JP2004327516A - Multilayered substrate effective for optical and electrical utility and its manufacturing method - Google Patents

Multilayered substrate effective for optical and electrical utility and its manufacturing method Download PDF

Info

Publication number
JP2004327516A
JP2004327516A JP2003116555A JP2003116555A JP2004327516A JP 2004327516 A JP2004327516 A JP 2004327516A JP 2003116555 A JP2003116555 A JP 2003116555A JP 2003116555 A JP2003116555 A JP 2003116555A JP 2004327516 A JP2004327516 A JP 2004327516A
Authority
JP
Japan
Prior art keywords
substrate
optical
electric
opto
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003116555A
Other languages
Japanese (ja)
Inventor
Akihiko Furuya
明彦 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2003116555A priority Critical patent/JP2004327516A/en
Publication of JP2004327516A publication Critical patent/JP2004327516A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide a multilayered substrate 1 effective for optical and electrical utility the whole body of which can be driven at a high speed and which is high in yield. <P>SOLUTION: This multilayered substrate 1 effective for optical and electrical utility is constituted by laminating a substrate 10 containing an electric element, a substrate 11 containing an optical element, and an optical waveguide substrate 12 upon another by using an insulating adhesive material 20 and, at the same time, electrically connecting the electric and optical elements to each other in the adhesive material 20 by using bumps 101 and 201 formed in the substrates 10 and 11 containing the elements. In addition, the substrate 11 containing the optical element and an optical waveguide is optically connected to each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光電気混載基板およびその製造方法に関する。
【0002】
【従来の技術】
近年、通信データの大容量化、高速化が急速に進展しており、より大容量のデータをより高速に通信したいという要求が日増しに高まってきている。
大容量のデータを高速に通信するために、就中、長距離の通信においては伝送速度が速い光通信が用いられており、プリント配線板および半導体パッケージ内部の比較的配線長の長い部分で光導波路が設置され、CPU等へはレーザーダイオード、フォトダイオード等を用いて光信号を電気信号に変換するインターコネクション装置等が使用されている。現状のインターコネクション装置では電気素子を搭載した基板上に光素子および光導波路を備えた基板を搭載し、互いの電気配線をワイヤーボンディングにより電気的に接続する構成がとられている。
【0003】
また、同一基板上に電気素子、光素子を実装し、電気配線で両素子を接続する構成や特許文献1では電気素子と光素子の電気端子の一部をフリップチップ接続により実装する構成や、特許文献2の公報ではプリント基板を挟んで片面に光基板、もう一方の面に電気素子が表面実装する構成なども提案されている。
【0004】
【特許文献1】
特開2001−7352号公報
【特許文献2】
特開平9−26530号公報
【0005】
【発明が解決しようとする課題】
光素子と電気素子を混載した基板において高速駆動させるには電気配線の配線長をできる限り短くする必要がある。上述のように同一基板上に電気素子と光素子を実装した場合、電気配線の引き回しを同一平面内で2次元的に実施するためチップサイズ、電極位置、配線の微細化の影響を受け、配線長を短くすることが難しい。
【0006】
また、特許文献1の発明では、光素子と電気素子の一部がフリップチップバンプで直接接続し、実装されているため電気信号の入出力数に制約を受ける。さらに光素子は電気素子とフリップチップ接合する位置に電極を集中させる必要が生じ、尚かつ電気素子の電極数、配置を考慮した設計が必要となる等の問題が生じる。また、この実装形式の場合、すべての素子を実装した後でないと動作確認がとれず、素子欠陥のリスクを含んだ基板組み立て工程となっており、不良発生時には基板ごと廃棄するため良品素子を含んだ大きな失敗コストとなり、問題であった。
【0007】
特許文献2の発明では多層プリント配線板の片面に電気素子を、もう一方の面に光素子を表面実装しているため、光信号を受光及び発光するためには、電気素子に光信号を片面で受光(発光)するセンサー部を形成し、もう一方の面に電気配線の入出力端子を備える必要があり、光素子の構成に制約を受け、また製造コストも高い物であった。
【0008】
本発明は上述の従来技術の問題点に対して、基板全体を高速駆動させることが可能となるとともに、歩留まりが高く、安価に光電気混載基板を提供することにある。
【0009】
【課題を解決するための手段】
本発明者は上記課題を解決するために鋭意検討を行い本発明に至ったものである。すなわち請求項1においては電気素子を内蔵した基板、光素子を内蔵した基板および光導波路基板を絶縁性接着物を用いて複数積層するとともに各素子間の電気的な接続は各素子を内蔵した基板に形成されているバンプを用いて絶縁性接着物中で接続されており、かつ光素子を内蔵した基板と光導波路は光接続されていることを特徴とする多層光電気混載基板としたものである。
