JP5076657B2 - Double tuning fork type vibration element and acceleration detection unit for stress sensitive sensor - Google Patents

Double tuning fork type vibration element and acceleration detection unit for stress sensitive sensor Download PDF

Info

Publication number
JP5076657B2
JP5076657B2 JP2007153636A JP2007153636A JP5076657B2 JP 5076657 B2 JP5076657 B2 JP 5076657B2 JP 2007153636 A JP2007153636 A JP 2007153636A JP 2007153636 A JP2007153636 A JP 2007153636A JP 5076657 B2 JP5076657 B2 JP 5076657B2
Authority
JP
Japan
Prior art keywords
vibrating
excitation electrode
vibrating arm
tuning fork
fork type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007153636A
Other languages
Japanese (ja)
Other versions
JP2008306621A (en
Inventor
潤 渡辺
俊信 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007153636A priority Critical patent/JP5076657B2/en
Publication of JP2008306621A publication Critical patent/JP2008306621A/en
Application granted granted Critical
Publication of JP5076657B2 publication Critical patent/JP5076657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、双音叉型圧電振動素子及び加速度検知ユニットに関し、特に振動腕部に溝を形成して感度を向上させた双音叉型圧電振動素子と、それを用いた加速度検知ユニットに関する。   The present invention relates to a double tuning fork type piezoelectric vibration element and an acceleration detection unit, and more particularly to a double tuning fork type piezoelectric vibration element in which a groove is formed in a vibrating arm portion to improve sensitivity and an acceleration detection unit using the same.

加速度センサは、従来より自動車、航空機、ロケットから各種プラントの異常振動監視装置等まで、広く使用されている。中でも双音叉型圧電振動素子を用いた圧力センサ、加速度センサは、印加された応力の大きさに比例して双音叉型圧電振動素子の周波数が変化し、データ処理が容易であると共に測定精度、測定感度、再現性、温度特性等が優れている。双音叉型圧電振動素子の電極構造に関しては、特許文献1に開示されている。図5(a)は、双音叉型圧電振動素子50、つまり2個の音叉型圧電振動素子の自由端同士を互いに接続した形状を有する圧電屈曲振動子の斜視図である。双音叉型圧電振動素子50は、基部52と2つの振動腕部53a、53bとを備えた圧電基板51と、各振動腕部53a、53bの4面に形成された励振電極55と、引き出し電極(リード電極)57と、から構成されている。   Conventionally, acceleration sensors have been widely used from automobiles, airplanes, rockets to abnormal vibration monitoring devices for various plants. Above all, the pressure sensor and acceleration sensor using a double tuning fork type piezoelectric vibration element change the frequency of the double tuning fork type piezoelectric vibration element in proportion to the magnitude of applied stress, making data processing easy and measuring accuracy, Excellent measurement sensitivity, reproducibility, temperature characteristics, etc. The electrode structure of the double tuning fork type piezoelectric vibration element is disclosed in Patent Document 1. FIG. 5A is a perspective view of a double tuning fork type piezoelectric vibration element 50, that is, a piezoelectric bending vibrator having a shape in which the free ends of two tuning fork type piezoelectric vibration elements are connected to each other. The double tuning fork type piezoelectric vibrating element 50 includes a piezoelectric substrate 51 having a base 52 and two vibrating arm portions 53a and 53b, excitation electrodes 55 formed on four surfaces of the vibrating arm portions 53a and 53b, and an extraction electrode. (Lead electrode) 57.

図5(b)は双音叉型圧電振動素子50の平面図であり、各振動腕部53a、53bには夫々3分割した励振電極55を形成する。励振電極55は振動の節を境に分割され、分割された相隣り合う励振電極55には逆極性の電圧を印加するように励振電極55を接続する。励振電極55の分割は、図5(b)に示すように振動腕部53a(53b)の長さをLとすると、両基部52の中央寄りの端から夫々0.255Lの点である。また、図5(c)は、同図(b)のA−Aにおける断面図であり、振動腕部53a、53bの表裏面、両側面に成膜した励振電極55の接続方法を示した図である。振動腕部53a、53b夫々の対向する励振電極55同士を接続し、同極性の電極同士を接続して2端子とする。このように励振電極55を接続すると、振動腕部53a、53bの夫々の対応する励振電極55には逆極性の電圧が印加され、双音叉型圧電振動素子50の長手方向の中心軸に対し、両側に対称な屈曲振動を励振することができる。
また、近年、両振動腕の表裏面に溝を設けた音叉型圧電振動子が実用化されている。
特開昭60−39911号公報
FIG. 5B is a plan view of the double tuning fork type piezoelectric vibration element 50, and excitation electrodes 55 divided into three are formed on the respective vibrating arm portions 53a and 53b. The excitation electrode 55 is divided at a vibration node, and the excitation electrode 55 is connected to the divided excitation electrodes 55 adjacent to each other so as to apply a voltage having a reverse polarity. As shown in FIG. 5B, the excitation electrode 55 is divided at a point of 0.255 L from the ends of the base portions 52 near the center, where L is the length of the vibrating arm portion 53 a (53 b). FIG. 5C is a cross-sectional view taken along the line AA of FIG. 5B, and shows a method for connecting the excitation electrodes 55 formed on the front and back surfaces and both side surfaces of the vibrating arm portions 53a and 53b. It is. The opposing excitation electrodes 55 of the vibrating arm portions 53a and 53b are connected to each other, and electrodes having the same polarity are connected to form two terminals. When the excitation electrodes 55 are connected in this way, voltages having opposite polarities are applied to the corresponding excitation electrodes 55 of the vibrating arm portions 53 a and 53 b, and the longitudinal axis of the double tuning fork type piezoelectric vibrating element 50 is Symmetric bending vibrations can be excited on both sides.
In recent years, tuning fork-type piezoelectric vibrators having grooves on the front and back surfaces of both vibrating arms have been put into practical use.
JP 60-39911 A

しかしながら、特許文献1は双音叉型圧電振動素子の電極構造を開示しているに過ぎない。双音叉型圧電振動素子を小型化すると、励振効率が悪化し、該振動子の実効抵抗、即ちCI値が増大し、加速度検知ユニットに使用する際に発振回路の設計が極めて難しくなるという問題があった。
本発明は上記問題を解決するためになされたもので、励振効率の優れた双音叉型圧電振動素子とそれを用いた加速度検知ユニットを提供することにある。
However, Patent Document 1 merely discloses an electrode structure of a double tuning fork type piezoelectric vibration element. When the size of the double tuning fork type piezoelectric vibration element is reduced, the excitation efficiency deteriorates, the effective resistance of the vibrator, that is, the CI value increases, and the design of the oscillation circuit becomes extremely difficult when used in the acceleration detection unit. there were.
The present invention has been made to solve the above problems, and it is an object of the present invention to provide a double tuning fork type piezoelectric vibration element having excellent excitation efficiency and an acceleration detection unit using the same.

