of curing the resin material 8 injected into the optical element housing hole 31 by irradiation with ultraviolet rays, the optical waveguide substrate 2 can transmit ultraviolet rays in the cross-sectional direction of the optical waveguide substrate 2. The resin material 8 in the optical element housing hole 31 is irradiated with ultraviolet rays from the side opposite to the circuit board 3.

光導波路基板2は、シート状に作成済みの光導波路基板2を回路基板3に適宜接着剤を用いるなどして貼り合わせることで回路基板3に被着しても良いが、例えば、3層構造の光導波路形成体の個々の層を形成する樹脂材料を含むワニスの、回路基板3の接合面への塗布による光導波路形成体の形成、この光導波路形成体への活性エネルギー線の照射によるコア部22の形成によって、回路基板3に被着状態に形成しても良い。   The optical waveguide substrate 2 may be attached to the circuit board 3 by adhering the optical waveguide substrate 2 already formed into a sheet shape to the circuit board 3 by using an appropriate adhesive, for example, a three-layer structure. The optical waveguide forming body is formed by applying a varnish containing a resin material forming each layer of the optical waveguide forming body to the joint surface of the circuit board 3, and the core is formed by irradiating the optical waveguide forming body with active energy rays. The portion 22 may be formed so as to be attached to the circuit board 3.

この図13を参照して説明した充填樹脂部形成工程(充填樹脂部形成工程2)を具備する、光導波路モジュール1の製造方法によれば、充填樹脂部形成工程の完了後に開口部封止部材(光導波路基板2)を回路基板3から除去しないので、図12(a)、(b)を参照して説明した充填樹脂部形成工程(充填樹脂部形成工程1)を具備する製造方法に比べて、工程数を減少できる。   According to the manufacturing method of the optical waveguide module 1 including the filling resin portion forming step (filling resin portion forming step 2) described with reference to FIG. 13, the opening portion sealing member after the filling resin portion forming step is completed. Since the (optical waveguide substrate 2) is not removed from the circuit board 3, compared with the manufacturing method including the filling resin portion forming step (filling resin portion forming step 1) described with reference to FIGS. 12 (a) and 12 (b). Thus, the number of processes can be reduced.

上述した充填樹脂部形成工程1,2のいずれでも、透明の開口部封止部材(開口部封止部材7あるいは光導波路基板2)が回路基板3の接合面3bに被着された状態において、充填樹脂部37及び透明樹脂層38を形成するための樹脂材料8を光素子収納孔31に注入することとなり、開口部封止部材を介して、回路基板3の接合面3b側から、光素子収納孔31内への樹脂材料8の充填状況を観察することができる。
なお、充填樹脂部形成工程1で使用する開口部封止部材7については、回路基板3の接合面3bにおける光素子収納孔31の開口部を封止して、光素子収納孔31に注入した液状の樹脂材料8の漏出を防止する点では、必ずしも透明のものに限定されず、不透明のものも採用可能である。
In any of the filling resin part forming steps 1 and 2 described above, in a state where the transparent opening sealing member (opening sealing member 7 or optical waveguide substrate 2) is attached to the bonding surface 3b of the circuit board 3, The resin material 8 for forming the filling resin portion 37 and the transparent resin layer 38 is injected into the optical element housing hole 31, and the optical element is formed from the bonding surface 3b side of the circuit board 3 through the opening sealing member. The filling state of the resin material 8 into the storage hole 31 can be observed.
In addition, about the opening part sealing member 7 used by the filling resin part formation process 1, the opening part of the optical element accommodation hole 31 in the joint surface 3b of the circuit board 3 was sealed, and it inject | poured into the optical element accommodation hole 31 In terms of preventing leakage of the liquid resin material 8, it is not necessarily limited to a transparent material, and an opaque material can also be employed.

充填樹脂部形成工程が完了したら、光導波路基板2にミラー部24を形成するミラー部形成工程に移行する。   When the filling resin portion forming step is completed, the process proceeds to a mirror portion forming step for forming the mirror portion 24 on the optical waveguide substrate 2.

(ミラー部形成工程)
ミラー部形成工程では、光導波路基板2の回路基板3(光素子内蔵基板6)とは反対の側から光導波路基板2(および透明樹脂層38)を介して透視できる光素子4の受/発光部401に位置を合わせて、光導波路基板2を加工して、図2、図3等に例示するように、光導波路基板2に、その回路基板3とは反対の側からV字形の凹部であるミラー部24を形成する。ミラー部24の形成は、例えば、光導波路基板2のレーザー加工、機械加工等によって行う。
これにより、本発明に係る光導波路モジュールが得られる。
(Mirror part formation process)
In the mirror portion forming step, the optical element 4 can be received / emitted through the optical waveguide substrate 2 (and the transparent resin layer 38) from the opposite side of the optical waveguide substrate 2 to the circuit board 3 (optical element built-in substrate 6). The optical waveguide substrate 2 is processed by aligning the position with the portion 401, and as illustrated in FIG. 2, FIG. 3, etc., the optical waveguide substrate 2 is formed with a V-shaped concave portion from the side opposite to the circuit substrate 3. A certain mirror part 24 is formed. The mirror part 24 is formed by, for example, laser processing or machining of the optical waveguide substrate 2.
Thereby, the optical waveguide module according to the present invention is obtained.

(デバイス実装工程)
また、光素子内蔵基板6に電子デバイス5が実装されている光導波路モジュール1、つまりデバイス付き光導波路モジュール1Aの製造のためには、充填樹脂部形成工程の完了後、ミラー部形成工程の前、又は、ミラー部形成工程の後に、光素子内蔵基板6(回路基板3)に電子デバイス5を実装するデバイス実装工程を行う。
ミラー部形成工程の作業性確保の点では、デバイス実装工程は、ミラー部形成工程の後に行うことが好ましい。
(Device mounting process)
In order to manufacture the optical waveguide module 1 in which the electronic device 5 is mounted on the optical element built-in substrate 6, that is, the optical waveguide module with device 1A, after the filling resin portion forming step is completed, before the mirror portion forming step, Alternatively, after the mirror part forming step, a device mounting step of mounting the electronic device 5 on the optical element built-in substrate 6 (circuit substrate 3) is performed.
In terms of ensuring workability in the mirror portion forming step, the device mounting step is preferably performed after the mirror portion forming step.

(受/発光部を複数持つ光素子の採用)
本発明に係るデバイス付き光導波路モジュール1A、光素子内蔵基板6に適用される光素子4としては、既述のように、受/発光部設置面43に受/発光部401が複数設けられているものも採用可能である。
但し、金属バンプのリフローによる、光素子4の回路基板3に対するセルフアライメントを出来るだけ有効に機能させる点で、例えば図14(a)〜(c)に示すように、受/発光部設置面43において、受/発光部401を介して両側に電極パッド44が設けられている構成のものを採用することが好ましい。
図14(a)〜(c)の光素子4に、区別のため、符号4A、4B、4Cを付す。
(Adopting optical elements with multiple light receiving / emitting sections)
As described above, the optical waveguide 4 applied to the optical waveguide module 1A with a device and the optical element built-in substrate 6 according to the present invention includes a plurality of receiving / emitting sections 401 on the receiving / emitting section installation surface 43. It is possible to adopt what is.
However, as shown in FIGS. 14A to 14C, for example, as shown in FIGS. 14A to 14C, the light receiving / light emitting portion installation surface 43 is provided so that the self-alignment of the optical element 4 with respect to the circuit board 3 can be performed as much as possible by reflowing metal bumps. In this case, it is preferable to adopt a configuration in which the electrode pads 44 are provided on both sides via the light receiving / emitting unit 401.
Reference numerals 4A, 4B, and 4C are assigned to the optical elements 4 in FIGS. 14A to 14C for distinction.