【0010】
このようにそれぞれの素子を内蔵した基板をチップ近傍に形成された接続用バンプを利用して積層するため各素子間の電気的配線は3次元的な引き回しが可能となり配線長を短くでき、高周波における伝送損失および伝送遅延を低減させることができる。また、電気素子および光素子は、それぞれの素子を内蔵した基板の状態で積層される際に各素子の中心位置が重なるように配置した方がより配線長が短くなり好ましい。
【0011】
さらに各素子を内蔵した基板において電気的接続数、位置の整合を取ることができるので各素子の電極の数、配置に制約を受けず、尚かつ、光素子は光信号の入出力面と電気信号の入出力面が同一面に形成してある通常の素子を使用することができるため、光、電気入出力面の異なる専用の素子を使用する必要がなく、コストの安い素子を用いることができる。
【0012】
また請求項2においては電気素子を内蔵した基板のうち、少なくとも1つは光素子を内蔵した基板と電気的に接続されており、なおかつ該電気素子を内蔵した基板は他の素子を内蔵した基板と電気的に接続されていることを特徴とする請求項1に記載の多層光電気混載基板としたものである。
【0013】
このように素子を内蔵した基板を多層用いた構成の多層光電気混載基板でも、請求項1に記載の多層光電気混載基板と同様の作用効果が得られる。
【0014】
また請求項3においては各素子を内蔵した基板間にヒートシンク層を挟んで積層することを特徴とする請求項1、2に記載の多層光電気混載基板としたものである。
【0015】
このようにヒートシンク層を各基板間に挿入することにより各素子から発生する熱による不安定な動作を回避することが可能となる。また、このヒートシンクは各基板に設置された接続用バンプに接触しないようにパターニングすることで本発明の光電気混載基板の多層化時に絶縁性接着剤を用いて積層でき、大きな工程変更をすることなく放熱性に優れた多層光電気混載基板を得ることができる。
【0016】
さらに、ヒートシンクとしては熱伝導率の高い、銅、銀、金、アルミ、ニッケル等の金属を用いることが望ましく、樹脂にこれらの金属を分散させた物をヒートシンクとして用いてもかまわない
【0017】
また、請求項4においては各素子を内蔵する基板および光導波路基板を作製後、それぞれの基板を検査することにより欠陥品を除去した後、絶縁性接着物を用いて各基板を多層化し、積層時に各基板に形成されているバンプを用いて絶縁性接着物間で接続する工程を有することを特徴とする請求項1,2,3に記載の多層光電気混載基板の製造方法としたものである。
【0018】
このように、それぞれの素子を内蔵した基板を積層する際、接続用バンプを利用して同時に電気的接続をとることができ、接続工程を別途設ける必要がなく製造工程を簡略化でき安価に製造することが可能となる。
【0019】
さらに電気素子を内蔵した基板上に受動部品等を実装し、その後、さらに半導体パッケージを積層することも可能であり、高密度モジュールの作製に好適である。
【0020】
また、各素子を内蔵する基板を多層化する前に検査し、素子欠陥を含まない良品基板を用いて多層光電気混載基板の組み立てを実施できるため総合的な歩留まりを向上させることが可能となる。
【0021】
【発明の実施の形態】
以下本発明の実施形態につき図面に基づき説明する。
図1は、本発明の光電気混載多層基板の実施の形態例を断面で示す説明図である。図における本発明の光電気混載多層基板1においては、電気素子100が実装された基板10と光素子が実装された基板11がそれぞれの基板に形成された接続バンプ101により基板10と基板11の貼り合わせに使用する絶縁性接着物20間で接続された基本構成を有している。導波路基板12のコア層に入力した光2はミラーに反射されて光素子内蔵基板11の光素子200に入力される。
【0022】
図2は、本発明の光電気混載多層基板のその他の実施の形態例を断面で示す説明図である。図1に示す実施の形態例の絶縁性接着物20中に、ヒートシンク21を形成した例である。
【0023】
図3は、本発明の多層光電気混載基板に係る素子内蔵基板の製造方法の実施の形態の一例を工程順に断面で示す説明図である。
【0024】
図4は、本発明の多層光電気混載基板の製造方法の実施の形態の一例を断面で示す説明図である。
【0025】
図5は、本発明の多層光電気混載基板に係る光導波路基板の製造方法の実施の形態の一例を工程順に断面で示す説明図である。
【0026】
【実施例】
以下に本発明の実施例につき説明する。
《光素子内蔵基板、電気素子内蔵基板の作製方法》
図3(a)のように、厚み75μmのポリイミドフィルム(ユーピレックス75S:宇部興産社製商品名)501を用意した。接続用バンプ形成用孔、および光素子または電気素子搭載用の孔を金型により抜き不要な部分のポリイミドフィルムを除去した〔図3(b)〕。
【0027】
次いで18μm厚みの銅箔502をポリイミドフィルム501の片面に貼り合わせた〔図3(c)〕。その後、ロールコート法により膜厚15μm感光性レジスト503を塗布〔図3(d)〕、形成した後、公知のフォトエッチング法を用いて銅箔502にパターニングを行い所定のパターン形状とした配線層を形成した〔図3(e)〕。その後、レジストパターンを剥膜した〔図3(f)〕。再度、ロールコート法により15μm厚の感光性レジストを塗布、形成した後、公知のフォトエッチング法を用いてメッキマスク506を形成し〔図3(g)〕、公知の硫酸銅を使用した電解銅めっきにより高さ100μmの接続用バンプ504:を形成したのちメッキマスクを剥膜した〔図3(h)〕。次いで光素子505を図3(i)に示すように搭載し、光素子内蔵基板11を得た。同様の工程で、光素子に替えて電気素子を搭載した電気素子内蔵基板10を得た。
【0028】
《光導波路基板の作成方法》
図5(a)に示すようにシリコン基板401を用意し、基板401上にスピンコート法にて膜厚10μmの感光性レジスト402を塗布、形成した後、公知のフォトエッチング法を用いて所定パターンに露光、現像し[図(b)]、エッチングしてシリコン基板表面にテーパーのついた段差403を形成した[図(c)]。次いで図5(d)に示すようにクラッド層301としてポリイミド(OPI−N1005:日立化成工業社製商品名)をスピンコートし、350℃窒素雰囲気中でイミド化させた。このときの膜厚は3μm厚であった。
【0029】
次いでアルミニウムを蒸着し〔図5(e)〕、フォトレジストで所定のパターンを形成し、公知のフォトエッチング法を用いて前述の段差の側面にアルミニウムを残し、マイクロミラー302を形成した〔図5(f)〕。
さらにコア層300としてポリイミド(OPI−N1305:日立化成工業社製商品名)を同様にスピンコートし、350℃窒素雰囲気中でイミド化させた。このときの膜厚は8μm厚であった〔図5(g)〕。
【0030】
次いで図5(h)に示すようにクラッド層301としてポリイミド(OPI−N1005:日立化成工業社製商品名)をスピンコートし、350℃窒素雰囲気中でイミド化させた。このときの膜厚は3μm厚である。以上の工程により光導波路基板12を得た。
【0031】
《多層光電気混載基板の作成方法》