上記目的を達成するため、本発明の応力感応型センサ用の双音叉型振動素子は、両端部
間に加えられる応力の変化に応じて屈曲振動の周波数が変化する平行な一対の振動腕部
前記各振動腕部の長手方向に在る夫々の前記端部と一体に接合されている基部、前記振動
腕部の表裏面の少なくとも一方の面に前記長手方向に沿って並んでいる複数の溝部、及び
前記複数の溝部の夫々に形成されている励振電極、を含むことを特徴とする。
上記のように双音叉型圧電振動素子を構成すると、励振効率のよい、つまり双音叉型圧
電振動素子の実効抵抗が低減され、例えば加速度検知ユニットに用いれば発振回路の構成
が容易であり、加速度の精度、感度の優れた加速度検知ユニットが構成できるという利点
がある。
To achieve the above object, the double-ended vibration element for stress-sensitive sensor of the present invention, both end portions
A pair of parallel vibrating arms in which the frequency of flexural vibration changes according to the change in stress applied between them ,
The base part integrally joined to each of the end parts in the longitudinal direction of each of the vibrating arm parts, the vibration
A plurality of grooves arranged along the longitudinal direction on at least one of the front and back surfaces of the arm, and
And an excitation electrode formed in each of the plurality of grooves .
When the double tuning fork type piezoelectric vibration element is configured as described above, the excitation efficiency is high, that is, the effective resistance of the double tuning fork type piezoelectric vibration element is reduced. There is an advantage that an acceleration detection unit with excellent accuracy and sensitivity can be configured.

また本発明の応力感応型センサ用の双音叉型振動素子は、隣り合う前記溝との間に前記
屈曲振動の節が在ることを特徴とする。
上記のように双音叉型圧電振動素子を構成すると、励振効率のよい、つまり双音叉型圧
電振動素子の実効抵抗が低減され、例えば加速度検知ユニットに用いれば発振回路の構成
が容易であり、加速度の精度、感度の優れた加速度検知ユニットが構成できるという利点
がある。
Moreover , the double tuning fork type vibration element for a stress sensitive sensor according to the present invention is provided between the adjacent grooves.
It is characterized by the presence of bending vibration nodes.
When the double tuning fork type piezoelectric vibration element is configured as described above, the excitation efficiency is high, that is, the effective resistance of the double tuning fork type piezoelectric vibration element is reduced. There is an advantage that an acceleration detection unit with excellent accuracy and sensitivity can be configured.

また本発明の応力感応型センサ用の双音叉型振動素子は、夫々の振動腕部を夫々一端か
ら他端に向かって順に第1、第2及び第3の振動部の領域に区切ったとき、前記第1の振
動部、前記第2の振動部および前記第3の振動部は、それぞれの表裏面に前記複数の溝部
と前記励振電極と、それぞれの両側面に他の励振電極と、を備え、前記第1の振動部の前
記表裏面の励振電極、前記第2の振動部の他の励振電極および前記第3の振動部の前記表
裏面の励振電極が導通しており、前記第1の振動部の前記他の励振電極、前記第2の振動
部の前記表裏面の励振電極および前記第3の振動部の他の励振電極が導通しており、一方
の前記振動腕部の前記第1の振動部の前記表裏面の励振電極と他方の前記振動腕部の前記
第1の振動部の前記他の励振電極とが導通しており、一方の前記振動腕部の前記第1の振
動部の前記他の励振電極と他方の前記振動部の前記第1の振動部の前記表裏面の励振電極
とが導通していることを特徴とする。
上記のように双音叉型圧電振動素子を構成すると、励振効率のよい、つまり双音叉型圧
電振動素子の実効抵抗が低減され、例えば加速度検知ユニットに用いれば発振回路の構成
が容易であり、加速度の精度、感度の優れた加速度検知ユニットが構成できるという利点
がある。
The double-ended vibration element for stress-sensitive sensor of the present invention, either each end of the vibrating arms of the respective
When the first vibration is divided into the first, second, and third vibration region in order toward the other end, the first vibration
The moving portion, the second vibrating portion, and the third vibrating portion have the plurality of groove portions on the front and back surfaces, respectively.
And the excitation electrode, and other excitation electrodes on both side surfaces thereof, in front of the first vibrating section
The excitation electrode on the back surface of the front surface, the other excitation electrode of the second vibration part, and the table of the third vibration part
The excitation electrode on the back surface is conductive, the other excitation electrode of the first vibration part, the second vibration
The excitation electrodes on the front and back surfaces of the part and the other excitation electrodes of the third vibration part are conductive,
The excitation electrode on the front and back surfaces of the first vibration part and the other vibration arm part of the first vibration arm part
The other excitation electrode of the first vibrating part is electrically connected, and the first vibration of one of the vibrating arm parts is provided.
The other excitation electrode of the moving part and the excitation electrode of the front and back surfaces of the first vibrating part of the other vibrating part
And is conductive .
When the double tuning fork type piezoelectric vibration element is configured as described above, the excitation efficiency is good, that is, the effective resistance of the double tuning fork type piezoelectric vibration element is reduced. For example, when used in an acceleration detection unit, the structure of the oscillation circuit is easy, and the acceleration circuit There is an advantage that an acceleration detection unit with excellent accuracy and sensitivity can be configured.