図14(a)〜(c)に示す例では、光素子4は、長方形の受/発光部設置面43を有する外観直方体状のチップである。
図14(a)、(c)に示す光素子4A、4Cは、長方形の受/発光部設置面43の幅方向中央部(長方形の受/発光部設置面43の短辺に沿った方向の中央部)に、複数の受/発光部401が、長方形の受/発光部設置面43の長手方向に沿って一列に配列設置され、この複数の受/発光部401が配列されてなる受/発光部設置列401Lを介して両側の複数箇所に、それぞれ、電極パッド44が設置された構成になっている。
In the example shown in FIGS. 14A to 14C, the optical element 4 is a rectangular parallelepiped chip having a rectangular light receiving / emitting part installation surface 43.
The optical elements 4A and 4C shown in FIGS. 14A and 14C have a central portion in the width direction of the rectangular light receiving / light emitting portion installation surface 43 (in the direction along the short side of the rectangular light receiving / light emitting portion installation surface 43). A plurality of light receiving / light emitting portions 401 are arranged and arranged in a line along the longitudinal direction of the rectangular light receiving / light emitting portion installation surface 43 in the center portion, and the plurality of light receiving / light emitting portions 401 are arranged. The electrode pads 44 are installed at a plurality of locations on both sides via the light emitting unit installation row 401L.

仮に、電極パッド44が、受/発光部設置列401Lを介して両側の内の片側のみに設けられている構成の場合は、光素子収納孔31内に光素子を収納して、各電極パッド44に実装しておいた金属バンプを端子部34のコンタクト面34aに当接させたときに、光素子4が傾いてしまい、金属バンプをリフローしても、光素子4の回路基板3に対するセルフアライメントが有効に機能しない可能性が出てくる。これに対して、図14(a)、(c)に示す光素子4A、4Cのように、受/発光部設置列401Lを介して両側の複数箇所に電極パッド44が設置された構成であれば、光素子収納孔31内に光素子を収納して、各電極パッド44に実装しておいた金属バンプを端子部34のコンタクト面34aに当接させたときに、光素子4に無用な傾きを与えることを防ぐことができ、金属バンプのリフローによって、光素子4の回路基板3に対するセルフアライメントを確実に行うことができる。   If the electrode pad 44 is provided on only one side of the both sides via the light receiving / emitting section installation row 401L, the optical element is stored in the optical element storage hole 31, and each electrode pad is stored. When the metal bump mounted on 44 is brought into contact with the contact surface 34a of the terminal portion 34, the optical element 4 is tilted, and even if the metal bump is reflowed, the optical element 4 self-acts on the circuit board 3. Alignment may not function effectively. On the other hand, as in the optical elements 4A and 4C shown in FIGS. 14A and 14C, the electrode pads 44 may be installed at a plurality of positions on both sides via the light receiving / emitting section installation row 401L. For example, when the optical element is stored in the optical element storage hole 31 and the metal bump mounted on each electrode pad 44 is brought into contact with the contact surface 34a of the terminal portion 34, the optical element 4 is useless. Inclination can be prevented, and self-alignment of the optical element 4 with respect to the circuit board 3 can be reliably performed by reflow of the metal bumps.

長方形の受/発光部設置面43を有する光素子4において、金属バンプのリフローによって、光素子4の回路基板3に対するセルフアライメントを有効に機能させる点では、電極パッド44が、長方形の受/発光部設置面43の幅方向両側のそれぞれにて受/発光部設置面43の長手方向に沿う複数箇所に設けられている構成であることが好ましい。この点、受/発光部401は、必ずしも、受/発光部設置列401Lを形成する配置である必要はない。例えば、受/発光部401を、受/発光部設置面43の幅方向両側の、電極パッド44が設置されている領域内に設置し、受/発光部設置面43の幅方向中央部には設置しない、構成等を排除するものでは無い。   In the optical element 4 having the rectangular light receiving / emitting part installation surface 43, the electrode pad 44 is rectangular in light receiving / emitting light in that the self-alignment of the optical element 4 with respect to the circuit board 3 effectively functions by reflow of metal bumps. It is preferable that the configuration is provided at a plurality of locations along the longitudinal direction of the light receiving / light emitting unit installation surface 43 on each of both sides in the width direction of the unit installation surface 43. In this regard, the light receiving / light emitting unit 401 is not necessarily arranged to form the light receiving / light emitting unit installation row 401L. For example, the light receiving / light emitting unit 401 is installed in the region where the electrode pad 44 is installed on both sides in the width direction of the light receiving / light emitting unit installation surface 43, and at the center in the width direction of the light receiving / light emitting unit installation surface 43. It does not exclude the configuration, etc. that are not installed.

図14Bの光素子4Bは、受/発光部401と電極パッド44とを、長方形の受/発光部設置面43の長手方向に沿って一列に配列設置した構成になっている。
この場合、光素子収納孔31内に光素子を収納して、各電極パッド44に実装しておいた金属バンプを端子部34のコンタクト面34aに当接させたときには、図14(a)、(c)に示す光素子4A、4Cに比べて光素子の姿勢安定性が劣るが、ボンディング用金属材料(金属バンプ)のリフローによる光素子4の回路基板3に対するセルフアライメントは問題なく実現できる。
The optical element 4B of FIG. 14B has a configuration in which the light receiving / emitting portion 401 and the electrode pad 44 are arranged in a line along the longitudinal direction of the rectangular receiving / light emitting portion installation surface 43.
In this case, when the optical element is accommodated in the optical element accommodation hole 31 and the metal bump mounted on each electrode pad 44 is brought into contact with the contact surface 34a of the terminal portion 34, FIG. Although the posture stability of the optical element is inferior to that of the optical elements 4A and 4C shown in (c), self-alignment of the optical element 4 with respect to the circuit board 3 by reflow of the bonding metal material (metal bump) can be realized without any problem.

なお、長方形の受/発光部設置面43を有する外観直方体状のチップに形成された光素子4を採用した場合でも、光素子収納孔31の軸心31aに垂直の断面を、前記光素子4における前記光素子収納孔31の軸心31aに垂直の断面寸法よりも若干大きい(前記電極パッド44のコンタクト面44aの寸法の5〜195%だけ大きくした)寸法の長方形とすることは、正方形の受/発光部設置面43を有する光素子の場合と同様である。
また、断面長方形の光素子収納孔31は、その断面長辺寸法を、光素子4の光素子収納孔31の軸心31a(中心軸線)に垂直の断面(断面形状は矩形。図示例では正方形)の対角線寸法よりも小さくする。
Even when the optical element 4 formed on a rectangular chip having a rectangular light receiving / emitting part installation surface 43 is employed, a cross section perpendicular to the axis 31 a of the optical element housing hole 31 is taken as the optical element 4. The rectangular shape having a dimension slightly larger than the cross-sectional dimension perpendicular to the axis 31a of the optical element housing hole 31 (by 5 to 195% of the dimension of the contact surface 44a of the electrode pad 44) is square. This is the same as in the case of the optical element having the light receiving / emitting part installation surface 43.
Further, the optical element storage hole 31 having a rectangular cross section has a cross-sectional long side dimension perpendicular to the axis 31a (center axis) of the optical element storage hole 31 of the optical element 4 (the cross-sectional shape is rectangular. ) Smaller than the diagonal dimension.