上記方法により得た電気素子内蔵基板10、光素子内蔵基板11,光導波路基板12を図4に示すように各基板の間に接着層20(AS−2700:日立化成工業製商品名)を間にはさみ真空ラミネート法を用いて各基板を積層し、図4に示す多層光電気混載基板1を得た。
【0032】
なおこのとき、各基板の接続用バンプが接着剤層20中で電気的に接続するように、また光導波路と光素子基板とは光接続するように積層した。
【0033】
ここで積層に用いる接着剤層としてはプリント配線板の積層工程で使用されているプリプレグが好適であり、接続用バンプが絶縁樹脂層より頭を出している高さに応じてプリプレグの厚み、枚数を適宜選択することが望ましい。
【0034】
さらに、接続用バンプを備えた素子内蔵基板を作成し、これを上記多層光電気混載基板に積層してもよい。製造方法としては、たとえば図4では、電気素子内蔵基板10の接続用バンプを上下に形成しておき、これにさらに素子内蔵基板を真空ラミネーター等を用いて熱圧着し、接着剤により積層する。
【0035】
また上記実施の形態においてヒートシンク層を各基板間に接着層を介して積層して用いても良いものである。この場合、その製造方法としては、接続部分をパンチングやレーザであらかじめ開口した銅箔を用意し、これをプリプレグシートで挟みこむ。または、接着剤付き銅箔の接続部分をあらかじめ開口し、再度接着剤をヒートシンクにつけて上部基板を搭載する。
【0036】
以上、本発明の実施の形態を説明してきたが本発明は実施の形態に記載された構成、条件に限られるものではなく、各種変更が可能である。
例えば、上記の実施の形態においては電気的接続をおこなうバンプを電解銅めっきにより形成しているが、各基板間を電気的に接続することができれば金属ペーストを用いてスクリーン印刷によりバンプを形成しても良いし金属ボール、金属被服ボール等を埋め込んで用いても良いものである。
【0037】
また、上記の実施の形態においては各基板の貼り合わせはプリプレグシートを使用しているが絶縁性を有しており、かつ基板同士を接着できるのでれば絶縁性接着剤のワニスを用いてディップコート法、スピンコート法、ロールコート法等、公知の技術を用いて基板上に形成後、貼り合わせても良いものである。
【0038】
【発明の効果】
以上説明したように本発明によれば光素子を内蔵した基板および電気素子を内蔵した基板を電気的に短い距離で配線することが可能となり、外部からの光信号を高速に処理することが可能となる多層光電気混載基板を提供できるものである。また、本発明では多層に積層する前に各素子を搭載した基板および導波路基板を検査することができるので歩留まりを向上させることができる。つまり、積層する前に各素子および各基板の欠陥品を除去することができるので積層後の総合的な歩留まりを向上させることができるものである。
【図面の簡単な説明】
【図1】本発明の光電気混載多層基板の実施の形態例を断面で示す説明図である。
【図2】本発明の光電気混載多層基板のその他の実施の形態例を断面で示す説明図である。
【図3】本発明の多層光電気混載基板に係る素子内蔵基板の製造方法の実施の形態の一例を工程順に断面で示す説明図である。
【図4】本発明の多層光電気混載基板の製造方法の実施の形態の一例を断面で示す説明図である。
【図5】本発明の多層光電気混載基板に係る光導波路基板の製造方法の実施の形態の一例を工程順に断面で示す説明図である。
【符号の説明】
1:光電混載光基板
2:光信号の経路
10:電気素子内蔵基板
11:光素子内蔵基板
12:導波路基板
20:絶縁性接着物
21:ヒートシンク
100:電気素子
101:接続用バンプ
102:絶縁樹脂
200:光素子
201:接続用バンプ
300:コア層
301:クラッド層
302:マイクロミラー
401:シリコン基板
402:感光性レジスト
403:段差
501:絶縁樹脂
502:銅箔
503:感光性レジスト
504:接続用バンプ
505:光素子または電気素子
505:光素子または電気素子
506:メッキマスク
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an opto-electric hybrid board and a method for manufacturing the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, the capacity and speed of communication data have been rapidly increasing, and the demand for faster communication of larger capacity data has been increasing day by day.
In order to transmit large volumes of data at high speeds, optical communication, which has a high transmission speed, is used, especially for long-distance communications, and optical waveguides are used in relatively long wiring sections inside printed wiring boards and semiconductor packages. Wave paths are provided, and an interconnection device or the like that converts an optical signal into an electric signal using a laser diode, a photodiode, or the like is used for a CPU or the like. The current interconnection device has a configuration in which a substrate having an optical element and an optical waveguide is mounted on a substrate on which an electric element is mounted, and electrical wirings are electrically connected to each other by wire bonding.
[0003]
Also, a configuration in which an electric element and an optical element are mounted on the same substrate and both elements are connected by electric wiring, and in Patent Document 1, a part of electric terminals of the electric element and the optical element are mounted by flip-chip connection, Patent Document 2 proposes a configuration in which an optical substrate is mounted on one side of a printed circuit board and an electric element is surface-mounted on the other side.