固定部材と、該固定部材に支持されている可動部材と、前記固定部材と前記可動部材と
を連結しており、加速度の変化に伴い前記固定部材の位置を基準にして前記可動部材の位
置が変位するように可撓性を有している梁と、前記固定部材の前記変位に伴い前記振動腕
部に加わる前記応力が変化するように固定部材と可動部材とによって両端部を支持され
いる本発明の双音叉型振動素子と、を備えている加速度検知ユニットである。
上記のように加速度検知ユニットを構成すると、発振回路の構成が容易であり、加速度
の精度、感度の優れた加速度検知ユニットが構成できるという効果がある。

A fixed member, the fixed member supporting lifting by Tei Ru movable member, the fixed member and the and connects the movable member, position of the movable member based on the position of the fixing member with the change in acceleration
A beam having flexibility so that the device is displaced, and the vibrating arm according to the displacement of the fixing member
Is supported at both ends the stress applied to the parts is through a fixed member and a movable member so as to change
A double-ended tuning fork vibration element of the present invention which are, an acceleration sensing unit which includes a.
When the acceleration detection unit is configured as described above, the configuration of the oscillation circuit is easy, and an acceleration detection unit having excellent acceleration accuracy and sensitivity can be configured.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は、本発明の第1の実施の形態に係る双音叉型水晶振動素子1の構成を示す斜視図である。双音叉型水晶振動素子1は、四角柱形状の細長い平行な一対の振動腕部7、8の夫々一方の端部が一方の基部6aに接合され、夫々の他方の端部が他方の基部6bに接合された圧電基板5と、前記夫々の振動腕部7、8の四面に形成された励振電極と、を備えた双音叉型圧電振動素子である。
振動腕部7、8は、空隙9挟んで双音叉型圧電振動素子の中心軸に対し対称に形成され、夫々第1の振動部7a、8a、第2の振動部7b、8b、第3の振動部7c、8cから構成される。第1の振動部7a、8aと、第3の振動部7c、8cとはほぼ同じ長さであり、第2の振動部7b、8bは第1の振動部7a、8aより長く形成される。
振動腕部7の第1、第2及び第3の振動部7a、7b、7cの表裏面の少なくとも一方の面には、夫々第1、第2及び第3の溝部11a、11b、11cが、橋絡部13a、13bを挟んで形成されている。同様に、振動腕部8の第1、第2及び第3の振動部8a、8b、8cの表裏面の少なくとも一方の面には、夫々第1、第2及び第3の溝部12a、12b、12cが、橋絡部14a、14bを挟んで形成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a perspective view showing a configuration of a double tuning fork type crystal vibrating element 1 according to a first embodiment of the present invention. In the double tuning fork type crystal resonator element 1, one end of each of a pair of rectangular parallelepiped elongated vibrating arms 7 and 8 is joined to one base 6a, and the other end is connected to the other base 6b. 2 is a double tuning fork type piezoelectric vibration element including a piezoelectric substrate 5 bonded to each other and excitation electrodes formed on four surfaces of the respective vibrating arm portions 7 and 8.
The vibrating arm portions 7 and 8 are formed symmetrically with respect to the center axis of the double tuning fork type piezoelectric vibrating element with the gap 9 interposed therebetween, and the first vibrating portions 7a and 8a, the second vibrating portions 7b and 8b, and the third vibrating portion, respectively. It is comprised from the vibration parts 7c and 8c. The first vibrating parts 7a and 8a and the third vibrating parts 7c and 8c have substantially the same length, and the second vibrating parts 7b and 8b are formed longer than the first vibrating parts 7a and 8a.
The first, second, and third groove portions 11a, 11b, and 11c are provided on at least one of the front and back surfaces of the first, second, and third vibrating portions 7a, 7b, and 7c of the vibrating arm portion 7, respectively. It is formed across the bridging portions 13a and 13b. Similarly, the first, second, and third groove portions 12a, 12b, and 12b, respectively, are provided on at least one of the front and back surfaces of the first, second, and third vibrating portions 8a, 8b, and 8c of the vibrating arm portion 8. 12c is formed across the bridging portions 14a and 14b.

図1に示した第1の実施の形態では、振動腕部7、8の各表裏面に溝を形成した例を示している。例えば、振動腕部7の第1の振動部7aの表裏面に形成した第1の溝部は、共に11aと表示する。振動腕部7、8の第1、第2及び第3の溝部11a、11b、11c、12a、12b、12cに、真空蒸着、あるいはスパッタ等の手段により、夫々第1、第2及び第3の励振電極20a、20b、20c、22a、22b、22cを形成する。励振電極の場合も表裏の電極に同じ符号を付して表示する。
振動腕部7の第1、第2及び第3の振動部7a、7b、7cの両側面には、真空蒸着、あるいはスパッタ等の手段により、夫々第4、第5及び第6の励振電極21a、21b、21cを成膜する。第4、第5及び第6の励振電極21a、21b、21cは夫々無電極部により絶縁されている。同様に、振動腕部8の第1、第2及び第3の振動部8a、8b、8cの両側面には、夫々第4、第5及び第6の励振電極23a、23b、23cを形成する。
In the first embodiment shown in FIG. 1, an example in which grooves are formed on the front and back surfaces of the vibrating arm portions 7 and 8 is shown. For example, the first groove portions formed on the front and back surfaces of the first vibrating portion 7a of the vibrating arm portion 7 are both indicated as 11a. The first, second, and third grooves 11a, 11b, 11c, 12a, 12b, and 12c of the vibrating arm portions 7 and 8 are respectively deposited on the first, second, and third grooves by means of vacuum deposition or sputtering. Excitation electrodes 20a, 20b, 20c, 22a, 22b and 22c are formed. In the case of the excitation electrode, the same symbols are attached to the front and back electrodes.
On both side surfaces of the first, second and third vibrating portions 7a, 7b and 7c of the vibrating arm portion 7, fourth, fifth and sixth excitation electrodes 21a are formed by means of vacuum deposition or sputtering, respectively. , 21b, 21c are formed. The fourth, fifth, and sixth excitation electrodes 21a, 21b, and 21c are insulated by electrodeless portions. Similarly, fourth, fifth, and sixth excitation electrodes 23a, 23b, and 23c are formed on both side surfaces of the first, second, and third vibrating portions 8a, 8b, and 8c of the vibrating arm portion 8, respectively. .