長方形の受/発光部設置面43の長手方向に沿った複数箇所に受/発光部401が設けられている構成の光素子4を採用した場合、光導波路基板2として、光素子4の複数の受/発光部401に対応する本数(あるいは受/発光部401の数よりも多くても良い)のコア部22を具備するものを採用する。また、光素子4の各受/発光部401に対応する位置にミラー部24を設けて、該ミラー部24を介して、光導波路基板2のコア部22毎に対応する光路と受/発光部401とを1対1に光結合させる。
現在、市販されている、受/発光部401を複数持つタイプの光素子4は、長方形の受/発光部設置面43の長手方向における受/発光部401の設置間隔が250μmであることが一般的である。これに対応するには、光導波路基板2にて、光素子4の複数の受/発光部401に対応して並列に形成されるコア部22の配列間隔も250μmとする。
光導波路基板2に並列に形成されるコア部22の配列間隔は、光素子4における長方形の受/発光部設置面43の長手方向における受/発光部401の設置間隔と揃えるが、受/発光部401の設置間隔は250μmに限定されない。250μm以外(例えば、125μm)の場合は、これに応じて、コア部22の配列間隔も、受/発光部401の設置間隔と揃える。
When the optical element 4 having a configuration in which the light receiving / light emitting portions 401 are provided at a plurality of locations along the longitudinal direction of the rectangular light receiving / light emitting portion installation surface 43, a plurality of the optical elements 4 are used as the optical waveguide substrate 2. The one having the number of core portions 22 corresponding to the number of the light receiving / light emitting portions 401 (or may be larger than the number of the light receiving / light emitting portions 401) is adopted. Further, a mirror part 24 is provided at a position corresponding to each light receiving / emitting part 401 of the optical element 4, and an optical path and a light receiving / light emitting part corresponding to each core part 22 of the optical waveguide substrate 2 via the mirror part 24. 401 is optically coupled one-to-one.
The optical element 4 of the type having a plurality of light receiving / light emitting portions 401 that is currently on the market generally has an installation interval of the light receiving / light emitting portions 401 in the longitudinal direction of the rectangular light receiving / light emitting portion installation surface 43 of 250 μm. Is. In order to cope with this, the arrangement interval of the core portions 22 formed in parallel corresponding to the plurality of light receiving / emitting portions 401 of the optical element 4 in the optical waveguide substrate 2 is also set to 250 μm.
The arrangement interval of the core portions 22 formed in parallel to the optical waveguide substrate 2 is aligned with the installation interval of the light receiving / light emitting portions 401 in the longitudinal direction of the rectangular light receiving / light emitting portion installation surface 43 in the optical element 4. The installation interval of the parts 401 is not limited to 250 μm. In the case of other than 250 μm (for example, 125 μm), the arrangement interval of the core portions 22 is also aligned with the installation interval of the light receiving / emitting portions 401 accordingly.

(別態様)
次に、本発明の別態様を説明する。
ここでは、図15に示す光導波路モジュール10、及び、その製造方法を説明する。
図15に示す光導波路モジュール10は、図2に示す光導波路モジュール1の回路基板3と光導波路基板2との間に、シート状の透明部材(開口部封止部材7)が介挿された構造になっている。
開口部封止部材7は、回路基板3の接合面3bに被着されており、光導波路基板2は開口部封止部材7に貼り合わせて固定されている。
回路基板3の光素子4の受/発光部401と、この受/発光部401に対応させて光導波路基板2に形成されているミラー部24との間の光路H2は開口部封止部材7を貫通する。
(Another aspect)
Next, another aspect of the present invention will be described.
Here, the optical waveguide module 10 shown in FIG. 15 and the manufacturing method thereof will be described.
In the optical waveguide module 10 shown in FIG. 15, a sheet-like transparent member (opening sealing member 7) is interposed between the circuit board 3 and the optical waveguide substrate 2 of the optical waveguide module 1 shown in FIG. It has a structure.
The opening sealing member 7 is attached to the bonding surface 3 b of the circuit board 3, and the optical waveguide substrate 2 is bonded and fixed to the opening sealing member 7.
The optical path H2 between the light receiving / emitting part 401 of the optical element 4 of the circuit board 3 and the mirror part 24 formed on the optical waveguide substrate 2 corresponding to the light receiving / emitting part 401 is an opening sealing member 7. To penetrate.

この光導波路モジュール10の製造方法としては、例えば、充填樹脂部形成工程にて、図12(a)に示すように、透明シート状の開口部封止部材7を回路基板3の接合面3bに貼り合わせ、充填樹脂部形成工程の完了後、この開口部封止部材7を回路基板3から除去することなく、回路基板3に被着したまま、光導波路基板2を、開口部封止部材7の回路基板3とは反対の側の面に積層するように被着して(図15参照)、ミラー部形成工程に移行する。
充填樹脂部形成工程よりも前の工程は、既述の実施形態と同様に、光素子実装工程を行う。また、ミラー部形成工程以降の工程も、既述の実施形態と同様に行うことができる。
As a manufacturing method of the optical waveguide module 10, for example, in the filling resin portion forming step, as shown in FIG. 12A, the transparent sheet-like opening sealing member 7 is formed on the bonding surface 3 b of the circuit board 3. After completion of the bonding and filling resin portion forming step, the optical waveguide substrate 2 is attached to the circuit board 3 without removing the opening sealing member 7 from the circuit board 3. Is attached so as to be laminated on the surface opposite to the circuit board 3 (see FIG. 15), and the process proceeds to the mirror part forming step.
In the process before the filling resin portion forming process, the optical element mounting process is performed in the same manner as in the above-described embodiment. Further, the steps after the mirror portion forming step can be performed in the same manner as in the above-described embodiment.

この場合の透明の開口部封止部材7としても、充填樹脂部形成工程にて、光素子収納孔31内に注入した樹脂材料8を紫外線の照射によって硬化させることに鑑みて紫外線の透過が可能なものを採用し、回路基板3とは反対の側から光素子収納孔31内の樹脂材料8への紫外線照射を行って、樹脂材料8を硬化させることが好ましい。この点、透明の開口部封止部材7としては、例えば、ポリイミド、ポリノルボルネン(PNB)、ベンゾシクロブテン(BCB)等の合成樹脂製の透明シートを採用することが好ましい。   The transparent opening sealing member 7 in this case can also transmit ultraviolet light in view of curing the resin material 8 injected into the optical element housing hole 31 by irradiation of ultraviolet light in the filling resin portion forming step. It is preferable to cure the resin material 8 by irradiating the resin material 8 in the optical element housing hole 31 with ultraviolet rays from the side opposite to the circuit board 3. In this regard, as the transparent opening sealing member 7, it is preferable to employ a transparent sheet made of a synthetic resin such as polyimide, polynorbornene (PNB), or benzocyclobutene (BCB).