[0004]
[Patent Document 1]
JP 2001-7352 A [Patent Document 2]
JP-A-9-26530
[Problems to be solved by the invention]
In order to drive at high speed on a substrate on which optical elements and electric elements are mixedly mounted, it is necessary to make the wiring length of the electric wiring as short as possible. When the electric element and the optical element are mounted on the same substrate as described above, the wiring of the electric wiring is performed two-dimensionally in the same plane, and the wiring is affected by the chip size, the electrode position, and the fine wiring. It is difficult to shorten the length.
[0006]
Further, in the invention of Patent Literature 1, since the optical element and a part of the electric element are directly connected and mounted by flip chip bumps, the number of input / output electric signals is restricted. Further, in the optical element, it is necessary to concentrate the electrodes at a position where the optical element is to be flip-chip bonded to the electric element, and furthermore, there arises a problem that a design considering the number and arrangement of the electrodes of the electric element is required. In addition, in the case of this mounting format, the operation cannot be confirmed until after all the elements have been mounted, and the board assembly process involves the risk of device defects. However, it became a big failure cost and was a problem.
[0007]
In the invention of Patent Document 2, an electric element is surface-mounted on one side of a multilayer printed wiring board, and an optical element is surface-mounted on the other side. Therefore, in order to receive and emit an optical signal, an optical signal is applied to the electric element on one side. Therefore, it is necessary to form a sensor unit for receiving (emitting) light, and to provide an input / output terminal for electric wiring on the other surface, which limits the configuration of the optical element and increases the manufacturing cost.
[0008]
An object of the present invention is to provide an opto-electric hybrid board that can drive the entire board at a high speed, has a high yield, and is inexpensive, with respect to the above-described problems of the related art.
[0009]
[Means for Solving the Problems]
The present inventor has conducted intensive studies in order to solve the above-mentioned problems, and has reached the present invention. That is, according to claim 1, a substrate having a built-in electric element, a substrate having a built-in optical element, and a plurality of optical waveguide substrates are laminated by using an insulating adhesive, and the electrical connection between the elements is a substrate having the built-in elements. A multilayer opto-electric hybrid board characterized by being connected in an insulating adhesive using bumps formed on the substrate, and being optically connected to the substrate incorporating the optical element and the optical waveguide. is there.