図2は各振動腕部7、8に形成された励振電極を説明するための図で、振動腕部7の第1、第2及び第3の振動部7a、7b、7cと、振動腕部8の第1、第2及び第3の振動部8a、8b、8cと、に成膜した励振電極を示す断面図である。各励振電極の極性を示すために、斜線とドットを用いて表示している。
図2の左側には、振動腕部7の表裏面の第1、第2及び第3の溝部11a、11b、11cに成膜した第1、第2及び第3の励振電極20a、20b、20cと、第1、第2及び第3の振動部7a、7b、7cの両側面に形成した第4、第5及び第6の励振電極21a、21b、21cを示している。励振電極の場合も溝部と同様に対向する表裏面、または両側面に同じ符号を付している。
また、図2の右側には振動腕部8の表裏の溝部12a、12b、12cに成膜した第1、第2及び第3励振電極22a、22b、22cと、振動部8a、8b、8cの両側面に成膜した第4、第5及び第6の励振電極23a、23b、23cを示している。
FIG. 2 is a diagram for explaining the excitation electrodes formed on the vibrating arm portions 7 and 8, and the first, second and third vibrating portions 7a, 7b and 7c of the vibrating arm portion 7, and the vibrating arm portions. 8 is a cross-sectional view showing excitation electrodes formed on eight first, second, and third vibrating portions 8a, 8b, and 8c. FIG. In order to indicate the polarity of each excitation electrode, it is displayed using diagonal lines and dots.
On the left side of FIG. 2, the first, second, and third excitation electrodes 20a, 20b, and 20c formed in the first, second, and third grooves 11a, 11b, and 11c on the front and back surfaces of the vibrating arm portion 7 are illustrated. And fourth, fifth and sixth excitation electrodes 21a, 21b and 21c formed on both side surfaces of the first, second and third vibrating portions 7a, 7b and 7c. In the case of the excitation electrode as well, the same reference numerals are given to the front and back surfaces or both side surfaces facing each other in the same manner as the groove.
Further, on the right side of FIG. 2, the first, second, and third excitation electrodes 22a, 22b, and 22c formed in the grooves 12a, 12b, and 12c on the front and back sides of the vibrating arm portion 8 and the vibrating portions 8a, 8b, and 8c are formed. The fourth, fifth and sixth excitation electrodes 23a, 23b and 23c formed on both side surfaces are shown.

図2には振動腕部7、8の各振動部7a、7b、7c、8a、8b、8cの励振電極の構成を示すと共に、一方の励振電極から他方の励振電極に向かう電気力線も示している。電気力線は、図5(c)に示した従来の電気力線より強まり、X軸方向の電界強度が増して、振動効率が高まる。各励振電極の接続は、各振動腕部7、8上に蒸着等の手段で形成した図示しない引き出し電極(リード電極)を用いて行う。各振動腕部7、8の表裏面の励振電極20a〜20c、22a〜22c及び両側面の励振電極21a〜21c、23a〜23cの夫々対向する励振電極同士を接続する。次に、振動腕部7の表裏面の第1の励振電極20aと、両側面の第5の励振電極21bと、表裏面の第3の励振電極20cと、を振動腕部7上に形成したリード電極(図示せず)にて接続する。そして、振動腕部7の両側面の第4の励振電極21aと、表裏面の第2の励振電極20bと、両側面の第6の励振電極21cと、をリード電極にて接続する。
同様に、振動腕部8の表裏面の第1の励振電極22aと、両側面の第5の励振電極23bと、表裏面の第3の励振電極22cと、を振動腕部8上に形成したリード電極(図示せず)にて接続する。そして、振動腕部8の両側面の第4の励振電極23aと、表裏面の第2の励振電極22bと、両側面の第6の励振電極23cと、リード電極にて接続する。振動腕部7の表裏面の第1の励振電極20aと、振動腕部8の両側面の第4の励振電極23aとをリード電極にて接続し、振動腕部7の両側面の第4の励振電極21aと、振動腕部8の表裏面の第1の励振電極22aとをリード電極にて接続して、2端子の双音叉型圧電振動素子を構成する。
FIG. 2 shows the configuration of the excitation electrodes of the vibrating portions 7a, 7b, 7c, 8a, 8b, and 8c of the vibrating arm portions 7 and 8, and also shows the electric lines of force from one excitation electrode to the other excitation electrode. ing. The electric lines of force are stronger than the conventional electric lines of force shown in FIG. 5C, the electric field strength in the X-axis direction is increased, and the vibration efficiency is increased. Each excitation electrode is connected using a lead electrode (not shown) formed on the vibrating arm portions 7 and 8 by means such as vapor deposition. Exciting electrodes 20a to 20c and 22a to 22c on the front and back surfaces of the vibrating arm portions 7 and 8 and the exciting electrodes 21a to 21c and 23a to 23c on both sides are connected to each other. Next, the first excitation electrode 20 a on the front and back surfaces of the vibrating arm portion 7, the fifth excitation electrode 21 b on both side surfaces, and the third excitation electrode 20 c on the front and back surfaces were formed on the vibrating arm portion 7. Connection is made with a lead electrode (not shown). Then, the fourth excitation electrode 21a on both side surfaces of the vibrating arm portion 7, the second excitation electrode 20b on the front and back surfaces, and the sixth excitation electrode 21c on both side surfaces are connected by lead electrodes.
Similarly, the first excitation electrode 22 a on the front and back surfaces of the vibrating arm portion 8, the fifth excitation electrode 23 b on both side surfaces, and the third excitation electrode 22 c on the front and back surfaces are formed on the vibrating arm portion 8. Connection is made with a lead electrode (not shown). Then, the fourth excitation electrode 23a on both side surfaces of the vibrating arm portion 8, the second excitation electrode 22b on the front and back surfaces, the sixth excitation electrode 23c on both side surfaces, and the lead electrodes are connected. The first excitation electrodes 20a on the front and back surfaces of the vibrating arm portion 7 and the fourth excitation electrodes 23a on both side surfaces of the vibrating arm portion 8 are connected by lead electrodes, and fourth electrodes on both side surfaces of the vibrating arm portion 7 are connected. The excitation electrode 21a and the first excitation electrode 22a on the front and back surfaces of the vibrating arm portion 8 are connected by a lead electrode to constitute a two-terminal double tuning fork type piezoelectric vibration element.