開口部封止部材7の、回路基板3とは反対の側の面に光導波路基板2を設ける手法としては、既述の実施形態において回路基板3の接合面3bに光導波路基板2を被着状態に設ける場合の手法と同様であり、作成済みの光導波路基板2の被着(例えば、適宜、接着剤を用いて貼り合わせる)の他、ワニスの塗布による光導波路形成体の形成、この光導波路形成体への活性エネルギー線の照射によるコア部22の形成、によって開口部封止部材7自体を基材として光導波路基板2を形成することであっても良い。   As a method of providing the optical waveguide substrate 2 on the surface of the opening sealing member 7 on the side opposite to the circuit substrate 3, the optical waveguide substrate 2 is attached to the bonding surface 3 b of the circuit substrate 3 in the embodiment described above. In the same manner as in the case of providing in a state, in addition to the application of the prepared optical waveguide substrate 2 (for example, bonding using an adhesive as appropriate), the formation of an optical waveguide forming body by application of varnish, The optical waveguide substrate 2 may be formed using the opening sealing member 7 itself as a base material by forming the core portion 22 by irradiating the waveguide forming body with active energy rays.

この光導波路モジュール10の製造方法によれば、充填樹脂部形成工程の完了後に開口部封止部材7を回路基板3から除去しないので、図12(a)、(b)を参照して説明した製造方法に比べて、工程数を減少できる、といった利点がある。   According to the method for manufacturing the optical waveguide module 10, the opening sealing member 7 is not removed from the circuit board 3 after the filling resin portion forming step is completed. Therefore, the optical waveguide module 10 has been described with reference to FIGS. Compared to the manufacturing method, there is an advantage that the number of steps can be reduced.

(製造方法の他の例)
本発明に係る光導波路モジュールの製造方法としては、既述のように、光素子収納孔31を形成済みの回路基板3に光素子を組み込んでから、回路基板3に光導波路基板2を一体に設ける構成に限定されず、図16(a)、(b)、(c)に示すように、光素子収納孔31を有していない配線付き基板300に光導波路基板2を設けてから、配線付き基板300に光素子収納孔31を形成して回路基板3を得る工程(光素子収納孔形成工程)を行い、この回路基板3の光素子収納孔31に光素子を組み込んで実装する光素子実装工程を行った後、充填樹脂部形成工程、ミラー部形成工程をこの順で行っても良い。
充填樹脂部形成工程以降の工程は、既述の実施形態と同様に行うことができる。
また、ミラー部形成工程の後に、デバイス実装工程を行っても良いことは言うまでも無い。
(Other examples of manufacturing methods)
As described above, the optical waveguide module manufacturing method according to the present invention incorporates an optical element into the circuit board 3 in which the optical element housing hole 31 has been formed, and then integrates the optical waveguide board 2 into the circuit board 3. It is not limited to the structure provided, and as shown in FIGS. 16A, 16B, and 16C, wiring is performed after the optical waveguide substrate 2 is provided on the wiring-provided substrate 300 that does not have the optical element housing hole 31. An optical element in which the optical element housing hole 31 is formed in the attached substrate 300 to obtain the circuit board 3 (optical element housing hole forming process), and the optical element is mounted in the optical element housing hole 31 of the circuit board 3 for mounting. After performing the mounting process, the filling resin part forming process and the mirror part forming process may be performed in this order.
The steps after the filling resin portion forming step can be performed in the same manner as in the above-described embodiment.
Needless to say, a device mounting step may be performed after the mirror portion forming step.

図16(a)に示すように、配線付き基板300は、光素子収納孔31を有していない点のみが回路基板3と異なる。光素子収納孔31以外、配線部32、貫通配線33、端子部34を具備することは、回路基板3と同じである。
但し、この配線付き基板300において、端子部34は、配線付き基板300の片面(配線部32が形成されている側の面。以下、接合面300b)に形成された配線パターンの一部として、配線付き基板300の内層の半導体基板39に沿って延在している。
As shown in FIG. 16A, the board with wiring 300 is different from the circuit board 3 only in that the optical element housing hole 31 is not provided. Other than the optical element housing hole 31, the wiring portion 32, the through wiring 33, and the terminal portion 34 are provided in the same manner as the circuit board 3.
However, in the substrate 300 with wiring, the terminal portion 34 is a part of the wiring pattern formed on one side of the substrate 300 with wiring (the surface on the side where the wiring portion 32 is formed; hereinafter referred to as the bonding surface 300b). It extends along the inner semiconductor substrate 39 of the substrate with wiring 300.

この製造方法では、まず、図16(a)に示すように、配線付き基板300の接合面300bに光導波路基板2を設ける(複合基板形成工程)。この工程により、配線付き基板300に光導波路基板2が積層状態に設けられてなる複合基板301が得られる。
配線付き基板300の接合面300bに光導波路基板2を設けるには、プレート状に作成済みの光導波路基板2を被着(例えば、適宜、接着剤を用いて貼り合わせる)する。また、この他、配線付き基板300へのワニスの塗布によって光導波路形成体を形成し、この光導波路形成体への活性エネルギー線の照射によってコア部22の形成することで、後者の場合は、配線付き基板300自体を基材として該配線付き基板300に一体に光導波路基板2を形成する、といった手法も可能である。
In this manufacturing method, first, as shown in FIG. 16A, the optical waveguide substrate 2 is provided on the bonding surface 300b of the substrate with wiring 300 (composite substrate forming step). By this step, a composite substrate 301 in which the optical waveguide substrate 2 is provided in a laminated state on the substrate with wiring 300 is obtained.
In order to provide the optical waveguide substrate 2 on the joint surface 300b of the substrate with wiring 300, the optical waveguide substrate 2 already formed in a plate shape is attached (for example, appropriately bonded using an adhesive). In addition, in the latter case, an optical waveguide forming body is formed by applying a varnish to the substrate with wiring 300, and the core portion 22 is formed by irradiating the optical waveguide forming body with active energy rays. A method of forming the optical waveguide substrate 2 integrally with the substrate with wiring 300 using the substrate with wiring 300 itself as a base material is also possible.

次いで、図16(b)に示すように、配線付き基板300に光素子収納孔31を形成する光素子収納孔形成工程を行う。加工法としては、例えば、エキシマレーザーを用いたレーザー加工が好適である。図16(b)中、符号302は、加工用のレーザー光である。この他、反応性イオンエッチング(Reactive Ion Etching;RIE)等も採用可能である。
この光素子収納孔形成工程により、回路基板3が得られる。また、光素子収納孔31が形成されることで、端子部34が、前記配線部32から前記接合面300bにおける前記光素子収納孔31の開口部に張り出された突起状となる。
Next, as shown in FIG. 16B, an optical element accommodation hole forming step for forming the optical element accommodation hole 31 in the substrate with wiring 300 is performed. As the processing method, for example, laser processing using an excimer laser is suitable. In FIG. 16B, reference numeral 302 denotes a processing laser beam. In addition, reactive ion etching (RIE) or the like can also be employed.
The circuit board 3 is obtained by this optical element housing hole forming step. In addition, since the optical element housing hole 31 is formed, the terminal portion 34 has a protruding shape protruding from the wiring portion 32 to the opening of the optical element housing hole 31 in the bonding surface 300b.

光素子収納孔形成工程が完了したら、光素子収納孔31に光素子を組み込んで実装する光素子実装工程を行う(図16(c)参照)。その後、充填樹脂部形成工程、次いでミラー部形成工程を行う。
ミラー部形成工程の完了で、図3に示す構造の光導波路モジュールを得ることができる。
得られた光導波路モジュールについては、回路基板3(光素子内蔵基板6)の接合面300bとは反対側の面を、LSI等の電子デバイスの実装用のデバイス実装面300aとして用いることができる。
When the optical element housing hole forming step is completed, an optical element mounting step for mounting the optical element in the optical element housing hole 31 is performed (see FIG. 16C). Thereafter, a filling resin portion forming step and then a mirror portion forming step are performed.
Upon completion of the mirror part forming step, an optical waveguide module having the structure shown in FIG. 3 can be obtained.
In the obtained optical waveguide module, the surface opposite to the bonding surface 300b of the circuit board 3 (the optical element built-in substrate 6) can be used as a device mounting surface 300a for mounting an electronic device such as an LSI.