[0010]
As described above, since the substrate on which each element is incorporated is stacked using the connection bumps formed near the chip, the electrical wiring between the elements can be three-dimensionally routed, and the wiring length can be shortened. , Transmission loss and transmission delay can be reduced. Further, it is preferable that the electric element and the optical element are arranged so that the center positions of the respective elements are overlapped with each other when they are stacked in a state of a substrate having the respective elements built therein, since the wiring length is shorter.
[0011]
Further, since the number of electrical connections and the position can be matched on the substrate on which each element is built, the number and arrangement of the electrodes of each element are not restricted, and the optical element is electrically connected to the input / output surface of the optical signal. Since normal elements with signal input / output surfaces formed on the same plane can be used, there is no need to use dedicated elements with different light and electric input / output planes, and low-cost elements can be used. it can.
[0012]
Further, in claim 2, at least one of the substrates having the electric element built therein is electrically connected to the substrate having the optical element built therein, and the substrate having the electric element built therein is a substrate having another element built therein. 3. The multilayer opto-electric hybrid board according to claim 1, wherein the multi-layer opto-electric hybrid board is electrically connected to the substrate.
[0013]
Thus, even with the multilayer opto-electric hybrid board having a configuration using the multi-layered board incorporating the element, the same function and effect as the multi-layer opto-electric hybrid board according to claim 1 can be obtained.
[0014]
According to a third aspect of the present invention, there is provided the multilayer opto-electric hybrid board according to the first or second aspect, wherein the heat sink layer is interposed between the substrates in which the respective elements are incorporated.
[0015]
By inserting the heat sink layer between the substrates as described above, it is possible to avoid an unstable operation due to heat generated from each element. Further, by patterning this heat sink so as not to contact the connection bumps provided on each substrate, the heat sink can be laminated by using an insulating adhesive when the opto-electric hybrid board of the present invention is multi-layered. Thus, a multilayer opto-electric hybrid board having excellent heat dissipation can be obtained.
[0016]
Further, as the heat sink, it is desirable to use a metal having high thermal conductivity, such as copper, silver, gold, aluminum, and nickel, and a material in which these metals are dispersed in a resin may be used as the heat sink.
According to the fourth aspect of the present invention, after manufacturing a substrate incorporating each element and an optical waveguide substrate, inspecting each substrate to remove defective products, each substrate is multilayered using an insulating adhesive, and laminated. 4. The method for manufacturing a multilayer opto-electric hybrid board according to claim 1, further comprising a step of connecting between insulating adhesives using bumps formed on each of the substrates. is there.
[0018]
As described above, when laminating the substrates incorporating the respective elements, electrical connection can be simultaneously made by using the connection bumps, so that there is no need to separately provide a connection step, thereby simplifying the manufacturing steps and making it inexpensive. It is possible to do.
[0019]
Further, it is possible to mount a passive component or the like on a substrate having a built-in electric element, and then further stack a semiconductor package, which is suitable for manufacturing a high-density module.
[0020]
In addition, since the board containing each element is inspected before multi-layering, and a multi-layer opto-electric hybrid board can be assembled using a non-defective substrate that does not contain element defects, the overall yield can be improved. .
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view showing a cross section of an embodiment of an opto-electric hybrid board according to the present invention. In the opto-electric hybrid multilayer substrate 1 of the present invention shown in the drawing, a substrate 10 on which an electric element 100 is mounted and a substrate 11 on which an optical element is mounted are formed by connecting bumps 101 formed on the respective substrates. It has a basic configuration connected between insulating adhesives 20 used for bonding. Light 2 input to the core layer of the waveguide substrate 12 is reflected by a mirror and input to the optical element 200 of the optical element built-in substrate 11.
[0022]
FIG. 2 is an explanatory view showing a cross section of another embodiment of the opto-electric hybrid board according to the present invention. This is an example in which a heat sink 21 is formed in the insulating adhesive 20 of the embodiment shown in FIG.
[0023]
FIG. 3 is an explanatory view showing an example of an embodiment of a method of manufacturing a device-embedded substrate according to the multilayer opto-electric hybrid board of the present invention in the order of steps in cross section.
[0024]
FIG. 4 is an explanatory diagram showing in cross section an example of an embodiment of the method for manufacturing a multilayer opto-electric hybrid board according to the present invention.
[0025]
FIG. 5 is an explanatory view showing an example of an embodiment of a method of manufacturing an optical waveguide substrate according to the multilayer opto-electric hybrid board of the present invention in the order of steps in cross section.
[0026]
【Example】
Hereinafter, embodiments of the present invention will be described.