図1、図2に示したように各振動腕部7、8に3分割した電極を形成し、図示しないリード電極にて上記のように接続すると、双音叉型水晶振動素子1の長手方向の中心軸の両側に、対称な屈曲振動が励振される。
第1の実施の形態の双音叉型水晶振動素子の特徴は、双音叉型水晶振動素子の各振動腕部の表裏面に夫々3個の溝部を形成し、この溝部に励振電極を成膜することにより、X軸方向の電界が強化され、その結果、屈曲振動が効果的に励振されて、双音叉型水晶振動素子の実効抵抗が小さくなる。このような小型化された双音叉型水晶振動素子を力検知ユニット、あるいは加速度検知ユニットに用いれば、ユニットの小型化が可能であり、発振回路の設計も容易で、検知感度の高いユニットが構成できるという効果がある。
As shown in FIG. 1 and FIG. 2, when the electrodes divided into three are formed on the vibrating arm portions 7 and 8 and connected as described above with the lead electrodes (not shown), the longitudinal direction of the double tuning fork type quartz vibrating element 1 Symmetrical bending vibrations are excited on both sides of the central axis.
A characteristic of the double tuning fork type crystal resonator element of the first embodiment is that three groove portions are formed on the front and back surfaces of each vibrating arm portion of the double tuning fork type crystal resonator element, and excitation electrodes are formed in the groove portions. As a result, the electric field in the X-axis direction is strengthened, and as a result, flexural vibration is effectively excited, and the effective resistance of the double tuning fork type crystal vibrating element is reduced. If such a miniaturized double tuning fork type crystal vibrating element is used in a force detection unit or acceleration detection unit, the unit can be downsized, the design of the oscillation circuit is easy, and a unit with high detection sensitivity is constructed. There is an effect that can be done.

図3は第2の実施の形態に係る双音叉型水晶振動素子の構成を示す斜視図である。
上記第1の実施の形態の双音叉型水晶振動素子は、各振動腕部の表裏面に夫々3個の溝部を形成し、この溝部に励振電極を成膜したのに対して、第2の実施の形態の双音叉型水晶振動素子は、各振動腕の表裏面に夫々1本の溝部を形成した点に特徴がある。
即ち、双音叉型水晶振動素子2は、細い角柱形状の平行な2個の振動腕部7、8の夫々一方の端部が一方の基部6aに接合され、振動腕部7、8の夫々他方の端部が他方の基部6bに接合された圧電基板5と、夫々の振動腕部7、8の四面に形成された励振電極と、を備えた双音叉型圧電振動素子である。
振動腕部7、8は、空隙9挟んで対称に形成され、夫々第1の振動部7a、8a、第2の振動部7b、8b、第3の振動部7c、8cから構成されている。第1の振動部7a、8aと、第3の振動部7c、8cとの長さはほぼ等しく、第2の振動部7b、8b長さは、第1の振動部7a、8aよりも長く形成されている。
FIG. 3 is a perspective view showing a configuration of a double tuning fork type crystal vibrating element according to the second embodiment.
In the double tuning fork type crystal resonator element of the first embodiment, three groove portions are formed on the front and back surfaces of each vibrating arm portion, and excitation electrodes are formed in the groove portions. The double tuning fork type crystal resonator element according to the embodiment is characterized in that one groove portion is formed on each of the front and back surfaces of each vibrating arm.
That is, in the double tuning fork type crystal vibrating element 2, one end of each of two parallel vibrating arm portions 7 and 8 having a thin prismatic shape is joined to one base portion 6a, and each of the vibrating arm portions 7 and 8 is connected to the other. This is a double tuning fork type piezoelectric vibration element including a piezoelectric substrate 5 having its end portion bonded to the other base portion 6b and excitation electrodes formed on the four surfaces of the respective vibrating arm portions 7 and 8.
The vibrating arm portions 7 and 8 are formed symmetrically with the gap 9 interposed therebetween, and are composed of first vibrating portions 7a and 8a, second vibrating portions 7b and 8b, and third vibrating portions 7c and 8c, respectively. The lengths of the first vibrating parts 7a, 8a and the third vibrating parts 7c, 8c are substantially equal, and the second vibrating parts 7b, 8b are longer than the first vibrating parts 7a, 8a. Has been.