この製造方法によれば、光素子収納孔31を形成する前の配線付き基板300に光導波路基板2を積層状態に設けて複合基板301を作成してから、配線付き基板300に光素子収納孔31を形成する光素子収納孔形成工程を行うので、配線付き基板300に光導波路基板2を貼り合わせる作業を楽に行える。配線付き基板300(詳細には接合面300b)における光素子収納孔31の形成予定位置を含む範囲に対しても、光導波路基板2を確実に貼り合わせることができ、これにより、端子部34と光導波路基板2との密着性を容易に確保できる。   According to this manufacturing method, the optical waveguide substrate 2 is provided in a stacked state on the substrate with wiring 300 before the optical element housing hole 31 is formed, and the composite substrate 301 is formed. Since the optical element housing hole forming step of forming 31 is performed, the work of attaching the optical waveguide substrate 2 to the substrate with wiring 300 can be performed easily. The optical waveguide substrate 2 can be securely bonded even to a range including the position where the optical element housing hole 31 is to be formed on the substrate with wiring 300 (specifically, the bonding surface 300b). Adhesion with the optical waveguide substrate 2 can be easily secured.

なお、本発明は、上述の実施の形態に限定されず、適宜変更が可能である。
(a)本発明は、充填樹脂部37、透明樹脂層38を具備していない構成の光導波路モジュール、充填樹脂部37、透明樹脂層38の内、充填樹脂部のみを具備した構成の光導波路モジュールを含む。また、光導波路モジュールの製造方法については、充填樹脂部形成工程を具備していない構成も含む。
(b)本発明に係る光導波路モジュールの製造方法は、回路基板3の接合面3bに光導波路基板2を被着状態に設けた後、この光導波路基板2にミラー部を形成する(ミラー部形成工程)構成に限定されず、ミラー部を形成済みの光導波路基板2を回路基板3に貼り合わせることも含む。
(c)充填樹脂部37、透明樹脂層38の形成樹脂としては、紫外線硬化性樹脂に限定されない。例えば、熱硬化性のエポキシ等の熱硬化性樹脂を採用し、充填樹脂部形成工程にて、光素子収納孔内に注入された液状の樹脂材料の加熱硬化によって、充填樹脂部、透明樹脂部を形成することも可能である。
(d)本発明に係る光素子内蔵基板としては、回路基板の光素子収納孔内に光素子が組み込まれたものであれば良く、必ずしも、充填樹脂部、透明樹脂層を具備したものに限定されない。
(e)図1、図2に例示したように、上述の実施形態では、1枚の回路基板(光素子内蔵基板)と1枚の光導波路基板とを積層状態にして一体化した構成の光導波路モジュールを例示したが、本発明はこれに限定されず、例えば、1枚のシート状の光導波路基板の複数箇所に光素子内蔵基板を固定(重ね合わせて一体化)した構成も採用可能である。
(f)回路基板としては、半導体基板に光素子収納孔を形成したものに限定されない。例えば、電気絶縁性の絶縁樹脂板に光素子収納孔、配線部、端子部、貫通配線を設けたもの等も採用可能である。
In addition, this invention is not limited to the above-mentioned embodiment, It can change suitably.
(A) The present invention is an optical waveguide module having a configuration not including the filling resin portion 37 and the transparent resin layer 38, and an optical waveguide having only the filling resin portion among the filling resin portion 37 and the transparent resin layer 38. Includes modules. Moreover, about the manufacturing method of an optical waveguide module, the structure which does not comprise the filling resin part formation process is also included.
(B) In the method of manufacturing an optical waveguide module according to the present invention, after the optical waveguide substrate 2 is provided on the bonding surface 3b of the circuit substrate 3, a mirror portion is formed on the optical waveguide substrate 2 (mirror portion). (Formation step) The method is not limited to the configuration, and includes bonding the optical waveguide substrate 2 on which the mirror portion has been formed to the circuit substrate 3.
(C) The forming resin of the filling resin portion 37 and the transparent resin layer 38 is not limited to the ultraviolet curable resin. For example, a thermosetting resin such as a thermosetting epoxy is adopted, and in the filling resin portion forming step, the filling resin portion and the transparent resin portion are obtained by heat curing of the liquid resin material injected into the optical element housing hole. It is also possible to form
(D) The optical element built-in substrate according to the present invention may be any substrate as long as an optical element is incorporated in the optical element housing hole of the circuit board, and is not necessarily limited to a substrate having a filling resin portion and a transparent resin layer. Not.
(E) As illustrated in FIGS. 1 and 2, in the above-described embodiment, a light having a configuration in which one circuit board (substrate with a built-in optical element) and one optical waveguide substrate are integrated in a stacked state. Although the waveguide module has been illustrated, the present invention is not limited to this, and for example, a configuration in which the optical element built-in substrate is fixed (overlapped and integrated) at a plurality of locations on one sheet-like optical waveguide substrate can be adopted. is there.
(F) As a circuit board, it is not limited to what formed the optical element accommodation hole in the semiconductor substrate. For example, an electrically insulating insulating resin plate provided with an optical element housing hole, a wiring portion, a terminal portion, and a through wiring can be employed.