《Method of manufacturing optical element embedded substrate and electric element embedded substrate》
As shown in FIG. 3A, a polyimide film (Upilex 75S: trade name, manufactured by Ube Industries) 501 having a thickness of 75 μm was prepared. A hole for forming a connection bump and a hole for mounting an optical element or an electric element were punched out using a mold, and unnecessary portions of the polyimide film were removed (FIG. 3B).
[0027]
Next, a copper foil 502 having a thickness of 18 μm was bonded to one surface of the polyimide film 501 (FIG. 3C). Thereafter, a 15 μm-thick photosensitive resist 503 is applied by a roll coating method (FIG. 3D), and after forming, a wiring layer having a predetermined pattern shape by patterning the copper foil 502 using a known photoetching method. Was formed [FIG. 3 (e)]. Thereafter, the resist pattern was stripped (FIG. 3 (f)). Again, a 15 μm-thick photosensitive resist is applied and formed by a roll coating method, and then a plating mask 506 is formed by a known photoetching method (FIG. 3G), and electrolytic copper using a known copper sulfate is used. After forming connection bumps 504: having a height of 100 μm by plating, the plating mask was stripped (FIG. 3 (h)). Next, the optical element 505 was mounted as shown in FIG. In the same process, an electric element built-in substrate 10 on which electric elements were mounted instead of optical elements was obtained.
[0028]
<< How to make an optical waveguide substrate >>
As shown in FIG. 5A, a silicon substrate 401 is prepared, a 10 μm-thick photosensitive resist 402 is applied and formed on the substrate 401 by spin coating, and then a predetermined pattern is formed using a known photo-etching method. Exposure, development [FIG. (B)], and etching to form a tapered step 403 on the surface of the silicon substrate [FIG. (C)]. Next, as shown in FIG. 5D, polyimide (OPI-N1005: trade name of Hitachi Chemical Co., Ltd.) was spin-coated as the cladding layer 301 and imidized in a nitrogen atmosphere at 350 ° C. At this time, the film thickness was 3 μm.
[0029]
Next, aluminum was vapor-deposited (FIG. 5E), a predetermined pattern was formed with a photoresist, and the micromirror 302 was formed by using a known photo-etching method, leaving the aluminum on the side surfaces of the above-described steps [FIG. (F)].
Further, polyimide (OPI-N1305: trade name of Hitachi Chemical Co., Ltd.) was similarly spin-coated as the core layer 300 and imidized in a nitrogen atmosphere at 350 ° C. The film thickness at this time was 8 μm [FIG. 5 (g)].
[0030]
Next, as shown in FIG. 5 (h), polyimide (OPI-N1005: trade name of Hitachi Chemical Co., Ltd.) was spin-coated as the cladding layer 301 and imidized in a nitrogen atmosphere at 350 ° C. At this time, the film thickness is 3 μm. The optical waveguide substrate 12 was obtained by the above steps.
[0031]
<< How to make a multilayer opto-electric hybrid board >>
As shown in FIG. 4, an electric element built-in substrate 10, an optical element built-in substrate 11, and an optical waveguide substrate 12 obtained by the above method are provided with an adhesive layer 20 (AS-2700: trade name, manufactured by Hitachi Chemical Co., Ltd.) between the substrates. Each substrate was laminated using a scissor vacuum lamination method to obtain a multilayer opto-electric hybrid board 1 shown in FIG.
[0032]
At this time, the layers were laminated so that the connection bumps of each substrate were electrically connected in the adhesive layer 20, and the optical waveguide and the optical element substrate were optically connected.
[0033]
As the adhesive layer used for lamination, a prepreg used in a lamination process of a printed wiring board is preferable, and the thickness and the number of prepregs according to the height of the connection bump protruding from the insulating resin layer Is desirably selected as appropriate.
[0034]
Furthermore, a device-embedded substrate provided with connection bumps may be prepared and laminated on the multilayer opto-electric hybrid board. As a manufacturing method, for example, in FIG. 4, connection bumps of the electric element built-in substrate 10 are formed on the upper and lower sides, and the element built-in substrate is further thermocompression-bonded using a vacuum laminator or the like, and laminated by an adhesive.
[0035]
Further, in the above embodiment, the heat sink layer may be laminated between the substrates with an adhesive layer interposed therebetween. In this case, as a manufacturing method, a copper foil having a connection portion opened in advance by punching or laser is prepared, and this is sandwiched between prepreg sheets. Alternatively, the connection portion of the copper foil with the adhesive is opened in advance, and the adhesive is again attached to the heat sink to mount the upper substrate.
[0036]
The embodiments of the present invention have been described above, but the present invention is not limited to the configurations and conditions described in the embodiments, and various modifications are possible.
For example, in the above embodiment, the bumps for performing the electrical connection are formed by electrolytic copper plating. However, if the respective substrates can be electrically connected, the bumps are formed by screen printing using a metal paste. Alternatively, a metal ball, a metal-coated ball, or the like may be embedded and used.