各振動腕部7、8の表裏面の少なくとも一方の面に夫々溝部11、12を形成する。振動腕部7の第1、第2及び第3の振動部7a、7b、7cの表裏面に第1、第2及び第3の励振電極20a、20b、20cを成膜すると共に、前記振動部7a、7b、7cの夫々の両側面に第4、第5及び第6の励振電極21a、21b、21cを成膜する。同様に、振動腕部8の第1、第2及び第3の振動部8a、8b、8cの表裏面に第1、第2及び第3の励振電極22a、22b、22cを成膜すると共に、前記振動部8a、8b、8cの夫々の両側面に第4、第5及び第6の励振電極23a、23b、23cを成膜する。図3の例では、各振動腕部7、8の表裏面に夫々溝部11、12を形成した例を図示している。裏面の溝部11、12(図示せず)も表面と同じ符号を付し、励振電極の場合も表裏、両側面とも同符号を付して表示する。
振動腕部7、8の夫々の第1、第2及び第3の振動部7a、7b、7c、8a、8b、8cにおける溝部11、12に成膜した励振電極、両側面の励振電極の構成は、図2に示した通りである。各振動腕部7、8の表裏面の第1、第2及び第3の励振電極20a〜20c、22a〜22c、及び両側面の第4、第5及び第6の励振電極21a〜21c、23a〜23cの中、対向する励振電極同士を、各振動腕部7、8に形成した図示しない引き出し電極(リード電極)にて接続する。
Groove portions 11 and 12 are formed on at least one of the front and back surfaces of the vibrating arm portions 7 and 8, respectively. First, second, and third excitation electrodes 20a, 20b, and 20c are formed on the front and back surfaces of the first, second, and third vibrating portions 7a, 7b, and 7c of the vibrating arm portion 7, and the vibrating portion The fourth, fifth and sixth excitation electrodes 21a, 21b and 21c are formed on both side surfaces of 7a, 7b and 7c. Similarly, first, second, and third excitation electrodes 22a, 22b, 22c are formed on the front and back surfaces of the first, second, and third vibrating portions 8a, 8b, 8c of the vibrating arm portion 8, and Fourth, fifth, and sixth excitation electrodes 23a, 23b, and 23c are formed on both side surfaces of the vibrating portions 8a, 8b, and 8c. In the example of FIG. 3, the example which formed the groove parts 11 and 12 in the front and back of each vibration arm part 7 and 8 is shown in figure, respectively. The groove portions 11 and 12 (not shown) on the back surface are also denoted by the same reference numerals as those on the front surface, and the front and back surfaces and both side surfaces are also denoted by the same reference numerals in the case of excitation electrodes.
Configurations of excitation electrodes formed on the grooves 11 and 12 in the first, second and third vibrating portions 7a, 7b, 7c, 8a, 8b and 8c of the vibrating arm portions 7 and 8 and excitation electrodes on both sides. Is as shown in FIG. First, second and third excitation electrodes 20a to 20c and 22a to 22c on the front and back surfaces of the vibrating arm portions 7 and 8, and fourth, fifth and sixth excitation electrodes 21a to 21c and 23a on both side surfaces. ˜23c, the excitation electrodes facing each other are connected by extraction electrodes (lead electrodes) (not shown) formed on the respective vibrating arm portions 7 and 8.

次に、振動腕部7の表裏面の第1の励振電極20aと、両側面の第5の励振電極21bと、表裏面の第3の励振電極20cと、を振動腕部7上に形成したリード電極(図示せず)にて接続する。そして、振動腕部7の両側面の第4の励振電極21aと、表裏面の第2の励振電極20bと、両側面の第6の励振電極21cと、リード電極にて接続する。
同様に、振動腕部8の表裏面の第1の励振電極22aと、両側面の第5の励振電極23bと、表裏面の第3の励振電極22cと、を振動腕部8上に形成したリード電極(図示せず)にて接続する。そして、振動腕部8の両側面の第4の励振電極23aと、表裏面の第2の励振電極22bと、両側面の第6の励振電極23cと、リード電極にて接続する。次に、振動腕部7の表裏面の第1の励振電極20aと、振動腕部8の両側面の第4の励振電極23aとをリード電極にて接続し、振動腕部7の両側面の第4の励振電極21aと、振動腕部8の表裏面の第1の励振電極22aとをリード電極にて接続して、2端子の双音叉型圧電振動素子を構成する。
このように第2の実施の形態の双音叉型水晶振動素子では、双音叉型水晶振動素子の各振動腕の表裏面に夫々1本の溝部を形成し、溝部に励振電極を成膜したことにより、X軸方向の電界が強化される。その結果、屈曲振動が効果的に励振され、双音叉型水晶振動素子の実効抵抗が小さくなる。第1の実施例と同様に力検知ユニット、あるいは加速度検知ユニットに用いれば、発振回路が容易になると共に検知感度の高いユニットが構成できるという効果がある。
Next, the first excitation electrode 20 a on the front and back surfaces of the vibrating arm portion 7, the fifth excitation electrode 21 b on both side surfaces, and the third excitation electrode 20 c on the front and back surfaces were formed on the vibrating arm portion 7. Connection is made with a lead electrode (not shown). Then, the fourth excitation electrode 21a on both side surfaces of the vibrating arm portion 7, the second excitation electrode 20b on the front and back surfaces, the sixth excitation electrode 21c on both side surfaces, and the lead electrodes are connected.
Similarly, the first excitation electrode 22 a on the front and back surfaces of the vibrating arm portion 8, the fifth excitation electrode 23 b on both side surfaces, and the third excitation electrode 22 c on the front and back surfaces are formed on the vibrating arm portion 8. Connection is made with a lead electrode (not shown). Then, the fourth excitation electrode 23a on both side surfaces of the vibrating arm portion 8, the second excitation electrode 22b on the front and back surfaces, the sixth excitation electrode 23c on both side surfaces, and the lead electrodes are connected. Next, the first excitation electrode 20a on the front and back surfaces of the vibrating arm portion 7 and the fourth excitation electrode 23a on both side surfaces of the vibrating arm portion 8 are connected by lead electrodes, and the both side surfaces of the vibrating arm portion 7 are connected. The fourth excitation electrode 21a and the first excitation electrode 22a on the front and back surfaces of the vibrating arm portion 8 are connected by a lead electrode to constitute a two-terminal double tuning fork type piezoelectric vibration element.
As described above, in the double tuning fork type crystal resonator element according to the second embodiment, one groove portion is formed on each of the front and back surfaces of each vibrating arm of the double tuning fork type crystal resonator element, and an excitation electrode is formed on the groove portion. As a result, the electric field in the X-axis direction is strengthened. As a result, flexural vibration is effectively excited, and the effective resistance of the double tuning fork type crystal vibrating element is reduced. When used in the force detection unit or the acceleration detection unit as in the first embodiment, there is an effect that the oscillation circuit becomes easy and a unit with high detection sensitivity can be configured.