本発明に係る実施形態の光導波路モジュールの構造を示す正断面図である。It is a front sectional view showing the structure of the optical waveguide module of the embodiment according to the present invention. 図1の光導波路モジュールに電子デバイス(LSI)を実装した状態(デバイス付き光導波路モジュール)を示す正断面図である。FIG. 2 is a front sectional view showing a state (optical waveguide module with a device) in which an electronic device (LSI) is mounted on the optical waveguide module of FIG. 1. 図1、図2の光導波路モジュールの仮想線で示した領域Aを拡大して示した拡大断面図であり、回路基板に形成された光素子収納孔及び該光素子収納孔に組み込まれた光素子付近を拡大して示す。FIG. 3 is an enlarged cross-sectional view showing an area A indicated by a virtual line of the optical waveguide module in FIGS. 1 and 2, and an optical element accommodation hole formed in a circuit board and light incorporated in the optical element accommodation hole; The vicinity of the element is shown enlarged. 回路基板の光素子収納孔に光素子を組み込む前の回路基板、光素子の電極パッドに実装された金属バンプを示す図である。It is a figure which shows the metal bump mounted in the circuit board before incorporating an optical element in the optical element accommodation hole of a circuit board, and the electrode pad of an optical element. 本発明に係る光導波路モジュールの光導波路基板の構造を示す斜視図である。It is a perspective view which shows the structure of the optical waveguide board | substrate of the optical waveguide module which concerns on this invention. 図5の光導波路基板の製造方法の一例を説明する図であって、(a)は3層の光導波路形成体を示す斜視図、(b)は図6(a)の光導波路形成体への活性エネルギーの照射によってコア部を形成した状態を示す斜視図である。6A and 6B are diagrams for explaining an example of a method for manufacturing the optical waveguide substrate of FIG. 5, in which FIG. 6A is a perspective view showing a three-layer optical waveguide forming body, and FIG. 6B is an optical waveguide forming body of FIG. It is a perspective view which shows the state which formed the core part by irradiation of active energy of. 光素子の受/発光部設置面を示す図である。It is a figure which shows the light-receiving / light-emitting part installation surface of an optical element. 光素子の複数の電極パッド(詳細には電極パッドのコンタクト面)が、それぞれ、回路基板の端子部(詳細には端子部のコンタクト面)と重なった状態を示す平面図である。FIG. 3 is a plan view showing a state where a plurality of electrode pads (specifically, contact surfaces of electrode pads) of the optical element overlap with terminal portions (specifically, contact surfaces of terminal portions) of the circuit board. 回路基板の光素子収納孔の断面寸法と、光素子の断面寸法(特に、矩形断面の対角線寸法)との関係を示す平面図である。It is a top view which shows the relationship between the cross-sectional dimension of the optical element accommodation hole of a circuit board, and the cross-sectional dimension (especially diagonal dimension of a rectangular cross section) of an optical element. 光素子の金属バンプのリフローによる、回路基板の光素子収納孔内での光素子の傾動を説明する正断面図である。It is a front sectional view explaining tilting of an optical element in an optical element accommodation hole of a circuit board by reflow of a metal bump of the optical element. (a)(b)は、回路基板の複数の光素子収納孔における光素子のセルフアライメントを説明する図(平面図)であり、(a)は光素子の金属バンプのリフロー前、(b)は光素子の金属バンプのリフロー後を示す。(A) and (b) are the figures (plan view) explaining the self-alignment of the optical element in the several optical element accommodation hole of a circuit board, (a) is before reflow of the metal bump of an optical element, (b) Indicates after reflow of metal bumps of the optical element. 本発明に係る光導波路モジュールの製造方法の充填樹脂部形成工程を説明する図であって、(a)は回路基板の接合面における光素子収納孔の開口部を開口部封止部材を用いて塞いだ状態で光素子収納孔内に液状の樹脂材料を注入する工程を説明する図、(b)は、充填樹脂部及び透明樹脂層の形成後に、回路基板から開口部封止部材を除去した状態を示す図である。It is a figure explaining the filling resin part formation process of the manufacturing method of the optical waveguide module concerning the present invention, and (a) uses the opening part sealing member for the opening part of the optical element accommodation hole in the joint surface of a circuit board. The figure explaining the process of inject | pouring a liquid resin material in an optical element accommodation hole in the block | closed state, (b) removed the opening part sealing member from the circuit board after formation of a filling resin part and a transparent resin layer. It is a figure which shows a state. 本発明に係る光導波路モジュールの製造方法の充填樹脂部形成工程を説明する図であって、回路基板の接合面における光素子収納孔の開口部を光導波路基板を用いて塞いだ状態で光素子収納孔内に液状の樹脂材料を注入する工程を説明する図である。It is a figure explaining the filling resin part formation process of the manufacturing method of the optical waveguide module which concerns on this invention, Comprising: The optical element in the state which plugged the opening part of the optical element accommodation hole in the joint surface of a circuit board using the optical waveguide board | substrate It is a figure explaining the process of inject | pouring a liquid resin material in a storage hole. (a)〜(c)は、受/発光部を複数具備する光素子の例を示す図である。(A)-(c) is a figure which shows the example of the optical element which comprises multiple light receiving / light-emitting parts. 本発明の別態様を説明する図であって、回路基板と光導波路基板との間に透明の開口部封止部材が介挿されている構成の光導波路モジュールの構造を示す正断面図である。It is a figure explaining another aspect of this invention, Comprising: It is a front sectional view which shows the structure of the optical waveguide module of the structure by which the transparent opening part sealing member is inserted between the circuit board and the optical waveguide board | substrate . (a)〜(c)は、本発明に係る光導波路モジュールの製造方法の他の例を説明する図である。(A)-(c) is a figure explaining the other example of the manufacturing method of the optical waveguide module which concerns on this invention.

符号の説明Explanation of symbols

1…光導波路モジュール、1A…デバイス付き光導波路モジュール、2…光導波路基板、21…クラッド部、22…コア部、23…光導波路形成体、231…コア層、232…クラッド層、25…バンプ収納孔、3…回路基板、光素子収納孔付き基板、3a…デバイス実装面、3b…接合面、31…光素子収納孔、31a…軸心、32…配線部、33…貫通配線、34…端子部、34a…コンタクト面、35…ボンディング金属部、351…金属バンプ、36…ボンディング金属部、37…充填樹脂部、38…透明樹脂層、39…半導体基板(シリコン基板)、39a…酸化膜、4、4A、4B、4C…光素子、401…受/発光部、41…発光素子、411…発光部、42…受光素子、421…受光部、43…受/発光部設置面、44…電極パッド、45…金属バンプ、5…電子デバイス(LSI)、5a…下面、51…基板、52…電子回路、53…ビア配線、6…光素子内蔵基板、61…電子デバイス用貫通配線、62…金属バンプ、63…金属バンプ、7…開口部封止部材、8…樹脂材料、9…電子機器。   DESCRIPTION OF SYMBOLS 1 ... Optical waveguide module, 1A ... Optical waveguide module with a device, 2 ... Optical waveguide board | substrate, 21 ... Cladding part, 22 ... Core part, 23 ... Optical waveguide formation body, 231 ... Core layer, 232 ... Cladding layer, 25 ... Bump Housing hole, 3 ... Circuit board, substrate with optical element housing hole, 3a ... Device mounting surface, 3b ... Bonding surface, 31 ... Optical element housing hole, 31a ... Axis, 32 ... Wiring section, 33 ... Through-wiring, 34 ... Terminal part, 34a ... contact surface, 35 ... bonding metal part, 351 ... metal bump, 36 ... bonding metal part, 37 ... filling resin part, 38 ... transparent resin layer, 39 ... semiconductor substrate (silicon substrate), 39a ... oxide film 4, 4A, 4B, 4C ... optical element, 401 ... light receiving / emitting part, 41 ... light emitting element, 411 ... light emitting part, 42 ... light receiving element, 421 ... light receiving part, 43 ... light receiving / light emitting part installation surface, 44 ... Electric Pads, 45 ... Metal bumps, 5 ... Electronic device (LSI), 5a ... Bottom surface, 51 ... Substrate, 52 ... Electronic circuit, 53 ... Via wiring, 6 ... Optical element built-in substrate, 61 ... Electronic device penetration wiring, 62 Metal bumps 63... Metal bumps 7. Opening sealing member 8. Resin material 9.