[0037]
In addition, in the above-described embodiment, the prepreg sheet is used for the bonding of the substrates, but the substrate has an insulating property, and if the substrates can be bonded to each other, dip using a varnish of an insulating adhesive. After being formed on a substrate using a known technique such as a coating method, a spin coating method, a roll coating method, or the like, they may be bonded together.
[0038]
【The invention's effect】
As described above, according to the present invention, a substrate having a built-in optical element and a substrate having a built-in electric element can be wired with a short electrical distance, and an external optical signal can be processed at a high speed. It is possible to provide a multilayer opto-electric hybrid board. Further, according to the present invention, the substrate on which each element is mounted and the waveguide substrate can be inspected before laminating them in multiple layers, so that the yield can be improved. That is, the defective products of each element and each substrate can be removed before lamination, so that the overall yield after lamination can be improved.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a cross section of an embodiment of an opto-electric hybrid board according to the present invention.
FIG. 2 is an explanatory view showing a cross section of another embodiment of the opto-electric hybrid board of the present invention.
FIG. 3 is an explanatory view showing an example of an embodiment of a method of manufacturing a device-embedded substrate according to the multilayer opto-electric hybrid board of the present invention in the order of steps in cross section.
FIG. 4 is an explanatory view showing in cross section an example of an embodiment of a method for manufacturing a multilayer opto-electric hybrid board of the present invention.
FIG. 5 is an explanatory view showing an example of an embodiment of a method of manufacturing an optical waveguide substrate according to the multilayer opto-electric hybrid board of the present invention in the order of steps in cross section.
[Explanation of symbols]
1: Optical hybrid board 2: Optical signal path 10: Electric element embedded substrate 11: Optical element embedded substrate 12: Waveguide substrate 20: Insulating adhesive 21: Heat sink 100: Electric element 101: Connection bump 102: Insulation Resin 200: Optical element 201: Connection bump 300: Core layer 301: Cladding layer 302: Micro mirror 401: Silicon substrate 402: Photosensitive resist 403: Step 501: Insulating resin 502: Copper foil 503: Photosensitive resist 504: Connection Bump 505: Optical or electrical element 505: Optical or electrical element 506: Plating mask

Claims (4)

電気素子を内蔵した基板、光素子を内蔵した基板および光導波路基板を絶縁性接着物を用いて複数積層するとともに各素子間の電気的な接続は各素子を内蔵した基板に形成されているバンプを用いて絶縁性接着物中で接続されており、かつ光素子を内蔵した基板と光導波路は光接続されていることを特徴とする多層光電気混載基板A plurality of substrates including an electric element, a substrate including an optical element, and an optical waveguide substrate are laminated using an insulating adhesive, and electrical connections between the elements are formed on the substrate including the respective elements. A multilayer optical / electrical hybrid substrate, wherein the substrate and the optical waveguide are optically connected to each other and are connected in an insulating adhesive using an optical element. 電気素子を内蔵した基板のうち、少なくとも1つは光素子を内蔵した基板と電気的に接続されており、なおかつ該電気素子を内蔵した基板は他の素子を内蔵した基板と電気的に接続されていることを特徴とする請求項1に記載の多層光電気混載基板At least one of the boards containing the electric element is electrically connected to the board containing the optical element, and the board containing the electric element is connected electrically to the board containing the other element. 2. The multilayer opto-electric hybrid board according to claim 1, wherein 各素子を内蔵した基板間にヒートシンク層を挟んで積層することを特徴とする請求項1または2に記載の多層光電気混載基板3. The multi-layer opto-electric hybrid board according to claim 1, wherein a heat sink layer is interposed between the boards in which the respective elements are incorporated. 各素子を内蔵する基板および光導波路基板を作製後、それぞれの基板を検査することにより欠陥品を除去した後、絶縁性接着物を用いて各基板を多層化し、積層時に各基板に形成されているバンプを用いて絶縁性接着物間で接続する工程を有することを特徴とする請求項1〜3いずれか1項に記載の多層光電気混載基板の製造方法After fabricating the substrate incorporating each element and the optical waveguide substrate, removing each defective by inspecting each substrate, each substrate is multilayered using an insulating adhesive, and formed on each substrate at the time of lamination 4. The method for manufacturing a multilayer opto-electric hybrid board according to claim 1, further comprising a step of connecting between insulating adhesives using bumps.