図4は、本実施形態の加速度検知ユニットの構成を示す斜視図であり、加速度印加によって変位しない固定部材30と、固定部材30によって加速度印加方向へ可動な状態で支持される可動部材35と、固定部材30と可動部材35とを連結する可撓性を有した梁40と、固定部材30と可動部材35とによって両端の固定端を夫々支持された前記の双音叉型振動素子1と、を備えている。梁40は、加速度検知ユニット3にX軸方向(図1の左下端に示す)の加速度が印加された場合、可動部材35を介して双音叉型振動素子1に伸張・圧縮応力(加速度×質量)が加わるよう、可動部材35を加速度印加方向(X軸)へ変位させるように構成される。なお、固定部材30、可動部材35、梁40は真鍮、アルミニウム、燐青銅等の金属材料を機械加工して一体的に構成されている。
第1及び第2の実施の形態の双音叉型水晶振動素子を加速度検知ユニット3に用いれば、検知感度の高いユニットが構成できるという効果がある。
FIG. 4 is a perspective view showing the configuration of the acceleration detection unit of the present embodiment, a fixed member 30 that is not displaced by application of acceleration, and a movable member 35 that is supported by the fixed member 30 in a state of being movable in the direction of acceleration application. The flexible beam 40 for connecting the fixed member 30 and the movable member 35, and the above-mentioned double tuning fork type vibration element 1 having the fixed ends at both ends supported by the fixed member 30 and the movable member 35, respectively. I have. When acceleration in the X-axis direction (shown at the lower left end in FIG. 1) is applied to the acceleration detection unit 3, the beam 40 is stretched / compressed stress (acceleration × mass) to the double tuning fork type vibration element 1 via the movable member 35. ) Is configured to displace the movable member 35 in the acceleration application direction (X axis). The fixed member 30, the movable member 35, and the beam 40 are integrally formed by machining a metal material such as brass, aluminum, phosphor bronze, or the like.
If the double tuning fork type crystal resonator element of the first and second embodiments is used for the acceleration detection unit 3, there is an effect that a unit with high detection sensitivity can be configured.

第1の実施の形態の双音叉型圧電振動素子の構成を示した斜視図である。It is the perspective view which showed the structure of the double tuning fork type piezoelectric vibration element of 1st Embodiment. 各振動腕部における各振動部の電極構成を示す断面図である。It is sectional drawing which shows the electrode structure of each vibration part in each vibration arm part. 第2の実施の形態の双音叉型圧電振動素子の構成を示した斜視図である。It is the perspective view which showed the structure of the double tuning fork type piezoelectric vibration element of 2nd Embodiment. 加速度検知ユニットの構成を示す斜視図である。It is a perspective view which shows the structure of an acceleration detection unit. 従来の双音叉型圧電振動素子の説明図であり、(a)は斜視図、(b)は電極配置を示す平面図、(c)は電極の配置を示す断面図である。It is explanatory drawing of the conventional double tuning fork type piezoelectric vibration element, (a) is a perspective view, (b) is a top view which shows electrode arrangement | positioning, (c) is sectional drawing which shows arrangement | positioning of an electrode.

符号の説明Explanation of symbols

1、2 双音叉型圧電振動素子、3 加速度検知ユニット、5 圧電基板、6a、6b 基部、7、8 振動腕部、7a、7b、7c、8a、8b、8c 振動部、9 空隙部、11、11a、11b、11c、12、12a、12b、12c 溝部、13a、13b、14a、14b 橋絡部、20a、20b、20c、21a、21b、21c、22a、22b、22c、23a、23b、23c 励振電極、30 固定部材、35 可動部材、40 梁   DESCRIPTION OF SYMBOLS 1, 2 Twin tuning fork type piezoelectric vibration element, 3 Acceleration detection unit, 5 Piezoelectric substrate, 6a, 6b Base part, 7, 8 Vibration arm part, 7a, 7b, 7c, 8a, 8b, 8c Vibration part, 9 Cavity part, 11 11a, 11b, 11c, 12, 12a, 12b, 12c Groove part, 13a, 13b, 14a, 14b Bridge part, 20a, 20b, 20c, 21a, 21b, 21c, 22a, 22b, 22c, 23a, 23b, 23c Excitation electrode, 30 fixed member, 35 movable member, 40 beams

Claims (2)