Claims (12)

プレート状のクラッド部内に線状のコア部を有する光導波路基板と、この光導波路基板に被着された回路基板とを具備し、
前記回路基板には、受光素子又は発光素子である光素子が、該回路基板に貫設された光素子収納孔に収納して組み込まれ、前記光素子は、前記光導波路基板に対面する端面に受/発光部を有し、
前記光導波路基板は、前記光素子の前記受/発光部に対応する位置に、該光導波路基板の前記光導波路と前記光素子の前記受/発光部との間の光路形成用のミラー部を有し、
前記回路基板は、前記光導波路基板に臨む接合面に形成された配線部と、該回路基板に貫設され前記配線部に電気導通可能に接続された貫通配線と、前記配線部から前記接合面における前記光素子収納孔の開口部に張り出された突起状の端子部とを具備し、
前記光素子の前記端面に設けられている電極パッドが前記端子部にボンディングされ電気導通可能に接続され、
前記光素子の前記電極パッドと前記端子部とが導電性のボンディング用金属材料によってボンディングされており、
前記光素子収納孔の断面寸法が、前記光素子における前記光素子収納孔の軸心に垂直の断面寸法を、前記電極パッドのコンタクト面の寸法の5〜195%だけ大きくした寸法になっており、
前記光素子収納孔および前記光素子の前記断面の形状は矩形であり、
前記光素子収納孔の対向する内面間の距離が、前記光素子の断面の対角線寸法よりも小さく、
前記光素子は、前記光素子収納孔内で、前記光素子収納孔の断面寸法と光素子の断面寸法との差によって設定・規制されつつ回転移動可能であり、かつ前記光素子収納孔の軸心を中心とする軸回り方向の前記光素子の回転移動の全範囲で、前記光素子の全ての電極パッドのコンタクト面が、それぞれ前記端子部のコンタクト面に平面視において重なった部分を有することを特徴とする光導波路モジュール。
An optical waveguide substrate having a linear core portion in a plate-like clad portion, and a circuit substrate attached to the optical waveguide substrate,
On the circuit board, an optical element which is a light receiving element or a light emitting element is housed and incorporated in an optical element housing hole penetrating the circuit board, and the optical element is disposed on an end surface facing the optical waveguide substrate. Having a light receiving / emitting part,
The optical waveguide substrate has a mirror part for forming an optical path between the optical waveguide of the optical waveguide substrate and the light receiving / emitting part of the optical element at a position corresponding to the light receiving / emitting part of the optical element. Have
The circuit board includes a wiring portion formed on a joint surface facing the optical waveguide substrate, a through wiring penetrating through the circuit board and connected to the wiring portion so as to be electrically conductive, and from the wiring portion to the joint surface. A projecting terminal portion projecting from the opening of the optical element storage hole in
The electrode pad provided on the end face of the optical element is bonded to the terminal portion and connected to be electrically conductive,
The electrode pad of the optical element and the terminal portion are bonded with a conductive bonding metal material,
The cross-sectional dimension of the optical element accommodation hole is a dimension obtained by increasing the cross-sectional dimension of the optical element perpendicular to the axis of the optical element accommodation hole by 5 to 195% of the dimension of the contact surface of the electrode pad. ,
The shape of the cross section of the optical element housing hole and the optical element is rectangular,
The distance between the opposing inner surfaces of the optical element housing hole is smaller than the diagonal dimension of the cross section of the optical element;
The optical element is capable of rotating and moving within the optical element accommodation hole while being set and regulated by the difference between the cross-sectional dimension of the optical element accommodation hole and the cross-sectional dimension of the optical element, and the axis of the optical element accommodation hole The contact surfaces of all electrode pads of the optical element have portions that overlap the contact surfaces of the terminal portions in plan view over the entire range of rotational movement of the optical element in the direction around the axis centering on the center. An optical waveguide module.
前記光素子収納孔内面と前記光素子との間を埋める充填樹脂部を具備し、前記光素子の前記端面が、前記充填樹脂部から連続する透明樹脂層によって覆われていることを特徴とする請求項1に記載の光導波路モジュール。   It is provided with a filling resin portion that fills a space between the inner surface of the optical element housing hole and the optical element, and the end surface of the optical element is covered with a transparent resin layer continuous from the filling resin portion. The optical waveguide module according to claim 1. 前記回路基板の前記光導波路基板に臨む接合面に、前記光素子収納孔の前記接合面に開口する開口部を封止する透明の開口部封止部材が設けられていることを特徴とする請求項2記載の光導波路モジュール。   A transparent opening portion sealing member for sealing an opening portion that opens to the joint surface of the optical element housing hole is provided on a joint surface of the circuit board facing the optical waveguide substrate. Item 3. The optical waveguide module according to Item 2. 前記回路基板の前記接合面に、電極パッドと、該電極パッドに実装された金属バンプとが設けられ、前記金属バンプは、前記光導波路基板に貫設されたバンプ収納孔を介して、前記光導波路基板から前記回路基板とは反対の側に突出されていることを特徴とする請求項1〜3のいずれかに記載の光導波路モジュール。   Electrode pads and metal bumps mounted on the electrode pads are provided on the joint surface of the circuit board, and the metal bumps are inserted into the optical waveguide via bump housing holes penetrating the optical waveguide board. The optical waveguide module according to claim 1, wherein the optical waveguide module protrudes from the waveguide substrate to a side opposite to the circuit substrate. 前記光導波路基板の前記ミラー部が、前記光導波路基板の前記回路基板とは反対の側から凹む凹部によって構成されていることを特徴とする請求項1〜4のいずれかに記載の光導波路モジュール。   5. The optical waveguide module according to claim 1, wherein the mirror portion of the optical waveguide substrate is configured by a concave portion that is recessed from a side opposite to the circuit substrate of the optical waveguide substrate. . 請求項1〜5のうちいずれか1項に記載の光導波路モジュールを製造する方法であって、
半導体基板に、該半導体基板の両面の一方又は両方に形成された配線部と、前記半導体基板に貫設された貫通配線と、前記半導体基板に貫設された貫通孔であり受光素子あるいは発光素子である光素子が組み込まれる光素子収納孔と、前記半導体基板の片面の前記配線部から前記光素子収納孔の片端の開口部内に張り出された突起状の端子部とが設けられた光素子収納孔付き基板の前記光素子収納孔に、前記光素子を組み込み、この光素子に設けられている電極パッドに予め実装しておいた金属バンプをリフローして、前記電極パッドを前記端子部に接続する光素子実装工程と、
プレート状のクラッド部内に線状のコア部を有し、前記光素子収納孔付き基板の両面の内の前記端子部が張り出された配線部が形成されている面の側に被着した光導波路基板に、前記光素子実装工程の後に、前記光導波路基板の前記光導波路と前記光素子の前記光導波路基板に対面する端面に設けられている受/発光部との間の光路形成用のミラー部を形成するミラー部形成工程
とを具備することを特徴とする光導波路モジュールの製造方法。
A method for manufacturing the optical waveguide module according to any one of claims 1 to 5,
A light receiving element or a light emitting element comprising a wiring portion formed on one or both sides of the semiconductor substrate, a through wiring penetrating the semiconductor substrate, and a through hole penetrating the semiconductor substrate. An optical element provided with an optical element housing hole in which an optical element is incorporated and a projecting terminal portion protruding from the wiring portion on one side of the semiconductor substrate into an opening at one end of the optical element housing hole The optical element is incorporated into the optical element accommodation hole of the substrate with the accommodation hole, and the metal bumps previously mounted on the electrode pad provided on the optical element are reflowed, and the electrode pad is used as the terminal portion. Optical element mounting process to be connected;
A light having a linear core portion in a plate-like clad portion and deposited on the side of the surface on which the wiring portion on which the terminal portion protrudes is formed on both surfaces of the substrate with the optical element housing hole. An optical path is formed between the optical waveguide of the optical waveguide substrate and a light receiving / emitting unit provided on an end surface of the optical element facing the optical waveguide substrate after the optical element mounting step on the waveguide substrate. A method of manufacturing an optical waveguide module, comprising: a mirror part forming step of forming a mirror part.
請求項6記載の光導波路モジュールの製造方法において、
前記電極パッドを前記端子部に接続した後に、前記光素子収納孔内面と前記光素子との間を埋める充填樹脂部を形成する充填樹脂部形成工程を行ってから、ミラー部形成工程を行うことを特徴とする光導波路モジュールの製造方法。
In the manufacturing method of the optical waveguide module according to claim 6,
After the electrode pad is connected to the terminal portion, a filling resin portion forming step for forming a filling resin portion filling the space between the inner surface of the optical element housing hole and the optical element is performed, and then the mirror portion forming step is performed. An optical waveguide module manufacturing method characterized by the above.
請求項7記載の光導波路モジュールの製造方法において、
前記充填樹脂部形成工程において、前記光素子収納孔付き基板の、前記光素子収納孔の前記端子部が設けられている開口部を、開口部封止部材を用いて塞いだ状態で、前記光素子収納孔内に液状の樹脂材料を注入して前記充填樹脂部を形成することを特徴とする光導波路モジュールの製造方法。
In the manufacturing method of the optical waveguide module according to claim 7,
In the filling resin portion forming step, in the state where the opening portion of the substrate with the optical element storage hole in which the terminal portion of the optical element storage hole is provided is blocked using an opening sealing member. A method of manufacturing an optical waveguide module, wherein a liquid resin material is injected into an element housing hole to form the filling resin portion.
請求項8記載の光導波路モジュールの製造方法において、
前記充填樹脂部形成工程にて、前記充填樹脂部から連続して、前記光素子の前記端面を覆う透明樹脂層を形成することを特徴とする光導波路モジュールの製造方法。
In the manufacturing method of the optical waveguide module according to claim 8,
In the filling resin portion forming step, a transparent resin layer covering the end face of the optical element is formed continuously from the filling resin portion.
請求項8又は9記載の光導波路モジュールの製造方法において、
前記充填樹脂部形成工程の完了後、前記開口部封止部材を前記光素子収納孔付き基板から除去した後に、光素子収納孔付き基板に前記光導波路基板を被着してから、前記ミラー部形成工程を行うことを特徴とする光導波路モジュールの製造方法。
In the manufacturing method of the optical waveguide module according to claim 8 or 9,
After the completion of the filling resin portion forming step, after removing the opening sealing member from the substrate with the optical element accommodation hole, the optical waveguide substrate is attached to the substrate with the optical element accommodation hole, and then the mirror portion A method of manufacturing an optical waveguide module, comprising performing a forming step.
請求項8〜10のいずれかに記載の光導波路モジュールの製造方法において、
透明の開口部封止部材を用い、前記充填樹脂部形成工程の完了後、前記開口部封止部材が付いたままの前記光素子収納孔付き基板に前記光導波路基板を被着してから、前記ミラー部形成工程を行うことを特徴とする光導波路モジュールの製造方法。
In the manufacturing method of the optical waveguide module in any one of Claims 8-10,
Using a transparent opening sealing member, after completion of the filling resin portion forming step, after attaching the optical waveguide substrate to the substrate with the optical element housing hole with the opening sealing member attached, A method of manufacturing an optical waveguide module, wherein the mirror part forming step is performed.
請求項8〜10のいずれかに記載の光導波路モジュールの製造方法において、
前記光素子収納孔付き基板に被着した前記光導波路基板を前記開口部封止部材として用いて前記充填樹脂部形成工程を行うことを特徴とする光導波路モジュールの製造方法。
In the manufacturing method of the optical waveguide module in any one of Claims 8-10,
A method for manufacturing an optical waveguide module, wherein the filling resin portion forming step is performed using the optical waveguide substrate attached to the substrate with the optical element housing hole as the opening sealing member.
JP2008066715A 2008-03-14 2008-03-14 Optical waveguide module and method for manufacturing optical waveguide module Expired - Fee Related JP5078021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008066715A JP5078021B2 (en) 2008-03-14 2008-03-14 Optical waveguide module and method for manufacturing optical waveguide module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008066715A JP5078021B2 (en) 2008-03-14 2008-03-14 Optical waveguide module and method for manufacturing optical waveguide module