JP2003116555A 2003-04-22 2003-04-22 Multilayered substrate effective for optical and electrical utility and its manufacturing method Pending JP2004327516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003116555A JP2004327516A (en) 2003-04-22 2003-04-22 Multilayered substrate effective for optical and electrical utility and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003116555A JP2004327516A (en) 2003-04-22 2003-04-22 Multilayered substrate effective for optical and electrical utility and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004327516A true JP2004327516A (en) 2004-11-18

Family

ID=33496721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003116555A Pending JP2004327516A (en) 2003-04-22 2003-04-22 Multilayered substrate effective for optical and electrical utility and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004327516A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006270037A (en) * 2005-02-28 2006-10-05 Sony Corp Hybrid module, its manufacturing process and hybrid circuit device
JP2006284781A (en) * 2005-03-31 2006-10-19 Furukawa Electric Co Ltd:The Circuit board
JP2006323318A (en) * 2005-05-20 2006-11-30 Sumitomo Bakelite Co Ltd Optical waveguide structure and optical waveguide substrate
JP2008111862A (en) * 2006-10-27 2008-05-15 Kyocera Corp Optical transmission substrate, optoelectronic hybrid substrate, optical module, and optoelectric circuit system
JP2009071094A (en) * 2007-09-14 2009-04-02 Furukawa Electric Co Ltd:The Substrate with built-in component
JP2009224522A (en) * 2008-03-14 2009-10-01 Sumitomo Bakelite Co Ltd Circuit board, board with built-in electronic device, integrated circuit device, optical waveguide with integrated circuit, and method for assembling board with built-in electronic device
JP2009222935A (en) * 2008-03-14 2009-10-01 Sumitomo Bakelite Co Ltd Optical waveguide module and method of manufacturing the same
KR101604489B1 (en) 2008-10-28 2016-03-17 닛토덴코 가부시키가이샤 Method for producing opto-electric hybrid module and opto-electric hybrid module obtained thereby

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006270037A (en) * 2005-02-28 2006-10-05 Sony Corp Hybrid module, its manufacturing process and hybrid circuit device
JP2006284781A (en) * 2005-03-31 2006-10-19 Furukawa Electric Co Ltd:The Circuit board
JP2006323318A (en) * 2005-05-20 2006-11-30 Sumitomo Bakelite Co Ltd Optical waveguide structure and optical waveguide substrate
JP2008111862A (en) * 2006-10-27 2008-05-15 Kyocera Corp Optical transmission substrate, optoelectronic hybrid substrate, optical module, and optoelectric circuit system
JP2009071094A (en) * 2007-09-14 2009-04-02 Furukawa Electric Co Ltd:The Substrate with built-in component
JP2009224522A (en) * 2008-03-14 2009-10-01 Sumitomo Bakelite Co Ltd Circuit board, board with built-in electronic device, integrated circuit device, optical waveguide with integrated circuit, and method for assembling board with built-in electronic device
JP2009222935A (en) * 2008-03-14 2009-10-01 Sumitomo Bakelite Co Ltd Optical waveguide module and method of manufacturing the same
KR101604489B1 (en) 2008-10-28 2016-03-17 닛토덴코 가부시키가이샤 Method for producing opto-electric hybrid module and opto-electric hybrid module obtained thereby

Similar Documents

Publication Publication Date Title
JP3709882B2 (en) Circuit module and manufacturing method thereof
KR101198061B1 (en) Printed wiring board and method for manufacturing the same
US7989706B2 (en) Circuit board with embedded component and method of manufacturing same
JP5100081B2 (en) Electronic component-mounted multilayer wiring board and manufacturing method thereof
JP3557130B2 (en) Method for manufacturing semiconductor device
US8177577B2 (en) Printed wiring board having a substrate with higher conductor density inserted into a recess of another substrate with lower conductor density
WO2011102561A1 (en) Multilayer printed circuit board and manufacturing method therefor
JP2005209689A (en) Semiconductor device and its manufacturing method
JP5093353B2 (en) Manufacturing method of component built-in module and component built-in module
JP2005217225A (en) Semiconductor device and method for manufacturing the same
JP5610105B1 (en) Electronic component built-in module
JP2006108211A (en) Wiring board, multilayered wiring circuit board using the board, and method of manufacturing the multilayered wiring circuit board
JPH1056099A (en) Multilayer circuit board and manufacture thereof
US20140085833A1 (en) Chip packaging substrate, method for manufacturing same, and chip packaging structure having same
JP2018032660A (en) Printed wiring board and method for manufacturing the same
JP4798237B2 (en) IC mounting board and multilayer printed wiring board
JP2010016339A (en) Module using multilayer flexible printed circuit board and method of manufacturing the same
JP2004327516A (en) Multilayered substrate effective for optical and electrical utility and its manufacturing method
CN114695145A (en) Board-level system-in-package method and package structure
JP5539453B2 (en) Electronic component-mounted multilayer wiring board and manufacturing method thereof
WO2014069107A1 (en) Substrate with built-in component, and communication terminal apparatus
JP2004206736A (en) Semiconductor device and manufacturing method therefor
JPH10242335A (en) Semiconductor device
KR101130608B1 (en) Printed circuit board assembly
CN113299626B (en) Conductive assembly for multi-chip packaging and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708