一端と他端との間に加えられる応力の変化に応じて屈曲振動の周波数が変化するものであり、前記一端側から前記他端側に向かって順に第1の振動部、第2の振動部、第3の振動部、前記第1の振動部の表裏面側にあり、かつ前記一端側から前記他端側に向かって延びている有底の第1の溝部、
第2の振動部の表裏面側にあって前記第1の溝部に隣在しており、かつ前記一端側から前記他端側に向かって延びている有底の第2の溝部、
および第3の振動部の表裏面側にあって前記第2の溝部に隣在しており、かつ前記一端側から前記他端側に向かって延びている第3の溝部、
更に、前記第1の溝部と前記第2の溝部との間および前記第2の溝部と前記第3の溝部との間が、前記屈曲振動の節となる所を含むと共に前記第1の溝部の底面ならびに前記第2の溝部の底面よりも突出している、
平行な第1の振動腕部ならびに第2の振動腕部
前記各振動腕部の長手方向に在る夫々の前記端部と一体に接合されている基部と、を備えており、
前記第1の溝部内、前記第2の振動部の両側面および前記第3の溝部内には互いに導通している第1の励振電極と、前記第1の振動部の両側面、前記第2に溝部内および前記第3の両側面には互いに導通している第2の励振電極と、を備え、かつ前記第1の振動腕部に備えている前記第1の励振電極と前記第2の振動腕部に備えている前記第2の励振電極とが導通し、前記第1の振動腕部に備えている前記第2の励振電極と前記第2の振動腕部に備えている前記第1の励振電極とが導通していることを特徴とする応力感応型センサ用の双音叉型振動素子。
The frequency of flexural vibration changes according to a change in stress applied between the one end and the other end, and the first vibrating portion and the second vibrating portion in order from the one end side to the other end side. , A third vibrating portion, a bottomed first groove portion that is on the front and back sides of the first vibrating portion and extends from the one end side toward the other end side,
A bottomed second groove portion which is adjacent to the first groove portion on the front and back sides of the second vibration portion and extends from the one end side toward the other end side;
And a third groove portion that is adjacent to the second groove portion on the front and back sides of the third vibrating portion and extends from the one end side toward the other end side,
Furthermore, between the first groove portion and the second groove portion, and between the second groove portion and the third groove portion, a place serving as a node of the bending vibration is included and the first groove portion Projecting from the bottom surface and the bottom surface of the second groove,
A first oscillation arm and the second oscillation arm parallel,
A base portion integrally joined to each of the end portions in the longitudinal direction of each vibrating arm portion, and
In the first groove portion, both side surfaces of the second vibrating portion and the third groove portion, a first excitation electrode which is electrically connected to each other, both side surfaces of the first vibrating portion, the second A second excitation electrode that is electrically connected to each other in the groove portion and on both side surfaces of the third portion, and the first excitation electrode and the second excitation electrode that are provided in the first vibrating arm portion. The second excitation electrode provided in the vibrating arm portion is electrically connected, and the second excitation electrode provided in the first vibrating arm portion and the first vibrating arm portion are provided in the first vibrating arm portion. A double tuning fork type vibration element for a stress sensitive sensor , wherein the excitation electrode is electrically connected .
固定部材と、該固定部材に支持されている可動部材と、前記固定部材と前記可動部材とを連結しており、加速度の変化に伴い前記固定部材の位置を基準にして前記可動部材の位置が変位するように可撓性を有している梁と、前記固定部材の前記変位に伴い前記振動腕部に加わる前記応力が変化するように前記固定部材と前記可動部材とによって両端部を支持されている請求項1に記載の応力感応型センサ用の双音叉型振動素子と、を備えていることを特徴とする加速度検知ユニット。 A fixed member, a movable member supported by the fixed member, and the fixed member and the movable member are connected to each other, and the position of the movable member is determined based on the position of the fixed member with a change in acceleration. Both ends of the beam are supported by the fixed member and the movable member so that the stress applied to the vibrating arm portion is changed with the displacement of the fixed member and the beam having flexibility so as to be displaced. An acceleration detection unit comprising: a double tuning fork type vibration element for a stress sensitive sensor according to claim 1 .
JP2007153636A 2007-06-11 2007-06-11 Double tuning fork type vibration element and acceleration detection unit for stress sensitive sensor Active JP5076657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007153636A JP5076657B2 (en) 2007-06-11 2007-06-11 Double tuning fork type vibration element and acceleration detection unit for stress sensitive sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007153636A JP5076657B2 (en) 2007-06-11 2007-06-11 Double tuning fork type vibration element and acceleration detection unit for stress sensitive sensor

Publications (2)

Publication Number Publication Date
JP2008306621A JP2008306621A (en) 2008-12-18
JP5076657B2 true JP5076657B2 (en) 2012-11-21

Family

ID=40234907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007153636A Active JP5076657B2 (en) 2007-06-11 2007-06-11 Double tuning fork type vibration element and acceleration detection unit for stress sensitive sensor

Country Status (1)

Country Link
JP (1) JP5076657B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5998688B2 (en) 2012-07-10 2016-09-28 セイコーエプソン株式会社 Vibrating piece, vibrator, electronic device, electronic equipment, moving object
JP2019165358A (en) * 2018-03-20 2019-09-26 エスアイアイ・クリスタルテクノロジー株式会社 Dual tuning fork type piezoelectric vibration chip

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252597A (en) * 1975-10-27 1977-04-27 Citizen Watch Co Ltd Bend type piezoelectric vibrator
FR2467487A1 (en) * 1979-10-15 1981-04-17 Ebauches Sa PIEZOELECTRIC RESONATOR
JPH0239887B2 (en) * 1983-08-12 1990-09-07 Toyo Communication Equip SOONSAGATAATSUDENKUTSUKYOKUSHINDOSHINODENKYOKUKOZO
JP3072354B2 (en) * 1991-06-07 2000-07-31 日本航空電子工業株式会社 Transducer accelerometer
FR2723638B1 (en) * 1994-08-10 1996-10-18 Sagem FORCE-FREQUENCY TRANSDUCER WITH VIBRATING BEAMS
JP3477618B2 (en) * 2000-10-31 2003-12-10 有限会社ピエデック技術研究所 Bending quartz crystal
JP4281348B2 (en) * 2002-12-17 2009-06-17 セイコーエプソン株式会社 Piezoelectric vibrating piece, piezoelectric device using the piezoelectric vibrating piece, mobile phone device using the piezoelectric device, and electronic equipment using the piezoelectric device

Also Published As

Publication number Publication date
JP2008306621A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
US8225662B2 (en) Acceleration sensing device
JP6620243B2 (en) Angular velocity sensor, sensor element and multi-axis angular velocity sensor
US20200064367A1 (en) Vibrating beam accelerometer
US20140373633A1 (en) Physical quantity detector
JP2011226941A (en) Vibration-type force detection sensor and vibration-type force detector
CN110177996B (en) Sensor element, angular velocity sensor, and multiaxial angular velocity sensor
JP7166371B2 (en) Angular rate sensor and sensor element
JP5076657B2 (en) Double tuning fork type vibration element and acceleration detection unit for stress sensitive sensor
JP2012149961A (en) Vibration gyro
JP2011191091A (en) Tuning-fork type vibrator element, vibrator, and sensor device
US9726492B2 (en) Angular velocity detection element
JP4420038B2 (en) Stress sensitive element
US11656078B2 (en) Sensor element and angular velocity sensor
JP2011059097A (en) Tuning fork vibrating reed, vibration sensor element, and vibration sensor
JP6232957B2 (en) Piezoelectric acceleration sensor
JP2007187463A (en) Acceleration sensor
JP2011220765A (en) Inertial sensor and manufacturing method thereof
JP2008309731A (en) Acceleration detection unit and acceleration sensor
JP2009063369A (en) Acceleration sensor element and acceleration sensor
JPS62188975A (en) Piezoelectric angular velocity sensor
JP6506615B2 (en) Sensor element, physical sensor, and external force detection method
JP2012007894A (en) Composite sensor element, composite sensor and composite sensor device
JP2006064538A (en) Gyroscope sensor
JP2010286468A (en) Dual tuning fork type vibrating reed, vibration type sensor element, and vibration type sensor
JP2000283765A (en) Tripod tuning fork oscillator and angular speed sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090703

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5076657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350