Publications (2)

Publication Number Publication Date
JP2009222935A JP2009222935A (en) 2009-10-01
JP5078021B2 true JP5078021B2 (en) 2012-11-21

Family

ID=41239789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008066715A Expired - Fee Related JP5078021B2 (en) 2008-03-14 2008-03-14 Optical waveguide module and method for manufacturing optical waveguide module

Country Status (1)

Country Link
JP (1) JP5078021B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5998450B2 (en) * 2011-10-19 2016-09-28 住友ベークライト株式会社 Optical waveguide module, optical waveguide module manufacturing method, and electronic apparatus
JP6124513B2 (en) * 2012-05-17 2017-05-10 新光電気工業株式会社 Semiconductor device and manufacturing method thereof
JP6105254B2 (en) * 2012-10-29 2017-03-29 新光電気工業株式会社 Optical waveguide laminated wiring board, optical module, and optical waveguide laminated wiring board manufacturing method
JP2016004168A (en) * 2014-06-17 2016-01-12 富士通株式会社 Optical waveguide sheet, optical unit, and method for manufacturing optical unit
KR102013884B1 (en) * 2017-12-20 2019-08-23 전자부품연구원 Semiconductor package and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3658426B2 (en) * 1995-01-23 2005-06-08 株式会社日立製作所 Optical semiconductor device
JP2004327516A (en) * 2003-04-22 2004-11-18 Toppan Printing Co Ltd Multilayered substrate effective for optical and electrical utility and its manufacturing method
JP2005017394A (en) * 2003-06-23 2005-01-20 Sharp Corp Photoelectric circuit board and manufacturing method therefor
JP4760127B2 (en) * 2005-05-20 2011-08-31 住友ベークライト株式会社 Optical waveguide structure

Also Published As

Publication number Publication date
JP2009222935A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
US8536512B2 (en) Opto-electronic circuit board and manufacturing method for the same
KR100784454B1 (en) Electronic device and process for manufacturing same
US7596289B2 (en) Optical/electrical hybrid substrate
JP4425936B2 (en) Optical module
JP5262118B2 (en) Manufacturing method of optical module
KR102246076B1 (en) Method of fabricating a semiconductor package
KR100945621B1 (en) Optical communication module and manufacturing method thereof
JP2005257879A (en) Optical module, method of manufacturing thereof, protecting member and protecting member with electric wiring
TW201028748A (en) Wafer level optoelectronic package with fiber side insertion
JP2008053423A (en) Connector, and optical transceiver module
US20160313517A1 (en) Optical waveguide device and method of manufacturing the same
US20110170831A1 (en) Optical module and manufacturing method of the module
JP2011003774A (en) Method of manufacturing optical waveguide laminated wiring board
JP5078021B2 (en) Optical waveguide module and method for manufacturing optical waveguide module
JP5142103B2 (en) Circuit board, substrate with built-in electronic device, integrated circuit device, optical waveguide with integrated circuit, and method for assembling substrate with built-in electronic device
JP2009080451A (en) Flexible optoelectric interconnect and method for manufacturing same
JP4406447B2 (en) Optical module and manufacturing method thereof
JP4762937B2 (en) Mounting method of optical components
CN114639639B (en) Manufacturing method of packaging structure and packaging structure
WO2013129026A1 (en) Photoelectric conversion module and optical transmission unit
JP2010147315A (en) Optical semiconductor device, optical transmitting device and surface-emitting element
JP2005064303A (en) Opto-electric compound substrate apparatus and method of manufacturing the same
JP5898916B2 (en) OPTICAL MODULE, ITS MOUNTING STRUCTURE AND OPTICAL MODULE MANUFACTURING METHOD
JP2007017809A (en) Optical module
JP5981145B2 (en) Circuit board and communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120823

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees